library (nnet)
entrena <- sample (nrow(iris), nrow(iris)/2) red <- nnet (Species~., iris[entrena,], size=0, skip=TRUE)
summary (red) library (NeuralNetTools) plotnet (red)
predict (red, iris[-entrena,]) predict (red, iris[-entrena,], type="class") -> predicciones
matriz <- table (iris[-entrena,"Species"], predicciones) prop.table (matriz, 1)
plot (Petal.Width ~ Petal.Length, iris[-entrena,], col = Species) plot (Petal.Width ~ Petal.Length, iris[-entrena,], col = (Species!=predicciones)+1, pch=16)
red <- nnet (Species~., iris[entrena,], size=3) garson(red) olden(red)
library (neuralnet)
entrena <- sample (nrow(mtcars), nrow(mtcars)/2)
red <- neuralnet (mpg+am+vs~wt+qsec+hp, mtcars[entrena,], hidden=0) red <- neuralnet (mpg+am+vs~wt+qsec+hp, mtcars[entrena,], hidden=2) red <- neuralnet (mpg+am+vs~wt+qsec+hp, mtcars[entrena,], hidden=c(3,2)) plot (red)
compute (red, mtcars[-entrena, c("wt","qsec","hp")]) predict (red, mtcars[-entrena, c("wt","qsec","hp")]) predict (red, mtcars[-entrena,])
library ("RSNNS") irisbar <- iris[sample(nrow(iris)),] dfValues <- irisbar[,1:4]
dfTargets <- decodeClassLabels (irisbar[,5]) df <- splitForTrainingAndTest (dfValues, dfTargets, ratio=0.15)
df <- normTrainingAndTestSet (df) red <- mlp (df$inputsTrain, df$targetsTrain, size = c (4, 3)) red <- rbf (df$inputsTrain, df$targetsTrain, size = 4) red <- rbfDDA(df$inputsTrain, df$targetsTrain) predicciones <- predict (red, df$inputsTest)
confusionMatrix (df$targetsTrain, fitted (red))
confusionMatrix (df$targetsTest, predicciones)
red
weightMatrix (red) summary (red) extractNetInfo (red)