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SUMMARY

A distribution-free permutation test procedure is proposed for comparing receiver
operating characteristic curves based on continuous data from a paired design. The method
tests the hypothesis that the two curves are identical for all operating points, unlike
previously proposed methods which test the equivalence of the areas under the curves.
The new test is shown by simulation to have very similar operating characteristics to the
standard method based on comparisons of the areas when the curves are parallel, but
markedly superior power when the curves cross, that is when the curves are different but
have similar areas. The prospects of generalising the approach to unpaired experiments
and to comparisons of ordinal rating data are discussed.

Some key words: Diagnostic test; Exchangeability; Paired samples, Permutation test; Receiver operating charac-
teristic curve.

1. INTRODUCTION

A common problem facing clinical researchers is the comparison of alternative diagnos-
tic tests. Although diagnostic test accuracy is frequently characterised by two simple
measures, the sensitivity and the specificity, reflecting the two types of error in diagnosis,
false positive and false negative, comparisons of tests are hindered by the fact that these
measures are arbitrarily determined by the selection of a classification point, or cut-off
value. In recognition of this, it is necessary to calibrate this arbitrary classification rule to
develop valid procedures for comparing tests. The most complete approach is to use
receiver operating characteristic analysis, denoted by ROC. A ROC curve is a plot of the
true positive ratio, the sensitivity, against the false positive ratio, the specificity subtracted
from one. Since the ROC curves involve all possible classification points, the calibration
of these points is embedded in ROC analysis.

This calibration problem is particularly pertinent when a binary test is being compared
with a continuous test. Beam & Wieand (1991) approached this problem by comparing
the test sensitivities after equating the specificities, by using the classification point for the
continuous test that possesses a specificity that is the same as the specificity of the binary
test. The idea of calibrating the comparison by fixing the specificities and comparing
sensitivities was suggested originally by Greenhouse & Mantel (1950). It is, however, more
common in practice to use methods that employ the entire ROC curves. These curves are
often modelled using the assumption that the test results in diseased and nondiseased
subjects are normally distributed, in which case a smooth curve can be estimated using
maximum likelihood (Dorfman & Alf, 1969). In this case the curve is characterised by
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two parameters, a slope and an intercept. Comparison of two ROC curves can be
accomplished by developing a test of equivalence of the two slopes and the two intercepts.
A likelihood ratio test for this purpose was developed by Metz, Wang & Kronman (1984)
for paired data, where each patient receives both tests.

An alternative approach that is frequently used in practice is to consider the area under
the curve as a measure of accuracy, and to compare the tests by evaluating the hypothesis
that the area under the curve is the same for each test (Swets & Pickett, 1982). The
trapezoidal area under the curve has been shown to be equivalent to the Mann-Whitney
statistic for comparing diseased and nondiseased subjects (Bamber, 1975), permitting a
nonparametric approach to the problem. For paired experiments, Hanley & McNeil (1983)
built on this idea to develop a test that accounts for the correlations induced by the paired
design. DeLong, DeLong & Clarke-Pearson (1988) developed a fully nonparametric
approach in which all of the covariance terms are estimated nonparametrically, leading
to an asymptotically normal test statistic.

A problem with using the area under the curve as the measure of accuracy is that the
two tests may have different ROC curves which nonetheless have the same area. Receiver
operating characteristic curves are typically asymmetric (Swets, 1986), and so two tests
with different asymmetries could possess the same area. Since the use of a diagnostic test
in practice involves an operating classification point, and since the utilities of these different
classifications are, in principle, distinguishable using decision theory, one test may be
genuinely superior to the other despite having the same area (Campbell, 1994). Therefore,
it is preferable to construct a hypothesis test in which the null hypothesis represents
equality of the entire ROC curves. In this paper we develop a simple permutation test for
this purpose for paired data in § 2, study its properties via simulation in § 3, and illustrate
its use by examples in § 4.

2. METHODS

Let X and Y represent the results of the two diagnostic tests, and let D be a binary
indicator of true disease status, where 1 represents diseased and 0 represents normal
subjects. Let the prevalence of disease in the study population be denoted by 9. In a
retrospective study 6 will be fixed by design, but regardless of the sampling scheme 6 will
be common to both tests in a paired experiment. A ROC is characterised by the distributions
of the test result among diseased and nondiseased subjects.

Let the conditional distributions of the markers given the disease status be as follows:

The sensitivity and specificity of X at cut-off x are 1 — Fx(x) and Gx(x) respectively, with
corresponding definitions for Y. The two ROC curves are equivalent if, for every cut-off
value x of X, there exists a corresponding cut-off value y of Y at which Fx(x) — Fy(y) and
Gx(x) — Gy(y) and vice versa. Let the unconditional distributions of the markers be

Mx(x) = pr(X < x) = 6Fx(x) + (1 - 0)G,(x),

M,(y) = pr(7 ̂  y) = 9Fy(y) + (1 - 0)Gy(y).

The two curves are equivalent at all operating points if and only if there exists a transform-
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ation Y-+y(Y) such that, for all x,

= l) = pr{r(Y)^x\D = l},

\D 0}

and then y-*Mx My(y) is one such transformation. That is, if for every x there exists a
corresponding y such that Fx(x) = Fy(y) and Gx(x) = Gy(y), then

pr(X < x) = pr(7 ^ y) => Mx(x) = My(y) => x = M;lMy{y).

Since ROC curves are invariant under monotone transformations, any comparison of the
curves from the marker pair (X, Y) can be effected using the transformed data {X, &~(Y)}.

From (2) we see that the conditional distributions of X and ^{Y) are identical, for
both the normal and diseased populations, under the null hypothesis of equal ROC curves.
If we further assume that the joint distributions are 'exchangeable', in the sense that the
joint distributions of {X, 9~ (Y)} and {^{Y), X) for both the normal and diseased subjects
are the same, we can develop a permutation test by random permutations of {X, &~(Y)}
within subjects. This exchangeability assumption also means that the conditional distri-
butions pr{X\$~(Y)} and pr{$~(Y)\X) are the same. Since the data are paired, this is a
far less stringent assumption than independence of the two markers conditional on the
disease status. Conditional independence is an unrealistic assumption in most studies of
diagnostic tests (Begg, 1987).

Calibration of the ROC curves can be accomplished by evaluating the sensitivities and
specificities of the two markers at the zth quantile of the unconditional distribution of the
markers. Let xz = M~1{z) and yz = M~1(z). Consider the following transformation which
maps marker pair (X, Y) and disease status D to a function from [0,1] to {— 1,0,1}:

1 tf(X^xz,Y>yz,D = 0)or(X>xz,

&(z; X, Y, D) = i -1 tf(X>xz,Y^yz,D = 0) or {X ^ xz,

0 otherwise.

This function takes value 1 at a calibrated cut-off value of z when the result of test X is
correct and the result of test Y is wrong, with the converse for — 1. Values of 0 represent
cut-offs at which either both tests are correct or both tests are wrong. It is shown in the
Appendix that E{£(z)} = 0 if and only if both the sensitivities and the specificities of the
two tests are equal at z. Therefore the expectation of this function is identically zero if
and only if the null hypothesis is true, that is if the two ROC curves are identical. The
function

W(z)>= J<?(z; X, Y, D) dti(X, Y), (3)

which is a sample estimate of E{&(z)}, is a measure of the 'closeness' of the two curves at
the zth quantile where /? is the empirical joint distribution of X and Y. In order to detect
departures from the null hypothesis in all circumstances, including those where the ROC
curves have similar overall area, but where the curves 'cross', an appropriate overall test
statistic is

Jo
W>= \W(z)\dz. (4)
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We show in the Appendix, with the assumption of exchangeability under the null hypoth-
esis, that a permutation test using this statistic is consistent against the alternative of
unequal ROC curves.

Direct computation of the statistic W is hindered by the absence of knowledge of the
population quantiles of the unconditional distributions of the markers. Therefore we make
use of the empirical quantiles, that is the rank statistics, in the following way. Denote
the entire data set by {(AT,, Yh D,); i = 1 , . . . ,«} , where D, = 1 if the case is diseased and
D, = 0 if the case is nondiseased. Furthermore let {Rt} and {SJ denote the corres-
ponding ranks of {AT,} and {Yt}, respectively. Then, setting k = 1 , . . . , n — 1, we can define
an empirical error matrix by

1 if (Rt<k, Si>k,Di = 0) or {Rt>k,S,^k,Dt = 1),

- 1 if (Rt> k, Si^k,Dt = 0) or ( £ , ^ k , S t > k,Dt = 1),

0 otherwise.

Analogous to W{z), the statistic e k>=elk + ... + e^ is a measure of the 'closeness' of the
two ROC curves at the kth order statistic. The corresponding overall test statistic is

E.= "X \e,k\.
*=i

This statistic is very easily computed by recognising that e_k is the difference in the total
numbers of errors of each test when the kth classification point is used as is shown in § 4.

If the two tests are evaluated on the same metric, and there is no systematic measurement
bias, then we can directly exchange the marker values for any subject to generate the
permutation distribution as follows. Let (ql,..., qn) represent a sequence of 0's and l's.
Then a permuted data set {Xf, Yf} indexed by that sequence is given by

qiXi + (l-qi)Yh Yf = qtYt + (l -qt)Xt (i=l,...,n).

A new set of ranks {R*, Sf} is evaluated based on {X*, Y*}, and a corresponding statistic
E* is computed. The permutation distribution is the distribution which assigns a uniform
mass to each value of E* given by all the 2" sequences of 0's and l's. Since this may be a
very large number, in practice we can use a sampling scheme where {q\,-.-,qn) is a
random permutation generated by n fair coin tosses and the process is repeated a suffic-
iently large number of times to obtain a stable P-value. An example of a data set where
the marker values can be directly exchanged is described in § 4.

If the direct exchangeability of X and Y is not considered to be an appropriate assump-
tion, then it is necessary to rely on the ranked samples to evaluate the P-value, since in
general the transformation $~{Y) required for exchange of individual data values will be
unknown. In this case each permuted set of ranks is generated by randomly exchanging
pairs of ranks and reranking them. That is, we first generate {Rf, Sf} using

Rf = qlR, + (l-qi)Si, ST = qiSt + {l-q,)Rl (i = l,...,n).

A similar idea was discussed by Campbell (1994). This process will invariably introduce
numerous ties, so it is necessary to have a second randomisation step to break the ties.
That is, we generate {R**, Sf*}, where

RT* = J(RT), St*=J(ST) (i=l,...,n),

where J(.) represents the process by which tied ranks are re-ranked by randomisation.
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3. OPERATING CHARACTERISTICS OF THE TEST

The novelty of the proposed method is that it involves a test of the equality of the two
ROC curves, as opposed to a test of an index of accuracy, such as the area under the curve.
We have conducted a series of simulations to evaluate the operating characteristics of our
permutation test, and to compare the method with the nonparametric method for compar-
ing area indices (DeLong et al., 1988), called hereafter the area test.

The area test is based on the fact that the trapezoidal area under a single ROC curve is
estimated by the Mann-Whitney two-sample [/-statistic, the asymptotic variance of which
is easily computed. Furthermore, formulae are available for the covariances between two
correlated [/-statistics, and DeLong et al. (1988) used these facts to develop the area test,
using an asymptotic variance estimator. In our simulations we use this asymptotic formula
for the area test. In our simulations of the permutation test we have used the permutation
distribution as the reference distribution as we have been unable to develop a sufficiently
accurate asymptotic approximation for the distribution of the statistic.

The simulation results are presented in Tables 1-3. These three tables distinguish the
three distinctive scenarios of importance. In all cases the test results for the nondiseased
subjects are generated from a standard normal N(0,1) distribution, while the test results
for the diseased subjects are generated from N(nx, al) and N(ny, a\\) for tests X and Y
respectively. The simulations distinguish the models in which either the test results are
statistically independent, conditional on D, despite the paired design, p = 0, or the test
results are correlated with correlation p = 0-5. The ROC curves are identical if and only if
p.x = \iy and o\ = 6\. This is the case in all simulations in Table 1. The results show clearly
that the permutation test has a similar size to the area test in all configurations of area
and sample sizes studied.

Table 2 contains configurations in which test Y is uniformly superior to test X, evidenced
by the superior separation between diseased and normal subjects, that is fiy > \ix with
equivalent variances, and correspondingly superior area indices, Ay> Ax. These represent
configurations in which it is appropriate to summarise diagnostic accuracy using the area
index. An example of the ROC curves for one of these configurations is displayed in
Fig. l(a). Notice that the curve for test Y is uniformly higher than the curve for text X.

Table 1. Comparison of test sizes

Sample
Area sizes

Ax A, nd n3 nx = Hy ox = o1,

0-6 0-6 20 20 0-36 1-0
40 40
80 80

0-7 0-7 20 20 0-74 1-0
40 40
80 80

0-8 0-8 20 20 119 10
40 40
80 80

09 09 20 20 1-81 10
40 40
80 80

Area
) = 00

O053
0065
O048

0058
0045
0049

O059
0043
0056

0O40
0038
0045

test
p = O5

0051
O056
O043

0047
0057
0041

0048
0042
0038

O028
0042
0035

Permutation
test

p = O0

O049
O063
0045

0055
0048
0049

O052
O043
0O57

0044
0043
0048

p = 05

0042
0061
0047

O062
0O60
O043

0055
0O50
0038

0041
O050
O043
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Table 2. Power agaifist uniform alternatives

Areas
Ax A,

0 6

06

06

07

07

08

07

08

09

08

09

09

Sample
sizes

20
40
80

20
40

20
40

20
40
80

20
40

20
40
80

20
40
80

20
40

20
40

20
40
80

20
40

20
40
80

036

036

036

074

074

119

10

10

10

10

10

10

074

119

1 81

119

1 81

1-81

10

10

10

10

10

10

Area
p = O0

0127
O210
0394

O401
0686

0846
0981

0145
0253
0481

0556
0857

0182
0393
0685

Test

test
p = O5

O200
0349
0599

0647
0913

0971
0998

0215
0455
O706

0763
0976

0292
0565
0889

power
Permutation

test
p = O0 p = 05

0121
0199
0377

0367
0671

0829
O980
0131
0245
0460

0536
0842

0176
0362
0673

0184
0321
0569

O600
0897

0959
0997

O208
0-430
0683

0753
O970

0277
0542
0865

The simulated power estimates show that the two test statistics have very similar power,
with the area test being fractionally more powerful in all cases.

Table 3 contains configurations in which the use of the area test is inappropriate. These
are configurations in which the diagnostic tests have quite different ROC curves, but the
area indices are nevertheless identical. An example is provided in Fig. l(b). The simulations
show that the permutation test does possess limited power to detect differences of this

o

2

1
oa.

H

(a)

1O -

08 -

06 -

04

02 -

00 -

JV (1-19,1)

(b)

10 -

OO -

OO 02 04 06 08

False positive ratio

10 OO 02 04 06 08

False positive ratio

10

Fig. 1. Receiver operating characteristic curves: (a) generated from diseased populations N{1-19, 1) test Y,
and N(O36, 1), test X; (b) generated from diseased populations N(O74, 1) and iV(117, 4). In each case

normal subjects are generated from Af(O, 1).
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Table 3. Power against crossing alternatives

Sample
sizes

nd

20
40
80

20
40
80

20
40
80

20
40
80

20
40
80

20
40
80

20
40
80

20
40
80

Hx

036

074

119

1-81

1-0

1-0

1-0

1-0

056

117

1-88

2-87

°\
4-0

4-0

4-0

4-0

Area
p = O0

0063
0056
O054

0049
O059
O049

O046
0057
O052

0051
0038
0044

Test

test
p = O5

O060
0039
0052

0051
0041
0036

0054
O054
O051

O041
0049
0039

power
Permutation

test
p = O0

0077
0152
0361

O074
0131
0316

O060
0119
0259

0062
0084
0182

p = O5

O14S
0319
0669

0141
0298
0652

0129
0238
0515

O092
0154
0348

Areas

06 06

07 07

08 08

09 09

nature, while the area test is extremely insensitive, as we would expect. Note that, in both
Table 2 and Table 3, highly correlated test results lead to increased power.

In summary, the simulations show that the permutation test has very good operating
characteristics. It has essentially equivalent power to the nonparametric area test in all
circumstances in which the area test is appropriate, and clearly superior power in con-
figurations in which one ROC curve is not uniformly superior to the other, that is where
the curves differ but the area indices are similar.

4. EXAMPLES

We present two worked examples of the new method. In the first of these, a comparison
of techniques for diagnosing melanoma, the two diagnostic test scores are derived from
different data items. As a result they are not exchangeable, and so we must construct the
test on the basis of the ranks. In the second example, a comparison of the accuracy of
using computed tomography in different nodal sites for staging testicular cancer, the two
diagnostic approaches involve measuring by eye in millimeters the size of the largest lymph
node in two distinct anatomic regions, the null hypothesis being that each anatomic region
is equally predictive of disease spread. Exchangeability of the measured test results is a
reasonable premise in this case, and so we have employed the permutation test based on
the measured test results.

Example 41. The definitive diagnosis of a pigmented lesion suspected of being a mela-
noma involves a biopsy. Dermatologists are frequently faced with the task of clinically
evaluating suspicious lesions to determine which ones warrant a biopsy evaluation. They
do this on the basis of observable features of the lesion such as asymmetry, border irregu-
larity, colouration and size (Stolz et al., 1994). The use of a dermoscope helps to clarify
these visible features. In the example presented in Table 4 investigators have examined 72
suspicious lesions using both a clinical scoring scheme without the dermoscope, and a
dermoscopic scoring scheme. The features examined and the scoring system were some-
what different in each case and so the resulting scores are not regarded as exchangeable.
The purpose of our analysis is to determine whether the dermoscope contributes diagnostic
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Table 4. Results from Example 41

ank

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50

Patient
identifier

34
65
23

6
11
55
9

72
29

5

19
26
62
59
17
43

2
28
40
46

33
8

10
57
45
25
15
7

18
48

21
60
67
38
69
52
13
51
4

54

1
27
74
64
36
44
68
70
63
76

Test
Test

result

-5-881
- 5 1 6 4
-4-952
-4-788
-4-764
-4-717
-4-576
-4-412
-4-376
-4-363

- 4 0 6 0
- 4 0 2 3
-3-835
-3-776
-3-503
-3-471
-3-412
-3-221
-3-221
- 3 0 6 0

-2-871
-2-763
-2-716
-2-457
-2-408
-2-389
-2-293
-2-254
-2-245
-2-102

-2-089
1-924
1-750
1-738
1-726
1-714
1-677
1-623
1-622
1-597

1-571
1-430
1193

- 1 1 7 4
- 1 1 1 2
-1-057
-0-973
-0-961
-0-441
-0-421

X
Disease
status

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

1
0
0
1
0
0
1
1
0
1

Total
errors

50
49
48
47
46
45
44
43
42
41

40
39
38
37
36
35
34
33
32
31

30
31
30
29
28
27
26
25
24
23

22
21
20
19
18
17
16
15
14
13

14
13
12
13
12
11
12
13
12
13

Patient
identifier

34
6
5

65
28
40
10
72
2

62

46
19
55
67
9

59
45
23
29
18

48
43
26
11
33
38
4

57
21
44

52
69

1
51
63
54
70

7
17
25

74
15
14
66
64
60
24
41
30
36

Test
Test

result

- 7 1 0 3
-6-568
-6-524
-6-344
-5-783
-5-418
-5-297
-4-986
-4-933
-4-782

-4-621
-4-399
-4-315
-4-206
- 4 1 3 1
- 4 1 0 8
-3-831
-3-808
-3-799
-3-641

-3-545
-3-502
-3-493
-3-476
-3-244
-3-240
-2-857
-2-808
-2-730
-2-609

-2-220
-2-085
-1-941
-1-932
-1-847
-1-728
-1-472
-1-443
- 1 1 2 1
- 1 1 1 8

-0-998
-0-939
-0-805
-0-770
-0-744
-0-676
-0-656
-0-476
-0-435
-0-395

Y
Disease
status

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
1
0
0
0

0
0
0
1
1
0
0
1
1
0

Total
errors

50
49
48
47
46
45
44
43
42
41

40
39
38
37
36
35
34
33
32
31

30
29
28
27
26
25
24
23
22
21

20
19
20
19
18
17
18
17
16
15

14
13
12
13
14
13
12
13
14
13

e.k

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2

- 2
- 2

0
0
0
0
2
2
2
2

0
0
0
0
2
2
0
0
2
0



Distribution-free procedure for comparing ROC curves

Table 4. (Continued)

843

ank

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70

71
72

Patient
identifier

20
24
12
49
16
37
32
39
30
31

58
14
66
41
56
47
50
53
77

3

73
35

Test
Test

result

-0-091
-0-079
- 0 0 5 5
-0-052

0-183
0-298
0314
0359
0406
0786

1-007
1-183
1195
1-407
1-491
1-631
1-751
1-939
1-939
2-398

2-762
3032

X
Disease
status

0
0
1
1
0
0
1
1
1
1

0
0
1
1
1
1
0
1
1
1

1
1

Total
errors

12
11
12
13
12
11
12
13
14
15

14
13
14
15
16
17
16
17
18
19

20
21

Patient
identifier

37
16
49

8
68
56
39
77
20
58

32
3

50
13
27
73
47
76
31
12

53
35

Test
Test

result

- 0 3 2 3
- 0 3 1 4
- 0 1 1 9

O032
0241
0247
0258
0399
0483
0593

0887
0916
1-262
1-279
1-548
1-563
1-695
1-873
2111
2146

2-407
3-258

Y
Disease
status

0
0
1
1
1
1
1
1
0
0

1
1
0
0
0
1
1
1
1
1

1
1

Total
errors

12
11
12
13
14
15
16
17
16
15

16
17
16
15
14
15
16
17
18
19

20
21

e.k

0
0
0
0
2
4
4
4
2
0

2
4
2
0

- 2
- 2

0
0
0
0

0
0

300 -

100 -

50 100 150 200

Closeness measure (£ | eA |)

Fig. 2. Reference distribution for Example 4 1 . Value of
test statistic is indicated by the arrow.

information. The null hypothesis is that the dennoscope contributes no useful information,
and this is represented by equivalence of the two ROC curves.

The data are organised in Table 4 to reveal the raw data and to illustrate computation
of the test statistic. Each of the scoring systems, tests X and Y, is ranked, and is also
labelled by a unique patient identifier to reveal the pairings. For example patient number
62 had a clinical score of —3-835 and a dermoscopic score of —4-782. This patient was
negative for melanoma on biopsy. The clinical score was ranked 13, that is 13th from
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least positive, and the dermoscopic score was ranked 10. This patient contributes to the
test statistic E only for those values of k between 10 and 12 in that, if the classification
point for diagnosis were in this range, the clinical score X would be a false positive and
the dermoscopic score Y would be a true negative. For values of k less than 10 both scores
would be false positives, and for values of k greater than 12 both would be true negatives.
The kth specific contribution e_k to the overall test statistic is easily computed from the
table by subtracting the total number of errors on test Y from the total number of errors
on test X, where the errors are the sums of the false negative and false positive frequencies.
These are displayed in the last column of the table. These differences are uniformly small,
demonstrating that the two scoring systems are essentially equivalent. The overall test
statistic is 64. The reference distribution, obtained by randomly permuting the pairs and
recomputing the statistic, is displayed in Fig. 2. The two-sided P-value is 0-88. This was
computed using 1000 permutations.

Example 4-2. In patients with clinically localised primary testicular cancer it is important
to determine the necessity for an operation to remove any disease that may have spread
to the retroperitoneal lymph nodes. These nodes can be evaluated by computed tomo-
graphy to determine the necessity for this operation. In our data set the size of the largest
node detected by computed tomography was used as the diagnostic criterion, and the
goal of the study was to determine if the accuracy of this criterion is different for anterior
versus posterior nodes. The 'gold standard' diagnosis is the presence of any nodal disease
at surgery. In the data set in Table 5, from the, as yet unpublished report by S. Hilton
et al. 'CT for detection of retroperitoneal lymph node metastases in patients with clinical
stage 1 testicular nonseminomatous germ cell cancer: assessment of size criteria', the test
result recorded is the average size in millimeters of the largest node detected by three
independent readers. Since anything smaller than 4 millimeters is considered undetectable
by the naked eye, many observations were designated as undetectable, recorded as 3-9 in
the table but representing <4mm. If the null hypothesis that the sizes of anterior and
posterior nodes possess equivalent diagnostic information is true, then we can infer that
the measured sizes are exchangeable, and so we have used the test based on the raw scores
rather than the ranked scores as in Example 4-1.

This data set has the unusual feature of having a number of pairs with tied scores, even
though the test results are continuous. There are many ties at the undetectable level 3-9
and several ties at higher levels. In fact there are only eleven values of the ranks at which
both tests exhibit a jump, that is neither spans the rank with a tie. These occur at ranks
48, 49, 53, 58, 59, 70, 62, 63, 66, 67, 68. Instead of computing the test statistic at every
possible value of k we have restricted it to these eleven values. This leads to a test statistic
of 64 and a P-value of 0033, based on 1000 random permutations.

5. DISCUSSION

The methodology derived in this paper is directly applicable only to continuous data
from paired experiments. The paired design is commonly employed in comparisons of
diagnostic tests. However, unpaired comparisons are frequently used also. If the tests are
evaluated on the same metric, then an obvious generalisation would be to create an
analogous error function based on the total number of errors for each diagnostic test at
each rank of the combined sample, and to obtain a reference distribution by using random
permutations of the combined sample of X and Y values within the diseased and non-
diseased categories respectively. If the test results are not directly exchangeable then the
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Table 5. Data for Example 4-2
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Patient Disease
identifier Test X Test Y status

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35

3-9
5-3
4-6
3-9
7-7
3-9
3-9
5-3
3-9
4-3
50
90

4-6
5-3
3-9
3-9
3-9
4-0
3-9
3-9
5-5
3-9
3-9
5-7

3-9
3-9
3-9
3-9
3-9
6-6
50
3-9
3-9
7-6
3-9

3-9
50
3-9
3-9
40
4.9
3-9
3-9
3-9
4-3
4-3
3-9

3-9
3-9
3-9
3-9
3-9
3-9
3-9
7-3
4-6
3-9
3-9
3-9

3-9
3-9
3-9
5-6
3-9
5-5
3-9
6-3
3-9
3-9
3-9

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

Patient Disease
identifier Test X Test Y status

36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70

3-9
3-9
3-9
5-3
3-9
9-6
3-9
4-6
3-9

17-6
5-6

21 3

5-6
8-7
140
18-6
3-9
4-6
7-6
9-3
150
3-9
6-3
3-9

4-3
5-3
6-6
150
50
3-9
190
150
60
7-3
14-3

3-9 0
3-9 0
3-9 0
4-9 0
3-9 0
3-9 1
3-9 1
4-9 1
4-9 1
4-9 1
3-9 1
3-9 1

3-9 1
3-9 1
3-9 1
3-9 1
4-3 1
3-9 1
9-3 1
5-6 1
7-6 1
5-9 1
3-9 1
3-9 1

3-9 1
6-6 1
3-9 1
9-3 1
3-9 1
3-9 1
3-9 1
3-9 1
6-3 1
3-9 1
3-9 1

ranks of the individual tests would have to be standardised first. This could lead to ties
in the permuted samples depending on the sample sizes in the two test groups. Such an
approach would be dependent on the assumptions that test results are independent and
identically distributed within disease categories, and the asymptotic population preva-
lences of disease are the same in the two independent test samples, which is commonly
not the case in retrospective comparisons of diagnostic tests. These extensions require
further research to evaluate the properties of the methods.

Another very common application of ROC analysis is in the comparison of subjective
radiological tests, where the test results are recorded as subjective ordinal classifications,
often on a five-point scale. Since even in a paired experiment the ordinal classification
points will not be calibrated between the two diagnostic tests, the ratings are, in general,
not exchangeable. Furthermore, the ranks are equivalent to the ratings in this setting, so
this highlights the problem crated for our method by tied test results between patients. In
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fact the theory in § 2 indicates that in comparing ROC curves, the calibration points for
comparisons are the equivalent rankings in the rank-order statistic. With ordinal data we
can only obtain truly nonparametric estimates of the ROC curves at the limited number
of pre-defined classification points defined by the rank order statistic, that is p — 1 points
for a rating scale with p categories. Moreover these rankings will invariably be different
for the two diagnostic tests. In this setting any evaluation of equivalence of the ROC curves
implicitly requires a probability model for the curves to facilitate extrapolation to the
other potential classification points. This reasoning suggests that a fully nonparametric
comparison of ROC curves is theoretically impossible for classified data. Nonetheless,
adaptations of our permutation-based approach to this setting may still possess good
statistical properties, and further research is needed in this area.
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APPENDIX

Consistency of the permutation test
We will show that the permutation test is consistent when the ROC curves are unequal. For any

0 < z < 1, the expected value of &{z; X, Y, D) is given by

= 9{F,(yz)-Fx(xz)}+(l-0){Gx(xz)-G,(yz)}. (Al)

However, from (1) it is easily seen that

Fx(xz)>F,(yz)oGx(xz)<Gy(yz).

Therefore E{S(z; X, Y, D)} = 0 if and only if Fx(xz) = Fy{yz) and Gx(xz) = G,{yz). Thus the expec-
tation is zero if and only if the ROC curves are identical.

Observe that the function W{z) as denned in (3) is the average of independent and identi-
cally distributed random functions, S{r, X, Y, D), and so it converges to its expected value
E{&(z\ X, Y, £>)} almost surely. Thus

W= I \W{z)\dz^ I \E{S(z;X,Y,D))\dz, (A2)
Jo Jo

almost surely as n goes to infinity. Since the distribution functions are continuous, we can see from
(Al) that E{S{z; X, Y, D)} is continuous. Hence, from the previous paragraph, W converges to zero
if the ROC curves are identical and to a positive number, say c, if they are not.

Since the ROC curves are invariant under monotone transformations, we assume, without loss
of generality, that the marker values are between 0 and 1, and Mx and My are uniform. Let P
represent the true probability distribution of the markers. The permutation of the two markers
within a subject symmetrises the joint distributions of the markers because the permutation mechan-
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ism ensures that the conditional probability of an observed marker pair is 0-5, that is

pr[X = x, Y=y\(X, Y) e {(x, y), (y, x)}] = pr[X = y, Y=x\(X, Y) e {(x, y), (y, x)}] = 05.

Let Q denote the probability distribution of the markers derived from P by the above symmetris-
ation. Observe that P and Q are the same if the ROC curves are identical and the markers are
exchangeable. Thus the permutation mechanism does not alter the distribution under the null
hypothesis, and the test has the correct size. When the curves are unequal, the above symmetrisation
renders the two ROC curves identical under Q because it enforces exchangeability of the joint
distribution.

If the ROC curves from P are not identical, by (A2) W converges almost surely to 0 under Q and
to a constant c>0 under P. Observe that

)^l, (A3)

for any 0 < c' < c, as n goes to infinity. So we can make the probabilities arbitrarily close to 1, for
all sample sizes larger than an appropriately chosen n.

For any given observed data set, let Wa-a) denote the 1 — a quantile of the statistic W derived
from all the 2" permutations of markers, where n is the sample size. Observe that the value of
Wa-a) remains the same regardless of which one of the 2" permutations was actually observed.
Thus the distribution of Wa-a) depends on P only through Q since the two distributions differ
only in the individual probabilities of observing each of the 2" permutations, conditioned on
observing one of the permutations. That is

^ a , < c') = PTQ(W(1_X) < c')

for all d > 0. We need to show that, for any c' > 0, prQ(Wa^x) ^ c') can be made as close to 1 as
desired. Since

c' and W> Wa_x))

a)>d), (A4)

from (A3) prc(W^1_a) > c')->0. Finally, observe that

prP(W> Wa_a))>PTP(W> W{1.a) and % - ^ c ' )

c' and Wa.a)^c')

Since the power of the test is pTP(W> \Va-a)), and since by (A3) and (A4) both prP(W> c') and
Pr/>(W(i-a) ^ c ) converge to 1, it follows that the power of the test converges to 1 unless the null
hypothesis is true.
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