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Lecture goal/content

What you will find in this talk
@ An overview of belief functions and how to obtain them
@ Short discussion on comparing informative contents
@ Discussion about conditioning and fusion

@ Pointers to additional topics (statistical learning, preference handling,

)

What you will not find in this talk

@ A deep and exhaustive study of a particular topic
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How this will go

@ Exercices along the lecture
@ You are encouraged to ask questions during the lecture!
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Introductory elements

Plan

0 Introductory elements

@ Basic operators
@ Rule choice:set/logical approach
@ Rule choice: performance approach
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Generic vs singular quantity

A quantity of interest S can be

@ Generic, when it refers to a population, or a set of situations.
Generic quantity example
The distribution of height within french population

@ Singular, when it refers to an individual or a peculiar situation

Singular quantity example
My own, personal height
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Introductory elements

Ontic and epistemic information [10]

An item of information Z possessed by an agent about S can be
@ Ontic, if it is a faithful, perfect representation of S

Ontic information example

A set S representing the exact set of languages spoken by me
e.g.: S = {French, English, Spanish}

@ Epistemic, if it is an imperfect representation of S

Epistemic information example

A set E containing my mother tongue
e.g., E = {French, English, Spanish}

@ — same mathematical expression, different interpretation
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Everything is possible

We can have

@ Ontic information about a singular quantity: the hair colour of a
suspect; the mother tongue of someone

@ Epistemic information about a singular quantity: the result of the
next dice toss; the set of possible mother tongues of someone

@ Ontic information about a generic quantity: the exact distribution
of pixel colours in an image

@ Epistemic information about a generic quantity: an interval about
the frequency of French persons higher than 1.80 m
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Introductory elements

Uncertainty definition

Uncertainty: when our information Z does not characterize the quantity
of interest S with certainty

— In this view, uncertainty is necessarily epistemic, as it reflect
an imperfect knowledge of the agent

Can concern both:
@ Singular information
e items in a data-base, values of some logical variables, time before
failure of a component
@ Generic information

e parameter values of classifiers/regression models/probability
distributions, time before failure of components, truth of a logical
sentence ("birds fly")
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Introductory elements

The room example

Heights of people in a room: generic quantity

40% { EEEES

20% 1t -

!
|
|
|
}

1m60 1m70 1m80 1m90 2m

@ Generic question: are 90% of people in room less than 1m807?
= No, with full certainty

@ Specific question: is the last person who entered less than 1m807?
= Probably, with 60% chance (uncertain answer)
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Introductory elements

Uncertainty main origins [6, Ch. 3]

@ Variability of a population applied to a peculiar, singular situation
Variability example
The result of one dice throw when knowing the probability of each faceJ

@ Imprecision and incompleteness due to partial information
about the quantity S
Imprecision example

Observing limited sample of the population, describing suspect as
"young", limited sensor precision

@ Conflict between different sources of information (data/expert)

Conflict example

Two redundant data base entries with different information for an
attribute, two sensors giving different measurements of a quantity
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Introductory elements

Handling uncertainty

) Learning Deducting, predicting
generic
: data Beliefs
singular ’ liets,
9 observations predictions

Common problems in one sentence
@ Learning: use singular information to estimate generic information
(induction in logical sense)

@ Prediction: interrogate model and observations to deduce information
on quantity of interest (~ inference/deduction in logical sense)

@ Information revision: merge new information with old one

@ Information fusion: merge multiple information pieces about same
quantity

v
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Belief function: basics, links and representation

@ Belief function: basics, links and representation
@ Less general than belief functions
@ Belief functions
@ More general than belief functions

@ Basic operators
@ Rule choice:set/logical approach
@ Rule choice: performance approach
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Belief function: basics, links and representation

Section goals

@ Remind basic ideas of uncertainty modelling

@ Introduce main ideas about belief functions

@ Provide elements linking belief functions and other approaches
@ lllustrate practical representations of belief functions
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Belief function: basics, links and representation Less general than belief functions

@ Belief function: basics, links and representation
@ Less general than belief functions
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Belief function: basics, links and representation Less general than belief functions

Basic framework

Quantity S with possible exclusive states Q = {w1,...,wn}
> S: data feature, model parameter, ...

Basic tools
A confidence degree P : 2% — [0, 1] is such that
@ P(A): confidence S € A
@ P(0)=0,P(Q2) =1
e ACB= P(A) <P(B)
Uncertainty modelled by 2 degrees P, P : 2 — [0, 1]:
@ P(A) < P(A) (monotonicity)

o P(A) =1 — P(A°) (duality)
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Probability

Basic tool

A probability distribution p : 2 — [0, 1] from which
o P(A) = P(A) = P(A) = s P(S)
@ P(A) =1 — P(A®): auto-dual

Main interpretations

@ Frequentist [54] : P(A)= number of times A observed in a
population
> only applies to generic quantities (populations)
@ Subjectivist [36] : P(A)= price for gamble giving 1 if A happens,
0 if not
> applies to both singular and generic quantities

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 16/97



Belief function: basics, links and representation Less general than belief functions

Basic tool
A set E C Q with true value S € E from which

@ EC A— P(A) = P(A) = 1 (certainty truth in A)
@ ENA#D,ENA®+#()— P(A) =0,P(A) = 1 (ignorance)

@ ENA=0— P(A) = P(A) = 0 (truth cannot be in A)
P, P are binary — limited expressiveness

Classical use of sets:

@ Interval analysis [40] (E is a subset of R)

@ Propositional logic (E is the set of models of a KB)
Other cases: robust optimisation, decision under risk, . ..
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Belief function: basics, links and representation Less general than belief functions

Assume that it is known that pH value E < [4.5,5.5], then
e if A= [5,6], then P(A) =0, P(A) =1

E
A
e if A=[4,7], then P(A) = P(A) = 1
E
A
e if A=[6,9], then P(A) = P(A) =0
"]
A



Belief function: basics, links and representation Less general than belief functions

In summary

Probabilities . . .
@ (+) very informative quantification (do we need it?)
@ (-) need lots of information (do we have it?)
@ (-) if not enough, requires a choice (do we want to do that?)
@ use probabilistic calculus (convolution, stoch. independence, .. .)
Sets . ..
@ (+) need very few information
@ (-) very rough quantification of uncertainty (Is it sufficient for us?)
@ use set calculus (interval analysis, Cartesian product, ...)
— Need for frameworks bridging these two
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Possibility theory [27]

Basic tool

A distribution = : Q — [0, 1], usually with w such that 7(w) = 1, from
which

@ P(A) = max,ecam(w) (Possibility measure)

@ P(A) =1 — P(A°) = min,cac(1 — m(w)) (Necessity measure)
Sets E captured by 7(w) = 1 if w € E, 0 otherwise

Interval/set as special case
The set E can be modelled by the possibility distribution 7g such that

1 ifweE
me(w) = 0 else
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Belief function: basics, links and representation Less general than belief functions

A nice characteristic: Alpha-cut [9]

Definition

Ay ={w e Qn(w) > a}
@ PA)=1-«

° If3<a, A, CAs

Simulation: draw « € [0, 1] and associate A,

= Possibilistic approach ideal to model nested structures
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Belief function: basics, links and representation Less general than belief functions

A basic distribution: simple support

A set E of most plausible values
A confidence degree o = P(E)

Two interesting cases: pH value € [4.5,5.5] with
@ Expert providing most a = 0.8 (~ "quite probable")
plausible values E -
@ E set of models of a formula ¢ ;'g
Both cases extend to multiple 0.6
sets Eq, ..., Ep: 0.4
@ confidence degrees over 0.2
nested sets [49] O i ds ss e 7
@ hierarchical knowledge bases
[29]
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Belief function: basics, links and representation Less general than belief functions

A basic distribution: simple support

variables p, q

A\
o

A set E of most plausible values
A confid g _ P(E Q = {pq,—pq, p~q. ~p~q}
confidence degree a = P(E) P(p= q) = 0.9
Two interesting cases: (~ "almost certain")
@ Expert providing most E ={pqg,p—q,—~p—q}
plausible values E
@ E set of models of a formula ¢ @ (pq) = n(p~q) = n(-p~q) =1
Both cases extend to multiple @ n(=pq) = 0.1
sets Eq, ..., Ep: 10l e o o
@ confidence degrees over 0.8 1 | l 1
nested sets [49] 061 | | 1
@ hierarchical knowledge bases 0.4 i i i
[29] 0.2 1 ° 1 !
pg  p-q -pg -p-g
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Belief function: basics, links and representation Less general than belief functions

Nested confidence intervals: expert opinions

Expert providing nested

intervals + conservative 1.0
confidence degree 0.8
0.6

A pH degree 0.4
@ 0.3 < P([4.5,5.5]) 0-5

0 0.7 < P([4.6))
o 1< P([3,7])
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Belief function: basics, links and representation Less general than belief functions

Normalized likelihood as possibilities [24] [7]

7(0) = L£(01X)/maxgeo L£(6]x)

Binomial situation:
@ 6 = success probability

@ x number of observed
successes

@ x=4 succ. out of 11 4/‘11 0
@ x= 20 succ. out of 55
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Less general than belief functions
Partially specified probabilities [3] [23]

Triangular distribution: [P, P]
encompass all probabilities with 1

@ mode/reference value M

@ support domain [a, b].
Getting back to pH 1

e M=5 3 5 7 pH

° [a7 b] = [3a 7]
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Belief function: basics, links and representation Less general than belief functions

Other examples

@ Statistical inequalities (e.g., Chebyshev inequality) [23]
@ Linguistic information (fuzzy sets) [12]
@ Approaches based on nested models
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Belief function: basics, links and representation Less general than belief functions

Possibility: limitations

P(A) > 0= P(A)
ﬁ(A) <1= P(A)

"
0

= interval [P(A), P(A)] with one trivial bound
Does not include probabilities as special case:

= possibility and probability at odds
= respective calculus hard (sometimes impossible?) to reconcile
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Going beyond

Extend the theory
= by complementing = with a lower distribution ¢ (§ < 7 ) [30], [21]
= by working with interval-valued possibility/necessity degrees [4]
= by working with sets of possibility measures [32]

Use a more general model
= Random sets and belief functions
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Outline

@ Belief function: basics, links and representation

@ Belief functions
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Belief function: basics, links and representation Belief functions

Belief functions

The history

@ First used by Dempster to make statistical reasoning about
imprecise observations, mostly with frequentist view

@ Popularized by Shafer as a generic way to handle imprecise
evidences

@ Used by Smets (in TBM) with a will to not refer at all to
probabilities

v

— evolved as a uncertainty theory of its own (3 # with |IP, Possibility or
p-boxes)

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 30/97



Random sets and belief functions

Basic tool

A positive distribution m : 2% — [0, 1], with >~z m(E) = 1 and usually
m(0) = 0, from which

® P(A) = > gnazo m(E) (Plausibility measure)
@ P(A) =2 gcam(E) =1 —T1(A°) (Belief measure)

Ey) .

E) ——  P(A) = m(E) + m(E2) +
Es) m(Es) + m(Es)

[P, P] as
@ subjective confidence degrees of evidence theory [50], [51], [13]

@ bounds of an ill-kknown probability measure ;1 = P < u < P
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Belief function: basics, links and representation Belief functions

A characterisation of belief functions

Complete monotonicity
If Pis a belief measure if and only if it satisfies the inequality

PULA) = Y (DM P(NacaA)
-Ag{A‘l 7"'7A’7}

for any number n.

Simply the exclusion/inclusion principle with an equality
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Belief function: basics, links and representation Belief functions

Another characterisation of belief functions

Mobius inverse: definition
Let P be a measure on 29, its Mdbius inverse mp : 22 4 Ris

mp(E) =Y —11EVIP(E).
ACE

It is bijective, as P(A) = Yz a m(E), and can be applied to any
set-function. -

Belief characterisation
mp will be non-negative for all E if and only if P is a belief function.

v
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Belief function: basics, links and representation Belief functions

Yet another characterisation: commonality functions

Definition
Given a mass function m, commonality function Q : 2% — [0, 1] defined as
Q(A) = > _ m(E)
EDA

and express how unsurprising it is to see A happens.

Back to m
Given Q, we have

m(A) =Y —18Q(B)

BDA

Some notes
@ Instrumental to define "complement” of information m
@ In possibility theory, equivalent to guaranteed possibility

@ In imprecise probability, no equivalent (?)
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Belief function: basics, links and representation Belief functions

special cases

Measures [P, P] include:
@ Probability distributions: mass on atoms/singletons
@ Possibility distributions: mass on nested sets

u by
1

T

— "simplest” theory that includes both sets and probabilities as special
cases!
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Belief function: basics, links and representation Belief functions

Frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"
o N(adal) o F(ederer) o D(jokovic) oM(urray) o O(ther)

60 % replied {N, F,D} - m({N,F,D})=0.6

15 % replied "l do not know" {N, F, D, M, O} — m(S) = 0.15
10 % replied Murray {M} — m({M}) = 0.1

5 % replied others {O} — m({O}) = 0.05
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Belief function: basics, links and representation Belief functions

P-box [35]

A pair [F, F] of cumulative
distributions

Bounds over events [—oo, X]

@ Percentiles by experts;
@ Kolmogorov-Smirnov bounds;

Can be extended to any
pre-ordered space [20], [53] =
multivariate spaces!
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1

0 < P([—0,12]) < 0.2

0.2 < P([—c0,24]) < 0.4
0.6 < P([~0,36]) < 0.8

.0

Es

E,
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. /&
— [
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Belief function: basics, links and representation Belief functions

Other means to get random sets/belief functions

@ Extending modal logic: probability of provability [52]
@ Parameter estimation using pivotal quantities [43]

@ Statistical confidence regions [14]

@ Modify source information by its reliability [47]

o ...
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Belief function: basics, links and representation More general than belief functions

@ Belief function: basics, links and representation

@ More general than belief functions
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Belief function: basics, links and representation More general than belief functions

Limits of random sets

@ Not yet fully satisfactory extension of Bayesian/subjective
approach
@ Still some natural items of information it cannot easily model:

e probabilistic bounds over atoms w (imprecise histograms, ...) [11] ;
e comparative assessments such as 2P(B) < P(A) [45], ...

6 1218 24 30 36 42
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Imprecise probabilities

Basic tool
A set P of probabilities on Q or an equivalent representation
@ P(A) = suppcp P(A) (Upper probability)

@ P(A) =infpep P(A) =1 — P(A®) (Lower probability)

Reminder: lower/upper bounds on events alone cannot model any
convex P

[P, P] as
@ subjective lower and upper betting rates [55]

@ bounds of an ill-known probability measure
P=P<P<P[5][56]
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Belief function: basics, links and representation More general than belief functions

Some basic properties

Avoiding sure loss and coherence
Given some bounds P(A) over every event A C Q, we say that
@ P avoids sure loss iff

P(P)={P:P<P<P}#£0

@ Pis coherent iff for any A, we have

Pelng) P(A) = B(A)
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Belief function: basics, links and representation More general than belief functions

lllustrative example

p(wi) = 0.2, p(wz) = 0.5, p(ws) = 0.3
p(ws) p(w2)

1

/_\
- T p(wr)

p(ws) ! p(ws)

p(w1)
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Belief function: basics, links and representation More general than belief functions

A first exercise

p(wi) € [0.1,0.3], p(ws) € [0.4,0.7], p(ws) = [0.1,0.5]
p(w2)

p(ws) p(w1)
— Show that these induce a belief function

{wi} {w2} {ws} {wi,wo} {wr,ws} {wo,ws}

P
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Belief function: basics, links and representation More general than belief functions

A second exercise

p(wq) € 10.2,0.3], p(w2) € [0.4,0.5], p(w3) = [0.2,0.3]
p(w2)

p(ws) plwr)
— Show that these do not induce a belief function

{wi} {w2} {ws} {wi,wo} {wr,ws} {wo,ws}

P
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Belief function: basics, links and representation More general than belief functions

A not completely accurate but useful picture

Able to model variability . Incompleteness tolerant

Imprecise
probability
A4
Random

sets/Belief
functions

Probability \ ] Possibility \

Expressivity/flexibility
(Aujigereos)Aujigeloel) [essusn)

’ Sets ‘

<
<%
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Belief function: basics, links and representation More general than belief functions

Why belief functions?

Why not?
@ You need more (to model properly/not approximate your results)
@ You cannot afford it (computationally)

Why?

They offer a fair compromise
@ Embed precise probabilities and sets in one frame
@ Can use simulation of m + Set computation

@ Extreme points/natural extension easy to compute (Choquet
Integral, ...)

Or, you want to use tools proper to BF theory.
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Plan

e Comparison, conditioning and fusion
@ Information comparison
@ The different facets of conditioning
@ Information fusion
@ Basic operators
@ Rule choice:set/logical approach
@ Rule choice: performance approach
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Outline

e Comparison, conditioning and fusion
@ Information comparison
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Introduction

Main question

Given two pieces of information Py, P,, is one more informative than
the others? How can we answer?

Examples of use

@ Least commitment principle: given multiple models satisfying
given constraints, pick the most conservative one
o Partial elicitation,
@ Revision,
o Inverse Pignistic,
o Natural extension, ...

@ (Outer)-approximation: Pick a model P, simpler than P, (e.g.,

generic belief mass into possibility), ensuring that P, does not add
information to P;.
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Comparison, conditioning and fusion Information comparison

A natural notion: set inclusion

A set A C S is more informative than B C Q if

ACB<ALCB

@ Propositional logic: A more informative if A entails B
@ Intervals: Aincludes all values of B, is more precise than B
= extends this notion to other uncertainty theories
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Comparison, conditioning and fusion Information comparison

Extensions to other models

Denoting P4, Pg the uncertainty models of sets A, B, we do have

AL B« Py(C) < Pg(C)forany CC S

Derivations of P; < P, in different frameworks
@ Possibility distributions: 71 C mo < 71 > 7o

@ Belief functions: my C m, < P4 C P, (plausibility inclusion, there
are others [25])

@ Probability sets: Py C P, < Py C P, (P; lower previsions)
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Comparison, conditioning and fusion Information comparison

Inclusion: interest and limitations

@ +: very natural way to compare informative content
@ -: only induces a partial order between information models

Example
Consider the space Q = {a, b, ¢} and the following mass functions:

my({b}) =0.3, my({b,c}) =0.2,my({a,b,c}) = 0.5

mo({a}) = 0.2, mx({b}) = 0.3, mx({c}) = 0.3, mx({a,b,c}) = 0.2
ms({a, b}) = 0.3, m3({a,c}) =0.3,ms({a}) = 0.4

We have m, C my, but mg incomparable with C (side-exercise: show
it)

= ok theoretically, but not always lead to non-uniqueness of solutions
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Numerical assessment of informative
content [57, 1, 26]

@ For probabilities, distinct i1 and u» always incomparable by
previous definition

@ A solution, associate to each . a number I(u), i.e., entropy

(1) = - 3 p(w)in(p(w))

weN

and declare that p1 T po if 1(pq) < I(p2).
@ This can be extended to other theories, where we can ask

Py <Py = I(Py) > I(Py)
Measure / should be consistent with inclusion
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Comparison, conditioning and fusion The different facets of conditioning
Qutline

e Comparison, conditioning and fusion

@ The different facets of conditioning

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 55/97



Comparison, conditioning and fusion The different facets of conditioning

Three use of conditional and conditioning [39, 41]

Focusing: from generic to singular
@ P: generic knowledge (usually about population)
@ P(|C): what we know from P in the singular context C

Revising: staying either generic or singular
@ P: knowledge or belief (generic or singular)

@ P(|C): we learn that C is certainly true — how should we modify
our knowledge/belief

Learning: from singular to generic (not developed here)
@ P: beliefs about the parameter

@ P(|C): modified beliefs once we observe C (~ multiple singular
observations)

.
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Comparison, conditioning and fusion The different facets of conditioning

Focusing and revising in probabilities [28]

In probability, upon learning C, the revised/focused knowledge is

_ P(ANC) P(AN C)
PIAIC) = —pey = PlAN C) = P(AC 1 C)

coming down to the use of Bayes rule of conditioning in both cases.
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Comparison, conditioning and fusion The different facets of conditioning

Focusing

@ Observing C does not modify our generic knowledge/beliefs

@ We may lose information — the more C is specific, the less our
general knowledge applies to it (cf. dilation in IP)

@ The consistency of generic knowledge/beliefs should be
preserved (C cannot contradict it, only specify to which case it
should apply)

@ If we observe later A C C, we should start over from generic
knowledge
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Comparison, conditioning and fusion The different facets of conditioning

Focusing in uncertainty theories [34]

Focusing with belief functions
@ Given initial belief function P, this gives

P(AIIC) = 5D ALD)
o P(ANC) + P(AcN C)
PAIC) = =P ANC)

~ P(ANC)+ P(A°n C)

We can have P(A||C) < P(A) < P(A) < P(A||C) ("loss" of
information).
@ Can be interpreted as a sensitivity analysis of Bayes rule:

P(A||C) = inf{P(A|C) : P € P, P(C) > 0}

@ ~ regular extension in imprecise probability
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Comparison, conditioning and fusion The different facets of conditioning

Revision

@ Observing C modifies our knowledge and belief

@ Observing C refines our beliefs and knowledge, that should
become more precise

@ If we observe later A C C, we should start from the modified
knowledge (we may ask for operation to be order-insensitive)

@ Cis a new knowledge, that may be partially inconsistent with
current belief/knowledge
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Comparison, conditioning and fusion The different facets of conditioning

Revision in uncertainty theories

Revising with belief functions
@ Given initial plausibility function P, this gives

— P(ANC) =
P(AIC) = —— = P(A|C) =1- P(A°|C
(AIC) = =55~ = BAIO) (4%C)
e If P(C) = 1, then
@ no conflict between old and new information (no incoherence)
e we necessarily have P(A|C) < P(A) (refined information)

@ Can be interpreted Bayes rule applied to most plausible situations:
P(A||C) = inf{P(A|C): Pc P,P(C) = P(C)}

@ Similarly to fusion, not studied a lot within IP setting (because of
incoherence?)

v

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 61/97



Comparison, conditioning and fusion The different facets of conditioning

Revision as prioritized fusion

When P(C) = 1 and C precise observation
@ P(A|C)= result of conjunctive combination rule
o 73|C:7Dﬂ{PZ P(C) = 1}

— can be interpreted as a fusion rule where C has priority. If
P(C) < 1, interpreted as new information inconsistent with the old —
conditioning as a way to restore consistency.

Case where observation C is uncertain and inconsistent with
knowledge.
@ Minimally change p to be consistent with C — in probability,
Jeffrey’s rule (extensions to other theories exist [42])

@ Not a symmetric fusion process, new information usually has
priority (# from usual belief fusion rules)!

v
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Comparison, conditioning and fusion The different facets of conditioning

A small exercice: focusing

The hotel provides the following plates for breakfast
a=Century egg, b=Rice, c=Croissant, d=Raisin Muffin
In a survey about their choices, respondents gave the reply

m({a,b}) =a, m({c,d})=1—«

Applying focusing

We learn that customer C does not like eggs nor raisins (C = {b, c}),
what can we tell about him choosing Rice?
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Comparison, conditioning and fusion The different facets of conditioning

A small exercice: revision

The hotel provides the following plates for breakfast
a=Century egg, b=Rice, c=Croissant, d=Raisin Muffin
In a survey about their choices, respondent gave the reply

m({a,b}) =a, m({c,d})=1—-«

Applying revision
We learn that suppliers no longer have eggs nor raisins (C = {b, c}),
what is the proportion of rice we should buy to satisfy customers?
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Outline

e Comparison, conditioning and fusion

@ Information fusion
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Comparison, conditioning and fusion Information fusion

An illustration of the issue

ONVERTERS
COMPIEGNE
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Comparison, conditioning and fusion Information fusion

Information fusion

e

m1 , Mo, M3, My, m5

@ Information on the same level
@ No piece of information has priority over the other (a priori)
@ Makes sense to combine multiple pieces of information at once

@ Main question: "How to choose h..."

e To obtain a more reliable and informative result?
e When items my’s disagree?
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Comparison, conditioning and fusion Information fusion

Conjunction

Main Assumption
@ Information items Eq, ..., E, are all fully reliable
@ If one source consider w impossible, then w impossible

— h(Ey, ..., Ep)(w) = min(Ey(w), ..., Ea(w)) = E

E; = [16,19] and E, = [17,20] E; =[16,17] and E, = [19, 20]
Ei E E; E>
1 . 1
16 18 20 16 18 20
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Comparison, conditioning and fusion Information fusion

Conjunction

Main Assumption
@ Information items Eq, ..., E, are all fully reliable
@ If one source consider w impossible, then w impossible

— h(Ey, ..., Ep)(w) = min(Ey(w), ..., Ea(w)) = E

E; = [16,19] and E, = [17,20] E; =[16,17] and E, = [19, 20]
Ei E E; E>
1 1
: 7?0
16 18 20 16 18 20

Pros and Cons
@ +: very informative results, logically interpretable
@ -: cannot deal with conflicting/unreliable information
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Disjunctive principle
Main Assumption

@ At least one information item among E;, ..., E, is reliable
@ w possible as soon as one source considers it possible

— h(Ey, ..., Ep)(w) = max(Ey(w), ..., En(w)) = | J E

E; = [16,19] and E, = [17,20] E; =[16,17] and E, = [19, 20]
Ei E E; E>
1 . 1
16 18 20 16 18 20

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 69 /97



Disjunctive principle
Main Assumption

@ At least one information item among E;, ..., E, is reliable
@ w possible as soon as one source considers it possible

— h(Ey, ..., Ep)(w) = max(Ey(w), ..., En(w)) = | J E

E, = [16,19] and E, = [17,20] E; =[16,17] and E, = [19, 20]

Ei E 1 E; E>

1

1
1
1
1

16 18 20 16 18 20

Pros and Cons
@ +: no conflict, logically interpretable
@ -: poorly informative results
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Comparison, conditioning and fusion Information fusion

Average
Main Assumption
Sources are statistically independent and in majority reliable J
Ey =[16,19] and E, = [17,20] Ei =[16,17] and E; = [19, 20]
Ei E E; E,
1 1 -=- .: 1 |_ - - _|
16 18 20 16 18 20
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Comparison, conditioning and fusion Information fusion

Average
Main Assumption
Sources are statistically independent and in majority reliable J
Ey =[16,19] and E, = [17,20] Ei =[16,17] and E; = [19, 20]
m(Ey) =1/2 m(Ez) =1/ m(Ey) =1/2 m(Ez) = 1/2
16 18 20 16 18 20

Pros and Cons
@ +: result not conflicting, counting process (statistics)
@ -: no logical interpretation, not applicable to sets
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Limits of sets in information fusion

@ Very basic information (what is possible/what is impossible)
@ Very basic (binary) evaluation of conflict, either:

e presentif N Ei =0

e absentif NE; # ()

@ Limited number of fusion operators (only logical combinations)

@ Limited operation on information items to integrate reliability
scores, source importance, ...

— how to extend fusion operators to belief functions
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Comparison, conditioning and fusion Information fusion

Extending conjunction

Consider the two following information

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4

0.2 0.2
15 1§6 1§7 1; 1;3 20 £1 2; 2; 1'5 115 1§7 1§8 1§9 26 2§1 ;2 £3
my([17,18]) = 0.6 my([20.5,21.5]) = 0.8
my([15,20]) = 0.4 my([19.5,22.5]) = 0.2
Cautious source Bold source
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Comparison, conditioning and fusion Information fusion

Extending conjunction: steps

my
[17,18] = 0.6 [15,20]=0.4

[20.5,21.5] = 0.8
mo

[19.5,22.5] = 0.2
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Comparison, conditioning and fusion Information fusion

Extending conjunction: steps

m
[17,18] = 0.6 [15,20] = 0.4
[20.5,21.5] = 0.8 0 ]
mo
[19.5,22.5] = 0.2 0 [19.5, 20]

@ Step 1: take intersection (sources reliable)
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Comparison, conditioning and fusion Information fusion

Extending conjunction: steps

m
[17,18] = 0.6 [15,20]=0.4
- ] ]
[20.5,21.5] = 0.8 0.48 0.24
my
B 0 [19.5,20]
[19.5,22.5] = 0.2 012 008

@ Step 1: take intersection (sources reliable)
@ Step 2: give product of masses (sources independent)
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Comparison, conditioning and fusion Information fusion

Extending conjunction: steps

m
[17,18] = 0.6 [15,20]=0.4
- ] ]
[20.5,21.5] = 0.8 0.48 0.24
my
B 0 [19.5,20]
[19.5,22.5] = 0.2 012 008

@ Step 1: take intersection (sources reliable)
@ Step 2: give product of masses (sources independent)

m(0) = 0.92 — high conflict evaluation, unsatisfying
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Comparison, conditioning and fusion Information fusion

Extending conjunction

my
[17,18] = 0.6 [15,20]=0.4
[17.5,18] [17.5,18.5]

[17.5,18.5] = 0.8

0.48 0.24
mo
B [17,18] [16.5,19.5]
[16.5,19.5] =0.2 012 0.08

@ Step 1: take intersection (sources reliable)
@ Step 2: give product of masses (sources independent)

m((#) = 0 — no conflict, sources consistent
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Comparison, conditioning and fusion Information fusion

Extending disjunction: steps

m
[17,18] = 0.6 [15,20] = 0.4

[20.5,21.5] = 0.8
mo

[19.5,22.5] = 0.2
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Comparison, conditioning and fusion Information fusion

Extending disjunction: steps

m
[17,18] = 0.6 [15,20] = 0.4

20.5,21.5] = 0.8 [17,18] U [20.5,21.5] [15,20] U [20.5,21.5]
mo

[19.5,22.5] = 0.2 | |'7>181U[19.5,22.9] [15,22.5]

@ Step 1: take union (at least one reliable source)
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Comparison, conditioning and fusion Information fusion

Extending disjunction: steps

m
[17,18] = 0.6 [15,20] = 0.4
_ [17,18] U [20.5,21.5] [15,20] U [20.5,21.5]
[20.5,21.5] = 0.8 048 0.24
mo
B [17,18] U[19.5,22.5] [15,22.5]
[19.5,22.5] = 0.2 012 0.08

@ Step 1: take union (at least one reliable source)
@ Step 2: give product of masses (sources independent)
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Comparison, conditioning and fusion Information fusion

Extending disjunction: steps

m
[17,18] = 0.6 [15,20] = 0.4
_ [17,18] U [20.5,21.5] [15,20] U [20.5,21.5]
[20.5,21.5] = 0.8 048 0.24
mo
B [17,18] U[19.5,22.5] [15,22.5]
[19.5,22.5] = 0.2 012 0.08

@ Step 1: take union (at least one reliable source)
@ Step 2: give product of masses (sources independent)

m(0) = 0 — no conflict, but very imprecise result
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More formally

Given informations my, ..., mp
Conjunctive (Dempster’s unnormalized) rule

mn(A) = Z H m(E;)
i=1

EyN..NEp=A
— a gradual way to estimate conflict [22]

Disjunctive rule

my(A)y = > [T m(E)

EqU..UEp=A i=1
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Comparison, conditioning and fusion Information fusion

Conflict management: beyond conjunction and
disjunction

E Es
Conjunction result: 1]

Disjunction result:

= Conjunction poorly reliable/false
= Disjunction very imprecise and inconclusive
— A popular solution: choose a logical combination between the two
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A simple idea [19]

@ Get maximal subsets My, ..., M, of sources having non-empty
intersection

@ Take their intersection, then the union of those intersections
h(Ei, ..., En) = Um, NEem, Ei

Anoldidea...
@ In logic, to resolve knowledge base inconsistencies [31]
@ In mathematical programming, to solve non-feasible problems [8]
@ Ininterval analysis ...
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Comparison, conditioning and fusion Information fusion

lllustrative exercice

Four sources provide you with basic items of information (sets)

E2 E4

E; Es

@ What are the maximal consistent subsets?
@ What is the final result of applying the SMC rule to it?
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Comparison, conditioning and fusion Information fusion

lllustrative exercice:solution

T

-

ém&ﬂE
SMC: Ky = {E1 , E2} et Ko = {EQ, E;, E4}

Final result: (E1 N E2) U (E2 NEsN E4)

@ If all agree — conjunction
@ if every pair is in disagreement (disjoint) — disjunction
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Comparison, conditioning and fusion Information fusion

MCS on belief: illustration

m
[17,18] = 0.6 [15,20] = 0.4
B [17,18] U [20.5,21.5] [15,20] U [20.5,21.5]
[20.5,21.5] = 0.8 048 024

mo
[17,18] U[19.5,22.5] [15,20] N [19.5,22.5]

[19.5,22.5] = 0.2 015 0.08
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Comparison, conditioning and fusion Information fusion

Set and logical view

Why?
@ You want an interpretation to the combination
@ You have relatively few information items
@ You cannot "learn" your rule

Why not?
@ You do not really care about interpretability
@ You need to "scale up"
@ You have means to learn your rule
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Comparison, conditioning and fusion Information fusion

Learning fusion rule: rough protocol

@ A set of observed values &1, ..., &°

e for each &', information m, ..., m!, provided by n sources
@ a decision rule d : M — Q mapping m to a decision in 2
@ from set ‘H of possible rules, choose

h* = arg rpeaﬁ( Z Lahm,....miy)=i
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Comparison, conditioning and fusion Information fusion

How to choose H.?

@ 7 should be easy to navigate, i.e., based on few parameters

@ Maximization optimization problem should be made easy if
possible (convex? Linear?)

@ In particular, if mj’f have peculiar forms (possibilities, Bayesian,
...), there is a better hope to find efficient methods

Two examples
@ Weighted averaging rules (parameters to learn: weights)

@ Denoeux T-(co)norm rules based on canonical decomposition
(parameters to learn: parameters of the chosen t-norm family)
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Comparison, conditioning and fusion Information fusion

The case of averaging rule

@ Parametersw = (wq,...,wp) suchthat )", w;=1and w; >0
@ Set H = {hw|w €[0,1]",>"; w; = 1} with

hw = Z wim;
i
@ Decision rule d? B
d(m) = arg ma§>2< P({w})
we

@ maximum of plausibility
— use plausibility of average = average of plausibilities at your
advantage, i.e.,

Ps(w) =) wiPi(w)
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Comparison, conditioning and fusion Information fusion

Exercice 7: walking dead

A zombie apocalypse has happened, and you must recognize possible
threats/supports

The possibilities The sources S;
@ Zombie (2) @ Half-broken heat detector (S;)
@ Friendly Human (F) @ Paranoid Watch guy 1 (S)
@ Hostile Human (H) @ Half-borken Motion detector (Ss)
@ Neutral Human (N) @ Sleepy Watch guy 2 (S,)
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Comparison, conditioning and fusion Information fusion

Exercice 7: which rule?

Given this table of contour functions, a weighted average and a
decision based on maximal plausibility

1

o'=z WP =H G =F
Z F H N|Z F H N[Z F H N
S 1 05 05 05| 1 05 05 0505 1 1 1
S 1 02 08 02| 0 03 1 03|0 04 1 04
Ss 1 05 05 05|05 0,7 08 07| 1 05 05 0,5
S 11 1 102 02 1 05|02 1 04 08
w; = (0.5,0.5,0,0)
w, = (0,0,0.5,0.5)

Choose hw, or hw,? Given the data, can we find a strictly better weight
vector?
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Some on-going research topics within BF

Or what could you go for if you're interested in BF

Statistical estimation/machine learning
@ Extending frequentist approaches [16]
@ Embedding BF with classical ML [48, 15]
@ BF for recent ML problems (ranking, multi-label) [18, 44]

Inference over large/combinatorial spaces
@ Efficient handling over lattices (preferences, etc.) [17]
@ Inferences over Boolean formulas [2, 38]
@ BF and (discrete) Operations Research [37]

Specific fusion settings
@ Decentralized fusion [33]

@ Large spaces (2D/3D maps. imaaes) [46]
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Comparison, conditioning and fusion Information fusion

As a conclusion

Belief functions as specific IP . ..
Many common points
@ Specific setting including many important aspects

@ May offer tools that facilitate handling/understanding to
non-specialist (random set, Mobius inverse, Monte-Carlo + set

computation)
@ BF theory share strong similarities with IP

... but not only
Yet important differences:
@ Admit incoherence when needed — may be useful sometimes

@ Important notions in BF have no equivalent in IP — commonality
function, specialisation notion, fusion rules, ...

4
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Comparison, conditioning and fusion Information fusion
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