
Swarm Intelligence for Permutation Optimization:
A Case Study of n-Queens Problem

Xiaohui Hu'-' Russell C. Eberhart' Yuhui Shi'

I Department of Biomedical Engineering
Purdue University, West Lafayette, Indiana, USA

hux@ecn.nurdue.edu

' Department of Electrical and Computer Engineering
Purdue School of Engineering and Technology, Indianapolis, Indiana, USA

reberharOiunui.edu

EDS Embeded Systems Group
Kokomo, Indiana, USA
Vuhui.Shi63eds.com

Abstract- This paper introduces a modified Particle
Swarm . Optimizer which deals with permutation
problems. Particles are defined as permutations of a
group of unique values. Velocity updates are redefined
based on the similarity of two particles. Particles change
their permutations with a random rate defined by their
velocities. A mutation factor is introduced to prevent the
current pBest from becoming stuck at local minima.
Preliminary study on the n-queens problem shows that
the modified PSO is promising in solving constraint
sstisfication problems.

1. PVRODUCTION

A permutation problem is a constraint satisfaction problem
with the same number of variables as values, in which each
variable takes a unique value. Any solution can be thought of
as assigning a permutation to the variables. When a
permutation satisfies all the constraints, it is considered a
feasible solution. For a permutation problem, there might be
one or multiple feasible solutions. The n-queens problem is
one of the best examples of permutation problems.
Permutation optimization problems have been found in many
areas. There are many techniques developed to handle
permutation problems. In this paper, a new method called
particle swarm optimization (PSO) is introduced to handle the
permutation problems.

The n-queens problem consists of placing n queens on an
N by N chess board, so that they do not attack each other, i.e.
on every row, column or diagonal, there is only one queen
exists. It is a classical complex constraint satisfaction
problem in the artificial intelligence (AI) area. It has been
used as a benchmark for developing new AI search
techniques. During the last three decades, the problem has
served as an example and benchmark for backtracking
algorithms, permutation generation, the divide and conquer
paradigm, constraint satisfaction problems, neural networks,
and genetic algorithms. Also, the n-queens problem has many
practical applications such as VLSl testing, air traffic control,

modem communication systems, datdmessage routing, load
balancing in multiprocessor computers, data compression,
computer task scheduling, and optical parallel processing [I] .
The n-queens problem bas three variants: finding one solution,
finding a family of solutions, and finding all solutions. This
paper deals with finding one solution within a family.

PSO is a population based stochastic optimization
technique developed by Eberhart and Kennedy in 1995,
inspired by social behavior of bird flocking or fish schooling
[2, 31. During the past several years, PSO has been
successfully applied to multidimensional optimization
problems [4], artificial neural network training [5-71, and
multiobjective optimization problems [8-IO]. However, there
is no research on permutation optimization reported in the
literature.

The rest of the paper is organized as follows: Section 11
reviews the basic forms of particle swarms. Section 111
describes the new methods for velocity update and particle
update to handle the permutation parameter set. Section IV
describes the n-queens problem, and Section V summarizes
the experimental results.

11. PARTICLE SWARM OPTIMIZATION

Similar to Genetic Algorithms (GAS), PSO is a population
based optimization tool. The system is initialized with a
population of random solutions and searches for optima by
updating potential solutions over generations. However,
unlike GA, PSO has no evolution operators such as crossover
and mutation. In PSO, the potential solutions, called particles,
"fly" through the problem space by following the current
better-performing particles.

Each particle keeps track of its coordinates in the problem
space which are associated with the best solution (fitness) it
has achieved so far. (The fitness value is also stored.) This
value is called pbest. Another "best" value that is tracked by
the particle swarm optimizer is the best value, obtained so far

243

mailto:hux@ecn.nurdue.edu
http://reberharOiunui.edu
http://Vuhui.Shi63eds.com

by any particle in the neighborhood of the particle. This
location is called nbest. When a particle takes all the
population as its topological neighbors, the best value is a
global best and is called gbest

P

Initialize the population
Do {

For each particle {
Calculate fitness value
If the fitness value is better than the best fitness
value @Best) in history

Set current value as the new pBesr

... I50 I 5 I 10 I40 I 2 5 I ...

,
Choose the particle with the best fitness value of all the
topological neighbor particles as the nBest
For each particle {

Calculate new velocity
pneM, = w x

c2 x Rand() x

+ c , x rand() x

- X)
- X) +

Update particle position - - -
x”-”. = %,d + ““ew

I ,
Until termination criterion is met

- e,bes, F i g r e I : Procedure of PSO

The particle swarm optimization concept consists of, at
each time step, changing the velocity of (accelerating) each
particle toward its pbes! and nbest locations (local version pf
PSO). Acceleration is weighted by a random term, with
separate random numbers being generated for acceleration
toward pbes! and nbes! locations. Figure 1 shows the typical
procedure of PSO.

One of the reasons that particle swarm optimization is
attractive is that there are few parameters to adjust. One
version, with slight variations, works well for a wide variety
of applications. Particle swarm optimization has been used
for approaches that can be used across a wide range of
applications, as well as for specific applications focused on a
specific requirement.

Ill. DEALING WITH PERMUTATION SEI

In traditional PSO, each particle represents a solution in the
parameter space. The particle is encoded as a string of
positions, which represent a multidimensional space. All the
dimensions typically are independent of each other, thus the
updates of the velocity and the particle are performed
independently in each dimension. This is one of merits of
PSO. However, it is not applicable for permutation problems
since the elements are not independent of each other. It is
possible that two or more positions can get the same value
after the update, which breaks the pennutation rule. Thus the

.._ 1 I 1 3 1 1 7 1 6 I . . .

conflicts must be eliminated. Here a new particle update
strategy is proposed.

In traditional PSO, the velocity is added to the particle on
each dimension to update the particle, thus it is a distance
measure. If the velocity is larger, the particle may explore
more distant areas. Similarly, the new velocity in the
permutation scenario represents the possibility that the
particle changes. I f the velocity is larger, the particle is more
likely to change to a new permutation sequence. The velocity
update formula remains the same. However the velocity is
limited to absolute values since it only represents the
difference between particles. The particle update process is
changed as follows: the velocity is normalized to the range of
0 to I by dividing it by the maximum range of the particle.
Then each position randomly determines if there is a swap
with a probability determined by the velocity. If a swap is
required, the position will set to the value of same position in
nBesf by swapping values. This process is shown in Figure 2.

7 2 + P I ‘.. I 1 1 3 17 9 ...

+
... I l . O I O . 1 10.210.810.51 ...

&

Figure 2: Panicle update

Mutation is introduced due to the shortcoming of the above
modification of PSO. Since the particle tries to follow the
same sequence as ndest, it would stay in its current position
forever when i t was identical to nBes!. So a new kind of
mutation factor is introduced. The particle will randomly
swap one pair of positions in the permutation as shown in
Figure 3 if it is identical to nBest.

Figure 3: Particle mutation

244

In the following section, the n-queens problem is used to
test the performance and validity of the new velocity and
particle update technique.

IV. N-QUEENS PROBLEM

In this study, n-dimension permutations are used to
represent the solution of the n-queens problem. Each particle
uses a permutation of n numbers from 1 to N as the potential
solution. The ith number of the permutation represents the
column position in the ith row ofthe chessboard. To illustrate
how it appears in the population, the particle for N=6
problems may be the following: 3 6 2 4 I 5. The first number
means the first queen is at the third position in the first row,
the second number means the second queen is at the sixth
position in the second row, and so on. Figure 4 shows a
translation 6.om the permutation to the chessboard positions.

Perm" la ti an :

Chess Board

Figure 4: Permutation representation of n-queens pmblem

By using permutations, the horizontal and vertical conflicts
of the queens are eliminated [1 I]. Thus to fmd a solution, the
objective is to eliminate the diagonal conflicts. The fitness
function is defined as the number of conflicts or collisions
along the diagonals of the hoard. The objective is changed to
minimize the number of conflicts or collisions. The fitness
value of an ideal final solution should be zero.

V. EXPERIMENTAL RESULTS

In PSO, the parameters were set as follows: the population
size was IO, the local version of PSO was used and the
neighborhood size was 2. The maximum velocity was set to
the range of the permutation. The inertia weight was [O S +
(R n M . O)] . The learning rates were 1.49445.

Figure. 5 shows the results for the problems of IO to 200
queens. Each parameter combination was run 100 times and
the results represent the mean number of function evaluations
to reach a solution. From the results, it can be seen that PSO
successfully finds a solution of the n-queens problems in a
short time. Furthermore, the numbers of function evaluations
increase near linearly as the numbers of queens increase.

Table I shows some comparisons and it can be seen that this
method is competitive with GA based algorithms [I , 1 I].

0 50 100 150 200

Number of Queens

Figure 5: Number of fitness evBbationS needed for different number of n-
queens problem

Table I : Comparison ofthe results for different n-queens approaches

5,669.7 2,043 6,024
14,991.4 59,227 19,879

IO0 36,199.4 244,208 44.578
2 w 93.4399 340.991 86.747

* the n u m k used here are digitized from the basic GA results of the
Figure iltustrated in [I] . They are not accurate.

VI. CONCLUSlONS

The purpose of the study was to determine how well PSO
handles permutation parameter sets. The n-queens problem
was used to test the performance and validity of the new
technique. The performance of PSO compares well with
genetic algorithms. It demonstrated that PSO is effective to
handle n-queens problem. However, it still needs to be
verified whether this approach can be extended to other
combinatorial or constraint satisfaction problems.

References

[I] Kilic, A. and Kaya, M. A new local search algorilhm based on
~ennic algorithms for the "queen problem. Proceedings of the
Genetic and Evolutionary Compulalion Conference (GECCO
2M)I) Second Workshop on Memetic Algorithms (2nd WOMA).
pp. 158-161.2001.

Eman, R. C. and Kennedy, J. A new optimizer using panicle
s w a m theory Proceedings ofthe Sixth htemationai SympOsium
on Micromachine and Human Science, Nagoya. Japan. pp. 3943.
1995.

Kennedy, J. and EbRhan, R. C. Panicle swam optimization.
h e d i n g s of IEEE International Conference on Neural
Networks. Piscalaway, NJ. pp. 1942-1948, 1995.

121

131

245

[4] Shi, Y. and Ebrrhon. R. C. A modified panicle s w a m optimizer
Proceedings ofthe IEEE Congress on Evolutionary Compulalion
(CEC 1998). Pirculawuy. NJ. pp. 69-73. 1998.

Eberhan. R. C. and Shi, Y. Evolving aniiicial neural nelworks.
Proceedings oflnlemotional Conference on Neural Networks and
Brain, 199%. Beijing. P. R. China. pp. PU-PL13, 1998.

Eberhan. R. C. and Hu. X. Human I r e " analysis using panicle
swam aplimization. Pmceedings d t h e IEEE Congress on
evolutionary computalion (CEC 1999). Washington D.C. pp.
1927- 1930, 1999.

van den Bergh, F. and Engelbrechl, A. P. Training product "nil
networks using ~mpemlive panicle swam optimisers.
Proceedins oflNNS-IEEE lnlmational Joint Conference on
Neural Networks 2001. Washington E€. USA. 2001.

Coello Coello, C. A. and Lechuga, M. S . MOPSO: a proposal for
multiple objective panicle swarm optimization. Proceedings of
the IEEE C o n p s an Evolutionary Computation (CEC 2002).
Honolulu, Hawaii USA. 2002.

Hu, X. and Eberhan, R. C. Mulliobjeelive optimization using
dynamic neighbohwd particle swam oplimizalion. Proceedings
of the IEEE C o n p s on Evolutionany Computation (CEC 2002).

[SI

[6]

(71

(81

[9]

HO~OIUIU, ~ ~ a i i USA. 2002.

Panopodor, K. E. and Vrahatir. M. N. Panicle swam
optimization method in multiobjecliveprobles. Proceedings of
the ACM Symposium on Applied Computing 2002 (SAC 2002),
pp. 603-607.2002.

Homaifar. A. A., Tumer, I., and Ali. S . The n-queens problem
and gmelic algo"1hmr. Proceedings ofthe IEEE Southeast
Conference, pp. 262-261, 1992.

[I O]

[I I]

246

