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Objective and Framework

• To formulate an imprecise regularization technique

• Use of cross–validation as a link between regularization
methods and credal classification.
• Proposal of other possible approach.

• Use of Gaussian assumption
• Use of weights.
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Linear Models

Let X be a set of predictors (attributes) and Y be the
corresponding response (classes). The linear model is given by

Y = Xβ + ε (1)

where

Y :=

y1
...
yn

 X :=

xT
1
...

xT
n

 β :=

β1
...
βp

 ε :=

ε1
...
εn

 (2)

εi
i .i .d .∼ N(0, σ2) are error terms, β are regression coefficient.
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Regression Models

• Ordinary Least Squares

β̂OLS := arg min
β
‖Y − Xβ‖2

2 = (XTX )−1XTY (3)

• Issues with OLS
• Overfitting Problem
• p > n

• Regularization → LASSO

β̂λ = arg min
β

(
1

2
‖Y − Xβ‖2

2 + λ‖β‖1

)
(4)
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Graphical Interpretation

● β̂
OLS

• LASSO as constrained
optimization problem
• other penalty terms

• non-convex for q < 1
• q = 1 is smallest value for

convex region

q=2 q=1 q=0.5 q=0.01

Figure: different penalty terms
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A Basic Example

Gaia dataset to formulate 3–d
mapping of space.

• number of observation,
n = 8286

• number of predictors
(wavelength bands),
p = 16

• steller temperature as
response

Figure: Coefficient path

• LASSO estimates around black vertical line
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Classification

• Let C = (c1, c2, · · · , cm) be a classification variable
defined on C
• A1,A2, · · · ,An be set of attributes having values

a1, a2, · · · , an defined on A1,A2, · · · ,An.

We calculate the joint probability P[C ,A1,A2, · · · ,An].
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Naive Bayes Classifier

• Naive Bayes Classifier

P[A1,A2, · · · ,An|C ] =
n∏

i=1

P[Ai |C ] (5)

• Modified joint probability

P[C ,A1,A2, · · · ,An] = P[C ].
n∏

i=1

P[Ai |C ] (6)
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Imprecise Dirichlet Model

For hyperparameter t and a constant s > 0, we have

f (x |s, t) ∝
∏
c∈C

x st(c)−1
c

n∏
i=1

∏
ai∈Ai

x
st(ai |c)−1
ai |c

 (7)

subject to the following constraints∑
c

t(c) = 1 (8)∑
ai∈Ai

t(ai |c) = t(c) ∀(i , c) (9)

t(ai |c) > 0 (i , ai , c) (10)
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Naive Credal Classifier

Naive credal classifier is based on the assumptions of NBC and
use of IDM as prior which gives us –

E [xc,a|n, t] = P[c , a|n, t] = P[c |n, t]
n∏

i=1

P[ai |c , n, t] (11)

where,

P[c|n, t] = E [xc |n, t] =
n(c) + st(c)

N + s
(12)

P[ai |c , n, t] = E [xai |c |n, t] =
n(ai |c) + st(ai |c)

n(c) + st(c)
(13)
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Credal Dominance

A class c ′ dominates c ′′ (c ′, c ′′ ∈ C) iff
P[c ′|a, n, t] > P[c ′′|a, n, t] for all values of t.

inf
t

P[c ′|a, n, t]

P[c ′′|a, n, t]
(14)

subject to ∑
c

t(c) =1 (15)

0 < t(ai |c) <t(c) ∀(i , c) (16)
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Cross–validation

LASSO

• λ as tuning parameter

• mean-squared error as measure of accuracy

NCC

• s as tuning parameter
• different accuracies

• Determinacy
• Single Accuracy
• Indeterminate Set–Size
• Set Accuracy
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Example

Sonar Dataset

• Binary Classification Problem

• 60 attributes

• 208 observations

Naive approach – Feature Selection

• Apply LASSO for feature selection

• Credal classification on the selected features
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Example

Feature selection using LASSO

Figure: Cross–validation Curve
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Example

S as tuning parameter

Figure: Cross–validation Curve for Classification
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Possible Approaches

• Gaussian Naive Bayes assumption
• logistic regression as classification problem
• use of credal classification in logistic–LASSO setting
• simultaneous cross–validation

• Hierarchical Bayes
• imprecise weights on the hyper parameter of penalty term
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Conclusions and Future Work

Conclusion

• Cross–validation as a tool

• Possible Approaches

Questions

• Shrinking regression co-efficients in GNB setting

• Simultaneous cross–validation : (Chicken and egg)

Thank You
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