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Abstract: New flexible regressions to model linear relationships between interval-

valued random variables are presented. These new models account for cross relation-

ships between midpoints and spreads of the intervals in a unique equation based on

the interval arithmetic. The estimation problem, which can be written as a contrained

minimization problem, is theoretically analyzed and empirically tested. Numerically

stable general expressions of the estimators are provided. The simple linear regres-

sion entails less computational complexity and a more efficient estimation algorithm
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is developed. The main differences between the new and the existing methods are

highlighted in a real-life application. It is shown that the new model provides the

most accurate results by preserving the coherency with the interval nature of the

data.

Key words: interval-valued data; least-squares estimators; linear modelling; mul-

tiple regression; set arithmetic

1 Introduction

The statistical treatment of interval-valued data has been extensively considered in

the last years, as it appears in multiple experimental scenarios. Sometimes a real

random variable is imprecisely observed, so that the experimental data are recorded

as the real intervals which may contain the precise values of the variable in each in-

dividual; see, for instance, Jahanshahloo et al. (2008); Lauro et al. (2005). Censoring

and grouping processes also produce intervals; see Černý et al. (2011); Joly et al.

(2009); Zhang (2009), among others. Symbolic Data Analysis (SDA) considers inter-

vals for summarizing information stored in large data sets, as in Billard et al. (2000);

Lima Neto et al. (2010). Additionally, essentially interval experimental data can be

obtained. This is the case of fluctuations, ranges of values (in the sense of the range

of variation between a minimum and a maximum of a magnitude on a certain period

of time) or subjective perceptions; some examples can be found in Diamond (1990);

D’Urso et al. (2004); González-Rodŕıguez et al. (2007). This work focuses on this lat-

ter approach and its aim is to develop new regression models for the interval-valued
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variables, which are the random elements modelling the experiment on target.

Several alternatives have been previously proposed to face linear regression prob-

lems for interval-valued data. Separate models can be used, but in this case the

non-negativity constraints satisfied by the spread variables preclude of treating the

problem within the context of classical linear regression (see D’Urso, 2003; Lima

Neto et al., 2010). In a different context, possibilistic regression models are consid-

ered (Boukezzoula et al., 2011; Černý et al., 2011), when the intervals represent the

imprecision in the measurement of real values, and this imprecision is transferred to

the regression model and its estimators. Finally, the set arithmetic-based approach

consists in the formalization of a linear relationship between interval-valued random

variables associated with a given probability space in terms of the interval arith-

metic. Thus, the estimators of such coefficients can be interpreted in the classical

sense (Blanco-Fernández et al., 2011, 2013; Diamond, 1990; González-Rodŕıguez et

al., 2007).

Here extensions of the set arithmetic-based linear models are twofold investigated.

On one hand, whereas the previous regression models relate the response midpoints

(respectively spreads) by means of the explanatory midpoints (respectively spreads),

the new model is able to accommodate cross-relationships between midpoints and

spreads in a unique equation. On the other hand, multiple regression models allowing

several explanatory variables to model the response are formalized.

The rest of the paper is organized as follows: In Section 2 preliminaries concerning

the interval framework are presented and some previous linear models for intervals

are revised. Extensions of those linear models are introduced in Section 3. The

least-squares estimation problem is analyzed and numerically stable expressions are
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derived. In Section 4 the empirical performance and the practical applicability of

the models are shown and compared with existing techniques through some simula-

tion studies and real-life examples. Section 5 includes some conclusions and future

directions.

2 Preliminaries

The considered interval experimental data are elements belonging to the spaceKc(R) =

{[a1, a2] : a1, a2 ∈ R, a1 ≤ a2}. Each interval A ∈ Kc(R) can be parametrized in terms

of its midpoint, midA = (supA+ inf A)/2, and its spread, sprA = (supA− inf A)/2.

The notation A = [midA±sprA] will be used. An alternative representation for inter-

vals is the so-called canonical decomposition, introduced in Blanco-Fernández et al.

(2011), given by A = midA[1±0]+sprA[0±1]. It allows the consideration of the mid

and spr components of A separately within the interval arithmetic. The Minkowski

addition and the product by scalars constitute the natural arithmetic on Kc(R). In

terms of the (mid, spr)-representation these operations can be jointly expressed as

A+ λB = [(midA+ λmidB) ± (sprA+ |λ| sprB)]

for any A,B ∈ Kc(R) and λ ∈ R. The space (Kc(R),+, · ) is not linear but semilinear

(or conical), due to the lack of symmetric element with respect to the addition. If C

verifying that A = B + C exists, then C is called the Hukahara difference (A−H B)

between the pair of intervals A and B. The interval C exists iff sprB ≤ sprA (see

Blanco-Fernández et al., 2011 for details).

For every A,B ∈ Kc(R), an L2-type generic metric is introduced in Trutschnig et

al. (2009) as dθ(A,B) = ((midA − midB)2 + θ (sprA − sprB)2)
1
2 , for an arbitrary
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θ ∈ (0,∞). The value θ = 1/3 is often considered as the natural election, because it

corresponds to compute and weigh uniformly all the differences between the points

of the intervals.

Given a probability space (Ω,A, P ), the mapping x : Ω → Kc(R) is a random interval

iff midx, sprx : Ω → R are real random variables and sprx ≥ 0. Random intervals

will be denoted with bold lowercase letters, x, random interval-valued vectors by

non-bold lowercase letters, x, and interval-valued matrices with uppercase letters, X.

The expected value of x is defined in terms of the well-known Aumann expectation for

intervals. It can be expressed as E(x) = [E(midx)± E(sprx)]. It exists and E(x) ∈

Kc(R) iff midx and sprx ∈ L1(Ω,A, P ). The variance of x can be defined as the usual

Fréchet variance (Näther, 1997) associated with the Aumann expectation in the metric

space (Kc(R), dθ), i.e. σ2
x = E(d2θ(x, E(x))), whenever midx and sprx ∈ L2(Ω,A, P ).

However, the conical structure of the space Kc(R) entails some differences while trying

to define the usual covariance (Körner, 1997). In terms of the dθ-metric it has the

expression σx,y = σmidx,midy + θσsprx,spry , whenever those classical covariances exist.

The expression Cov(x, y) denotes the covariance matrix between two random interval-

valued vectors x = (x1, . . . ,xk) and y = (y1, . . . ,yk).

Several linear regression models for intervals based on the set arithmetic have been

previously considered. They are briefly recalled and a comparison study with the

new approach is addressed in Section 4. The basic simple linear model proposed

in González-Rodŕıguez et al. (2007) is formalized as y = b x + ε with b ∈ R and

ε : Ω → Kc(R) is an interval-valued random error such that E[ε|x] = ∆ ∈ Kc(R). It

only involves one regression parameter to model the dependency between the variables

and thus, it induces quite restrictive separate models for the mid and spr components
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of the intervals. Namely, midy = bmidx + midε and spry = |b|sprx + sprε. A

more flexible interval linear model, called model M, has been formalized in Blanco-

Fernández et al. (2011) as y = [b1 midx± b2 sprx]+ε, b1 ∈ R, b2 ≥ 0. The transferred

linear relationships are in this case midy = b1midx+midε and spry = b2sprx+ sprε,

with b1 ̸= b2 in general.

Given a sample data set of intervals it is also possible to fit the separate models for

the mid and the spr components, as previously proposed in Lima Neto et al. (2010)

and references therein. Alternatively, D’Urso (2003) presents several linear regression

models for the so-called LR fuzzy numbers and therefore also for the particular case

of intervals. In this case, possible cross-relationships between midpoints and spreads

of the intervals are considered. It is important to observe that these approaches

are different from the set arithmetic-based one from the statistical basis. They are

considered from a descriptive point of view, since no probabilistic assumptions on

the random intervals are established. Thus, it may be infeasible to study statistical

properties of the estimators and inferential studies in this setting. For instance, since

the independence or the uncorrelation of the regressor and the error term are not

guaranteed, a problem of model identification may appear. As a conclusion, although

the proposed estimation for these separate models offer an alternative to find a linear

fitting on the available data set of intervals, the solutions to these problems cannot

be identified with those of the theoretical linear models based on interval arithmetic.

3 A multiple flexible linear model: Model MG

A novel multiple linear regression model for intervals is presented. It arises as a

natural extension of the model M in Blanco-Fernández et al. (2011) both into the
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multiple case and into a more flexible scenario.

3.1 Population model

Let y be a response random interval and let x1,x2, . . . ,xk be k explanatory random

intervals. It is assumed that the real-valued random variables mid and spread as-

sociated with all the random intervals are not degenerated, the considered random

intervals have finite and strictly positive variance and the var-cov matrix of the ex-

planatory variables is invertible. The set arithmetic-based multiple flexible linear

regression model, denoted by MG, is formalized as follows:

y = [(b1midxt + b4 sprx
t)± (b2 sprx

t + b3 |midxt|)] + ε (3.1)

where b1, b4 ∈ Rk, b2, b3 ∈ Rk+ , mid x = (midx1,midx2, . . . ,midxk)
t ∈ Rk (analo-

gously sprx), and ε is a random interval-valued error such that E(ε|x) = ∆ ∈ Kc(R).

From this condition, it is straightforward to see that x an ε are uncorrelated, i.e.

σε,xi
= 0, for all i = 1, . . . , k. The separate linear relationships for the mid and spr

components of the intervals transferred from (3.1) are

midy = midxt b1 + sprxt b4 +mid ε , (3.2a)

spry = spr xt b2 + |midxt| b3 + spr ε . (3.2b)

Thus, both variables midy and spry are modelled from the complete information

provided by the independent random intervals in x, characterized by the random

vector (midx, sprx). An immediate conclusion from this property is that model MG

allows more flexibility on the possible linear relationship between the random intervals

than the preceding set arithmetic-based models. However, the inclusion of more
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coefficients increases the difficulty of the estimation process, as happens in classical

regression problems.

For a simpler notation, let us define the intervals xM = [midxt,mid xt], xS =

[−sprxt, sprxt], xC = [−|mid xt|, |midxt|] and xR = [sprxt, sprxt]. Thus, the model

MG is equivalently expressed in matrix notation as:

y = XBl B + ε , (3.3)

where XBl = (xM |xS|xC |xR) ∈ Kc(R)1×4k and B = (b1|b2|b3|b4)t. The associated

regression function is E(y|x1 = x1, . . . ,xk = xk) = XBl B +∆.

Let {
(
yj,x1,j, . . . ,xk,j

)
}nj=1 be a simple random sample obtained from the random

intervals (y,x1, . . . ,xk). Then,

y = XeBlB + ε ,

where y = (y1, . . . ,yn)
t, XeBl = (XM |XS|XC |XR) ∈ Kc(R)n×4k, B as in (3.3) and

ε = (ε1, . . . , εn)
t is such that E(ε|x) = 1n∆. XM is the (n×k)-interval-valued matrix

such that (XM)j,i = [midxi,j,midxi,j] (analogously XS, XC and XR).

3.2 Least squares estimation of the model

The LS estimation searches for B̂ and ∆̂ minimizing d2θ(y,X
eBlA+1nC) for A ∈ R4k×1,

C ∈ Kc(R) and guaranteeing the existence of the residuals ε = y −H XeBlA. It is

easy to see that spr(XeBlA) = sprX a2 + |midX| a3, (with (midX)j,i = midxi,j,

and analogously sprX) so that the following conditions are to be included in the

minimization problem:

sprX a2 + |midX| a3 ≤ spr y. (3.4)
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Analogously to what happens in classical regression, the estimate of the (interval-

valued) intercept term ∆ can be obtained first. If B̂ verifies (3.4), then the minimum

value of d2θ(y,X
eBlB̂ + 1nC) over C ∈ Kc(R) is attained at

∆̂ = y−H XeBlB̂ . (3.5)

As a result, the LS estimate of the regression parameter B is obtained by minimizing

d2θ(y −H XeBlA,y−H XeBlA) (3.6)

subject to

sprX a2 + |midX| a3 ≤ spr y

with A = (a1|a2|a3|a4) such that a1, a4 ∈ Rk and a2, a3 ∈ Rk+ .

Proposition 3.1 The least-squares estimators of the pairs of regression parameters

(b1, b4) and (b2, b3) in (3.1) are

(̂b1, b̂4) = (F t
m Fm)

−1F t
m vm

and (̂b2, b̂3) = (F t
sFs)

−1 (F t
s vs −Dt λ),

respectively, where vm = midy − midy1n ∈ Rn, vs = spry − spry1n ∈ Rn, Fm =

midXeBl − 1n(midXeBl) ∈ Rn×2k, Fs = sprXeBl − 1n(sprXeBl) ∈ Rn×2k, midXeBl =

(midX, sprX) ∈ Rn×2k, sprXeBl = (sprX, |midX|) ∈ Rn×2k and D =
(
−I2k , sprX

eBl
)t

∈

R(2k+n)×2k.

Proof 3.1 The problem (3.6) is solved by transforming it to an equivalent quadratic

optimization problem, as follows:

min
Am∈ R2k, As∈ Γ

∥vm − FmAm∥2 + θ ∥vs − FsAs∥2 (3.7)

Γ = {As ∈ R2k : DAs ≤ d}
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being Am = (a1|a4)t ∈ R2k×1, As = (a2|a3)t ∈ R2k×1 and d =
(
02k , spry

)t

∈

R(2k+n)×1.

This problem can be solved separately for Am and As. On one hand, (̂b1, b̂4) derives

directly from the minimization of the unconstrained quadratic form ∥vm−FmAm∥2 for

Am ∈ R2k. On the other hand, the minimization problem ∥vs − FsAs∥2 over As ∈ Γ

admits the following equivalent formulation

min
1

2
At

s H As − ctAs

s.t. DAs ≤ d

being H = F t
sFs ∈ R2k×2k and c = F t

s vs ∈ R2k×1. This problem has the structure of

a linear complementary problem LCP

ω = M λ+ q

s.t. ω, λ ≥ 0 , ωjλj = 0 , j = 1, . . . , n+ 1 ,

with M = DH−1 Dt and q = d − DH−1 c. Lemke’s or Dantzig-Cottle’s algorithms

can be used to obtain by an iterative process the value λ minimizing the LCP (see

Lemke, 1962; Liew, 1976 for further details). Once λ is computed, the close form of

the solution in (3.7) is (̂b2, b̂3) = H−1 (c−Dt λ). �

Observe that (̂b1, b̂4) coincides with the OLS estimator of the classical multiple regres-

sion model (3.2a). Therefore, it is guaranteed that it is an unbiased, consistent and ef-

ficient estimator of the vector of regression coefficients (b1, b4), i.e. E (̂b1, b̂4) = (b1, b4),

(̂b1, b̂4)
n→∞−→ (b1, b4), and V ar(̂b1, b̂4)

n→∞−→ 0. Besides, the analytic expression of its

standard error is

se(̂b1, b̂4) =

(√
σ2(F t

mFm)
−1
11 ,

√
σ2(F t

mFm)
−1
22

)
.
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The result is immediate from the Gauss-Markov Theorem (Johnston, 1972). The

availability of a closed form of the estimator (̂b2, b̂3) greatly benefits the development

of further statistical studies on the linear model, as inferences, linear independence,

etc. Nonetheless, as the computation of λ is done in an iterative way this entails

some computational costs and special caution should be taken in reaching the correct

solution. For instance, analytic expressions for its expectation and standard error

are difficult to obtain. In Efron et al. (1993) it is proposed a bootstrap algorithm to

estimate these moments. Applied to (̂b2, b̂3), it is summarized as follows:

Algorithm 2: Bootstrap estimation of E (̂bl) and se(̂bl), for l = 2, 3.

Let {(yj,x1,j, . . . ,xk,j)}nj=1 be a simple random sample from the random intervals

(y,x1, . . . ,xk) and let T ∈ N be large enough.

1. Obtain T bootstrap samples of size n, {(y∗
j ,x

∗
1,j, . . . ,x

∗
k,j)}nj=1, by re-sampling

uniformly and with replacement from the original sample.

2. Compute the bootstrap replica of the regression estimator, b̂
∗(t)
l , t = 1, . . . , T .

3. Estimate the mean and the standard error of b̂l by the sample mean and the

sample deviation of {b̂∗(t)l }Tt=1, i.e.

Ê (̂bl) = b̂∗l =

∑T
t=1 b̂

∗(t)
l

T
, and

ŝe(̂bl) =

√√√√∑T
t=1

(
b̂
∗(t)
l − b̂∗l

)2

T − 1
.

It is shown in Efron et al. (1993) that a number of bootstrap iterations T between 25

and 200 of the algorithm generally provides good approximations. In Section 4 some

practical and simulated results are shown.
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It is possible to obtain more numerically stable expressions for the estimators by

applying the QR decomposition (see Golub et al., 1996) to (3.7) and taking benefit

from the triangular structure of the leading matrices. In fact, the set of triangular

matrices is an stable subspace for products and inverses. Therefore, the computation

of the inverses can be solved as a triangular system by back or forward-substitution

(for upper or lower triangular matrices, respectively) (see Higham, 1996).

Proposition 3.2 The least-squares estimators of the model MG (3.1) can be equiva-

lently computed as
(̂b1, b̂4) = R−1

m ỹm1

(̂b2, b̂3) = R−1
s ỹs1 −R−1

s R−t
s Dtλ,

where Qt
m(Fm|vm) =

 Rm ỹm1

0 ỹm2

 and Qt
s(Fs|vs) =

 Rs ỹs1

0 ỹs2

 are the QR

decomposition of (Fm|vm) and (Fs|vs), respectively.

Proof 3.2 The QR decompositions of (Fm|vm) and (Fs|vs) work with the orthogonal

matrices Qm, Qs ∈ Rn×n and the upper triangular matrices Rm, Rs ∈ R2k×2k.

The first quadratic problem can be written as

min
Am∈R2k

∥QT
m(Fm Am − vm)∥22 = min

Am∈R2k
∥Rm Am − ỹm1∥22 + ∥ỹm2∥22 ,

whose solution is (̂b1, b̂4) = R−1
m ỹm1 .

The second quadratic problem in (3.7) is reformulated as

min
As∈Γ

∥Qt
s(Fs As − vs)∥22 = min

As∈Γ
∥Rs As − ỹs1∥22 + ∥ỹs2∥22 =

= min
As∈Γ

At
sR

t
sRs︸ ︷︷ ︸
H

As − 2At
s R

t
sỹs1︸ ︷︷ ︸
c

+∥ỹs1∥22 + ∥ỹs2∥22.
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Consider applying Lemke’s algorithm to M = DH−1Dt = D(Rt
sRs)

−1Dt =

= (DR−1
s )(DR−1

s )t and q = d − DH−1c = d − D(Rt
sRs)

−1Rt
sỹs1 = d − DR−1

s ỹs1 . It

follows that the solution is given by (̂b2, b̂3) = H−1(c−Dtλ) = R−1
s ỹs1−(Rt

sRs)
−1Dtλ=

R−1
s ỹs1 −R−1

s R−t
s Dtλ.

�

Remark 3.1 The separate minimization of the problem (3.7) entails that the regres-

sion estimates do not depend on the value of the constant θ chosen for the metric.

Thus, sensitivity analysis for the estimation process of the model MG is not required,

as happens with other models (Sinova et al., 2012).

3.3 Fast algorithm for the simple linear model

When the simple case is considered (i.e. the linear modelling of the interval response

y by means of one explanatory interval x), the estimation of the model MG can be

solved through a different process. It makes use of graphical ideas in R2 to obtain

the estimates of the parameters with a lower computational cost.

The model MG relating y in terms of x takes the expression

y = b1x
M + b2x

S + b3x
C + b4x

R + ε , (3.8)

with bi ∈ R, i = 1, 2, 3, 4 and E(ε|x) = ∆ ∈ Kc(R).

Once ∆̂ is obtained as in (3.5), the minimization problem which solves the LS esti-

mation of B = (b1, b2, b3, b4)
t ∈ R4 is

min

(a, d) ∈ R2

(b, c) ∈ ΓG

1

n

n∑
j=1

d2θ

(
yj −H (axMj +bxSj +cxCj +dxRj ),y−H (axM +bxS +cxC +dxR)

)
, (3.9)
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where ΓG={(b, c) ∈ [0,∞)×[0,∞):b sprxj + c |midxj| ≤ spryj, ∀j = 1, . . . , n}.

The minimization over (a, d) is solved without restrictions and it leads to the following

estimators of the coefficients (b1, b4):

(̂b1, b̂4)
t = S−1

1 z1. (3.10)

Here z1 = (σ̂xM ,y, σ̂xR,y)
t and S1 corresponds to the sample covariance matrix of the

interval-valued random vector (xM ,xR).

The minimization over (b, c) in the feasible set ΓG, which is nonempty, closed and

convex, is solved by using graphical ideas. The addend of the function in (3.9) to be

minimized over (b, c) can be expressed as the globally convex function

g(b, c) = b2 σ̂2
xS + c2 σ̂2

xC + 2bcσ̂xS ,xC − 2bσ̂xS ,y − 2cσ̂xC ,y .

If the global minimum of the function g is so that (b∗, c∗)t /∈ ΓG, then the local

minimum of g over ΓG is unique, and it is located on the boundary of ΓG. The

boundary of ΓG, denoted by fr(ΓG), verifies that fr(ΓG) = L1 ∪ L2 ∪ L3 , where Li,

i = 1, 2, 3 are the following sets:

• L1 =
{
(0, c) | 0 ≤ c ≤ r0 = minj=1,...,n

spryj
|midxj |

}
,

• L2 = {(b,minj=1...n{−ujb+ vj}) | 0 ≤ b ≤ s0}, and

• L3 =
{
(b, 0) | 0 ≤ b ≤ s0 = minj=1,...,n

spryj
sprxj

}
, with

uj =
sprxj

|midxj|
and vj =

spryj

|midxj|
for all j = 1, . . . , n.

The set L2 is composed on several straight segments from some of the straight lines

{lj : c = −ujb+ vj}nj=1. If |midxj| = 0 for any j ∈ {1, . . . , n}, then the corresponding
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straight line is b = spryj/sprxj for sprxj ̸= 0. Thus, it is a vertical line, which

could take part in L2 only if spryj/sprxj = s0. Moreover, if sprxj = 0 too, then the

sample interval xj is reduced to the real value xj = 0, so it does not take part in

the construction of ΓG. In Figure 1 the feasible set and its boundary in a practical

example are illustrated graphically. The sample data corresponds to the applicative

example shown in Section 4.2.

0 0.4 0.8 1.2

0

0.1

0.2

L3

L1

L2

Figure 1: ΓG for the sample data in Example 4.2.

In order to find the exact solution of min(b,c)∈ΓG
g(b, c) the global minimum of g

should be computed and, if needed, the local minimum over Lt, t = 1, 2, 3. Following

this graphical approach, the iterative process to obtain the solution is detailed in

Algorithm 1.

Algorithm 1

1. Compute the global minimum of g, ν̂ = S−1
2 z2, with z2 = (σ̂xS ,y, σ̂xC ,y)

t and S2

the sample covariance matrix of (xS,xC).

If ν̂ ∈ ΓG, then ν̂ is the solution, else goto Step 2.

2. Compute s0 = minj=1,...,n spryj/sprxj and r0 = minj=1,...,n spryj/|midxj|. Iden-

tify the straight line l(v) in the set {lj : c = −ujb+vj}nj=1 such that (0, r0) ∈ l(v).
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If there exists more than one line in these conditions, then l(v) is the one for

which the value −spryj/|midxj| is lowest.

3. Let R = {l(v)}, C = {0}, D = {(v)}, i=1 and l(i) = l(v).

If (s0, 0) ∈ l(v), then let C = {0, s0}, redefine R = {l1}, C = {x0, x1}, let t=1

and goto Step 7 else goto Step 4.

4. Compute (b(i,j), c(i,j)) the intersection points of l(i) and each line in {lj : c =

−ujb + vj}nj=1 such that j /∈ D. Take the line lj∗ such that b(i,j∗) = min{b(i,j) :

b(i,j) > C(i)}. If there exists more than one line in these conditions, choose as

lj∗ the one for which the value −spryj∗/|midxj∗ | is lowest.

5. Let R = R ∪ {lj∗}, C = C ∪ {b(i,j∗)}, D = D ∪ {j∗}, i = i+ 1, l(i) = lj∗.

If (s0, 0) ∈ l(i), then let C = C ∪ {s0} and goto Step 6 else goto Step 4.

6. Redefine R = {l(v), lj∗1 , lj∗2 , . . . , lj∗p} and C = {0, b(1,j∗1 ), b(j∗1 ,j∗2 ), . . . , b(j∗p−1,j
∗
p), s0}

as {l1, l2, l3, . . . , lt−1, lt} and {x0, x1, x2, . . . , xt−1, xt},respectively. Goto Step 7.

7. For i = 1, . . . , t, compute the local minimum of g over the segment corresponding

to the line li on [xi−1, xi], given by the expressions

 bi∗ = max
{
xi−1,min{bi, xi}

}
ci∗ = −uib

i
∗ + vi

where bi =
uiviσ̂

2
xC − viσ̂xS ,xC − uiσ̂xC ,y + σ̂xS ,y

σ̂2
xS

+ u2
i σ̂

2
xC

− 2uiσ̂xS ,xC
.

Compute g(bi∗, c
i
∗).

Take (bL2 , cL2) the point in {(bi∗, ci∗)}ti=1 for which the value g(bi∗, c
i
∗) is lowest.

Note that (bL2 , cL2) is the local minimum of g over L2.

8. Compute (bL1 , cL1) the local minimum of g over L1, given by the expressions
bL1 = 0

cL1 = max
{
0,min

{
σ̂xC ,y

σ̂2
xC

, r0

}}
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Compute g(bL1 , cL1).

9. Compute (bL3 , cL3) the local minimum of g over L3, given by the expressions
bL3 = max

{
0,min

{
σ̂xS ,y

σ̂2
xS

, s0

}}
cL3 = 0

Compute g(bL3 , cL3).

10. Take (b∗, c∗) the point in {(bLi
, cLi

)}3i=1 whose value g(bLi
, cLi

) is lowest. Note

that (b∗, c∗) is the local minimum of g on fr(ΓG).

The worst-case computational complexity of Algorithm 1 is O(n2), meanwhile the

worst-case complexity of Lemke’s algorithm is O(2n). The straight lines in {lj : c =

−ujb + vj : j ̸= (v), (h)}nj=1 such that −ujb(v,h) + vj > c(v,h) do not take part on

the construction of fr(ΓG). Thus, they can be ignored from Step 4 to the end of

the algorithm. However, for practical examples with moderate sample sizes n, this

reduction will result in a negligible improvement on the computational efficiency of

the algorithm.2

As happens in the multiple case, the estimates of the regression parameters do not

depend on the constant θ chosen for the metric dθ.

Expression in (3.10) jointly with the application of Algorithm 1 provide the exact

solution for the LS estimation of the regression parameters of the simple model MG

(3.8). The computational complexity of these estimation method is lower than the

optimization programming methods employed for the multiple model. This feature

supports the application of Algorithm 1 for the estimation of the Model MG when

only one explanatory variable is involved.

2An implementation of Algorithm 1 for R sofware version 2.15.2 is available in

http://bellman.ciencias.uniovi.es/SMIRE/Applications.html
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3.4 Other models

The model MG provides directly the extension to the multiple case for the simple linear

model M addressed in Blanco-Fernández et al. (2011), by taking b3 = b4 = (0, . . . , 0).

Nevertheless, the extension of the basic simple model in González-Rodŕıguez et al.

(2007) is not directly obtained from (3.1). The reason is that taking b1 = b2, and since

b2 ≥ 0 without loss of generality in (3.1), then b1 ≥ 0 too. Thus, according to (3.2a),

the linear relationship between the midpoints of the response and the explanatory

intervals is always increasing. Clearly this is more restrictive than the relationship

for mid variables transferred from the basic model. The extension of the basic simple

regression model to the multiple case is formalized as follows:

y = xtb+ ε , (3.11)

with b = (b1, b2, . . . , bk)
t ∈ Rk and ε such that E(ε|x) = ∆ ∈ Kc(R). The following

separate models are transferred:

midy = mid(xt) b+mid ε , (3.12a)

spry = spr(xt) |b|+ spr ε . (3.12b)

Extending directly the estimation method of the simple model proposed in González-

Rodŕıguez et al. (2007) would lead to a computationally infeasible combinatorial

problem. Alternatively, quadratic optimization techniques can be used to the esti-

mation of (3.11). It is easy to show that the absolute value of b̂ and its sign can

be estimated separately, by taking into account that b̂ = |̂b| ◦ sign(̂b) and sign(̂b)i =

sign(Ĉov(midy,midxi)) for each i = 1 . . . , k. By following an analogous reasoning

than for the model MG, the LS estimation of the regression parameters guaranteeing

the existence of the residuals gives ∆̂ = y−H xtb̂ and b̂ is found through the following
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quadratic optimization problem subject to linear constraints:

min
a∈Γ1

= ∥vm −Gm a∥+ θ∥vs −Gs a∥ ,

where vm and vs are as in (3.7), Gm = midX − 1n(midX), Gs = sprX − 1n(sprX) ∈

Rn×k, a ∈ Rk, and
Γ1 = {d ∈ (Rk)+ : sprX d ≤ spry} .

Standard numerical optimization methods can be used to solve this problem.

3.5 Goodness of the estimated linear model

Some classical concepts to measure the goodness of an estimated model can be defined

in the interval framework, by taking into account the semilinear structure of the space

of intervals. For instance, the determination coefficient of an estimated interval linear

model, related to the proportion of variability of the interval response unexplained by

the estimated model, can be defined in terms of the dθ distance by means of expression

R2 = 1−
∑n

j=1 d
2
θ(yj, ŷj)∑n

j=1 d
2
θ(yj,y)

. (3.13)

It is important to remark that the classical decomposition of the total sum of squares

SST =
∑n

j=1 d
2
θ(yj,y) as SSR+SSE =

∑n
j=1 d

2
θ(ŷj,y) +

∑n
j=1 d

2
θ(yj, ŷj) does not hold

in this framework. Thus, R2 in (3.13) differs in general from SSR/SST.

The mean square error of the estimated linear models can also be computed in terms

of the metric dθ for intervals as

MSEmodel =

∑n
j=1 d

2
θ(yj, ŷj)

n
. (3.14)

Once the estimation problem is solved, the statistical analysis of the proposed interval

linear models continues with the development of inferential studies on the models:

confidence sets and hypothesis testing for the regression parameters, linearity testing,
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among others. Due to the lack of realistic general parametric models for random

intervals, asymptotic and/or bootstrap techniques are generally applied in inferences

(see, for instance, Gil et al., 2007). On one hand, classical procedures can be applied

to the regression parameters whose LS estimators are not affected by the conditions

assuring the interval coherence (Freedman, 1981; Srivastava et al., 1986). On the

other hand, a thorough investigation is required for the case of constrained statistical

inferences to the constrained regression estimators.

4 Empirical results

The practical applicability and the empirical behaviour of the proposed estimation

procedures are illustrated is this section. For a sake of comparison with existing

techniques, an interval dataset employed in previous interval regression problems is

considered. Additionally, some simulations are performed in order to show the general

performance of the methodology.3

The estimation of the new flexible model MG does not depend on θ (see Remark 3.1).

However, the estimated basic models recalled in Section 2 depend on θ, as well as the

computation of R2 and MSEmodel for all the cases do. The usual value θ = 1/3 for

the metric dθ is fixed.

4.1 Simulation results

The empirical performance of the regression estimators for the proposed linear models

is investigated by means of simulations. Three independent random intervals x1,x2,x3

3The results are obtained by using the R implementation algorithms provided in

http://bellman.ciencias.uniovi.es/SMIRE/Applications.html.
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and an interval error ε will be considered. Let midx1 ∼ N (1, 2), sprx1 ∼ U(0, 10),

midx2 ∼ N (2, 1), sprx2 ∼ X 2
4 , midx 3 ∼ N (1, 3), sprx 3 ∼ U(0, 5), mid ε ∼ N (0, 1)

and spr ε ∼ X 2
1 . Different linear expressions with the investigated structures will be

considered.

• Model M1: According to the multiple basic linear model presented in (3.11), y

is defined by the expression:

y = 2x1 − 5x2 − x3 + ε.

• Model M2: A simple linear relationship in terms of the simple model MG is

defined by considering only x1 as independent interval for modelling y through

the expression:

y = −2xM
1 + 2xS

1 + xC
1 + 0.5 xR

1 + ε.

• Model M3: A multiple flexible linear regression model following (3.3) is defined

as:

y = −2xM
1 + 5xM

2 − xM
3 + 2xS

1 + 2xS
2 + xS

3 + xC
1 + xC

2 + 3xC
3

+0.5xR
1 + xR

2 − 3xR
3 + ε.

From each linear model s = 10000 random samples have been generated for different

sample sizes n. The estimates of the regression parameters have been computed for

each iteration from their expressions in Prop. 3.1. Table 1 shows the estimated mean

value and standard error of the LS estimators, computed through the correspond-

ing analytic expressions, for (̂b1, b̂4), and through the bootstrap algorithm shown for

(̂b2, b̂3). Besides, the estimated MSE of each estimator is computed as

M̂SE(̂bl) =
( s∑

i=1

((̂bl)i − bl)
2
)
/s .
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Table 1: Empirical behaviour of the regression estimators

b̂l n = 30 n = 100 n = 500

Ê(b̂l) ŝe(̂bl) M̂SE(̂bl) Ê(b̂l) ŝe(̂bl) M̂SE(̂bl) Ê(b̂l) ŝe(̂bl) M̂SE(̂bl)

M1 b̂1 1.9737 0.0490 0.0011 1.9382 0.0234 0.0007 1.9853 0.0099 0.00013

b̂2 -4.9164 0.0724 0.0069 -5.0211 0.0299 0.0014 -4.9938 0.0127 0.00025

b̂3 -1.0879 0.0509 0.0023 -0.9561 0.0262 0.0007 -0.9998 0.0106 0.00012

M2 b̂1 -1.9993 0.0989 0.0097 -1.9995 0.0506 0.0025 -1.9997 0.0225 0.00052

b̂2 1.9514 0.0604 0.0053 1.9723 0.0293 0.0015 1.9879 0.0125 0.00023

b̂3 0.9105 0.1399 0.0240 0.9493 0.0637 0.0054 0.9732 0.0277 0.00125

b̂4 0.5009 0.0663 0.0044 0.4997 0.0349 0.0012 0.5001 0.0155 0.00021

M3 b̂11 -2.0064 0.1145 0.0111 -2.0010 0.0520 0.0028 -2.0000 0.0224 0.00055

b̂21 5.0128 0.2278 0.0474 4.9990 0.1041 0.0127 4.9992 0.0449 0.00201

b̂31 -0.9970 0.0760 0.0053 -1.0000 0.0347 0.0012 -1.0004 0.0149 0.00024

b̂12 1.9672 0.0925 0.0095 1.9775 0.0408 0.0021 1.9884 0.0169 0.00031

b̂22 1.9703 0.1043 0.0098 1.9797 0.0434 0.0021 1.9890 0.0171 0.00042

b̂32 0.9275 0.1831 0.0357 0.9582 0.0822 0.0073 0.9771 0.0336 0.00140

b̂13 0.9352 0.2049 0.0414 0.9597 0.0908 0.0092 0.9789 0.0365 0.00162

b̂23 0.8841 0.2593 0.0773 0.9205 0.1198 0.0190 0.9585 0.0486 0.00327

b̂33 2.9664 0.1486 0.0198 2.9719 0.0638 0.0042 2.9856 0.0257 0.00081

b̂14 0.4958 0.0775 0.0052 0.4989 0.0358 0.0013 0.5001 0.0156 0.00027

b̂24 0.9969 0.0872 0.0063 0.9979 0.0377 0.0014 0.9997 0.0159 0.00032

b̂34 -3.0004 0.1552 0.0200 -3.0007 0.0716 0.0052 -2.9975 0.0311 0.00104

The findings show that the LS estimators of the models behave empirically good, since

the mean values of the estimates are always closer to the corresponding regression

parameters and the standard error approximates zero, as the sample size n increases.
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Moreover, the values for the estimated MSE tend to zero as n increases too, which

agrees with the empirical consistency of the estimators.

The empirical performance of the regression estimators can also be checked graphi-

cally. In Figure 2 the box-plots of the s estimates of the model M1 are presented for

n = 30 (left-side plot) and n = 100 (right-side plot) sample observations. In all the

cases the boxes reduce their width around the true value of the corresponding param-

eter on the population linear model as the sample size n increases, which illustrates

the empirical consistency of the estimators. Analogous conclusions are obtained for

the models M2 and M3 in Figures 3 and 4, respectively.
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Figure 2: Box plot of the LS estimators for model M1, n=30 (left); n=100 (right)
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Figure 3: Box plot of the LS estimators for model M2, n=30 (left); n=100 (right)
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Figure 4: Box plot of the LS estimators for model M3, n=30 (left); n=100 (right)

4.2 Comparative example

A methodological example concerning the relationship between the daily fluctuations

of the systolic and diastolic blood pressures and the pulse rate over a sample of

patients in the Hospital Valle del Nalón, in Spain, is considered. This real-life example

has been previously explored in Blanco-Fernández et al. (2011); Gil et al. (2007);

González-Rodŕıguez et al. (2007). From a population of 3000 inpatients, random

intervals y =“fluctuation of the diastolic blood pressure of a patient over a day”,

x1 =“fluctuation of the systolic blood pressure over the same day” and x2 =“pulse

range variation over the same day” are defined. The Nephrology Unit of the hospital

has supplied a random sample for (y,x1,x2) which is available in the references cited

above.

Consider first the problem of modelling in a linear fashion the daily range of the

diastolic blood pressure of a patient. This is performed in terms of the patient’s

corresponding systolic pressure fluctuation. Classical regression techniques could be

applied by summarizing the sample intervals into point data, the midpoints in general.
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Alternatively, midpoints and spreads of the response can be estimated by means of

separate models. Moreover, a simple linear model based on interval arithmetic can be

formalized between the random intervals y and x1 and estimated from the available

interval sample set. The estimation results for all the alternatives, both the existing

methods recalled in Section 2 and the new simple model MG introduced in Section

3.3 are gathered in Table 2, jointly with the corresponding values of R2 and MSE.

The inclusion of the random interval x2 to model y, in addition to x1, is possible by

considering a multiple interval model for (y,x1,x2). As before, different alternatives

to estimate the linear relationship from the interval data sample could be followed.

A comparison among existing methods and the new multiple interval model MG is

shown in Table 3.

Several comments can be extracted from these results. The classical procedure and

the models by Lima Neto et al. (2010) and D’Urso (2003) do not provide an interval

estimated equation to relate the intervals, but separate fitting real-valued equations

for mid and spr variables (only for mids in the classical approach). The estimated

model for the mid variables coincides with the classical OLS estimation for the model

M and the Lima-Neto models. But it is not the case for the estimated relationship

for the spr variables, due to the consideration of different conditions in the estimation

process. The determination coefficient and the MSE of all the models are computed

by formulas (3.13) and (3.14), respectively. Both in the simple and the multiple case

the poorest goodness of fit corresponds to the basic interval model. This clearly shows

that the condition of identical regression parameters for modelling midy and spry is

too restrictive in this application. All the remainder models for intervals behave better

than the classical estimation. This might be due to the loss of the information from the
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spreads in this latter approach. The highest value of R2 is obtained for the MG models,

both in the simple and the multiple case. This is coherent to the great flexibility on

the obtained relationships to estimate both mid and spr components of y. It is

shown that the separate models by D’Urso (2003) reach a value for the determination

coefficient slightly lower than the MG models. However, from these separate fitting

models 30 of the 59 (in the simple case) and 29 of the 59 (in the multiple case)

sample individuals do not fulfil the existence of the interval residuals; for instance,

in the simple case, spry1 = 19.5 < −0.0428midx1,1 + 0.0366sprx1,1 + 29.8177 =

24.5968. Thus, these solutions are not valid as regression estimates of an interval

model formalized theoretically for relating linearly the random intervals y, x1 and x2.

The separate estimated models by Lima Neto et al. (2010) fail in the existence of the

sample interval residuals too. The estimation procedures of the MG models proposed

here provide accurate fitting results in addition to interval coherency. It is important

to recall that the formalization of the proposed models in a probabilistic framework

allows us to develop further statistical analysis on the regression problem for these

variables based on the available interval dataset. This is the case of constructing

confidence intervals for the regression parameters, testing the explicative power of

the regressors, to name but a few.

A final comment regards the comparison between the simple models and the multiple

counterparts. In all the approaches it is shown that the difference in the R2 value

between the multiple and the simple case is not large, which indicates that the pulse

rate has low fitting power in this application.
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5 Conclusions

Previous simple linear regression models for interval-valued data based on the set

arithmetic are extended. As a result, new models arise representing not only an ex-

tension but a generalization of the previous ones, allowing to study new relationships

between the variables. In all cases the search of the LS estimators involves minimiza-

tion problems with constraints. The constraints are necessary to assure the existence

of the residuals and thus, the coherency of the estimated model with the population

one.

A flexible multiple model based on the canonical decomposition and allowing cross-

relationships between midpoints and spreads is presented. The LS estimates can be

found by transforming the quadratic problem into a linear complementary problem

and solving it by means of Lemke’s algorithm. A particular algorithm is proposed,

which is computationally preferable, when considering the simple model. This algo-

rithm strongly relies on the geometry of the feasible set and it cannot be generalized

into the multiple case in an easy way. The extension of the basic simple model in

González-Rodŕıguez et al. (2007), which is not based on the canonical decomposition,

requires a different approach. The solution to the estimation problem can also be

obtained through KKT conditions.

The practical applicability of the proposed models is illustrated by means of some

examples. The estimation results have been compared with classical regression tech-

niques, as well as with existing regression analysis methods for interval-valued data,

reaching the new estimators better results. Simulation studies show the empirical

validity of the estimation process for all the models.
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The development of inferential studies for the models, as the development of confi-

dence sets for the regression parameters and hypothesis testing about the theoretical

models, are to be addressed as future research.

Due to the large amount of regression parameters involved in the proposed models, it

might be interesting to apply sparse techniques to the estimation processes in order to

identify the components of the regressors which do not contribute significantly. The

inclusion of robust techniques in the estimation problem to deal with the possible

presence of extreme values or changes of data is also an important point to consider.
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