
Swarm Intelligence for Permutation Optimization: 
A Case Study of n-Queens Problem 

Xiaohui Hu'-'  Russell C. Eberhart' Yuhui Shi' 

I Department of Biomedical Engineering 
Purdue University, West Lafayette, Indiana, USA 

hux@ecn.nurdue.edu 

' Department of Electrical and Computer Engineering 
Purdue School of Engineering and Technology, Indianapolis, Indiana, USA 

reberharOiunui.edu 

EDS Embeded Systems Group 
Kokomo, Indiana, USA 
Vuhui.Shi63eds.com 

Abstract- This paper introduces a modified Particle 
Swarm . Optimizer which deals with permutation 
problems. Particles are defined as permutations of a 
group of unique values. Velocity updates are redefined 
based on the similarity of two particles. Particles change 
their permutations with a random rate defined by their 
velocities. A mutation factor is introduced to prevent the 
current pBest from becoming stuck at local minima. 
Preliminary study on the n-queens problem shows that 
the modified PSO is promising in solving constraint 
sstisfication problems. 

1. PVRODUCTION 

A permutation problem is a constraint satisfaction problem 
with the same number of variables as values, in which each 
variable takes a unique value. Any solution can be thought of 
as assigning a permutation to the variables. When a 
permutation satisfies all the constraints, it is considered a 
feasible solution. For a permutation problem, there might be 
one or multiple feasible solutions. The n-queens problem is 
one of the best examples of permutation problems. 
Permutation optimization problems have been found in many 
areas. There are many techniques developed to handle 
permutation problems. In this paper, a new method called 
particle swarm optimization (PSO) is introduced to handle the 
permutation problems. 

The n-queens problem consists of placing n queens on an 
N by N chess board, so that they do not attack each other, i.e. 
on every row, column or diagonal, there is only one queen 
exists. It is a classical complex constraint satisfaction 
problem in the artificial intelligence (AI) area. It has been 
used as a benchmark for developing new AI search 
techniques. During the last three decades, the problem has 
served as an example and benchmark for backtracking 
algorithms, permutation generation, the divide and conquer 
paradigm, constraint satisfaction problems, neural networks, 
and genetic algorithms. Also, the n-queens problem has many 
practical applications such as VLSl testing, air traffic control, 

modem communication systems, datdmessage routing, load 
balancing in multiprocessor computers, data compression, 
computer task scheduling, and optical parallel processing [ I ] .  
The n-queens problem bas three variants: finding one solution, 
finding a family of solutions, and finding all solutions. This 
paper deals with finding one solution within a family. 

PSO is a population based stochastic optimization 
technique developed by Eberhart and Kennedy in 1995, 
inspired by social behavior of bird flocking or fish schooling 
[2, 31. During the past several years, PSO has been 
successfully applied to multidimensional optimization 
problems [4], artificial neural network training [5-71, and 
multiobjective optimization problems [8-IO]. However, there 
is no research on permutation optimization reported in the 
literature. 

The rest of the paper is organized as follows: Section 11 
reviews the basic forms of particle swarms. Section 111 
describes the new methods for velocity update and particle 
update to handle the permutation parameter set. Section IV 
describes the n-queens problem, and Section V summarizes 
the experimental results. 

11. PARTICLE SWARM OPTIMIZATION 

Similar to Genetic Algorithms (GAS), PSO is a population 
based optimization tool. The system is initialized with a 
population of random solutions and searches for optima by 
updating potential solutions over generations. However, 
unlike GA, PSO has no evolution operators such as crossover 
and mutation. In PSO, the potential solutions, called particles, 
"fly" through the problem space by following the current 
better-performing particles. 

Each particle keeps track of its coordinates in the problem 
space which are associated with the best solution (fitness) it 
has achieved so far. (The fitness value is also stored.) This 
value is called pbest. Another "best" value that is tracked by 
the particle swarm optimizer is the best value, obtained so far 
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by any particle in the neighborhood of the particle. This 
location is called nbest. When a particle takes all the 
population as its topological neighbors, the best value is a 
global best and is called gbest 

P 

Initialize the population 
Do { 

For each particle { 
Calculate fitness value 
If the fitness value is better than the best fitness 
value @Best) in history 

Set current value as the new pBesr 

... I50 I 5 I 10 I40 I 2 5  I ... 

, 
Choose the particle with the best fitness value of all the 
topological neighbor particles as the nBest 
For each particle { 

Calculate new velocity 
pneM, = w x 

c2 x Rand() x 

+ c ,  x rand() x 

- X) 
- X) + 

Update particle position - - - 
x”-”. = %,d + ““ew 

I , 
Until termination criterion is met 

- e,bes, F i g r e  I :  Procedure of PSO 

The particle swarm optimization concept consists of, at 
each time step, changing the velocity of (accelerating) each 
particle toward its pbes! and nbest locations (local version pf 
PSO). Acceleration is weighted by a random term, with 
separate random numbers being generated for acceleration 
toward pbes! and nbes! locations. Figure 1 shows the typical 
procedure of PSO. 

One of the reasons that particle swarm optimization is 
attractive is that there are few parameters to adjust. One 
version, with slight variations, works well for a wide variety 
of applications. Particle swarm optimization has been used 
for approaches that can be used across a wide range of 
applications, as well as for specific applications focused on a 
specific requirement. 

Ill. DEALING WITH PERMUTATION SEI 

In traditional PSO, each particle represents a solution in the 
parameter space. The particle is encoded as a string of 
positions, which represent a multidimensional space. All the 
dimensions typically are independent of each other, thus the 
updates of the velocity and the particle are performed 
independently in each dimension. This is one of merits of 
PSO. However, it is not applicable for permutation problems 
since the elements are not independent of each other. It is 
possible that two or more positions can get the same value 
after the update, which breaks the pennutation rule. Thus the 

.._ 1 I 1  3 1 1 7 1  6 I . . .  

conflicts must be eliminated. Here a new particle update 
strategy is proposed. 

In traditional PSO, the velocity is added to the particle on 
each dimension to update the particle, thus it is a distance 
measure. If the velocity is larger, the particle may explore 
more distant areas. Similarly, the new velocity in the 
permutation scenario represents the possibility that the 
particle changes. I f  the velocity is larger, the particle is more 
likely to change to a new permutation sequence. The velocity 
update formula remains the same. However the velocity is 
limited to absolute values since it only represents the 
difference between particles. The particle update process is 
changed as follows: the velocity is normalized to the range of 
0 to I by dividing it by the maximum range of the particle. 
Then each position randomly determines if there is a swap 
with a probability determined by the velocity. If a swap is 
required, the position will set to the value of same position in 
nBesf by swapping values. This process is shown in Figure 2. 

7 2 + P  I ‘.. I 1 1  3 17 9 ... 

+ 
... I l . O I O . 1  10.210.810.51 ... 

& 

Figure 2: Panicle update 

Mutation is introduced due to the shortcoming of the above 
modification of PSO. Since the particle tries to follow the 
same sequence as ndest, it would stay in its current position 
forever when i t  was identical to nBes!. So a new kind of 
mutation factor is introduced. The particle will randomly 
swap one pair of positions in the permutation as shown in 
Figure 3 if it is identical to nBest. 

Figure 3: Particle mutation 
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In the following section, the n-queens problem is used to 
test the performance and validity of the new velocity and 
particle update technique. 

IV. N-QUEENS PROBLEM 

In this study, n-dimension permutations are used to 
represent the solution of the n-queens problem. Each particle 
uses a permutation of n numbers from 1 to N as the potential 
solution. The ith number of the permutation represents the 
column position in the ith row ofthe chessboard. To illustrate 
how it appears in the population, the particle for N=6 
problems may be the following: 3 6 2 4 I 5. The first number 
means the first queen is at the third position in the first row, 
the second number means the second queen is at the sixth 
position in the second row, and so on. Figure 4 shows a 
translation 6.om the permutation to the chessboard positions. 

Perm" la ti an : 

Chess Board 

Figure 4: Permutation representation of n-queens pmblem 

By using permutations, the horizontal and vertical conflicts 
of the queens are eliminated [ 1 I]. Thus to fmd a solution, the 
objective is to eliminate the diagonal conflicts. The fitness 
function is defined as the number of conflicts or  collisions 
along the diagonals of the hoard. The objective is changed to 
minimize the number of conflicts or collisions. The fitness 
value of an ideal final solution should be zero. 

V. EXPERIMENTAL RESULTS 

In PSO, the parameters were set as follows: the population 
size was IO, the local version of PSO was used and the 
neighborhood size was 2. The maximum velocity was set to 
the range of the permutation. The inertia weight was [ O S  + 
( R n M . O ) ] .  The learning rates were 1.49445. 

Figure. 5 shows the results for the problems of IO to 200 
queens. Each parameter combination was run 100 times and 
the results represent the mean number of function evaluations 
to reach a solution. From the results, it can be seen that PSO 
successfully finds a solution of the n-queens problems in a 
short time. Furthermore, the numbers of function evaluations 
increase near linearly as the numbers of queens increase. 

Table I shows some comparisons and it can be seen that this 
method is competitive with GA based algorithms [ I ,  1 I]. 

0 50 100 150 200 

Number of Queens 

Figure 5: Number of fitness evBbationS needed for different number of n- 
queens problem 

Table I : Comparison ofthe results for different n-queens approaches 

5,669.7 2,043 6,024 
14,991.4 59,227 19,879 

IO0 36,199.4 244,208 44.578 
2 w  93.4399 340.991 86.747 

* the n u m k  used here are digitized from the basic GA results of the 
Figure iltustrated in [ I ] .  They are not accurate. 

VI. CONCLUSlONS 

The purpose of the study was to determine how well PSO 
handles permutation parameter sets. The n-queens problem 
was used to test the performance and validity of the new 
technique. The performance of PSO compares well with 
genetic algorithms. It demonstrated that PSO is effective to 
handle n-queens problem. However, it still needs to be 
verified whether this approach can be extended to other 
combinatorial or constraint satisfaction problems. 
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