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A Very Simple Example
Example (Machinery, Overtime, or Nothing?)

A company makes a product, and believes in increasing future demand. The manager asks you,
the decision expert, whether he should buy new machinery, use overtime, or do nothing. The
upcoming year, demand can either increase or remain the same.

If we buy new machinery, then the profit at the end of the year will be 440 (in thousands of
pounds) if demand increases, and 260 otherwise. Alternatively, if we use overtime, then the
profit will be 420 if demand increases, and 300 otherwise. If we do nothing, profit will be 370.

Group Exercise (20 minutes, in groups of 4 or 5)

(A) Discuss what advice could you give to the manager.

(B) Discuss what information would allow you to make a better recommendation.

» Appoint a group reporter.
» 10 minutes for discussion within each group.

» 2 minutes for each group to present their answer at the end.



Outline
Introduction to Decision Theory (9:00am)

Example: Offshore Wind (9:20am)



What is Decision Making: Offshore Wind Example
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Offshore wind is too expensive!
Jim Platts

7th December 2013

W Tweet |28 84 0
Prices paid in the UK to solar and wind
generators will change to favour offshore
wind at the expense of the others. Jim Platt
warns that the policy is doomed to failure -
offshore wind is just too expensive, and
likely to remain so.
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Offshore wind on the rocks? Phet: Chris Lishman /
Shutterstock com.
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What is Decision Making: Offshore Wind Example

Floating turbines could cut offshore wind

energy costs: study

11 July 2014

Floating turbines could cut the cost of offshore
wind power to below £85/MWh by the mid-2020s,
according to an engineering design study by The
Glosten Associates for the Energy Technologies
Institute (ETI).

The new study revealed that the company's
PelaStar tension leg floating platform (TLP) could
deliver further reductions as the technology
matures and is designed to provide high capacity
factors in wind speeds exceeding 10m per second
in water between 6B0m and 1,200m deep.

The UK is said to have over a third of Europe's
potential offshare wind resource, which is enough
to meet the power demand of the country nearly
three times over.

The FEED study has shown that Glosten's
PelaStar TLP design could play a major role in
reducing UK offshore wind energy costs

The company said that the TLP technology is suitable for water depths from as low as 55m up to several

hundred metres



What is Decision Making: Offshore Wind Example

Operations & Maintenance of Offshore Wind

30% of cost of offshore wind is operations & maintenance
= huge chunk of money

Types of Maintenance

» preventive (prevent future failures)

» corrective (fix after failure)



What is Decision Making: Offshore Wind Example

Decisions
criterion: minimize cost

» when to perform maintenance?
» what is a good preventive/corrective balance?

limiting factor = wind speed & wave height for boarding

Uncertainties
Enormous potential for saving costs by making accurate predictions of:

» wind & waves at different time scales
avoid missing maintenance opportunities
avoid costly transport when turbine cannot be boarded

» forecast failures before they happen
cost of preventing << cost of fixing



What is Decision Making: Offshore Wind Example

drastically different issues at different time scales:

Short Term: Optimize Actual Operations

what data on the wind farm should we collect
how to use it?

Medium Term: Business Case
how to convince investors to invest in offshore wind
may not have very much data to go from!

Long Term: Policy & Politics

should we encourage offshore, or look at other technologies?
very little data to go by, enormous uncertainty concerning future
climate change, attitude of electorate, etc.

not just about money
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What is Decision Making: Offshore Wind Example
Why Use Imprecise Probability for Decision Making?

» increases confidence in analysis based on sparse data
may help at all levels/time horizons

» risk-averse industries: rare events with large impact

Why NOT Use Imprecise Probability for Decision Making?

» computational expense

» abundant data, non-critical decisions
standard statistical treatment works as well

Communication!
how to communicate uncertainty?
uncertainty analysis only useful if results can be communicated

11



Outline
Introduction to Decision Theory (9:00am)

Brief Review of Classical Decision Theory (9:30am)
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Review of Classical Decision Theory: Example
Example: Visit Offshore Turbine by Boat in the Next Hour?

» parameter: average wave height X for next hour: unknown!
assume only possible values are x = 0.5 and x =2

» data: observation Y/, say average wave height in last hour
assume only possible values are y = 0.5 and y =2

» decision: d = take boat, or d = do not take boat

» decision strategy §:
which decision to make based on data y?

13



Review of Classical Decision Theory: Example
Example: Visit Offshore Turbine by Boat in the Next Hour?
» utility function U(d, x): each combination of decision & parameter leads to a
different final reward value
» can only board offshore turbine for maintenance if X <1
» taking boat costs €1000
» doing maintenance saves €4000

for example, expressed in units of €1000:
U(d, x) ‘ x=05 x=2
d = boat 3 -1
d = no boat 0 0
» likelihood: probability of data given parameter p(y|x)
pylx) |y =05 y=2
x=05| 09 0.1

x =2 0.3 0.7
» prior: probability of parameter p(x) before you see the data
p(x)‘x:O.S x =2
‘ 0.4 0.6 14




Review of Classical Decision Theory: Example
Frequentist Solution: Wald's Expected Utility, Admissibility

frequentist = use likelihood

1. for every possible strategy §
and for every possible value x of X
calculate Wald's expected utility expected utility = —risk

U(8lx) = E(U(S(Y), x)|x) = D U(5(y), x)p(y|x) (1)

y

2. a strategy 4 is inadmissible if there is a strategy ¢’ such that

U(d'|x) > U(6|x) for all x, and

U(d'|x) > U(|x) for at least one x partial ordering of strategies
3. optimal Wald strategy

all admissible strategies maximal elements w.r.t. partial ordering

15



Review of Classical Decision Theory: Example

Bayesian Solution: Maximize Posterior Expected Utility

Bayesian = use posterior (o< likelihood X prior)

1. calculate the posterior

el — PP
2w Py IX)p(x')
2. for every possible observation y
and every possible decision d
calculate the posterior expected utility:

U(dly) = E(U(d, X)|y) = Zde (xly)

3. optimal Bayes strategy d*: max posterior expected utility
0"(y) = arg max U(dly)

much easier to calculate than Wald's admissible strategies! (why?)

16



Review of Classical Decision Theory: Wald's Theorem

Wald's Theorem (1939 [13])

The set of Wald admissible strategies can always be recovered from a Bayesian analysis,
simply by varying the prior over all possible distributions.

[Technical details omitted!]

‘equivalence’ of robust Bayesian statistics and frequentist statistics

sets of priors

Plan

» develop decision making directly from sets of distributions

» look at some practical examples

17



Outline

Robust Decision Making (9:50am)
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Outline

Robust Decision Making (9:50am)
Aim & Assumptions
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Robust Decision Making: R Code Preparation

1. visit course webpage with browser:
http://bellman.ciencias.uniovi.es/"ssiptal8/Material .html

. download the improb-redux.r file
. start R

2

3

4. go to R console

5. clean environment: rm(1ist=1s())
6

. “source” the file (File — Source R File)

20


http://bellman.ciencias.uniovi.es/~ssipta18/Material.html

Robust Decision Making: Aim & Assumptions

Can we develop a decision theory based on only partial knowledge of probabilities?

Simple setting:
» Set M of probability mass functions on .
» Consider gambles as functions on Q
(random reward expressed in a utility scale).
» How should we choose among gambles?

Notation for any gamble X: Q@ — R

Ep(X) = Z p(w)X(w) for any p e M (5)
we

P(X) = ne“/\rl( Ex(X) lower prevision (6)
p

P(X) = max Ey(X) upper prevision (7)

peEM
21



Outline

Robust Decision Making (9:50am)

A Very Simple Example
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A Very Simple Example

Example (Machinery, Overtime, or Nothing?)

A company makes a product, and believes in increasing future demand. The manager asks you,
the decision expert, whether he should buy new machinery, use overtime, or do nothing. The
upcoming year, demand can either increase or remain the same.

If we buy new machinery, then the profit at the end of the year will be 440 (in thousands of
pounds) if demand increases, and 260 otherwise. Alternatively, if we use overtime, then the
profit will be 420 if demand increases, and 300 otherwise. If we do nothing, profit will be 370.
According to our best current judgement, demand will increase with probability at least 0.5,

and at most 0.8:

P1 P2
M = increase 0.5 0.8 (each column is a probability mass function)

stay 05 0.2

What advice can we give the manager?

23



A Very Simple Example: Choice

each row is a gamble

I

set of set of
decisions gambles
L increase stay
machinery 4 440 260
overtime 420 300
nothing 370 370
choice

what is a good choice function, - .
. function
under severe uncertainty?

set of set of
optimal optimal
decisions gambles
¢ increase  stay
overtime 420 300

nothing 370 370



Outline

Robust Decision Making (9:50am)

Choice Functions

25



[-Maximin
(Wald 1945 [14], Gilboa & Schmeidler 1989 [5])
Definition (I'-Maximin Optimality Criterion)
Choose any gamble whose lower prevision is maximal.
Recipe (-Maximin Optimality Criterion)

1. set up the table with gambles and probabilities

2. calculate the expectation of each gamble
with respect to each probability mass function

3. calculate minimum expectation of each gamble

4. choose decision with highest minimum expectation

P(X,
arg max P(Xy)

matrix multiplication
minimum of each row

maximize

(8)

26



[-Maximin: Example

Example (Machinery, Overtime, or Nothing)

‘ increase  stay H p1 P2 P
increase 05 0.8
stay 05 0.2

machinery 440 260
overtime 420 300
nothing 370 370

puts - o (1) 2 ()&
0.5, 0.5,
0.8, 0.2)
rvars = c(
440, 260,
420, 300,
370, 370)
getexpectations = getexpectationsfunc(2, pmfs)
getlowerprevisions = getlowerprevisionsfunc(getexpectations)
isgammamaximin = isgammamaxisomethingfunc(getlowerprevisions)

isgammamaximin (rvars)

27



[-Maximax
(Satia and Lave 1973 [9], probably others as well)

» [-maximin seems overly pessimistic; something more optimistic?
Definition (I'-Maximax Optimality Criterion)
Choose any gamble whose upper prevision is maximal.
Recipe (M-Maximax Optimality Criterion)

1. set up the table with gambles and probabilities

2. calculate the expectation of each gamble
with respect to each probability mass function

3. calculate maximum expectation of each gamble

4. choose decision with highest maximum expectation

P(X
arg max P(Xy)

matrix multiplication
maximum of each row

maximize

(9)
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[-Maximax: Example

Example (Machinery, Overtime, or Nothing)

pmfs = c(
0.5, 0.5,
0.8, 0.2)

rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations
getupperprevisi
isgammamaximax

‘increase stay H p1 P2 P
increase 05 0.8
stay 05 0.2
machinery 440 260
overtime 420 300
nothing 370 370
(1) 20 ()&*)

= getexpectationsfunc (2,
ons = getupperprevisionsfunc(getexpectations)
= isgammamaxisomethingfunc (getupperprevisions)
isgammamaximax (rvars)

pmfs)

29



|nterva| |\/|aXIma||ty literature: ‘interval dominance’
(Condorcet 1785 [4], Sen 1977 [10], Satia and Lave 1973 [9], Kyburg 1983 [6], many
others)
» get all reasonable options (from pessimistic to optimistic) at once?

Definition (Partial Ordering by Interval Comparison)

We say that a gamble X interval dominates Y, and write
X3y (10)

whenever -
P(X) > P(Y) (11)
[P(X), P(X)] dominates [P(Y), P(Y)]

Definition (Interval Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to 1.

{d: (Ve € D)(Xa # Xe)} (12)

30



Interval Maximality: Partial Ordering
C determines a partial ordering between gambles
P(Xq) P(Xq) : P(Xq) P(X4)
— T s |
P(X)P(X.):  P(Xe) P(X.)
Xq C Xe incomparable

31



Interval Maximality: Hasse Diagram & Algorithm

maximal elements with partial ordering = undominated elements

example:

SO W N
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Interval Maximality: Hasse Diagram & Algorithm
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Interval Maximality: Hasse Diagram & Algorithm

maximal elements with partial ordering = undominated elements

example:

SO wWwN -

Hasse diagram
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Interval Maximality: Hasse Diagram & Algorithm

maximal elements with partial ordering = undominated elements

example:

SO wWwN -

Hasse diagram
4
d
1 2 3
/

5
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Interval Maximality: Hasse Diagram & Algorithm

maximal elements with partial ordering = undominated elements

example:

SO wWwN -

Hasse diagram
4
d
1 2 3 6
/

5
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Interval Maximality: Hasse Diagram & Algorithm

maximal elements with partial ordering = undominated elements

example:

SO wWwN -

Hasse diagram

4
d

1 2 3 6

/

5
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Interval Maximality: Hasse Diagram & Algorithm

maximal elements with partial ordering = undominated elements

example:
Hasse diagram
1 ; 4
2 yd
3 : 17 2\ 3 6
4 /
5 5
6 {
Theorem

All non-interval-maximal elements are dominated by the interval that has the highest
lower bound.

= no need for Hasse diagram to find interval maximal elements
32



Interval Maximality: Practical Implementation

Recipe (Interval Maximality Optimality Criterion)

1. set up the table with gambles and probabilities

2. calculate the expectation of each gamble
with respect to each probability mass function matrix multiplication

3. calculate minimum and maximum expectation of each gamble
= interval eXpeCtation minimum & maximum of each row

4. choose the decisions whose maximum expectation
exceeds the overall largest minimum expectation undominated intervals

{a: P00 = maxe(x) | (13)
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Interval Maximality: Example

Example (Machinery, Overtime, or Nothing)

‘ increase  stay H p1 p2 | P P

increase 05 0.8
stay 05 0.2

machinery 440 260

overtime 420 300
nothing 370 370

pufs = o (1) @2 ()&
0.5, 0.5,
0.8, 0.2)
rvars = c(
440, 260,
420, 300,
370, 370)
getexpectations = getexpectationsfunc(2, pmfs)
isintervalmaximal = ismaximalfunc(getexpectations, intervalcompare)

isintervalmaximal (rvars)



RObUSt BayeS MaX|ma||ty literature: ‘maximality’
(Condorcet 1785 [4], Sen 1977 [10], Walley 1991 [15])
» exploits the behavioural interpretation of lower previsions
» refines interval maximality (see Exercise 3 later!)

Definition (Partial Ordering by Robust Bayesian Comparison)
We say that X robust Bayes dominates Y, and write

X>=Y
whenever any of the following equivalent conditions hold:

(Vp € M) (Ep(X) > Ep(Y))
P(X—-Y)>0

(willing to pay a small amount in order to trade Y for X)
(X — Y + € is desirable for some € > 0)

Remember, for any probability mass function p and any gamble X: E;(X) =" g p(w)X(w)

35



Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to .
example:

EP1 EP3 EP3
X1 1 0 -1
X5 0 0 0

X305 -1 =2
X, | 02 -2 =3
Xs 2 1 —-05

for browny points: interval maximal gambles?

36
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Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to .

example: Hasse diagram
Ep1 EP3 EP3
X1 | 1 0 -1
1 2
X5 0 0 0 \

X305 -1 =2
Xy |02 -2 -3
Xs 2 1 -05

for browny points: interval maximal gambles?
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Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to .

example: Hasse diagram
Ep1 EP3 EP3
X1 | 1 0 -1
2
X | 0 0 0 1\~.‘
Xs |05 -1 =2 3
X, | 02 —2 =3
Xs | 2 1 -05 N
4

for browny points: interval maximal gambles?
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Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maxima
Choose any gamble which is undomi

lity Optimality Criterion)
nated with respect to .

example: Hasse diagram
5
Ep, Epy  Ep /.."-_
X[ 1 0 -1 i,
X | 0 0 0 \x‘:' 5

X305 -1 =2
Xy |02 -2 -3
Xs 2 1 -05

for browny points: interval maximal gambles?

36



Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maxima
Choose any gamble which is undomi

lity Optimality Criterion)
nated with respect to .

example: Hasse diagram
5
Ep, Epy  Ep /.."-_
X[ 1 0 -1 RN
Xo | 0 0 0 \x‘:' 5

X305 -1 =2
Xy |02 -2 -3
Xs 2 1 -05

for browny points: interval maximal gambles?

36



Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to .
Hasse diagram

example:
5
Ep, Epy  Ep /.."-_
X |1 0 -1 RN
Xo | 0 0 0 \.,‘,: 5
Xz |05 -1 =2 3*.“ %
X, | 02 —2 -3 o
Xs | 2 1 -05 \
4

for browny points: interval maximal gambles?

Theorem

Every non-maximal element is dominated by a maximal element.
holds for arbitrary partial orderings!

— no need for Hasse diagram to find maximal elements:
. . 36
once non-maximal element removed, no need to consider further!



Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maximality Optimality Criterion)
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5
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Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maximality Optimality Criterion)
Choose any gamble which is undominated with respect to .

example: Hasse diagram Maximality
5
Ep, Eps  Eps /.."-_
X b0l 1§y 2 1 2
X[ 0 0 o0 il
X305 -1 -2 %
Xs |02 —2 -3 3
Xs | 2 1 -05 \
4

for browny points: interval maximal gambles?

Theorem

Every non-maximal element is dominated by a maximal element.
holds for arbitrary partial orderings!

— no need for Hasse diagram to find maximal elements:
. . 36
once non-maximal element removed, no need to consider further!



Robust Bayes Maximality: Hasse Diagram & Algorithm

Definition (Robust Bayes Maximality Optimality Criterion)

Choose any gamble which is undominated with respect to .
Hasse diagram Maximality

example:
5

‘Em Eps  Eps /."“_

X[ 1 0o -1 1 7y 2 1 2
X | 00 0 2 \

Xy | 02 -2 -3 3%, % 3

Xs | 2 1 —05 \

4

for browny points: interval maximal gambles?

Theorem

Every non-maximal element is dominated by a maximal element.
holds for arbitrary partial orderings!

36

— no need for Hasse diagram to find maximal elements:
once non-maximal element removed, no need to consider further!



Robust Bayes Maximality: Hasse Diagram & Algorithm
Definition (Robust Bayes Maximality Optimality Criterion)
Maximality

Choose any gamble which is undominated with respect to .
Hasse diagram

example:
5
Epl EP3 EP3 /::““-
P B B 1\’":, L 2 1 2
X | 0 0 0 3, %
2 1 —-05 ”\"
4 4

holds for arbitrary partial orderings!
36

for browny points: interval maximal gambles?
Theorem
Every non-maximal element is dominated by a maximal element.

— no need for Hasse diagram to find maximal elements:
once non-maximal element removed, no need to consider further!



Robust Bayes Maximality: Hasse Diagram & Algorithm
Definition (Robust Bayes Maximality Optimality Criterion)
Maximality

Choose any gamble which is undominated with respect to .
Hasse diagram
5

example:
| Ep En  Ep 1§ 2 1
X | 0 0 0 \* s
2 1 -05 3\
4

holds for arbitrary partial orderings!
36

for browny points: interval maximal gambles?
Theorem
Every non-maximal element is dominated by a maximal element

= no need for Hasse diagram to find maximal elements:
once non-maximal element removed, no need to consider further!



Robust Bayes Maximality: Practical Implementation

Recipe (Robust Bayes Maximality Optimality Criterion)

1. set up the table with gambles and probabilities

2. calculate the expectation of each gamble
with respect to each probability mass function

3. sequentially remove all decisions
whose expectation rows are point-wise dominated

matrix multiplication
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Robust Bayes Maximality: Example
Example (Machinery, Overtime, or Nothing)

\increase stay H P11 P2

increase 05 0.8
stay 05 0.2
machinery 440 260
overtime 420 300
nothing 370 370
pmfs = c( (1) (2)
0.5, 0.5,
0.8, 0.2)
rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations = getexpectationsfunc (2, pmfs)
isrbayesmaximal = ismaximalfunc(getexpectations, rbayescompare)
isrbayesmaximal (rvars)
38



RObUSt BayeS Adm|55|b|||ty literature: ‘E-admissibility’
(Pascal 1662 [8], Levi 1980 [7], Berger 1984 [2], Walley 1991 [15])
» refines robust Bayes maximality

Definition (Robust Bayes Admissibility Optimality Criterion)
Choose any gamble which maximizes expectation
with respect to some p € M.
example:
EP1 EP3 EP3
X1 1 0 -1
Xa| O 0 0
X305 -1 =2
X4 102 -2 =3
X5 | 2 1 -05
notes:
» computational challenge if M is large
» not invariant under convex hull operation: not enough to look at extreme points




RObUSt BayeS Adm|55|b|||ty literature: ‘E-admissibility’
(Pascal 1662 [8], Levi 1980 [7], Berger 1984 [2], Walley 1991 [15])
» refines robust Bayes maximality

Definition (Robust Bayes Admissibility Optimality Criterion)
Choose any gamble which maximizes expectation
with respect to some p € M.
example:
EP1 EP3 EP3
X1 1 0 -1
Xa| O 0 0
X305 -1 =2
X4 102 -2 =3
X5 | 2 1 -05
notes:
» computational challenge if M is large
» not invariant under convex hull operation: not enough to look at extreme points




Robust Bayes Admissibility: Practical Implementation

Recipe (Robust Bayes Admissibility Optimality Criterion)

1. set up the table with gambles and probabilities

2. calculate the expectation of each gamble
with respect to each probability mass function

3. take all decisions that achieve a maximum
in some expectation column

matrix multiplication

40



Robust Bayes Admissibility: Example
Example (Machinery, Overtime, or Nothing)

‘ increase stay H p1 P2

increase 05 0.8
stay 05 02

machinery 440 260
overtime 420 300
nothing 370 370

pats - o (1) (2) & (3)
0.5, 0.5,
0.8, 0.2)
rvars = c(
440, 260,
420, 300,
370, 370)
getexpectations = getexpectationsfunc (2, pmfs)

isrbayesadmissible = isrbayesadmissiblefunc(getexpectations)

isrbayesadmissible (rvars)
41



Robust Bayes Admissibility: Extreme Points Issue
Example (Machinery, Overtime, or Nothing)

\increase stay H P11 P2 P3

increase 05 0.8 0.65
stay 05 02 0.35
machinery 440 260
overtime 420 300
pmfs = c( nothing 370 370
0.5, 0.5,
0.8, 0.2,
0.65, 0.35)
rvars = c(
440, 260,
420, 300,
370, 370)

getexpectations =
isrbayesadmissible
isrbayesadmissible

getexpectationsfunc (2, pmfs)
= isrbayesadmissiblefunc (getexpectations)

(rvars)
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Exercises

» Consider again the same very simple example. We have done additional market
research, and we now know that demand will increase with probability at least 0.6,
and at most 0.65. What advice can we give the manager now? Investigate with
each optimality criterion.

P P
Hint: M = increase | 0.6 0.65
stay 0.4 0.35
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Exercises
» You have the option to invest some money. The market can either improve,
remain, or worsen. Your set of probabilities are tabulated below. You have the
choice between 4 options, summarized in the decision tree below.
100
50
—25

75

50 ‘ P1 P2
0 __ improve | 0.0 0.3
M = remain | 0.6 0.3

60
worsen | 0.4 04

55
10

Which options should you definitely not consider? First consider interval
maximality, then consider robust Bayes maximality. Which of these two criteria

gives the better answer?



A ranking problem

In an environmental problem, three possible decisions can be made. The table below
lists the suitability of each of the options, as a ‘best estimate’, and also giving lower
and upper bounds:

option ‘ best estimate lower bound upper bound

1 6 5 12
2 10 3 11
3 8 4 10

You may assume that there is a possibility space € for this problem, and that each
option i induces some gamble X; on Q.
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A ranking problem (continued)

» Assume the best estimate corresponds to the (precise) expectation of X;, so for
example, P(X1) = P(Xy) = 6. What is the optimal decision according to each of
the decision criteria?

» We are not really sure whether we can interpret the best estimates as precise
expectations, so we propose the following lower prevision, where E(X;) is the best

estimate of X;, and 3 is a parameter between 0 and 1:

3 3
i (Oéo+zaixi> = Oéo+ﬁZOéiE(Xi) (17)
i—1

i=1
3
+ (1= 8)>_ min{a; min(X;), a; max(X;)} (18)
i=1

for any values of «p, ..., a3 € R. Try to interpret the above formula as well as
the B parameter. ldentify the optimal decisions for 5 =0, =1, and 5 = 0.7
according to '-maximin, interval dominance, and maximality.
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Credal Classification: What is Classification?

» actual class ¢ (unknown), attributes ay, ..., ax
» decided class d
» U(d, c) utility for deciding class is d if real class is ¢
typical choice: U(d,c)=1if d =cand U(d,c) =0if d # ¢
» aim: choose the best class given attributes

d* = arg m‘?xz U(d, c)p(c|a) (19)
= argmax p(c|a) = arg max p(c, a)/p(a) (20)
= arg max p(c,a) (21)

Open issues:
» How do we estimate the probabilities?
» Dealing with scarce data?
» Dealing with missing data?
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Credal Classification: The Naive Bayes Classifier

Naive Bayes Classifier
Assume attributes are independent conditional on class:

p(c,a) = p(c)p(alc) = p(c Hp(a:\
Estimation of p(c) and p(a|c)?

» maximum likelihood:

ple) = plaile) = %7

» Bayesian estimate with Dirichlet prior:

n(c)+st(c)

(where > t(ai, c) = t(c))

p(c) = "5 plailc) = "G
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Credal Classification: The Naive Credal Classifier

Estimation of p(c) and p(alc)?

» robust Bayesian estimate with imprecise Dirichlet model:
as with Bayesian estimate but with
sensitivity analysis over all possible t(c¢) and t(a;, ¢)

» Bounds for probabilities/expected utilities via optimisation.

» Use any of the decision criteria we discussed (interval dominance, robust Bayes
maximality, robust Bayes admissibility, .. .)

Case that we will study here:
» Simple approximate probability intervals.

» Interval dominance criterion.
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Credal Classification: The Naive Credal Classifier

Bounds

p(c,a) = inf n(c) + st(c) f[ n(aj, ¢) + st(aj, c)

= N+s n(c) + st(c)
k . k
= s e = e et
B n(c) + st(c) a n(a;, c) + st(aj, c)
p(c’a)“sﬁp N +s II n(c) + st(c)
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Credal Classification: The Naive Credal Classifier

Interval Dominance
Consider the set of all classes ¢ for which

K
H (ajlc) >maxp p(ajlc’) (29)

H:»

classifier can return multiple classes if it is unsure about the probabilities!

Credal Classification
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Credal Classification: Model Diagnostics

Cross Diagnostics

» divide entire data set into two parts (not necessarily equal in size):
training data & test data

> use training data to create the model (i.e. lower and upper probabilities)

» classify every item in the test data, and calculate a diagnostic (discrepancy,
predictive ability, . ..)

» average out the diagnostic

k-Fold Cross Diagnostics

» divide entire data set into k equal parts

» do cross validation k times
each time using k'th part as test data and remaining parts as training data

» average out diagnostics across all k runs
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Credal Classification: Diagnostics [3]

» ¢ = actual class
» ¢ = set of predicted classes
name value | condition
accuracy 1 cec
0 c¢cd
determinacy 1 el =1
0 |é] > 2
single accuracy 1 |¢|l=1and {c}=2¢
0 || =1and {c} #¢
NA otherwise
set accuracy 1 e >2and ceé
0 || >2and c ¢ ¢
NA otherwise
indeterminate output size | |€| |e| > 2
NA otherwise




Outline

Exercise: Breast Cancer Case Study (12:20am)
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Breast Cancer Example: Introduction

» data publicly available from
http://archive.ics.uci.edu/ml/datasets/mammographic+mass

» issue: low predictive power of expert mammogram interpretation

» solution: use computer image analysis! can we quantify value of such automation?

Data: 829 patients, 6 attributes

1 expert assessment (BI-RADS): 1 to 6
— image features:

2 shape: 1to 4
3 margin: 1to 5
4 density: 1 to 4

5 patient age (discretized): 1 to 4

6 severity (actual cancer or not): 0 or 1
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Breast Cancer Example: R Code Preparation

1. visit course webpage with browser:
http://bellman.ciencias.uniovi.es/"ssiptal8/Material .html

. download the classification.r file

. start R

2

3

4. go to R console

5. clean environment: rm(1ist=1s())
6

. “source” the file (File — Source R File)
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Breast Cancer Example: R Code Explanation

» classifier.xxx = returns a list containing two functions

» trainer = creates a classification model from data, attribute columns, and class
column
» tester = calculates diagnostic(s) from a classification model, and a single data row

» classifier.naive2(0) = standard naive classifier
» classifier.naive2(1) = standard naive classifier with Laplace correction
» classifier.credal(2) = credal classifier with interval dominance and s =2

» kfcv.classifier = calculates average k-fold diagnostic from data, attribute
columns, class column, and classifier
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Breast Cancer Example

mammo = getdata ()

myclassifier = classifier.naive2(0)

model = myclassifier$trainer (mammo, 1:5, 6)
testrow = mammo [6,]

print (testrow)

print (myclassifier$tester (model, testrow))
testrow = mammo [5,]

print (testrow)

print (myclassifier$tester (model, testrow))

myclassifier = classifier.composed(
list(classifier.naive2(0),

classifier.naive2(1),

classifier.credal(2)))
mammo = getdata()[1:30,]
print (kfcv.classifier (mammo, 1:5, 6, myclassifier))
print (kfcv.classifier (mammo, 2:5, 6, myclassifier))
print (kfcv.classifier (mammo, 1, 6, myclassifier))
mammo = getdata ()
print (kfcv.classifier (mammo, 2:5, 1, myclassifier))
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Exercises

Try to run the code for the credal classifier.

What do you observe if you increase the amount of data that is used to train the
classifier? Compare the results you get from the traditional classifier with the
results you get from the credal classifier.

What happens if you increase the s value of the credal classifier? Confirm your
intuition by running the code. Can you suggest an optimal value for s?
How would the formulas for the credal classifier (based on interval dominance)
change if the utilities were not 0-1 valued? [Hint: assume U(d,c) > 0]

Zaffalon's 1999 paper [16] discusses how the problem can be solved using robust
Bayes maximality. Try to implement his algorithm in R by modifying the existing
code for interval dominance. [This is a hard exercise!]
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