

The Problem

The Model

Uncertainty Quantification

The Problem

The Mode

Uncertainty Quantification

The Problem: Introduction

What is Marmorkrebs?

Origin unknown, first known individuals from pet trade 1990's.

Can reproduce asexually, high reproduction rate, damages ecosystems.

Ecological Decision Problem

Eradicate invasive marmorkrebs aledgedly observed in a lake

Possible Interventions

- (I) Do nothing
- (II) Mechanical removal
- (III) Drain system and remove individuals by hand
- (IV) Drain system, dredge and sieve to remove individuals
 - (V) Decomposable biocide plus drainage
- (VI) Increase pH plus drainage and removal by hand

The Problem: Key Variables & Parameters

Variables

- ► *H* = is alien crayfish present?
- ► E = is alien crayfish observed?
- ► D = intervention decision
- $\triangleright \beta(D)$ = probability of erradication
- ightharpoonup H' = is alien crayfish present after intervention?
- A_1, \ldots, A_5 = features of the intervention

Parameters

- \bullet θ = probability of alien crayfish presence
- $ightharpoonup lpha = ext{probability of observing crayfish if present}$

The Problem

The Model

Uncertainty Quantification

The Model: Overview

uncertainty

value ambiguity

The Model: Features

Learning

- \blacktriangleright *E* (observing crayfish or not) tells us something about θ (probability of crayfish)
- put Beta(st, s(1-t)) distribution on θ to allow learning

Severe Uncertainty

- ▶ interval analysis for $\alpha \in [0.1, 0.5]$
- ▶ interval analysis for $t \in [0.1, 0.9]$

Act-State Dependence

	Decision D						
Probability	ı	II	Ш	IV	V	VI	
$\beta(D)$	0	0.05	0.3	0.4	1.0	0.7	
$\overline{\overline{eta}}(D)$	0	0.25	0.5	0.7	1.0	8.0	

will need interval dominance (other methods?)

The Model: Features

Utilities For Each Attribute Separately

marginal utility for each attribute if eradication successful:

	Worst	Best		Decision D II III IV V VI 4 3 3 2 1				
Attribute	(score 1)	(score 4)	ı	Ш	Ш	IV	V	VI
Biotic impact	High	Low	4	4	3	3	2	1
Longevity of impacts	Long	Short	4	4	3	3	1	2
Experience	Little	High	4	3	1	4	1	1
Feasibility	Difficult	Easy	4	4	2	3	1	2
Cost	High	Low	4	4	3	1	2	3

marginal utility for each attribute if eradication fails:

	Worst	Best	Decision D					
Attribute	(score 1)	(score 4)	ı	Ш	Ш	IV	٧	VI
Biotic impact	High	Low	1	1	1	1	1	1
Longevity of impacts	Long	Short	1	1	1	1	1	1
Experience	Little	High	4	3	1	4	1	1
Feasibility	Difficult	Easy	4	4	2	3	1	2
Cost	High	Low	4	4	3	1	2	3

The Model: Features

How to weigh attributes? Severe value ambiguity!

- imprecise swing weighting method [5]
- results in system of linear constraints on weights
- can enumerate extreme points to propagate easily

	k ₁	k_2	k ₃	<i>k</i> ₄	k ₅
1	0.37	0.26	0.19	0.11	0.07
2	0.38	0.27	0.19	0.12	0.04
3	0.40	0.28	0.20	0.04	0.08
4	0.42	0.29	0.21	0.04	0.04
5	0.42	0.29	0.17	0.04	0.08
6	0.43	0.30	0.17	0.04	0.04
7	0.40	0.28	0.16	0.12	0.04
8	0.38	0.27	0.15	0.12	0.08
9	0.42	0.33	0.17	0.04	0.04
10	0.40	0.32	0.16	0.04	0.08
11	0.38	0.31	0.15	0.12	0.04
12	0.37	0.30	0.15	0.11	0.07
13	0.40	0.32	0.20	0.04	0.04
14	0.38	0.31	0.19	0.04	0.08
15	0.37	0.30	0.19	0.11	0.04
16	0.36	0.29	0.18	0.11	0.07

The Problem

The Mode

Uncertainty Quantification

JAGS code:

```
theta ~ dbeta(s*t, s*(1-t)) T(0.001,0.999)
H ~ dbinom(theta.1)
E ~ dbinom(alpha,H)
for(D in 1:n_decisions) {
  for(i in 1:n_beta_points) {
   H'[i,D] ~ dbinom(1-beta[i,D],H)
    for (k in 1:n_util_points) {
      U[D.i.k] =
         H'[i,D] * inprod(util_H'_one [,D], util_weights[k,])
       + (1 - H'[i,D]) * inprod(util_H'_zero[,D], util_weights[k,])
```

Uncertainty Quantification: Simulation Methodology

- set up grid for $\beta(D)$
- set up list extreme points of utility weights k
- for each fixed value of t and α within their interval
 - run JAGS code to produce posterior expectation for each $\beta(D)$ and k
 - ightharpoonup calculate lower and upper posterior expectation over $\beta(D)$ and k from JAGS output
 - plot results and analyse for interval dominance
- look at all plots, draw conclusions

mixed E-admissiblity / interval dominance criterion!

Results: t = 0.1, $\alpha = 0.1$

Results: t = 0.1, $\alpha = 0.5$

Results: t = 0.5, $\alpha = 0.1$

Results: t = 0.5, $\alpha = 0.5$

Results: t = 0.9, $\alpha = 0.1$

Results: t = 0.9, $\alpha = 0.5$

The Problem

The Mode

Uncertainty Quantification

- Graphical models are very useful: easy to evaluate posterior
- Dealing with interval uncertainty in JAGS is not straightforward
 - ▶ No optimisation routines within JAGS (or STAN, ...)
 - Brute force appropriate for low dimensional problems only
- Graphical presentation of results?
- Formalisation of act-state dependent choice functions?
 - Not all variables/parameters are affected by the decision
 - Important for reliability and risk analysis: decision meant to affect future state, but cannot affect past states
 - Concern:

$$\int_{\mathcal{T}} \operatorname{Ch}_{t}(X) \neq \operatorname{Ch}_{\mathcal{T}}(X) \tag{1}$$

Thank you for listening!

References I

[1] Ullrika Sahlin and Matthias C. M. Troffaes.

Dealing with an alien invasive species under sparse information and value ambiguity using robust Bayesian decision analysis.

Submitted.

[2] Ullrika Sahlin and Matthias C. M. Troffaes.

A note on EFSA's ongoing efforts to increase transparency of uncertainty in scientific opinions.

Journal of Risk Research, pages 1-8, 2017.

[3] Matthias C. M. Troffaes.

Decision making under uncertainty using imprecise probabilities.

International Journal of Approximate Reasoning, 45(1):17-29, May 2007.

[4] Matthias C. M. Troffaes and John Paul Gosling.

Robust detection of exotic infectious diseases in animal herds: A comparative study of three decision methodologies under severe uncertainty.

International Journal of Approximate Reasoning, 53(8):1271–1281, November 2012.

[5] Matthias C. M. Troffaes and Ullrika Sahlin.

Imprecise swing weighting for multi-attribute utility elicitation based on partial preferences.

In Alessandro Antonucci, Giorgio Corani, Inés Couso, and Sébastien Destercke, editors, *Proceedings of the Tenth International Symposium on Imprecise Probability: Theories and Applications*, volume 62 of *Proceedings of Machine Learning Research*, pages 333–345. PMLR, July 2017.