
Word Equation Systems: The Heuristic
Approach

César L. Alonso1 ?, Fátima Drubi2, J. Gómez-Garćıa3, and José Luis Montaña3

1 Centro de Inteligencia Artificial, Universidad de Oviedo
Campus de Viesques, 33271 Gijón, Spain

calonso@aic.uniovi.es
2 Departamento de Informática, Universidad de Oviedo

Campus de Viesques, 33271 Gijón, Spain
3 Departamento de Matemáticas, Estad́ıstica y Computación,

Universidad de Cantabria
montana@matesco.unican.es

Abstract. One of the most intrincate algorithms related to words is
Makanin’s algorithm for solving word equations. Even if Makanin’s algo-
rithm is very complicated, the solvability problem for word equations re-
mains NP -hard if one looks for short solutions, i. e. with length bounded
by a linear function w. r. t. the size of the system ([2]) or even with con-
stant bounded length ([1]). Word equations can be used to define various
properties of strings, e. g. characterization of imprimitiveness, hardware
specification and verification and string unification in PROLOG-3 or
unification in theories with associative non-commutative operators. This
paper is devoted to propose the heuristic approach to deal with the prob-
lem of solving word equation systems provided that some upper bound
for the length of the solutions is given. Up to this moment several heuris-
tic strategies have been proposed for other NP -complete problems, like
3-SAT, with a remarkable success. Following this direction we compare
here two genetic local search algorithms for solving word equation sys-
tems. The first one consists of an adapted version of the well known
WSAT heuristics for 3-SAT instances (see [9]). The second one is an im-
proved version of our genetic local search algorithm in ([1]). We present
some empirical results which indicate that our approach to this problem
becomes a promising strategy. Our experimental results also certify that
our local optimization technique seems to outperform the WSAT class
of local search procedures for the word equation system problem.

Keywords: Evolutionary computation, genetic algorithms, local search
strategies, word equations.

1 Introduction

Checking if two strings are identical is a rather trivial problem. It corresponds to
test equality of strings. Finding patterns in strings is slightly more complicated.

? Partially supported by the spanish MCyT and FEDER grant TIC2003-04153

It corresponds to solve word equations with a constant side. For example:

xx01x1y = 010010101000110101010 . (1)

where x, y are variable strings in {0, 1}∗. Equations of this type are not difficult
to solve. Indeed many cases of this problem have very efficient algorithms in the
field of pattern matching.

In general, try to find solutions to equations where both sides contain variable
strings, like for instance:

x01x1y = 1y0xy . (2)

where x, y are variables in {0, 1}∗ or show it has none, is a surprisingly difficult
problem.

The satisfiability problem for word equations has a simple formulation: Find
out whether or not an input word equation (like that in example (2)) has a solu-
tion. The decidability of the problem was proved by Makanin [6]). His decision
procedure is one of the most complicated algorithms in theoretical computer
science. The time complexity of this algorithm is 22P (n)

nondeterministic time,
where P (n) is a single exponential function of the size of the equation n ([5]).
In recent years several better complexity upper bounds have been obtained:
EXPSPACE ([4]), NEXPTIME ([8]) and PSPACE ([7]). A lower bound for the
problem is NP ([2]). The best algorithms for NP-hard problems run in single ex-
ponential deterministic time. Each algorithm in PSPACE can be implemented in
single exponential deterministic time, so exponential time is optimal in the con-
text of deterministic algorithms solving word equations unless faster algorithms
are developed for NP-hard problems.

In the present paper we compare the performance of two new evolutionary
algorithms which incorporate some kind of local optimization for the problem of
solving systems of word equations provided that an upper bound for the length
of the solutions is given. The first strategy proposed here is inspired in the well
known local search algorithms GSAT an WSAT to find a satisfying assignment
for a set of clauses (see [9]). The second one is an improved version, including
random walking in hypercubes of the kind {0, 1}m, of the flipping genetic local
search algorithm announced in ([1]). As far as we know there are no references
in the literature for solving this problem in the framework of heuristic strategies
involving local search. The paper is organized as follows: in section 2 we explic-
itly state the WES problem with bounds; section 3 describes the evolutionary
algorithms with the local search procedures; in section 4, we present the experi-
mental results, solving some word equation systems randomly generated forcing
solvability; finally, section 5 contains some conclusive remarks.

2 The Word Equation Systems Problem

Let A be an alphabet of constants and let Ω be an alphabet of variables. We
assume that these alphabets are disjoint. As usual we denote by A∗ the set of
words on A, and given a word w ∈ A∗, |w| stands for the length of w; ε denotes
the empty word.

Definition 1. A word equation over the alphabet A and variables set Ω is a
pair (L, R) ∈ (A ∪Ω)∗ × (A ∪Ω)∗, usually denoted by L = R. A word equation
system (WES) over the alphabet A and variables set Ω is a finite set of word
equations S = {L1 = R1, . . . , Ln = Rn}, where, for i ∈ {1, . . . , n}, each pair
(Li, Ri) ∈ (A ∪Ω)∗ × (A ∪Ω)∗.

Definition 2. Given a WES over the alphabet A and variables set Ω, S =
{L1 = R1, . . . , Ln = Rn}, a solution of S is a morphism σ : (A ∪ Ω)∗ → A∗

such that σ(a) = a, for a ∈ A, and σ(Li) = σ(Ri), for i ∈ {1, . . . , n}.
The WES problem, in its general form, is stated as follows: given a word

equation system as input find a solution if there exists anyone or determine
the no existence of solutions otherwise. The problem we are going to study in
this contribution is not as general as stated above, but it is also a NP-complete
problem (see Theorem 5 below). In our formulation of the problem also an upper
bound d for the length of the variable values in a solution is given. We name this
variation the d-WES problem.

d-WES problem: Given a WES over the alphabet A with variables set Ω, S =
{L1 = R1, . . . , Ln = Rn}, find a solution σ : (A∪Ω)∗ → A∗ such that |σ(x)| ≤ d,
for each x ∈ Ω, or determine the no existence otherwise.

Example 3. (see [1]) For each d ≥ 1, let Fd and WordFibd be the d-th Fibonacci
number and the d-th Fibonacci word over the alphabet A = {0, 1}, respectively.
For any d ≥ 2 let Sd be the word equation system over the alphabet A = {0, 1}
and variables set Ω = {x1, . . . , xd+1} defined as:

x1 = 0

x2 = 1

01x1x2 = x1x2x3

. . .

01x1x2x2x3 . . . xd−1xd = x1x2x3 . . . xd+1.

Then, for any d ≥ 2, the morphism σd : (A ∪Ω)∗ → A∗, defined by

σd(xi) = FibWordi,

for i ∈ {1, . . . , d+1}, is the only solution of the system Sd. This solution satisfies
|σ(xi)| = Fi ≤ Fd+1, for each i ∈ {1, . . . , d + 1}. Recall that FibWord1 = 0,
FibWord2 = 1 and FibWordi = FibWordi−2FibWordi−1 if i > 2.

Remark 4. Example 3 is quite meaningful itself. It shows that any exact deter-
ministic algorithm which solves the WES problem in its general form (or any
heuristic algorithm solving all instances Sd) must have, at least, exponential
worst-case complexity. This is due to the fact that the system Sd has polynomial
size in d and the only solution of Sd, namely σd, has exponential length w.r.t d,
because it contains, as a part, the d-th Fibonacci word, WordFibd. Note that
WordFibd has size equal to the d-th Fibonacci number, Fd, which is exponential
w.r.t d.

A problem which does not allow to exhibit the exponential length argument
for lower complexity bounds is the d-WES problem stated above. But this prob-
lem remains NP -complete.

Theorem 5. (c. f. [1]) For any d ≥ 2 the d-WES problem is NP -complete.

3 The Evolutionary Algorithm

Given an alphabet A and some string over A, α ∈ A∗, for any pair of positions
i, j, 1 ≤ i ≤ j ≤ |α|, in the string α, α[i, j] ∈ A∗ denotes the substring of α given
by the extraction of j − i + 1 consecutive many letters i through j from string
α. In the case i = j, we denote by α[i] the single letter substring α[i, i], which
represents the i-th symbol of the string α.

3.1 Individual Representation

Given an instance for the d-WES problem, that is, a word equation system
S = {L1 = R1, . . . , Ln = Rn} with n equations and m variables, over the
alphabet A = {0, 1} and variables set Ω = {x1, . . . , xm}, if a morphism σ is
candidate solution for S, then for each i ∈ {1, . . . ,m}, the size of the value of
any variable xi, |σ(xi)|, must be less than or equal to d. This motivates the
representation of a chromosome as a list of m strings {α1, . . . , αm} where, for
each i ∈ {1, . . . , m}, αi is a word over the alphabet A = {0, 1} of length |αi| ≤ d,
such that the value of the variable xi, is represented in the chromosome by the
string αi ∈ A∗.

3.2 Fitness Function

First, we introduce a notion of distance between strings which extends Hamming
distance to the case of non-equal size strings. This is necessary because the
chromosomes (representing candidate solutions for our problem instances) are
variable size strings.

Given to strings α, β ∈ A∗ the generalized Hamming distance between them
is defined as follows:

H(α, β) = Max{|α|, |β|} −]{k ∈ {1, . . . ,min{|α|, |β|}} : α[k] = β[k]}.

Given a word equation system S = {L1 = R1, . . . , Ln = Rn} over the al-
phabet A = {0, 1} with set variables Ω = {x1, . . . , xm} and a chromosome
ᾱ = {α1, . . . , αm}, representing a candidate solution for S, the fitness of ᾱ is
computed as follows:

First, in each equation, we substitute, for j ∈ {1, . . . ,m}, every variable xj

for the corresponding string αj ∈ A, and, after this replacement, we get the
expressions {L1(ᾱ) = R1(ᾱ), . . . , Ln(ᾱ) = Rn(ᾱ)} where {Li(ᾱ), Ri(ᾱ)} ⊂ A∗

for all i ∈ {1, . . . , n}.

Then, the fitness of the chromosome ᾱ, f(ᾱ), is defined as:

f(ᾱ) =
n∑

i=1

H(Li(ᾱ), Ri(ᾱ)).

Proposition 6. Let S = {L1 = R1, . . . , Ln = Rn} be a word equation system
over the alphabet A = {0, 1} with set variables Ω = {x1, . . . , xm} and let ᾱ =
{α1, . . . , αm} be a chromosome representing a candidate solution for S. Define
the morphism σ : (A ∪ Ω)∗ → A∗ as σ(xi) = α′i, for each i ∈ {1, . . . ,m}.
Then the morphism σ is a solution of system S if and only if the fitness of the
chromosome ᾱ is equal to zero, that is f(ᾱ) = 0.

Remark 7. According to Proposition 7, the goal of our evolutive algorithm is to
minimize the fitness function f. By means of this fitness function, we propose a
measure of the quality of an individual which distinguishes between individuals
that satisfy the same number of equations. This last objective cannot be reached
by other fitness functions like, for instance, the number of satisfied equations in
the given system.

3.3 Genetic Operators

selection: We make use of the roulette wheel selection procedure (see [3]).
crossover: Given two chromosomes ᾱ = {α1, . . . , αm} and β̄ = {β1, . . . , βm},

the result of a crossover is a chromosome constructed applying a local crossover
to every of the corresponding strings αi, βi. Fixed i ∈ {1, . . . m}, the crossover
of the strings αi, βi, denoted as cri, is given as follows. Assume ai = |αi| ≤
|βi| then, the substring cri[1, ai] is the result of applying uniform crossover
([3]) to the strings αi ∈ A∗ and βi[1, ai]. Next, we randomly select a position
ki ∈ {ai + 1, . . . , d} and define cri[ai + 1, ki] = βi[ai + 1,min{ki, |βi|}}].
We clarify this local crossover by means of the following example:

Example 8. Let αi = 01 and βi = 100011 be the variable strings. In this case,
we apply uniform crossover to the first two symbols. Let us suppose that 11
is the resulting substring. This substring is the first part of the resulting
child. Then, if the selected position were, for instance, position 4, the second
part of the child would be 00, and the complete child would be 1100.

mutation: We apply mutation with a given probability p. The concrete value
of p in our algorithms is given in Section 4 below. Given a chromosome
ᾱ = {α1, . . . , αm}, the mutation operator applied to ᾱ consists in replacing
each gene of each word αi with probability 1

d , where d is the given upper
bound.

3.4 Local Search Procedures

Given a word equation system S = {L1 = R1, . . . , Ln = Rn} over the al-
phabet A = {0, 1} with set variables Ω = {x1, . . . , xm} and a chromosome

ᾱ = (α1, . . . , αm), representing a candidate solution for S, for any k ≥ 0 we de-
fine the k-neighborhood of ᾱ with respect to the generalized Hamming distance
as follows:

Uk(ᾱ) := {β̄ : Maximum1≤i≤m H(αi, βi) ≤ k}
Local search 1 (LS1) First, we present our adapted version of the local

search procedure WSAT which will be sketched below. The local search proce-
dure takes as input a chromosome ᾱ = (α1, . . . , αm) and, at each step, yields
a chromosome β̄ = (β1, . . . , βm), which satisfies the following properties. With
probability p, β̄ is a random chromosome in U1(ᾱ) and with probability 1 − p,
β̄ is a chromosome in U1(ᾱ) with minimal fitness. In this last case β̄ cannot be
improved by adding or flipping any single bit from ᾱ (because their components
are at Hamming distance at most one). This process iterates until a given spec-
ified maximum number of flips is reached. We call the parameter p probability
of noise.

Below, we display the pseudo-code of this local search procedure taking as
input a chromosome with m string variables of size bounded by d (one for each
variable).

Input system S, chromosome cr, Maxflips M, probability p;
Procedure Local_Search1
begin

for j=1 to M do
begin

if cr satisfies S then return cr;
cr1:= select (S,cr,p);

end
return cr1

end

Input system S, chromosome cr, probability p;
Procedure Select
begin

u:= minimal fitness in U1(cr);
if u=0 then

cr1:= chromosome with minimal fitness in U1(cr)
else

with probability p:
cr1:= a random chromosome in U1(cr);

with probability 1-p:
cr1:= chromosome with minimal fitness in U1(cr);

end
return cr1

end

Local search 2 (LS2) Suppose we are given a chromosome ᾱ = (α1, . . . , αm).
At each iteration step, the local search generates a random walk inside the
truncated hypercube Uk(ᾱ) and at each new generated chromosome makes a flip
(or modifies its length by one unit if possible) if there is a gain in the fitness.
This process iterates until there is no gain. Here k is the number of genes of the
chromosome ᾱ, that is k =

∑
1≤i≤m |αi|.

For each chromosome ᾱ and each pair (i, j) such that, 1 ≤ i ≤ m and
1 ≤ j ≤ |αi| (representing the gene at position j in the i-component αi of
chromosome ᾱ) we define the set U(i,j)(ᾱ) trough the next two properties:

– U(i,j)(ᾱ) ⊂ U1(ᾱ) and
– Any element β̄ ∈ U(i,j)(ᾱ) satisfies: for all pair (i′, j′), 1 ≤ i′ ≤ m; 1 ≤ j′ ≤
|αi|, if (i′, j′) 6= (i, j) then αi′ [j′] = βi′ [j′].

Note that any element in U(i,j)(ᾱ) can be obtained in one of the following
ways: if j < |αi| by flipping the gene (i, j) in ᾱ; if j = |αi| adding a new gene at
the end of the component αi of ᾱ , or deleting the gene (i, j) of the component
αi or flipping gene (i, j). In the pseudo-code displayed below we associate a gen
g with a pair (i, j) and a chromosome cr with an element ᾱ. Then, notation
Ug(cr) denotes a subset of the type U(i,j)(ᾱ).

Input chromosome cr;
Procedure Local_search2
begin

H:=gens(cr);
repeat

cr_aux:=cr
repeat

g:= an element of H uniformly generated;
cr:= chromosome with minimal fitness in Ug(cr);
H:=H-{g}

until empty H
until cr=cr_aux

end

Summarizing, the pseudo-code of our evolutionary algorithms is the follow-
ing:

begin
Generation := 0;
Population := initial_population;
evaluate(Population);
while (not_termination_condition) do
begin

Best := best_individual(Population);
New_population := {Best};
while (|New_population| < |Population|) do

begin
Pair := select_parents(Population);
Child := crossover(Pair);
Child := mutation(Child, probability);
Child := local_search(Child);
New_population := insert(Child, New_population);

end
Population := New_population;
Generation := Generation + 1

end
end

Remark 9. The initial population is randomly generated. The procedure evalu-
ate(population) computes the fitness of all individuals in the population. The
procedure local search(Child) can be either LS1 or LS2. Finally, the termination
condition is true when a solution is found (the fitness at some individual equals
zero) or the number of generations attains a given value.

4 Experimental Results

We have performed our experiments over problem instances having n equations,
m variables and a solution of maximum variable length q, denoted as pn-m-q.
We run our program for various upper bounds of variable length d ≥ q. Let
us note that, m variables and d as upper bound for the length of a variable,
determine a search space of size (

∑d
i=0 2i)m = (2d+1 − 1)m.

Since we have not found in the literature any benchmark instance for this
problem, we have implemented a program for random generate word equation
systems with solutions, and we have applied our algorithm to these systems 4.

All runs where performed over a processor AMD Athlom XP 1900+; 1,6 GHz
and 512 Mb RAM. For a single run the execution time ranges from two seconds,
for the simplest problems, to five minutes, for the most complex ones. The com-
plexity of a problem is measured through the average number of evaluations to
solution.

4.1 Probability of Mutation and Size of the Initial Population

After some previous experiments, we conclude that the best parameters for the
LS2 program are population size equals 2 and probability of mutation
equals 0.9. This previous experimentation was reported in ([1]). For the LS1
program we conclude that the best parameters are Maxflips equals 40 and prob-
ability of noise equals 0.2. We remark that these parameters correspond to the
best results obtained in the problems reported in Table 1.

4 Available on line in http://www.aic.uniovi.es/Tc/spanish/repository.htm

Table 1. Experimental results for various sizes of search space (S.S.). We have run for
the instances the evolutionary algorithm with LS1 (SR1 & AES1) and with LS2 (SR2
& AES2). The elements of column U.B. are the different upper bounds.

P. instance U.B. S.S. SR2 SR1 AES2 AES1

p10-8-3 3 232 100% 100% 3164.24 20930.6
p25-8-3 3 232 100% 100% 473.46 7304.34
p10-8-3 4 240 100% 100% 5121.25 41141.9
p25-8-3 5 248 100% 100% 1002.26 16824.5
p25-8-3 6 256 100% 100% 2193 25628.2
p5-15-3 3 260 100% 100% 16459.25 54459
p10-15-3 3 260 100% 100% 8124.48 55379.3
p15-12-4 4 260 100% 100% 479.63 4187.68
p10-8-3 7 264 100% 100% 168344 300204
p25-8-3 8 272 100% 100% 3567.86 69748
p10-8-3 10 288 85% 86% 405326 682543
p5-15-3 5 290 100% 96% 156365.52 546898
p10-15-3 5 290 100% 86% 258556 399374
p10-15-5 5 290 100% 100% 95457.93 180146
p25-23-4 4 2115 100% 58% 412375 592463
p25-23-4 5 2138 81% 34% 389630 858080
p15-25-5 5 2150 98% 96% 278782.36 444430
p5-15-3 10 2165 8% 0% 557410.58 –
p25-8-3 20 2168 100% 78% 24221 689104

4.2 LS1 vs. LS2

We show the local search efficiency executing some experiments with both local
search procedures. In all the executions, the algorithm stops if a solution is found
or the limit of 1500000 evaluations is reached. The results of our experiments
are displayed in Table 1 based on 50 independent runs for each instance. As
usually, the performance of the algorithm is measured first of all by the Success
Rate (SR), which represents the portion of runs where a solution has been found.
Moreover, as a measure of the time complexity, we use the Average number of
Evaluations to Solution (AES) index, which counts the average number of fitness
evaluations performed up to find a solution in successful runs. Comparing the
two local search procedures, we observe that the improved version of our local
search algorithm (LS2) is significantly better than the adapted version to our
problem (LS1) of the WSAT strategies. This can be confirmed by looking at the
respective Average number of Evaluations to Solution reported in our table of
experiments. The comparatione between the evolutionary local-search strategy
an the pure genetic approach was already reported in ([1]) using a preliminary
version of (LS2) that does not use random walks. We observed there a very bad
behavior of the pure genetic algorithm.

5 Conclusions, summary and future research

The results of the experiments reported in Table 1, indicate that the use of evolu-
tive algorithms is a promising strategy for solving the d-WES problem, and that
our algorithms have a good behavior also dealing with large search space sizes.
Nevertheless, these promising results, there are some hard problems, as p5-15-3,
over which our algorithms have some difficulties trying to find a solution and in
other ones, as for example p25-8-3, the program always finds just the same. In
both cases, the found solution agrees with that proposed by the random problem
generator. In this sense, we have not a conclusion about the influence either of
the number of equations or of the ratio size of the system/number of variables,
on the difficulty of the problem. For the two compared local search algorithms
we conclude that LS2 seems to outperform LS1, that is, the WSAT extension
of local search procedures for the word equation system problem. Nevertheless
it would be convenient to execute new experiments over problem instances with
higher size of search space and to adjust for each instance, the parameters of
Maxflips and probability of noise in procedure LS1. The most important limita-
tion of our approach is the use of upper bounds on the size of the variables when
looking for solutions. In a work in progress, we are developing an evolutionary
algorithm for the general problem of solving systems of word equations (WES)
that profits a logarithmic compression of the size of a minimal solution of a word
equation via Lempel–Ziv encodings of words. We think that this will allow to
explore much larger search spaces and avoiding the use of the upper bound on
the size of the solutions.

References

1. Alonso C. L., Drubi F., Montana J. L.: An evolutionary algoritm for solving Word
Equation Systems. Proc. CAEPIA-TTIA’2003. To appear in Springer L.N.A.I.

2. Angluin D.: Finding patterns common to a set of strings, J. C. S. S. 21(1) (1980)
46-62

3. Goldbert, D. E.: Genetic Algorithms in Search Optimization & Machine Learning.
Addison Wesley Longmann, Inn. (1989)

4. Gutiérrez, C.: Satisfiability of word equations with constants is in exponential space.
in Proc. FOCS’98, IEEE Computer Society Press, Palo Alto, California (1998)

5. Koscielski, A., Pacholski, L.: Complexity of Makanin’s algorithm, J. ACM 43(4)
(1996) 670-684

6. Makanin, G.S.: The Problem of Solvability of Equations in a Free Semigroup. Math.
USSR Sbornik 32 (1977) 2 129-198

7. Plandowski, W.: Wojciech Plandowski: Satisfiability of Word Equations with Con-
stants is in PSPACE. FOCS’99 495-500 (1999)

8. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the Solution
of Words Equations. Larsen, K.G. et al. (Eds.) L.N.C.S. 1443 (1998) 731-742

9. Selman, B., Levesque H., Mitchell: A new method for solving hard satisfiability
problems. Pro. of the Tenth National Conference on Artificial Intelligence, AAAI
Press, California (1992) 440-446

