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SUMMARY. We developed a permutation test in our earlier paper (Venkatraman and Begg, 1996, Biometrika 
83, 835-848) to test the equality of receiver operating characteristic curves based on continuous paired data. 
Here we extend the underlying concepts to develop a permutation test for continuous unpaired data, and 
we study its properties through simulations. 
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1. Introduction 
In clinical research, we are often faced with a classification 
problem where the outcome is binary. For example, we may 
be interested in a new continuously valued marker for diag- 
nosing a disease or a model for predicting the response to a 
new treatment. The accuracy of a classification rule in such 
a problem is summarized by the two misclassification rates, 
which vary with the threshold level used for the rule. Re- 
ceiver operating characteristic (ROC) curves, where the true- 
positive rates are plotted against the false-positive rate for all 
classification points, are a popular method for displaying the 
misclassification rates in these problems (Swets and Pickett, 
1982). The ROC curves for two diagnostic tools or models for 
classification are identical if and only if, for every classification 
point from one method, there is an equivalent one from the 
other with the same misclassification rates. Thus, the prob- 
lem of comparing alternate diagnostic markers for diagnosing 
a disease or alternate prediction models for response can be 
reduced to one of comparing ROC curves. 

There are two commonly used approaches to comparing 
ROC curves. One is to fit a parametric model to the data, 
such as the binormal model of Dorfman and Alf (1969), and 
test the equality of the parameters (Metz, Wang, and Kron- 
man, 1984). The second is to test the equality of a summary 
measure from the ROC curves, such as the area under the 
curve, obtained either from a parametric model or nonpara- 
metrically. The nonparametric version of the area test was 
developed by Hanley and McNeil (1982, 1983) for both un- 
paired and paired data. The test was refined by DeLong, De- 
Long, and Clarke-Pearson (1988) with their derivation of a 
jackknife estimate of the variance for the area under the ROC 
curve of one or more diagnostic markers from the same sub- 
jects. 

In our earlier paper (Venkatraman and Begg, 1996), we 
developed a fully nonparametric test to compare two ROC 

curves when the data are paired and continuous. This test 
evaluates the equality of the curves at all operating points 
with an appropriate test statistic, whose reference distribution 
is generated by permuting the pooled ranks of the test scores 
within a subject. We showed through Monte Carlo simulations 
that the new test is comparable to a nonparametric test of 
the equality of the two areas under the ROC curves when one 
marker is uniformly better than the other. More importantly, 
the new test is capable of distinguishing ROC curves when 
they cross but have equal areas. In this article, we extend the 
permutation test presented in Venkatraman and Begg (1996) 
to the case of continuous unpaired data, study its properties 
via simulations, and give an example illustrating its use. 

2. Methods 

Let D be a binary response variable of interest and let X 
and Y represent the two independent variables that are the 
predictors of D. For simplicity, in this section, we will let X 
and Y be the two markers used to diagnose the disease status 
D of a subject, where D = 1 represents diseased and D = 0 
normal. Let the distributions of the two markers conditioned 
on the response D be as follows: 

Fx(x) = P(X < x D 1), 

Fy(y) = P(Y < y D 1), 

Gx(x) = P(X < x |D = ), 

Gy(y) = P(Y < y D 0). 

These distribution functions give us the false-negative rates 
(F) and true negative rates (G) for the markers X and Y; the 
ROC curve is a plot of 1-F against 1 -G over all classification 
points. The ROC curves for X and Y are identical if and only 
if, for every classification point x of X, there exists a y for 
Y such that the true- and false-positive rates are equal, i.e., 
Fx (x) = Fy (y) and GX (x) = Gy (y). 
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The calibration of the classification points for comparison of 
the two ROC curves under the null hypothesis can be attained 
as follows. Let the mixture distributions Mx and My be 
defined as 

Msx(x) = KFx(x) + (1- t)Gx(x) 

and 

Mry(y) = KiFy(y) + (1 -K)Gy(y), 

where 0 < i, < 1 is the mixing proportion. If the ROC curves 
are equal, then Mx(x) = My(y) for the calibrated classifi- 
cation points x and y. Thus, if we denote the common value 
by p, then the calibration is given by MSX1 (p) and MI1(p) 
for some 0 < p < 1. If the r, used in the mixture is the true 
probability of disease, then these mixture distributions are the 
unconditional distributions of the markers in the population. 
For notational simplicity, we drop the r, from the subscripts. 

The misclassification probability in classifying a randomly 
chosen subject is the weighted average of the false-positive 
and false-negative rates. Let xp = Mx-1 (p) and yp = My-1 (p) 
be the calibrated classification points. The corresponding mis- 
classification probabilities ex (p) and ey (p) are given by 

ex(p) = K x Fx(xp) + (1 -) x {1 -Gx(xp)l 

ey(p) = K x Fy(yp) + (1 - A) x {1 - Gy(yp)}. (1) 

Observe that ex (p) -ey (p) = ic{Fx (xp) -Fy (yp) } + (1 - 

Kc){Gy(yp) - Gx(xp)} and is identically zero for all p and for 
any 0 < i, < 1 if and only if the ROC curves are equal. 
Thus, testing the equality of the ROC curves can be reduced 
to testing the hypothesis that the parameter 0 = f lex(p) - 

ey (p) dp is zero. Observe also that a graph of i, - e against 
1 - M, where e and M are as defined earlier, is a rotation of 
the ROC curve using the transformation (u, v) -> {(1 - ic)u + 
rv, -(1 - i,)u + iv}. Hence, the parameter 0 is proportional 
to the unsigned area between the two ROC curves. We now 
derive an estimate of 0 from the sample and its reference 
distribution under the null hypothesis. 

2.1 Test Statistic 

In this section, we describe how to estimate the parameter 
0. Let {(Xi,Dxi);i = 1, ...,no +n} and {(YjDyj);j = 
1, ... , Mo + mll} be the data for the two ROC curves, where 
no and mo are the numbers of normal subjects in the data set 
for X and Y and where nl and ml the numbers of diseased 
subjects. Let Fx, FY, G , and Gy be empirical estimates of the 
conditional distributions of the markers X and Y. 

We see that the misclassification rates ex and ey can be 
estimated by substituting the empirical distributions F and 
O for F and G in equation (1). However, in order obtain 
the classification points xp and yp, we need to know the 
distribution functions Mx and My. Since these functions are 
unknown, we approximate them using their empirical values 
given by 

MAx = KFx + (1-)Gx and My = KFy + (1-)Gy. (2) 

Notice that the error rates ex and ey are weighted averages 
of the false-positive and false-negative rates and are not the 
same as the proportion of misclassified subjects in the sample. 
The two are equal only if the sample prevalence of disease 

nl/(no + ni) and ml/(mo + ml) are equal and if i, is set to 
be the common value. The exact computation of an estimate 
&x of ex is given below. 

Let N = no + ni be the total sample size for the first ROC 
curve and let x1 < ... < xn be the distinct marker values in 
the sample. The empirical distributions at xi are given by 

N 

Fx(xi) = no 1 Z I(Xj < xi) x I(Dj = 1) 
j=l 

and 

N 

Gx(xi) = nU ZI(Xj < xi) x I(Dj = 0) 
j=l 

for i 1, ... , n, where I is an indicator function. Let 
us denote Mx (xi) by Pi. Then pi and ex (pi) are approxi- 
mated by 

Pi = KPFx(xi) + (1K- )Gx(xi) 

and 

x(i) x(xi) + (1-){1 - (xi) 

Since ex(0) = I- i, we can set Po and ex(Po) to be zero 
and 1- i, respectively. Observe also that Pn = 1 and 
6x (Pn) =,. Finally, we estimate the function ex(.) by joining 
the points (pi, 6x(pi)),i = O,... , n, by straight lines, giving 
us a continuous, piecewise linear curve. The misclassification 
rate function ey for marker Y is estimated similarly. Finally, 
the estimate 0 of the parameter 0 is calculated as f 6x (p) - 

6y(p) dp. 

2.2 Permutation Reference Distribution 

In the previous section, we demonstrated how we can obtain 
a statistic to test the equality of the ROC curves. We now 
describe the steps needed to obtain a reference distribution to 
conduct the test. Observe that the conditional distributions 
of the random variable M, (X) given D = 1 and D = 0 
are FxMx- (.) and GMx-I(.), respectively, and those of 
My(Y) are FyMy1(.) and GyMy-1(.). Since G and F are 
the true- and false-negative rates, it follows that, under 
the null hypothesis of equal ROC curves, the conditional 
distributions of Mx (X) and My (Y) are equal. We can use this 
equality of distributions to generate a reference distribution 
by permuting the data as follows. 

An ROC curve is invariant under any monotonically 
increasing transformation of the marker. Thus, the statistic 
O defined in the previous section would be unchanged if 
we transformed the markers X and Y using Mx and My, 
respectively. Let us denote the transformed data Mx(X) for 
normal and diseased subjects by {UXii = 1,... , no} and 

{VM, i = 1, ... ,nl}, respectively. Similarly, let {Uyi,i = 
1,... ,mo} and {Vyi,i = 1,... ,} be the transformed 
marker My (Y) for the normal and diseased subjects. Then 
the variables U and V are mutually independent and, under 

the null, UX = UY and Vx - Vy. Let us denote by 
e{(Ux, Vx), (Uy, Vy)} the estimator described in Section 2.1 
that gives 0 for normal and diseased marker values given by 
Us and Vx for marker X and Up and Vy for marker Y. 
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The permuted marker data U* and U* for the normal 
subjects are obtained by pooling the Uxi and Uyi and 
assigning no of them sampled without replacement to the 
x group. Similarly, let Vx and V* denote the permuted 
marker data for the diseased subjects. Let Of e{(U*, V*), 
(Us, V*)} be the parameter estimate for the permuted data. 
Since, under the null hypothesis, the distributions of the U 
and the V are identical, the distributions of 0 and O* are 
identical. Thus, a reference distribution for 0 is given by the 
permutation distribution of 9*, which is obtained either by 
complete enumeration of all permutations or by sampling a 
large number of permutations. 

If the transformations Mx and My are the same, then 
the conditional distributions of the markers are identical in 
their original scale. Thus, the reference distribution can be 
obtained by permuting the marker data directly instead of 
requiring they be transformed. However, it is very unlikely 
that the conditional distributions of the markers are identical 
or that we know the transformations Mx and My. Thus, we 
need to approximate the transformations to obtain a reference 
distribution. Earlier, for the calculation of the test statistic, 
we used the empirical values of Mx and My given by equation 
(2). We use the same functions to approximate U and V to 
obtain the permutation distribution. For normal subjects, let 
Ox = Mx(X) and U& = My(Y), and for diseased subjects, let 
Vx Mx(X) and 7y = My(Y). Let fJx,Vx,Uy, and Vy be 
the approximate transformed data and Us, Vx, U> and Vy 
be the permuted data. Then =e{(Ux, Vx), (Uy, Vy)} and 

O*f{(U, V), (U, V}) } are the observed and permuted 
data estimated of the parameter 0. The p-value of the test 
is given by the ratio of the number of times 9* > 9 to the 
number of permutations. 

Observe that both the test statistic and the reference 
distribution described above are functions of the mixing 
constant r,. While any choice of r, such that 0 < rc < 1 provides 
a valid test, a natural question to ask is how the choice of rc 
affects the power of the test. In our earlier paper, because of 
the paired nature of the data, the sample prevalence of the 
disease for both the markers is the same (Venkatraman and 
Begg, 1996). Hence, we chose i, to be the sample prevalence 
rate of disease, i.e., Ic = ni/(no +n1). This had the advantage 
of reducing M to the empirical distributions of the sample 
and thus we could calculate the test statistic and its reference 
distributions using the ranks of the markers. Since i, is used 
primarily to facilitate the comparison of X and Y marker 
data, we expect the choice of r, to have negligible impact on 
the power of the test. We recommend that the pooled estimate 
of prevalence (nl + ml)/(no + ni + mo + ml) be chosen as 
the value of ic. 

Observe also that the nature of the permutation for 
unpaired data is different from that in the paired data case. 
For paired data, while the marginal distributions of the 
markers are identical, they are not independent. Thus, in 
our earlier paper, we assumed that the marker pairs are 
exchangeable in the transformed scale to ensure that the 
permutation of the marker data within a subject is valid. In 
the unpaired data case, independence ensures the validity of 
the permutation of transformed data. 

In the following section, we evaluate the performance of this 
test and compare it to the nonparametric area test (Hanley 
and McNeil, 1983) using Monte Carlo simulations. We also 
study the effect of the choice of ic on the performance of the 
test. 

3. Monte Carlo Simulations 
The permutation test described above is designed as an 
omnibus test to compare entire ROC curves, as opposed to the 
area test, which compares a summary measure of the curves. 
We conducted a series of Monte Carlo simulations in order 
to assess the performance of the proposed test in relation to 
the area test. In these simulations, the marker values of the 
nondiseased subjects were generated from a standard normal 
distribution and those of the diseased subjects from N(,ux, ax) 
and N(py, a2) for X and Y, respectively. The areas under 
the ROC curve Ax and Ay for our simulation framework are 
given by 1(btx/(l + u2)1/2) and 1D(bty/(I + U2)1/2) where 
1) is the standard normal cumulative distribution function. 
The relationship between the two ROC curves can fall into 
one of two categories. The uniform alternative where one 
curve is uniformly above the other) occurs when ax = ao2 and 
the crossing alternative (where the two curves cross) when 

2X 7 U2. We choose the values of the parameters Aix, 1-Ly, O7, 
and a to give us a variety of Ax and Ay that covers both 
the uniform and the crossing alternative cases. Finally, since 
both the number of subjects and the sample prevalence of 
disease can differ for the two markers, we considered a variety 
of sample size combinations (no, ni, mo, ml) to assess their 
effect on the performance of the test. 

The reference test-in these simulations is the nonparametric 
area test, which compares the areas under the two ROC 
curves. The nonparametric area estimate is the Mann- 
Whitney statistic, and its variance is obtained by the jackknife 
method in DeLong et al. (1988). Since the two areas are 
calculated from mutually independent samples, the variance 
of their difference is the sum of their individual variances. 
The simulation results are based on 2000 replications, and 
the p-value of the permutation test was computed using 1000 
permutations. In these simulations, we set the value of ic to be 
(ni +ml)/(no +ni + mo + ml), which is the pooled estimate 
of disease prevalence. 

We present in Table 1 the proportion of times a nominal 
5% test rejects the null hypothesis for various configurations 
of parameters and sample sizes. The top half of the table 
corresponds to uniform alternatives, which are obtained by 
setting a2 = a2 = 1, while the bottom half corresponds to 
crossing alternatives, which are obtained by setting ax = 1 
and a2 = 4. We chose the difference in areas under the 
two ROC curves A\ to be one of 0,0.1, or 0.2, and for each 
choice of A, we considered two different values for the area 
Ax. The table has two pairs of columns that correspond 
to the two sample size combinations. The total sample size 
Ntot = no +ni +mo +m l is assigned in the ratios (a) 1:1:1:1 
for the first pair and (b) 2:1:1:1 for the second. The total 
sample size Ntot was chosen to give approximately 80% power 
when the curves are unequal. 

The two ROC curves are identical when the curves fall 
in the uniform alternative category and A\ is zero. The first 
two rows of the table correspond to this case and show that 
the permutation test has the correct size. Further simulation 
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Table 1 
The proportion of times the area test (AT) and the 

permutation test (PT) test reject the null hypothesis at a 
nominal 5% level. The top and bottom halves correspond 

to the uniform and crossing alternatives, respectively. 
The parameters pHx, p/, ax, and a2 were chosen to give a 
specified area Ax and difference A (= Ay - Ax). Cases a 
and b correspond to the two different ratios in which the 
total sample size Ntot is distributed to the four groups. 

Case a Case b 

A Ax Ntot AT PT AT PT 

0.0 0.7 200 0.061 0.061 0.047 0.043 
0.8 200 0.052 0.050 0.047 0.047 

0.1 0.7 600 0.739 0.726 0.706 0.680 
0.8 600 0.902 0.896 0.887 0.868 

0.2 0.6 200 0.790 0.780 0.761 0.735 
0.7 200 0.924 0.918 0.905 0.877 

0.0 0.7 600 0.060 0.726 0.052 0.610 
0.8 600 0.047 0.626 0.040 0.539 

0.1 0.7 400 0.524 0.805 0.491 0.720 
0.8 400 0.725 0.882 0.696 0.820 

0.2 0.6 160 0.703 0.765 0.643 0.677 
0.7 160 0.826 0.860 0.806 0.827 

results, not presented here, confirm the accuracy of the 
permutation test. The rest of the table corresponds to unequal 
ROC curves and thus gives us the power of the two tests. 
The power of the area test is a function of the difference 
in areas A\ (which is the signed area between the two ROC 
curves), and the power of the permutation test is a function 
of the parameter 0 (which is proportional to the unsigned 
area between the two ROC curves). Note that the signed and 
unsigned areas are identical for uniform alternatives, whereas 
the unsigned area is larger when the curves cross. 

The next four rows in the top half of the table correspond to 
the powers of the two tests when one ROC curve is uniformly 
better than the other. Since the permutation test is designed 
as an omnibus test to detect any difference in the ROC 
curves, we expect it to have lower power than the area test. 
However, for uniform alternatives, the signed and unsigned 
areas between the two ROC curves, which determine the 
power of the area and the permutation tests, are equal. Thus, 
we expect the power of the two tests to be comparable, and 
the simulation results confirm this. 

The bottom half of the table corresponds to crossing 
alternatives. As we noted earlier, the power of the permuta- 
tion and area tests depends on the unsigned and signed areas 
between the curves. The first two rows in this half of the table, 
where A\ is zero, show that the permutation test can detect 
differences in the curves with high power whereas the area test 
cannot. The next four lines, where curves cross and the areas 
are different, show that the permutation test continues to have 
larger power than the area test. However, the difference in 
the two powers, which is a function of the relative difference 
between the unsigned and signed areas between the curves, 
decreases as the difference in the areas increases. Finally, from 
the two pairs of columns that correspond to cases a and b, we 
see that, regardless of the sample sizes and sample prevalence 

rates of disease, the overall pattern of behavior of the 
permutation test in relation to the area test holds. 

In the simulations above, we chose i, to be the overall 
prevalence of disease. A natural question to ask is whether this 
choice of rc is optimal. We conducted a series of simulations 
to study the effect of r, on the power of the permutation test. 
As in the earlier simulations, we considered both uniform and 
crossing alternatives as well as several sample sizes. For each 
case, we calculated the power for each value of i, in 0.01, 0.05, 
0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99. Data were generated 
independently for each value of i, so that the variability in 
the power of the area test, which does not depend on r,, 

would serve as a benchmark for the natural variation in the 
simulations. Across several sets of parameters and sample 
sizes, the variation in the power of the permutation test was 
incrementally larger than that of the area test. Thus, we feel 
confident that the pooled sample prevalence rate would give 
us power comparable to any other choice of Ki. 

4. Example 

We now present an example to illustrate this method. The 
data for this example comes from a study conducted at the 
Memorial Sloan-Kettering Cancer Center on the use of three- 
dimensional conformal radiation therapy (3DCRT) for the 
treatment of prostate cancer. Patients with prostate cancer 
are treated with either a low dose (7020 Gy) or a high dose 
(7560 Gy) 3DCRT regimen. A side effect of radiation therapy 
for prostate cancer is rectal bleeding, which can occur several 
months after treatment. The dose level is known to be a 
factor that influences rectal bleeding. Since a lower rectal 
volume implies that a larger proportion of rectal wall receives 
radiation and hence has a potential for more damage, rectal 
volume is considered a factor that affects the occurrence of 
rectal bleeding. The question we pose here is whether the 
effect of volume is the same for both dose levels. 

Rectal bleeding typically occurs within 30 months of 
treatment, and thus the study population is restricted 
to patients with at least 30 months follow-up. Since the 
proportion of patients who had rectal bleeding is low and 
the calculation of volume is labor intensive, we undertook 
the following case-control study to assess the effect of rectal 
volume on bleeding. All the bleeders were selected from both 
dose levels and the nonbleeders were sampled randomly within 
dose level (no matching was done). The data consists of the 
rectal volumes of 53 patients (13 bleeders and 40 nonbleeders) 
at the 7020 Gy dose level and 123 patients (41 bleeders and 
82 nonbleeders) at the 7560 Gy dose level. 

The empirical ROC curves for the two dose levels are shown 
in Figure 1. Observe that the two curves cross and appear to 
have similar areas. The estimated areas under the ROC curves 
and their standard errors for the two dose levels are 0.692 
(0.092 SE) and 0.708 (0.047 SE). The area test to compare the 
two ROC curves gives us a p-value of 0.877. The permutation 
test, which compares entire ROC curves, is designed to detect 
differences in markers where the ROC curves cross while 
having similar areas, like the one we observe in this example. 
This test gives us a p-value of 0.346, which was obtained from 
2500 permutations. The permutation distribution of the test 
statistic for this test is also shown in Figure 1. Both the tests 
do not reject the hypothesis that the ROC curves are equal, 
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Figure 1. The ROC curves showing the effect of rectal 
volume on rectal bleeding by dose level are shown in the left 
panel. The solid and dashed lines correspond to 7020 Gy and 
7560 Gy, respectively. The right panel shows the density of the 
square root of the test statistic obtained from the permutation 
distribution. The value of the statistic for the original data is 
shown as a dashed line. 

suggesting that the effect of volume is the same for both dose 
levels. However, the failure to reject the null hypothesis could 
be due to the relatively small sample sizes. For these sample 
sizes, the area test has approximately 62%o power to detect a 
difference in area of 0.2. 

5. Discussion 
The use of a diagnostic test in practice requires a classification 
point and a decision theoretic approach to decide between 
two diagnostic tools. Our earlier paper on the permutation 
method for paired data and the method herein for unpaired 
data give investigators fully nonparametric tests to compare 
entire ROC curves when the data are continuous. Since this 
method tests the equality of the two ROC curves at all 
operating points, it is helpful in detecting crossing ROC 
curves where one test could be genuinely superior despite 
having the same area under the curve. This method could 
easily be adapted to compare the curves over a range of 
interest, as in Wieand et al. (1989), by defining the parameter 
O to be the integral on an interval (a, b) of the mixture 
distributions M instead of the entire (0, 1) interval. The 
mixture distribution provides a calibration of the cutoffs. 
Since, under the null, sensitivities and specificities are equal, 
choosing a range of values of the mixture distributions is 
equivalent to specifying a range of specificities for the two 
markers. The permutation distribution for this test statistic 
is then generated exactly as before. 

Another common problem in medical diagnostics is to 
adjust the comparison of diagnostic methods for covariates. 
When the covariate of interest is categorical with relatively 
few categories, a stratified analysis can be used where 
the permutation is done within stratum. However, if the 
covariate is continuous or has a large number of categories 
with few observations in each, stratification cannot be 
used. Alternately, one can use the semiparametric regression 
models proposed by Pepe (1998), where test scores, summary 
measures of accuracy, or the curves themselves are modeled, 
to adjust for covariates. However, they require assumptions 
that techniques such as stratification do not. Further research 
is needed to develop purely nonparametric approaches to 
address this problem. 
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RE'SUME1 

Dans une publication precedent (Venkatraman and Begg, 
1996, Biometrika 83, 835-848), nous avions presented un 
test de permutations de l'egalite de courbes ROC (Receiver 
Operating Characteristic Curves) dans le cas de donnees 
continues et appariees. Nous generalisons maintenant ce 
concept a un nouveau test de permutations pour donnees 
continues et non appariees, test dont nous etudions les 
proprietes au moyen de simulations. 
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