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Abstract. In this paper we present an evolutionary strategy for the
multidimensional 0–1 knapsack problem. Our algorithm incorporates, a
flipping local search process in order to locally improve the obtained in-
dividuals and also, a heuristic operator which computes problem-specific
knowledge, based on the surrogate multipliers approach introduced in
[12]. Experimental results show that our evolutionary algorithm is capa-
ble of obtaining high quality solutions for large size problems and that
the local search procedure significatively improves the final obtained re-
sult.
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1 Introduction

The multidimensional 0–1 knapsack problem (MKP) is a NP-complete combi-
natorial optimization problem which captures the essence of linear 0–1 integer
programming problems. It can be formulated as follows. We are given a set of n
objects where each object yields pj units of profit and requires aij units of re-
source consumption in the i-th knapsack constraint. The goal is to find a subset
of the objects such that the overall profit is maximized without exceeding the
resource capacities of the knapsacks.

The MKP is one of the most popular constrained integer programming prob-
lems with a large domain of applications. Many practical problems can be for-
mulated as a MKP instance: the capital budgeting problem in economy or the
allocation of databases and processors in a distributed computer system ([7])
are some examples. Most of the research on knapsack problems deals with the
simpler one-dimensional case (m = 1). For this single constraint case, the prob-
lem is not strongly NP-hard and some exact algorithms and also very efficient
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approximation algorithms have been developed for obtaining near-optimal solu-
tions.

In the multidimensional case several exact algorithms that compute different
upper bounds for the optimal solutions are known. For example that in [8]. But
this method, based on the computation of optimal surrogate multipliers, becomes
no applicable for large values of m and n and other strategies must be intro-
duced. In this context heuristic approaches for the MKP have appeared during
the last decades following different ideas: greedy-like assignment ([6], [12]); LP-
based search ([2]); surrogate duality information ([12]) are some examples. Also
an important number of papers using genetic algorithms and other evolutionary
strategies have emerged. The genetic approach has shown to be well suited for
solving large MKP instances. In [11] a genetic algorithm is presented where in-
feasible individuals are allowed to participate in the search and a simple fitness
function with a penalty term is used. Thiel and Voss (see [15]) presented a hybrid
genetic algorithm with a tabu search heuristic. Chu and Beasley (see [5]) have
developed a genetic algorithm that searches only into the feasible search space.
They use a repair operator based on the surrogate multipliers of some suitable
surrogate problem. Surrogate multipliers are calculated using linear program-
ming. Also in [1] an evolutionary algorithm based on the surrogate multipliers is
presented, but in this case a good set of surrogate multipliers is computed using
a genetic algorithm.

In this present paper we propose an evolutionary strategy for MKP which
takes as starting point the surrogate multipliers approach appeared first in [12]
and later in [5] and also in [1]. Our algorithm introduces a flipping search strat-
egy that includes random walking in hypercubes of the kind {0, 1}n. Our exper-
imental results show that the local search procedure increases the quality of the
solutions with respect to those obtained by other evolutionary algorithms based
on the surrogate problem. The rest of the paper is organized as follows. Sec-
tion 2 deals with the surrogate problem associated to an instance of the MKP.
In section 3 we present our evolutionary algorithm for solving the MKP that
incorporates our local search procedure. In section 4 experimental results and
comparisons over problems taken from the OR-library(see [4]3) and a set of large
instances (proposed by Glover and Kochenberger4)are included. Finally, section
5 contains some conclusive remarks.

2 The MKP and the Surrogate Problem

This section resumes the mathematical background and the formulation of a
genetic heuristic for computing surrogate multipliers.

Definition 1. An instance of the MKP is a 5-tuple:

K = (n,m, p,A, b) (1)

3 Public available on line at http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
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where n, m ∈ IN are both natural numbers representing (respectively) the number
of objects and the number of constraints; p ∈ (IR+)n is a vector of positive real
numbers representing the profits; A ∈ Mm×n(IR+ ∪ {0}) is m × n-matrix of
non-negative real numbers corresponding to the resource consumptions and b ∈
(IR+)m is a vector of positive real numbers representing the knapsack capacities.

Remark 2. Given an instance of the MKP K = (n,m, p,A, b) the objective is

maximize f(x) = p · x′ (2)

subject to A · x′ ≤ b
′

(3)

where x = (x1, . . . , xn) is a vector of variables that takes values in {0, 1}n.
Notation v′ stands for the transposition of the vector v.

Definition 3. Let K = (n,m, p,A, b) be an instance of the MKP. A bit-vector
α ∈ {0, 1}n is a feasible solution of instance K if it verifies the constraint given
by equation 3. A bit-vector αopt

K ∈ {0, 1}n is a solution of instance K if it is a
feasible solution and for all feasible solution α ∈ {0, 1}n of instance K it holds

f(α) ≤ f(αopt
K ) =

n∑

j=1

pjα
opt
K [j] (4)

Here α[j] stands for the value of variable xj.

Along this section we shall deal with a relaxed version of the MKP where the
vector of variables x can take values in the whole interval [0, 1]n. We will refer
to this case as the LP-relaxed MKP. An instance of the LP-relaxed MKP will
be denoted by KLP . A solution of some instance KLP of the LP-relaxed MKP
will be denoted by αopt

KLP .

Definition 4. Let K = (n,m, p,A, b) be an instance of MKP and let ω ∈ (IR+)m

be a vector of positive real numbers. The surrogate constraint for K associated
to ω, denoted by Sc(K, ω), is defined as follows.

n∑

j=1

(
m∑

i=1

ωiaij)xj ≤
m∑

i=1

ωibi (5)

The vector ω = (ω1, . . . , ωm) is called the vector of surrogate multipliers.
The surrogate instance for K, denoted by SR(K, ω), is defined as the 0–1 one-
dimensional knapsack problem given by:

SR(K, ω) = (n, 1, p, ω ·A, ω · b′) (6)

We shall denote by αopt
SR(K,ω) the solution of the surrogate instance SR(K, ω).

As an easy consequence of the definition of the surrogate problem we can state
that:

f(αopt
SR(K,ω)) ≥ f(αopt

K ) (7)



Remark 5. The best possible upper bound for f(αopt
K ) using the inequality 7 is

computed by finding the minimum value min{f(αopt
SR(K,ω)) : ω ∈ (IR+)m}. Next

proposition motivates the genetic strategy to approximate the optimal values of
the surrogate multipliers ω. The interested reader can find the detailed proof in
[1].

Proposition 6. Let K = (n,m, p,A, b) be any instance of MKP. Then the fol-
lowing inequalities are satisfied.

min{f(αopt
SR(K,ω)LP ) : ω ∈ (0, 1]m} = min{f(αopt

SR(K,ω)LP ) : ω ∈ (IR+)m} (8)

min{f(αopt
SR(K,ω)LP ) : ω ∈ (0, 1]m} ≥ f(αopt

K ), (9)

Here αopt
SR(K,ω)LP denotes the solution of the relaxed surrogate problem SR(K, ω)LP .

2.1 A Genetic Algorithm for Computing the Surrogate Multipliers

The following is a simple genetic algorithm (GA) to obtain approximate values
for ω (see [1]). In this GA the individuals will be binary 0–1 strings, representing
ω = (ω1, . . . , ωm). Each ωi will be represented as a q-bit binary substring, where
q determines the desired precision of ωi ∈ (0, 1].

Definition 7. Given an MKP instance K = (n, m, p,A, b), q ∈ IN, and a rep-
resentation γ ∈ {0, 1}qm of a candidate vector of surrogate multipliers ω =
(ω1, . . . , ωm) the fitness value of γ is defined as follows:

fitness(γ) = f(αopt
SR(K,ω)LP ) =

n∑

j=1

pjα
opt
SR(K,ω)LP [j] (10)

Remark 8. The solution αopt
SR(K,ω)LP can be obtained by means of the well known

greedy algorithm for one-dimensional instances of the LP–relaxed knapsack prob-
lem.

Note that our objective is to minimize the fitness function defined by equa-
tion 10. The remainder operators of the genetic algorithm have been chosen as
follows: the roulette wheel rule as selection procedure, uniform crossover as re-
combination operator and bitwise mutation according to a given probability pm

(see [10] for a detailed description of these operators).

3 The Evolutionary Algorithm for the MKP

Given an instance of MKP, K = (n,m, p,A, b), and a set of surrogate multipliers,
ω, computed by the genetic algorithm described in the previous section, we will
run an steady state evolutionary algorithm for solving K that searches only
into the feasible search space. So, it includes a repair operator for the infeasible
individuals, that uses as heuristic operator the set of surrogate multipliers, and
also an improvement technique. As main contribution, we incorporate to this
algorithm a local search procedure in order to locally improve the individuals of
the population.



3.1 Individual Representation and Fitness Function

We choose the standard 0–1 binary representation since it represents the un-
derlying 0–1 integer values. A chromosome α representing a candidate solution
for K = (n,m, p, A, b) is an n-bit binary string. A value α[j] = 0 or 1 in the
j-bit means that variable xj = 0 or 1 in the represented solution. The fitness of
chromosome α ∈ {0, 1}n is defined by

f(α) =
n∑

j=1

pjα[i] (11)

3.2 Repair Operator and Improve Procedure

The repair operator lies on the notion of utility ratios. Let K = (n,m, p, A, b) be
an instance of MKP and let ω ∈ (0, 1]m be a vector of surrogate multipliers. The
utility ratio for variable xj is defined by uj = pj∑m

i=1
ωiaij

. Given an infeasible

individual α ∈ {0, 1}n we apply the following repairing procedure .
Procedure DROP ([5], [1])
input: K = (n,m, p,A, b); ω ∈ (0, 1]m and a chromosome α ∈ {0, 1}n

begin
for j=1 to n compute u_j
P:=permutation of (1,...,n) with u_P[j] <= u_P[j+1]
for j=1 to n do

if (alpha[P[j]]=1 and infeasible(alpha)) then
alpha[P[j]]:=0

end

Once we have transformed α into a feasible individual α′, a second phase is
applied in order to improve α′. This second phase is called the ADD phase.
Procedure ADD ([5], [1])
input: K = (n,m, p,A, b); ω ∈ (0, 1]m and a chromosome α ∈ {0, 1}n

begin
P:=permutation of (1,...,n) with u_P[j] >= u_P[j+1]
for j=1 to n do

if alpha[P[j]]=0 then alpha[P[j]]:=1
if infeasible(alpha) then alpha[P[j]]:=0

end

3.3 Genetic Operators

We use the roulette wheel rule as selection procedure, the uniform crossover as
replacement operator and bitwise mutation with a given probability pm. So when
mutation must be applied to an individual α, a bit j from α is randomly selected
and flipped from its value α[j] ∈ {0, 1} to 1− α[j].



3.4 Local Search Procedure

Let K = (n,m, p,A, b) be an instance of MKP, ω ∈ (0, 1]m a vector of surrogate
multipliers and α ∈ {0, 1}n a chromosome representing a feasible solution of K.
We describe below a local search procedure that can be applied to α. During the
execution of this procedure, chromosomes representing infeasible solutions of K
could be generated. So, the repair and improve operators described above should
be applied. We will refer to DROPj as the operator that behaves as DROP but
with the property that it does not modify the gen α[j] in chromosome α. We
will refer to ADDj in an analogous way.

Assuming that the iteration begins with a chromosome α, at each iteration
step, the local search performs a random walk inside the hypercube {0, 1}n

generating a permutation P of length n. Then, for each j ∈ {1, . . . , n} makes a
flip in α[P [j]] if and only if there is a gain in the fitness. Note that after that the
flip was made, the generated chromosome could represent an infeasible solution.
If it is the case we apply first DROPP [j], and then the procedure ADD. In other
case –when the flip does not turns the chromosome infeasible– we just apply the
procedure ADDP [j]. The described process iterates until there is no gain in the
fitness.

Procedure LocalSearch
input: K = (n,m, p,A, b); ω ∈ (0, 1]m and a chromosome α ∈ {0, 1}n

begin
repeat

beta:=alpha
P:=permutation of (1,...,n)
for j=1 to n do

alpha_aux:=alpha
alpha:=flip(P[j],alpha)
if f(alpha) <= f(alpha_aux) then alpha:=alpha_aux

until alpha=beta
end

Where the pseudo–code of the procedure flip (i, α) is as follows:

begin
if alpha[i]=1 then

alpha[i]:=0
alpha:=ADD_i(K,omega,alpha)

else
alpha[i]=1
alpha:=DROP_i(K,omega,alpha)
alpha:=ADD(K,omega,alpha)

end

Our evolutionary algorithm follows the performance of the steady state GA
described in [1] but introducing the above local search procedure. In this sense



we do not apply the local search procedure to all generated individuals but only
periodically, each time that a number t of generations were produced. In this
case we apply local search to all individuals in the population. The period t is
given by the user and also the local search procedure is applied to the initial and
final populations. To maintain diversity of individuals during the execution, the
strategy used while applying the local search procedure to a population P (kt),
k ∈ IN, is the following:

begin
P(kt+1):=empty_set
for each alpha in P(kt) do

beta:=local_search(alpha)
if (beta belongs to (P(kt) or P(kt+1))) then

insert alpha in P(kt+1)
else

insert beta in P(kt+1)
end

Remark 9. Individuals of the initial population are constructed generating ran-
dom permutations from (1, . . . , n) applying the ADD procedure to the chromo-
some α = (0, . . . , 0) and following the permutation order.

4 Experimental Results

We have executed our double genetic algorithm with local search (DGALS) on
two sets of MKP instances. The first set of instances is included in the OR-
Library proposed in [4]5. They are randomly generated instances of MKP with
number of constraints m ∈ {5, 10, 30}, number of variables n ∈ {100, 250, 500}
and tightness ratios r ∈ {0.25, 0.5, 0.75}. The tightness ratio r fixes the capacity
of i-th knapsack to r

∑n
j=1 aij , 1 ≤ i ≤ m. There are 10 instances for each

combination of m, n and r giving a total of 270 test problems. The second set
is a set of 11 instances proposed by Glover and Kochenberger6. These are large
instances, up to n = 2500 and m = 100. After a previous experimentation we
have set the parameters to the following values. The GA computing the surrogate
multipliers uses population size 75, precision q = 10, probability of mutation 0.1
and 15000 generations to finish. The steady state GA solving the MKP instances
uses population size 100, probability of mutation equal to 0.1 and the algorithm
finishes when 1500000 evaluations have been performed. The period t to apply
local search is set to 104 generations as a good trade-off between quality of the
final solutions and computational effort.

For the first set of instances, since the optimal solutions values are unknown,
the quality of a solution α is measured by the percentage gap of its fitness
value with respect to the fitness values of the optimal solution of the LP-relaxed

5 Public available on line at http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
6 Public available at http://hces.bus.olemiss.edu/tools.html



problem: %gap = 100
f(αopt

KLP
)−f(α)

f(αopt

KLP
)

. We will compare our algorithm with that

presented in [5] (CHUGA), and the percentage gap is also the quality measure-
ment used in that work. For the second set of 11 instances, we compare the best
known solutions with that obtained by our evolutionary algorithm and also we
compute the %gap with respect to the fitness values of that best known solutions.

Table 1. Computational results for CHUGA, DGA and DGALS. Values for DGA and
DGALS are based on 10 runs for each instance.

Problem GHUGA DGA DGALS

m n A. %gap A.E.B.S A. %gap A.E.B.S A. %gap A.E.B.S

5 100 0.59 24136 0.58 58045 0.58 99549
5 250 0.16 218304 0.15 140902 0.14 381840
5 500 0.05 491573 0.06 185606 0.05 675086
10 100 0.94 318764 0.98 70765 0.94 175630
10 250 0.35 475643 0.32 153475 0.29 495312
10 500 0.14 645250 0.15 179047 0.13 705148
30 100 1.74 197855 1.71 106542 1.70 217794
30 250 0.73 369894 0.71 184446 0.67 532870
30 500 0.40 587472 0.44 233452 0.36 716827

We measure the time complexity by means of the number of evaluations
required to find the best obtained solution, as the individual representation and
fitness function are the same in CHUGA, DGA and DGALS. We have executed
our evolutionary algorithm on a Pentium IV; 3GHz. Over this platform the
execution time for a single run ranges from 5 minutes, for the simplest problems,
to 10 hours, for the most complex ones.

The results of our experiments are displayed in Tables 1 and 2 based on 10
independent executions for each instance. In table 1, our algorithm (DGALS), ex-
ecuted over the set of 270 instances is compared with that of Chu et. al (CHUGA)
([5]) and also with our first version without local search (DGA) ([1]). The first
two columns identify the 30 instances that corresponds to each combination
of m, n. In the remainder columns we show for the compared algorithms the
average %gap and the average number of evaluations required until the best
individual was encountered (A.E.B.S). We have taken the values corresponding
to CHUGA from [5] and [13]. As the authors have pointed out in their work
these results are based on only one run for each problem instance whereas in the
case of our genetic algorithms 10 runs were executed. In table 2 we display the
results concerning to the set of 11 large instances. In this case we present only
results for DGALS compared with the best known solutions obtained by Glover
and Kochenberger (GLOVERA) ([9]). We also display the average percentage
gap of the fitness of our solutions with respect to the fitness of the best known
solutions



Table 2. Computational results for the 11 large instances. We compare DGALS with
GLOVERA. Values A.E.B.S. and A. %gap of DGALS are based on 10 runs for each
instance.

Problem GLOVERA DGALS

m n Best Sol. Best Sol. A.E.B.S. A. %gap

15 100 3766 3766 98857 0
25 100 3958 3958 196649 0
25 150 5650 5656 502719 0.01
25 200 7557 7557 234675 0.01
25 500 19215 19211 875213 0.02
25 1500 58085 58078 1128350 0.01
50 150 5764 5764 273140 0
50 200 7672 7672 360145 0.03
50 500 18801 18796 950548 0.03
50 1500 57292 57295 1459603 0.05
100 2500 95231 95378 1487329 -0.14

From table 1 we conclude that our DGALS performs better than CHUGA and
DGA in terms of the average %gaps and it seems that this better performance
increases with the instance size. We can see also that the use of our local search
procedure obviously suppose an increase in the amount of computational effort in
order to reach the best solution. Nevertheless this is a reasonable increment and,
as we have mentioned, the found solutions are significatively better. Although it
is not showed in a table, we have done some executions only with local search
applied to random generated individuals, obtaining poor results. This also agrees
with the fact that using local search in all generations does not guarantees better
individuals after 1500000 evaluations.

The results presented in table 2 agree with our conjecture that DGALS per-
forms better with large instances. We think that the reason is that in some of
these problems we have not reached the best known solution because we would
need more than 1500000 evaluations. Specially surprising are the results for the
largest instances, where we have obtained considerably better solutions in all
executions of DGALS.

5 Conclusive remarks

In this paper we have presented an evolutionary algorithm for solving multidi-
mensional knapsack problems based on genetic computation of surrogate multi-
pliers incorporating a flipping local search procedure. On a large set of problems,
we have shown that our evolutionary algorithm is capable of obtaining high-
quality solutions for large problems of various characteristics. Clearly, the use
of a local search procedure improves the quality of the individuals and directs
the GA to the best solutions. Periodical application of the local search proce-
dure reduces the amount of evaluations per generation and maintains diversity



in the population. Both aspects seem to be crucial for the performance of our
evolutionary algorithm.
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