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SUMMARY.

We developed a permutation test in our earlier paper (Venkatraman and Begg, 1996, Biometrika

83, 835-848) to test the equality of receiver operating characteristic curves based on continuous paired data.
Here we extend the underlying concepts to develop a permutation test for continuous unpaired data, and

we study its properties through simulations.
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1. Introduction

In clinical research, we are often faced with a classification
problem where the outcome is binary. For example, we may
be interested in a new continuously valued marker for diag-
nosing a disease or a model for predicting the response to a
new treatment. The accuracy of a classification rule in such
a problem is summarized by the two misclassification rates,
which vary with the threshold level used for the rule. Re-
ceiver operating characteristic (ROC) curves, where the true-
positive rates are plotted against the false-positive rate for all
classification points, are a popular method for displaying the
misclassification rates in these problems (Swets and Pickett,
1982). The ROC curves for two diagnostic tools or models for
classification are identical if and only if, for every classification
point from one method, there is an equivalent one from the
other with the same misclassification rates. Thus, the prob-
lem of comparing alternate diagnostic markers for diagnosing
a disease or alternate prediction models for response can be
reduced to one of comparing ROC curves.

There are two commonly used approaches to comparing
ROC curves. One is to fit a parametric model to the data,
such as the binormal model of Dorfman and Alf (1969), and
test the equality of the parameters (Metz, Wang, and Kron-
man, 1984). The second is to test the equality of a summary
measure from the ROC curves, such as the area under the
curve, obtained either from a parametric model or nonpara-
metrically. The nonparametric version of the area test was
developed by Hanley and McNeil (1982, 1983) for both un-
paired and paired data. The test was refined by DeLong, De-
Long, and Clarke-Pearson (1988) with their derivation of a
jackknife estimate of the variance for the area under the ROC
curve of one or more diagnostic markers from the same sub-
jects.

In our earlier paper (Venkatraman and Begg, 1996), we
developed a fully nonparametric test to compare two ROC

Diagnostic test; Permutation test; Receiver operating characteristic curves.

curves when the data are paired and continuous. This test
evaluates the equality of the curves at all operating points
with an appropriate test statistic, whose reference distribution
is generated by permuting the pooled ranks of the test scores
within a subject. We showed through Monte Carlo simulations
that the new test is comparable to a nonparametric test of
the equality of the two areas under the ROC curves when one
marker is uniformly better than the other. More importantly,
the new test is capable of distinguishing ROC curves when
they cross but have equal areas. In this article, we extend the
permutation test presented in Venkatraman and Begg (1996)
to the case of continuous unpaired data, study its properties
via simulations, and give an example illustrating its use.

2. Methods

Let D be a binary response variable of interest and let X
and Y represent the two independent variables that are the
predictors of D. For simplicity, in this section, we will let X
and Y be the two markers used to diagnose the disease status
D of a subject, where D = 1 represents diseased and D = 0
normal. Let the distributions of the two markers conditioned
on the response D be as follows:

Fp(z)=P(X <z |D=1),
Fy(y)=P(Y <y|D=1),
Gz(z) = P(X <z | D =0),
Gy(y) =P(Y <y|D=0).

These distribution functions give us the false-negative rates
(F) and true negative rates (G) for the markers X and Y; the
ROC curve is a plot of 1 — F against 1—G over all classification
points. The ROC curves for X and Y are identical if and only
if, for every classification point z of X, there exists a y for
Y such that the true- and false-positive rates are equal, i.e.,
Fy(z) = Fy(y) and Ge(z) = Gy(y)-
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The calibration of the classification points for comparison of
the two ROC curves under the null hypothesis can be attained
as follows. Let the mixture distributions Mke and Mky be
defined as

Mgz (z) = 6F(z) + (1 — k)G (z)
and

Miy(y) = cFy(y) + (1 — ) Gy(y),

where 0 < k < 1 is the mixing proportion. If the ROC curves
are equal, then Mye(z) = Myy(y) for the calibrated classifi-
cation points  and y. Thus, if we denote the common value
by p, then the calibration is given by Mz (p) and M;yl (p)
for some 0 < p < 1. If the x used in the mixture is the true
probability of disease, then these mixture distributions are the
unconditional distributions of the markers in the population.
For notational simplicity, we drop the « from the subscripts.
The misclassification probability in classifying a randomly
chosen subject is the weighted average of the false-positive
and false-negative rates. Let zp = My *(p) and yp = My ! (p)
be the calibrated classification points. The corresponding mis-
classification probabilities e (p) and ey(p) are given by

ex(p) = £ X Fu(zp) + (1 — &) X {1 — Ga(zp)},
ey(p) = r X Fy(yp) + (1 —5) x {1 =Gy(yp)}. (1)

Observe that ex(p) — ey(p) = #{Fx(wp) — Fy(yp)} + (1 -
k){Gy(yp) — Gz(xp)} and is identically zero for all p and for
any 0 < K < 1 if and only if the ROC curves are equal.
Thus, testing the equality of the ROC curves can be reduced
to testing the hypothesis that the parameter 8 = [ |ez(p) —
ey(p)|dp is zero. Observe also that a graph of kK — e against
1 — M, where e and M are as defined earlier, is a rotation of
the ROC curve using the transformation (u,v) — {(1—r)u+
kv, —(1 — k)u + kv}. Hence, the parameter § is proportional
to the unsigned area between the two ROC curves. We now
derive an estimate of 6 from the sample and its reference
distribution under the null hypothesis.

2.1 Test Statistic

In this section, we describe how to estimate the parameter
0. Let {(X;,Dz);% = 1,...,n0 + n1} and {(Y}, Dy;);j =
1,...,mp + m1} be the data for the two ROC curves, where
ng and mg are the numbers of normal subjects in the data set
for X and Y and where ny and mi the numbers of diseased
subjects. Let Fy, ﬁ‘y, Gy, and Gy be empirical estimates of the
conditional distributions of the markers X and Y.

We see that the misclassification rates ez and ey can be
estimated by substituting the empirical distributions F and
G for F and G in equation (1). However, in order obtain
the classification points zp and yp, we need to know the
distribution functions M, and Mjy. Since these functions are
unknown, we approximate them using their empirical values
given by

My = kFp + (1 —k)Gy and My = kEy + (1 —k)Gy. (2)

Notice that the error rates e; and ey are weighted averages
of the false-positive and false-negative rates and are not the
same as the proportion of misclassified subjects in the sample.
The two are equal only if the sample prevalence of disease
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n1/(no + n1) and my/(mo + m1) are equal and if x is set to
be the common value. The exact computation of an estimate
éz of ez is given below.

Let N = ng +n1 be the total sample size for the first ROC
curve and let 1 < --- < zp, be the distinct marker values in
the sample. The empirical distributions at z; are given by

N
Bu(wi) =ni' Y T(X; <) x I(D;j = 1)
=1
and
N
CGolzi) =ng ' Y T(X; < z5) x I(D;j = 0)
j=1
for i = 1,...,n, where Z is an indicator function. Let

us denote Mg (z;) by p;. Then p; and ex(p;) are approxi-
mated by

P = Kﬁ’m(xi) +(1- K)Gx(xz)
and
éx(pi) = kFo(z:) + (1 — w){1 — Go(:)}.

Since ez(0) = 1 — k, we can set pg and é;(Pp) to be zero
and 1 — k, respectively. Observe also that p, = 1 and
éz(Pn) = k. Finally, we estimate the function e (-) by joining
the points (p;, éx(P;)),¢ = 0,...,n, by straight lines, giving
us a continuous, piecewise linear curve. The misclassification
rate function ey for marker Y is estimated similarly. Finally,
the estimate § of the parameter 6 is calculated as [ |éx(p) —

éy(p)|dp.

2.2 Permutation Reference Distribution

In the previous section, we demonstrated how we can obtain
a statistic to test the equality of the ROC curves. We now
describe the steps needed to obtain a reference distribution to
conduct the test. Observe that the conditional distributions
of the random variable Mz(X) given D = 1 and D = 0
are FyMg'(-) and GzM;'(-), respectively, and those of
My(Y) are FyMy_l(') and GyM; *(-). Since G and F are
the true- and false-negative rates, it follows that, under
the null hypothesis of equal ROC curves, the conditional
distributions of Mz (X) and My (Y) are equal. We can use this
equality of distributions to generate a reference distribution
by permuting the data as follows.

An ROC curve is invariant under any monotonically
increasing transformation of the marker. Thus, the statistic
6 defined in the previous section would be unchanged if
we transformed the markers X and Y using M; and My,
respectively. Let us denote the transformed data Mz (X) for
normal and diseased subjects by {Uzi,¢ = 1,...,n9} and
{Vzi,i = 1,...,n1}, respectively. Similarly, let {Uy;,i =
1,...,mo} and {Vy;,%4 = 1,...,m1} be the transformed
marker My (Y) for the normal and diseased subjects. Then
the variables U and V are mutually independent and, under
the null, Ug £ Uy and V; £ Vy. Let us denote by
©{(Uq, Vz), (Uy, Vy)} the estimator described in Section 2.1
that gives 6 for normal and diseased marker values given by
U, and V; for marker X and Uy and Vy for marker Y.
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The permuted marker data Uj and Uj for the normal
subjects are obtained by pooling the Uz, and Uy; and
assigning no of them sampled without replacement to the
z group. Similarly, let Vi and Vj denote the permuted
marker data for the diseased subjects. Let §* = ©{(U%, V%),
(Uy, V})} be the parameter estimate for the permuted data.
Since, under the null hypothesis, the distributions of the U
and the V are identical, the distributions of 6 and 0* are
identical. Thus, a reference distribution for 6 is given by the
permutation distribution of é*, which is obtained either by
complete enumeration of all permutations or by sampling a
large number of permutations.

If the transformations M; and My are the same, then
the conditional distributions of the markers are identical in
their original scale. Thus, the reference distribution can be
obtained by permuting the marker data directly instead of
requiring they be transformed. However, it is very unlikely
that the conditional distributions of the markers are identical
or that we know the transformations My and My. Thus, we
need to approximate the transformations to obtain a reference
distribution. Earlier, for the calculation of the test statistic,
we used the empirical values of My and My given by equation
(2). We use the same functions to approximate U and V to
obtain the permutation distribution. For normal subjects, let
Uz = Mz (X) and Uy = M, (Y), and for diseased subjects, let
Ve = Mz(X) and Vyy = My(Y). Let Uz, Vg, Uy, and Vy be
the approximate transformed data and U%, V%, fJ;, and Vz‘,
be the permuted data. Then § = ©{(Uz, V2), (Uy, V,)} and
0* = ©{(U%, V%), (U5, V;)} are the observed and permuted
data estimated of the parameter 6. The p-value of the test
is given by the ratio of the number of times 6* > 6 to the
number of permutations.

Observe that both the test statistic and the reference
distribution described above are functions of the mixing
constant k. While any choice of x such that 0 < x < 1 provides
a valid test, a natural question to ask is how the choice of K
affects the power of the test. In our earlier paper, because of
the paired nature of the data, the sample prevalence of the
disease for both the markers is the same (Venkatraman and
Begg, 1996). Hence, we chose « to be the sample prevalence
rate of disease, i.e., kK = n1/(ng+mn1). This had the advantage
of reducing M to the empirical distributions of the sample
and thus we could calculate the test statistic and its reference
distributions using the ranks of the markers. Since x is used
primarily to facilitate the comparison of X and Y marker
data, we expect the choice of k to have negligible impact on
the power of the test. We recommend that the pooled estimate
of prevalence (ny +m1)/(no + n1 + mo + m1) be chosen as
the value of k.

Observe also that the nature of the permutation for
unpaired data is different from that in the paired data case.
For paired data, while the marginal distributions of the
markers are identical, they are not independent. Thus, in
our earlier paper, we assumed that the marker pairs are
exchangeable in the transformed scale to ensure that the
permutation of the marker data within a subject is valid. In
the unpaired data case, independence ensures the validity of
the permutation of transformed data.
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In the following section, we evaluate the performance of this
test and compare it to the nonparametric area test (Hanley
and McNeil, 1983) using Monte Carlo simulations. We also
study the effect of the choice of k on the performance of the
test.

3. Monte Carlo Simulations

The permutation test described above is designed as an
omnibus test to compare entire ROC curves, as opposed to the
area test, which compares a summary measure of the curves.
We conducted a series of Monte Carlo simulations in order
to assess the performance of the proposed test in relation to
the area test. In these simulations, the marker values of the
nondiseased subjects were generated from a standard normal
distribution and those of the diseased subjects from N(uz, 0329)
and N(/.Ly,a'%) for X and Y, respectively. The areas under
the ROC curve Az and Ay for our simulation framework are
given by @(pz/(1 + 02)1/2) and ®(uy/(1 + 05)1/2), where
® is the standard normal cumulative distribution function.
The relationship between the two ROC curves can fall into
one of two categories. The uniform alternative (where one
curve is uniformly above the other) occurs when o3 = ag and
the crossing alternative (where the two curves cross) when
o2 #* 05 . We choose the values of the parameters pz, py, o2,
and ag to give us a variety of Az and Ay that covers both
the uniform and the crossing alternative cases. Finally, since
both the number of subjects and the sample prevalence of
disease can differ for the two markers, we considered a variety
of sample size combinations (ng,n1,mg,m1) to assess their
effect on the performance of the test.

The reference test in these simulations is the nonparametric
area test, which compares the areas under the two ROC
curves. The nonparametric area estimate is the Mann—
Whitney statistic, and its variance is obtained by the jackknife
method in DeLong et al. (1988). Since the two areas are
calculated from mutually independent samples, the variance
of their difference is the sum of their individual variances.
The simulation results are based on 2000 replications, and
the p-value of the permutation test was computed using 1000
permutations. In these simulations, we set the value of s to be
(n1+ma)/(no +n1+mp+mi), which is the pooled estimate
of disease prevalence.

We present in Table 1 the proportion of times a nominal
5% test rejects the null hypothesis for various configurations
of parameters and sample sizes. The top half of the table
corresponds to uniform alternatives, which are obtained by
setting 02 = 0’5 = 1, while the bottom half corresponds to
crossing alternatives, which are obtained by setting o2 =1
and 05 = 4. We chose the difference in areas under the
two ROC curves A to be one of 0,0.1, or 0.2, and for each
choice of A, we considered two different values for the area
Agz. The table has two pairs of columns that correspond
to the two sample size combinations. The total sample size
Niot = ng +mn1 +mg+my is assigned in the ratios (a) 1:1:1:1
for the first pair and (b) 2:1:1:1 for the second. The total
sample size Niot was chosen to give approximately 80% power
when the curves are unequal.

The two ROC curves are identical when the curves fall
in the uniform alternative category and A is zero. The first
two rows of the table correspond to this case and show that
the permutation test has the correct size. Further simulation
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Table 1
The proportion of times the area test (AT) and the

permutation test (PT) test reject the null hypothesis at a
nominal 5% level. The top and bottom halves correspond

to the uniform and crossing alternatives, respectively.
The parameters pz, py, 02, and 05 were chosen to give a
specified area Ax and difference A (= Ay — Ag). Cases a
and b correspond to the two different ratios in which the

total sample size Niot is distributed to the four groups.

Case a Case b
A Az Niot AT PT AT PT
0.0 0.7 200 0.061 0.061 0.047 0.043
0.8 200 0.052 0.050 0.047 0.047
0.1 0.7 600 0.739 0.726 0.706 0.680
0.8 600 0.902 0.896 0.887 0.868
0.2 0.6 200 0.790 0.780 0.761 0.735
0.7 200 0.924 0.918 0.905 0.877
0.0 0.7 600 0.060 0.726 0.052 0.610
0.8 600 0.047 0.626 0.040 0.539
0.1 0.7 400 0.524 0.805 0.491 0.720
0.8 400 0.725 0.882 0.696 0.820
0.2 0.6 160 0.703 0.765 0.643 0.677
0.7 160 0.826 0.860 0.806 0.827

results, not presented here, confirm the accuracy of the
permutation test. The rest of the table corresponds to unequal
ROC curves and thus gives us the power of the two tests.
The power of the area test is a function of the difference
in areas A (which is the signed area between the two ROC
curves), and the power of the permutation test is a function
of the parameter 6 (which is proportional to the unsigned
area between the two ROC curves). Note that the signed and
unsigned areas are identical for uniform alternatives, whereas
the unsigned area is larger when the curves cross.

The next four rows in the top half of the table correspond to
the powers of the two tests when one ROC curve is uniformly
better than the other. Since the permutation test is designed
as an omnibus test to detect any difference in the ROC
curves, we expect it to have lower power than the area test.
However, for uniform alternatives, the signed and unsigned
areas between the two ROC curves, which determine the
power of the area and the permutation tests, are equal. Thus,
we expect the power of the two tests to be comparable, and
the simulation results confirm this.

The bottom half of the table corresponds to crossing
alternatives. As we noted earlier, the power of the permuta-
tion and area tests depends on the unsigned and signed areas
between the curves. The first two rows in this half of the table,
where A is zero, show that the permutation test can detect
differences in the curves with high power whereas the area test
cannot. The next four lines, where curves cross and the areas
are different, show that the permutation test continues to have
larger power than the area test. However, the difference in
the two powers, which is a function of the relative difference
between the unsigned and signed areas between the curves,
decreases as the difference in the areas increases. Finally, from
the two pairs of columns that correspond to cases a and b, we
see that, regardless of the sample sizes and sample prevalence
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rates of disease, the overall pattern of behavior of the
permutation test in relation to the area test holds.

In the simulations above, we chose x to be the overall
prevalence of disease. A natural question to ask is whether this
choice of k is optimal. We conducted a series of simulations
to study the effect of x on the power of the permutation test.
As in the earlier simulations, we considered both uniform and
crossing alternatives as well as several sample sizes. For each
case, we calculated the power for each value of  in 0.01, 0.05,
0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99. Data were generated
independently for each value of x so that the variability in
the power of the area test, which does not depend on x,
would serve as a benchmark for the natural variation in the
simulations. Across several sets of parameters and sample
sizes, the variation in the power of the permutation test was
incrementally larger than that of the area test. Thus, we feel
confident that the pooled sample prevalence rate would give
us power comparable to any other choice of .

4. Example

We now present an example to illustrate this method. The
data for this example comes from a study conducted at the
Memorial Sloan-Kettering Cancer Center on the use of three-
dimensional conformal radiation therapy (3DCRT) for the
treatment of prostate cancer. Patients with prostate cancer
are treated with either a low dose (7020 Gy) or a high dose
(7560 Gy) 3DCRT regimen. A side effect of radiation therapy
for prostate cancer is rectal bleeding, which can occur several
months after treatment. The dose level is known to be a
factor that influences rectal bleeding. Since a lower rectal
volume implies that a larger proportion of rectal wall receives
radiation and hence has a potential for more damage, rectal
volume is considered a factor that affects the occurrence of
rectal bleeding. The question we pose here is whether the
effect of volume is the same for both dose levels.

Rectal bleeding typically occurs within 30 months of
treatment, and thus the study population is restricted
to patients with at least 30 months follow-up. Since the
proportion of patients who had rectal bleeding is low and
the calculation of volume is labor intensive, we undertook
the following case—control study to assess the effect of rectal
volume on bleeding. All the bleeders were selected from both
dose levels and the nonbleeders were sampled randomly within
dose level (no matching was done). The data consists of the
rectal volumes of 53 patients (13 bleeders and 40 nonbleeders)
at the 7020 Gy dose level and 123 patients (41 bleeders and
82 nonbleeders) at the 7560 Gy dose level.

The empirical ROC curves for the two dose levels are shown
in Figure 1. Observe that the two curves cross and appear to
have similar areas. The estimated areas under the ROC curves
and their standard errors for the two dose levels are 0.692
(0.092 SE) and 0.708 (0.047 SE). The area test to compare the
two ROC curves gives us a p-value of 0.877. The permutation
test, which compares entire ROC curves, is designed to detect
differences in markers where the ROC curves cross while
having similar areas, like the one we observe in this example.
This test gives us a p-value of 0.346, which was obtained from
2500 permutations. The permutation distribution of the test
statistic for this test is also shown in Figure 1. Both the tests
do not reject the hypothesis that the ROC curves are equal,
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Figure 1. The ROC curves showing the effect of rectal
volume on rectal bleeding by dose level are shown in the left
panel. The solid and dashed lines correspond to 7020 Gy and
7560 Gy, respectively. The right panel shows the density of the
square root of the test statistic obtained from the permutation
distribution. The value of the statistic for the original data is
shown as a dashed line.

suggesting that the effect of volume is the same for both dose
levels. However, the failure to reject the null hypothesis could
be due to the relatively small sample sizes. For these sample
sizes, the area test has approximately 62% power to detect a
difference in area of 0.2.

5. Discussion

The use of a diagnostic test in practice requires a classification
point and a decision theoretic approach to decide between
two diagnostic tools. Our earlier paper on the permutation
method for paired data and the method herein for unpaired
data give investigators fully nonparametric tests to compare
entire ROC curves when the data are continuous. Since this
method tests the equality of the two ROC curves at all
operating points, it is helpful in detecting crossing ROC
curves where one test could be genuinely superior despite
having the same area under the curve. This method could
easily be adapted to compare the curves over a range of
interest, as in Wieand et al. (1989), by defining the parameter
0 to be the integral on an interval (a,b) of the mixture
distributions M instead of the entire (0,1) interval. The
mixture distribution provides a calibration of the cutoffs.
Since, under the null, sensitivities and specificities are equal,
choosing a range of values of the mixture distributions is
equivalent to specifying a range of specificities for the two
markers. The permutation distribution for this test statistic
is then generated exactly as before.

Another common problem in medical diagnostics is to
adjust the comparison of diagnostic methods for covariates.
When the covariate of interest is categorical with relatively
few categories, a stratified analysis can be used where
the permutation is done within stratum. However, if the
covariate is continuous or has a large number of categories
with few observations in each, stratification cannot be
used. Alternately, one can use the semiparametric regression
models proposed by Pepe (1998), where test scores, summary
measures of accuracy, or the curves themselves are modeled,
to adjust for covariates. However, they require assumptions
that techniques such as stratification do not. Further research
is needed to develop purely nonparametric approaches to
address this problem.

Biometrics, December 2000
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RESUME

Dans une publication précédente (Venkatraman and Begg,
1996, Biometrika 83, 835-848), nous avions présenté un
test de permutations de ’égalité de courbes ROC (Receiver
Operating Characteristic Curves) dans le cas de données
continues et appariées. Nous généralisons maintenant ce
concept & un nouveau test de permutations pour données
continues et non appariées, test dont nous étudions les
propriétés au moyen de simulations.
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