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Abstract

Human Reliability Analysis aims at identifying, quantifying and proposing solutions to human factors caus-
ing hazardous consequences. Quantifying the influence of the human factors gives rise to human error
probabilities, whose estimation is a cumbersome problem. Since these human factors are usually related to
other organisational or technological factors, it has been proposed to apply probabilistic graphical models,
such as Bayesian or credal networks. However, these can be problematic when conditional probabilities on
missing data are involved. While the solutions proposed so far combine frequentist and subjective approaches
and are in general not robust to small modifications in the dataset, in this paper we propose an alternative
based on distortion models, which are a type of imprecise probabilities. We perform a comparative analysis,
showing that our proposal is consistent with the previous studies while giving rise to robust estimations.
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1. Introduction

Major accidents in industry may have catas-
trophic consequences, and for this reason it is of the
utmost importance to have techniques that allow
measuring, and then reduce, the associated risks.5

In this respect, human reliability analysis (HRA)
collects the different qualitative and quantitative
methods that aim to analyse the human errors in-
volved in these accidents. The former seek to iden-
tify the factors involved in the human errors and10

the latter measure the extent of these errors. By
means of the quantitative approach, the computa-
tion of human error probabilities (HEP) is made.

There are many HRA techniques that have been
successfully employed in the estimation of HEP and15

the associated risks; we may consider for instance
the SLIM method (Kirwan, 1994; Noroozi et al.,
2013; Svenson, 1989) in which the preference for a
set of options is quantified based on expert judg-
ment; HEART (Ward et al., 2013; Williams, 1986),20
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that modifies the estimations of HEP taking into
account the Error Promoting Conditions (EPC); or
THERP (Humphreys, 1995; Swain & Guttmann,
1983), that combines a dataset of error probabilities
suitably modified by the assessor using the Perfor-25

mance Shaping Factors (PSF). We refer to (Kirwan,
1996; Kirwan et al., 1997; Kirwan, 1997) for a vali-
dation of some of these techniques.

One of the main contributions in HRA is the
Swiss Cheese Model developed by Reason (1990),30

that shows that major accidents are usually due to
a combination of several errors, both human caused
and not, instead of a single one. Based on this,
several HRA methods take into account the vari-
ety of factors and the interaction between them;35

this is for instance the case of ATHEANA (Cooper
et al., 1996), CAHR (Sträter, 2000) or CREAM
(Hollnagel, 1998).

One of the main challenges when performing a
rigorous HEP analysis with the above methods is40

that there may be some degree of subjectivity in
the models because of the role the assessor plays; in
addition, the use of several experts may entail hav-
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ing to aggregate preferences and resolve disagree-
ments. For this reason, it has also been advocated45

the use of methods that depend only on the avail-
able data. However, it is also difficult to find a
complete dataset with information about major ac-
cidents with a unified taxonomy. After some earlier
studies in (Bellamy et al., 2007), Moura et al. (2015,50

2016) created the Multi-attribute Technological Ac-
cidents Dataset, MATA-D, with information about
238 major accidents that occurred in different in-
dustries from 1953 to 2013, using reliable sources
such as governments, regulators or insurance com-55

panies. Following the CREAM taxonomy (Holl-
nagel, 1998), they analysed the presence of 53 differ-
ent factors in each accident, splitting them into or-
ganisational, technological and person-related fac-
tors.60

The MATA-D dataset was statistically analysed
in (Moura et al., 2016), showing that in the vast
majority of accidents there was a combination of
the three families of errors. Moreover, Morais et al.
(2019a,b) built a Bayesian network gathering the65

conditional dependence between the factors. While
Bayesian networks have been advocated in the HRA
context for some time (see, among many others,
Groth & Mosleh (2011); Islam et al. (2018, 2020);
Mkrtchyan et al. (2015); Mu et al. (2015)) due70

to their efficient representation of the probabilis-
tic information and the dependencies between the
nodes, Morais et al. (2019a,b) noticed that speci-
fying the conditional probabilities can be quite ar-
bitrary when unobserved events enter the picture.75

They propose to tackle this issue by considering in-
stead a credal network, that allow for sets of prob-
ability measures instead of a single one to be as-
sessed on each node. In this manner, they consider
a fully conservative (vacuous) model when condi-80

tioning must be done on an unobserved event, and
proceed with the standard algorithms for credal
networks to obtain a set of estimations for the HEP.
The use of credal networks is in line with other
authors that advocated the use of tools from the85

imprecise probability theory in reliability engineer-
ing, such as Zhang et al. (2018), who proposed the
use of a credal network approach in the analysis
of maritime accidents, or (Coolen, 1997; Coolen &
Newby, 1994), who proposed the use of the impre-90

cise Dirichlet model in reliability analysis.
While we agree with Morais et al. that a credal

network approach is the path to follow in situations
of imprecise or missing information, we think that
the vacuous approach they consider has a couple of95

issues that may be overcome using tools from im-
precise probability theory. On the one hand, the
results obtained are not necessarily robust: by just
modifying one observation from the dataset we can
eliminate all zero probabilities from the condition-100

ing events, and this would lead to much more pre-
cise estimations of the HEP. On the other hand,
the approach alternates between a purely frequen-
tist non-robust approach (when there is some ob-
servation about the conditional parent nodes in the105

credal network) with an overly cautious subjective
approach (when there is not) in the estimation of
the probabilities.

We believe that these two issues can be ad-
dressed more efficiently by considering a robust ap-110

proach based on distortion or neighbourhood mod-
els (Destercke et al., 2022; Montes et al., 2020a,b),
which are sets of probabilities built around a prob-
ability measure in terms of a distortion parameter
and a distance function. They include as partic-115

ular cases some of the usual models employed in
robust statistics (Huber, 1981) such as the linear
vacuous model (Walley, 1991) or the Kolmogorov
model, among others, and they are connected to
the mathematical theory of imprecise probabilities120

(Walley, 1991). Moreover, in some cases they allow
to overcome the issues related to conditioning on
events of zero probability.

Credal networks have been very scarcely em-
ployed in the context of HRA, with the few ex-125

ceptions discussed earlier; this paper contributes to
illustrate their usefulness in this framework and in-
troduces the novelty of using distortion models to
give a robust model of the uncertainty in each node.

The paper is organised as follows: after recalling130

the basics of Bayesian and credal networks (Sec-
tion 2) and distortion models (Section 3), we ex-
plain in Section 4 the use of credal networks by
Morais et al. in HRA, and our approach based on
some types of distortion models. Next, we perform135

a comparison of the estimations obtained between
the two approaches in Section 5. Our final com-
ments are given in Section 6.

2. Bayesian and credal networks

2.1. Bayesian networks140

One efficient graphical representation of the un-
certainty associated with a complex experiment is
by means of Bayesian networks (Pearl, 1988), which
are probabilistic graphical models encoding the de-
pendencies between the different variables as well145

2



as the associated (conditional) probability distri-
butions.
Formally, a Bayesian network is a directed acyclic

graph where the nodes correspond to the variables
{X1, . . . , Xn}, and the edges represent the depen-150

dencies between them. An edge Xi → Xj between
two nodes Xi, Xj (i ̸= j) means that there is condi-
tional dependence between the parent (Xi) and the
child (Xj). The probabilistic information is thus
represented by means of the conditional distribu-155

tion of each node, given its parents, as well as the
marginal distributions on the nodes without par-
ents. From this information, it is possible to derive
the joint distribution using the law of total proba-
bility and the assumptions of conditional indepen-160

dence.
Figure 1 shows an example of a Bayesian net-

work with two parents (XA and XB , in green)
and one child (XC , in blue), the three of them bi-
nary variables indicating the occurrence, or not, or165

the events A, B and C, respectively. The edges
XA → XC and XB → XC show a conditional de-
pendence of XC on the values of the parents XA

and XB , i.e., the occurrence of C depends on the
occurrence of the events A and B. However, since170

there is no arc between XA and XB , events A and
B are assumed to be statistically independent.

XA XB

XC

Figure 1: Example of the relationship between events.

In this example, we must specify the probability
of occurrence of A, P (XA = A), and that of B,
P (XB = B). Next, we must specify the conditional
probability of occurrence of C given the occurrence
or not of the parents, A and B. This would allow
us for instance to obtain

P (XA = A,XB = B,XC = C) =

P (XC = C|XA = A,XB = B)P (XB = B)P (XA = A),

using the independence between A and B.

2.2. Credal networks

While Bayesian networks provide an efficient tool175

for managing the probabilistic information associ-
ated with an experiment, there are situations where

this information may be imprecisely or ill-specified,
due for instance to the existence of missing data or
conflicting sources of information. This has given180

rise to a number of models, usually referred to under
the common term imprecise probabilities (Augustin
et al., 2014).

The question naturally arises of whether it is pos-
sible to extend the ideas behind Bayesian networks185

to be able to deal also with these scenarios of im-
precise information. This has produced the model
called credal networks, from the seminal work by
Lamata & Moral (1990) as well as the works in
(Cano et al., 1993; Cozman, 2000; Fagiuoli & Zaf-190

falon, 1998); we refer to (Mauá & Cozman, 2020)
for a recent survey on the topic.

A credal network is a generalisation of a Bayesian
network where, instead of considering (conditional)
probability measures, the uncertainty is represented
using a closed and convex set of probability mea-
sures, or credal set (Levi, 1980). This credal set
contains the probability measures which are com-
patible with the available information about the
probability distribution of the random variable X.
A credal set, usually denoted by M(X), may be
equivalently represented by means of its lower and
upper envelopes1 P and P , given by:

P (A) = min{P (A) | P ∈ M(X)}, (1)

P (A) = max{P (A) | P ∈ M(X)}

for each event A. These two functions are conju-
gate, in the sense that P (A) + P (Ac) = 1, and
therefore it suffices to work with any of the two.195

The possibility of conditioning on sets of (lower)
probability zero leads to a number of different up-
dating procedures. Out of these, the most informa-
tive one is referred to as the regular extension (de
Campos et al., 1990; Fagin & Halpern, 1991), and
is applicable when the conditioning set has positive
upper probability. In that case, we can update the
credal set by considering:

M(X | B) = {P (· | B) | P ∈ M(X), P (B) > 0}.

That is, we apply Bayes’ rule to all the probability
measures in the credal set that give strictly positive
probability to the conditioning event.

When P (B) > 0, the regular extension coincides
with what Peter Walley called the natural extension200

1These are called coherent lower and upper probabilities
in the terminology of (Walley, 1981).
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in (Walley, 1991). However, if 0 = P (B) < P (B),
the natural extension will be vacuous: M(X|B)
will be the set of all probability measures on B,
while the regular extension will produce in general
a more informative model. We refer to (Miranda,205

2009; Miranda & Montes, 2015) for a detailed study
of the connection between the regular and natural
extensions.
Several algorithms have been proposed over the

last 30 years for dealing with credal networks. See210

for example (Antonucci et al., 2013; Cano et al.,
2004; de Campos & Cozman, 2007; Mauá et al.,
2012) as well as (Cabañas et al., 2016; De Bock
et al., 2014; Mauá et al., 2012) for algorithms in
the context of decision making.215

3. Credal networks with distortion models

Credal networks allow accounting for imprecision
in a Bayesian network using closed and convex sets
of (conditional) probability measures. However,
working general credal sets may be involved and220

computationally expensive: for instance, some in-
ferences with credal sets require determining their
set of extreme points, which may have an infinite
number of elements or, even when it is finite, may
be difficult to determine. For this reason, in this225

paper we propose to consider particular cases of
credal sets that will be easier to handle, and that
are associated with distortion models (Montes et al.,
2020a,b).
Consider a probability measure P0, a distorting

function d and a distortion factor2 δ. These ele-
ments allow us to consider the credal set of those
probability measures differing at most δ from P0:

Bδ
d(P0) = {P probability measure | d(P, P0) ≤ δ}.

Taking lower and upper envelopes on events, this
set determines a lower and upper probability P d, P d

(see Eq. (1)); more generally, for any function f :
X → R it allows us to determine lower and upper
expectation operators3:

P d(f) = min
{
P (f) | P ∈ Bδ

d(P0)
}
,

P d(f) = max
{
P (f) | P ∈ Bδ

d(P0)
}
,

2While some distortion models are defined by transform-
ing directly a probability measure into a lower probability, it
can be checked (Montes et al., 2020a) that they can be em-
bedded into the above, arguably more intuitive, formalism.

3These are called lower and upper previsions in the im-
precise probability literature (Walley, 1991).

where P (f) is understood as the expectation of f
with respect to P . Whenever d is convex and con-
tinuous (Montes et al., 2020a, Prop.1), it is possible
to obtain Bδ

d(P0) as:

Bδ
d(P0) = {P probability measure | P (f) ≥ P d(f) ∀f}.

Distortion models appear naturally in many dif-230

ferent scenarios. Under a frequentist approach, we
may estimate P0 from the available data and let
δ be related to the proportion of noisy data or the
distance to the model up to which we want to be ro-
bust; within decision making, an expert may elicit235

its (subjective) probability measure P0 and δ may
represent her credibility; and from a behavioural
point of view, we can sometimes interpret P d, P d

as supremum buying and infimum selling prices for
gambles. This has led to the proposal of many dif-240

ferent distortion models, such as the pari mutuel
(Montes et al., 2019; Pelessoni et al., 2010; Wal-
ley, 1991), the constant odds ratio (Benavoli & Zaf-
falon, 2013; Walley, 1991), the linear vacuous (Hu-
ber, 1981), the total variation (Herron et al., 1997)245

or the distortion models based on the Kolmogorov
or L1 distances (Montes et al., 2020b).
The vast amount of distortion models renders im-

portant the existence of comparison criteria that
allow selecting the most appropriate one in each250

scenario. We may consider the following desirable
properties:

(a) That the distortion model is determined by
its values P d({x}), P d({x}) on singletons, and
therefore that it is computationally simple.4255

(b) That it satisfies P (B) > 0 for any event B, al-
lowing to avoid the problem of conditioning on
sets of probability zero. In this respect, we are
assuming throughout that there is logical in-
dependence between the factors, meaning that260

any combination of them is assumed to be pos-
sible. In the finitary context of this paper, it
makes sense then that an imprecise model gives
zero lower probability to an event that has not
been observed but also a strictly possible upper265

probability. Note also that if the estimation of
the model has been done with a large dataset,
the size of this dataset can be taken into ac-
count in the estimation of this upper probabil-
ity, by means of the distortion parameter δ.270

4In the language of imprecise probabilities, this means
that the model is a probability interval (de Campos et al.,
1994).
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(c) That the conditional model belongs to the
same family of distortion models, i.e., the
model is closed under conditioning.

(d) In that case, that we avoid the phenomenon
of dilation (Seidenfeld & Wasserman, 1993),275

meaning that the distortion parameter of the
conditional model is not greater than that of
the unconditional one.

(e) That the set of probability measures Bδ
d(P0) is

simple, in that it has a small number of ex-280

treme points.

(f) That the lower probability P satisfies the prop-
erty of ∞-monotonicity, that allows us to in-
terpret it in terms of multi-valued mappings
(Dempster, 1967).285

Finally, it is also worth analysing the amount
of imprecision caused by the distortion model, in
terms of the comparison between the credal sets
Bδ

d(P0) for different distorting functions d in terms
of set inclusion, once δ and P0 are fixed.290

Table 1 establishes such a comparison, based on
the work carried out in (Montes et al., 2020a,b).
Taking these results into account, in this work

we have decided to work with the linear vacuous
model and the total variation model. Given a prob-
ability measure P0 and a distortion factor δ, the lin-
ear vacuous model is defined as the coherent lower
probability given by:

PLV (A) =

{
(1− δ)P0(A) if A ̸= X .

1 if A = X .

Its conjugate upper probability is given by:

PLV (A) = 1− PLV (A
c)

=

{
(1− δ)P0(A) + δ if A ̸= ∅.
0 if A = ∅.

Its associated credal set is given by:

M(PLV ) = {(1− δ)P0 + δP | P probability measure}.

This allows us to give a robust interpretation of
the linear vacuous model: we consider that with
probability 1− δ the “true” probability measure is295

P0, and with probability δ any other probability
measure is possible.
On the other hand, the total variation model is

defined as the conjugate coherent lower and upper

probabilities:

PTV (A) = max{P0(A)− δ, 0},
PTV (A) = min{P0(A) + δ, 1} ∀A ⊆ X .

This model has a robust interpretation: the credal
set M(PTV ) is formed by those probability mea-
sures at a TV-distance of at most δ from P0.300

As we can see from Table 1, these distortion
models possess a number of interesting properties.
Among them, they both give strictly positive upper
probability to any event B, allowing to compute the
conditional models by means of regular extension.
For the linear vacuous, the updated model is given
by:

PLV (A | B) =

{
(1− δLV )P0|B(A), if A ⊂ B,

1, if A = B,

(2)
where P0|B(A) = P0(A | B) and

δLV =
δ

(1− δ)P0(B) + δ
=

δ

PLV (B)
, (3)

for any A ⊆ B whenever P0(B) > 0, while
PLV (A) = 0 for any A ⊂ B when P0(B) = 0. This
means that the conditional model PLV (· | B) also
belongs to the family of linear vacuous models.

For the total variation model, the updated model
is given by:

PTV (A | B) = P0|B(A)− δ

P0(B)
= P0|B(A)− δTV ,

(4)
for any A ⊆ B whenever P0(B) > 0, while305

PTV (A) = 0 for any A ⊂ B when P0(B) = 0. This
means that PTV (· | B) is again a total variation
model when P0(B) > 0, being vacuous otherwise.
Even if both the linear vacuous and the total vari-

ation models are preserved under conditioning, on310

the downside they endure the phenomenon of di-
lation: in the conditional model the distortion pa-
rameter δ is greater than in the unconditional one,
and therefore the updated model is more imprecise
than the initial one for both the linear vacuous and315

total variation models.

4. Estimation of Human Error Probabilities

In this section we summarise the work carried out
in (Morais et al., 2019a,b; Moura et al., 2016) to
estimate human error probabilities. We begin (Sec-320

tion 4.1) by recalling the MATA-D dataset built in
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Distortion model
Criterion PMM LV COR TV K L1

Determined by values on singletons? YES YES NO NO NO NO

P (B) > 0 ∀B ̸= ∅? NO YES NO YES YES YES
The conditional model belongs to the same

YES YES YES YES NO NO
family of distortion models?

Avoids dilation? NO NO YES NO N.A. N.A.
Order in terms of fewer extreme points 3 5 1 4 3 Open problem

P ∞-monotone? NO YES NO NO YES NO
Order of imprecision for P0, δ fixed 4 4 5 3 2 4

Table 1: Comparison of the distortion models. (PMM: Pari-mutuel model; LV: Linear-vacuous; COR: constant odds ratio; TV:
total variation: K: Kolmogorov; L1: neighbourhood model associated with the L1 distance). N.A.=Not applicable; 1- Worst,
5-Best.

(Moura et al., 2016) as well as the procedures car-
ried out in (Morais et al., 2018) using Bayesian net-
works (Section 4.2) and in (Morais et al., 2019a,b)
using credal networks (Section 4.3). Finally, we in-325

troduce our proposal in Section 4.4: the use of dis-
tortion models in order to overcome some of the
shortcomings of the papers above.

4.1. MATA-D dataset

The lack of complete, unified and rigorous330

datasets containing information about major acci-
dents is an obstacle that hinders the accuracy of
a human reliability analysis. To address this is-
sue, Moura et al. (2016) created the Multi-Attribute
Technological Accidents Dataset (MATA-D in what335

follows), containing information about 238 major
accidents in industry (refine, oil and gas, . . . ) re-
ported from reliable sources such as governments
or regulators5. For each of the 238 catastrophes, 53
factors that could have had an influence were anal-340

ysed. These were split into three main categories
following the CREAM taxonomy (Hollnagel, 1998):
man, organisational and technological, each of them
with a number of subcategories (see Figures 2–4 in
Moura et al. (2016)).345

A descriptive analysis of the MATA-D dataset
can be found in (Moura et al., 2016), from which
a number of observations stand out. First of all,
the vast majority of accidents are due to the com-
bination of factors from different categories: for in-350

stance, in merely 0.84% of the accidents only er-
rors from the factors included in the man group

5This dataset is freely available at http://datacat.

liverpool.ac.uk/1018/.

were involved, whereas in 47.48% of the accidents
there was a combination of factors from the man,
organisational and technological groups. This is355

in line with the Swiss Cheese Model mentioned
in Section 1. Secondly, at least one error from
the man category appeared in 57.14% of the cases,
for 82.35% and 95.38% in the case of technological
or organisational issues, meaning that the former,360

while frequent, are less common than latter two cat-
egories. And finally, design failures were detected
in 157 of the 238 accidents, and in 72.80% of the
accidents where at least one factor from the man
group was involved.365

On the other hand, a deeper statistical analysis
of the MATA-D dataset, based on clustering and
data mining procedures, was carried out in (Moura
et al., 2017a,b). It split the accidents into four clus-
ters, taking into account the factors involved in each370

of them. Recently, (Morais et al., 2022b) applied
different machine learning tools to the MATA-D
dataset to identify human error and to find inter-
actions between the factors.

4.2. Bayesian network approach375

Following (Mkrtchyan et al., 2015), Morais et al.
constructed a Bayesian network summarising the
interactions between the different factors (Morais
et al., 2018). For this aim, each factor is represented
by a node, and the arcs represent the significant380

conditional dependences between them, based on
the analysis performed in (Moura et al., 2017a,b).
A simplified version of the Bayesian network includ-
ing 15 of the 53 factors was considered in (Morais
et al., 2019b). It is represented in Figure 2, where385

the colour of each node is related to the type of fac-
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Design
failure

Inadequate
quality control

Maintenace
failure

Ambient
conditions

Communication
failure

Insufficient
knowledge

Inadequate
task allocation

Inadequate
procedure

Equipment
failure Distraction

Cognitive
bias

Observation
missed

Faulty
diagnosis

Inadequate
plan

Wrong
reasoning

Figure 2: Bayesian network representing the connection between the considered factors (from (Morais et al., 2019b, Figure 3)).

tor. The meaning of these 15 factors is summarised
Table 2. 6

The estimation of the probability distribution
in each node is made by means of the MATA-D390

dataset. In the case of nodes without parents, the
unconditional probability distribution is estimated
using the relative frequency. For instance, since de-
sign failure occurred in 157 accidents out of 238, the
estimation of its probability of occurrence is 0.6597.395

For those nodes with predecessors in the graph, the
conditional probabilities are estimated using also
the conditional relative frequencies. For example,
equipment failure has only one parent, maintenance
failure, and using the dataset it is estimated that400

the probability of equipment failure when there is
maintenance failure is 0.675, while the probability
of equipment failure when there is not maintenance
failure is 0.484.
This approach has in our view a couple of short-405

comings. The first one is already mentioned in
(Morais et al., 2019b): if for a given node the rel-
ative frequency of a combination of values of its
parents is zero (that is, if that combination has not
been observed in the dataset), then it is not possible410

to obtain any conditional relative frequency. This
is for instance the case with the factor inadequate
plan, that has four parents; there is no accident in
the MATA-D dataset combining the occurrence of
distraction and wrong reasoning but without errors415

in insufficient knowledge and inadequate task allo-
cation; we refer to Table 5 later on where the full

6While we are reproducing here the 15 factors in (Morais
et al., 2019b), the full list of possible PSF can be found in
Morais et al. (2022b) or in (Moura et al., 2015).

conditional probability table for the factor inade-
quate plan is shown.

The second issue is the lack of robustness of420

the estimated probabilities. Even if the MATA-D
dataset contains information about 238 major acci-
dents, the probabilities obtained from the dataset
are estimated from the relative frequencies. Since
these involve rare events, changing the absolute fre-425

quency in one unit may have a significant impact in
the subsequent estimations. This is particularly rel-
evant when an estimated probability changes from
zero to a strictly positive number, because in the
latter case we will be able to compute conditional430

relative frequencies.

4.3. Credal network approach

The first of these issues was tackled in (Morais
et al., 2019a,b, 2022a) by using a credal network.
Specifically, they used the relative frequencies of the435

MATA-D dataset to estimate the probability distri-
butions in the nodes without parents and the condi-
tional probability distributions in those cases where
there were observations of the combination of values
for the parents. For those cases where there were440

no observations, they used the [0,1] interval as the
estimation of the conditional probability. This pro-
cedure leads then to a network where in each node
we have possibly a set of (conditional) probability
measures, that is, a credal network.445

Even if we agree with the benefits of using a
credal network-based approach, we believe that this
approach has a number of shortcomings: first of all,
it does not address the lack of robustness, in the
sense that the modification of one observation may450
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Organisational Technological Person-related Human
factors factors factors Errors

Design failure Inadequate procedure Distraction Faulty diagnosis
Inadequate quality control Equipment failure Cognitive bias Inadequate plan

Maintenance failure Wrong reasoning
Ambient conditions Observation missed

Communication failure
Insufficient knowledge

Inadequate task allocation

Table 2: Classification of the factors considered in the Bayesian network in Figure 2.

have a significant impact in the estimations, partic-
ularly because the conditional probability measure
may change from being the [0,1] interval to an exact
relative frequency 7; secondly, the approach com-
bines a very conservative approach in some nodes455

and a precise approach in others, while it would be
better to have a unified principle; and finally, from
a technical point of view the use of the vacuous
model [0,1] is equivalent to applying what is called
natural extension in the imprecise probability lit-460

erature, while other, more informative options, can
also be applied.

4.4. Our proposal: distortion model approach

Our proposal in this paper is to use distortion
models to overcome the issues discussed above. We465

follow a two-step approach:

(i) First of all, we consider a distortion of the pre-
cise unconditional probability measure P0 that
is estimated from the MATA-D dataset. Tak-
ing into account the discussion in Section 3, we470

shall use the linear vacuous and total variation
models with some fixed distortion parameter
δ. These will give rise to a credal set M, or
equivalently to a lower and an upper probabil-
ity P , P .475

(ii) Secondly, the conditional model in each node
with predecessors in the network shall be ob-
tained by means of regular extension (Eq. (2)
for the linear vacuous and (4) for the total vari-
ation model) when the probability P0(B) of480

the conditioning event is greater than 0; when

7Note that this problem may also be overcome by consid-
ering an imprecise model that takes into account the amount
of data used in the estimation in each node, as proposed re-
cently by Morais et al. (2021) using c-boxes (Ferson, 2020).

P0(B) = 0 we apply the distortion model on
P0(A|B) = 0, P0(A

c|B) = 1, where A is the
HEF.

Note then that in step (i) we are adding impreci-485

sion to our model, while in step (ii) we are making
it in some cases more precise: as we said before,
when P0(B) = 0 Morais et al. consider the vacuous
conditional model on B (that is, the set of values for
P0(A|B) is the [0, 1] interval for any proper subset A490

of B); instead, our approach will lead in general to
an interval [PLV (A|B), PLV (A|B)] that is strictly
included in [0, 1]. The same comment applies to the
total variation model.

This approach makes the estimations of the prob-495

abilities involved in the model more robust, and the
extent of this robustness can be measured in terms
of the parameter δ. It allows us moreover to avoid
the presence of zero probabilities, that, under the
frequentist approach considered in (Morais et al.,500

2019a,b) appear as soon as a combination of fac-
tors was not observed in any of the 238 accidents:
in our method, for any such event we will obtain an
interval of probabilities [0, δ] that we can update by
means of regular extension.505

5. Comparative analysis

Using the MATA-D dataset, the Bayesian net-
work represented in Figure 2 and taking the linear
vacuous and total variation models, we have per-
formed a comparative analysis with the approach510

in (Morais et al., 2019b). For the numerical com-
putations we have used the Open Cossan Software
(Patelli et al., 2018) with the credal network tool-
box (Tolo et al., 2018). To illustrate the compari-
son, we consider two cases, where the approach by515

Morais et al. gives precise and imprecise estima-
tions, respectively.
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5.1. Faulty Diagnosis and Wrong Reasoning

We start considering the factors faulty diagnosis
(FD) and wrong reasoning (WR). Their respective520

full conditional probability tables are given in Ta-
ble 3 for the frequentist estimation and the esti-
mations using the approach by Morais et al. and
LV approach with δ = 0.001. As it can be seen
in Figure 2, the factor WR only has one parent:525

cognitive bias. In the MATA-D dataset, there are
both observations where this factor is present and
absent, meaning that it is possible to derive the con-
ditional probabilities from the unconditional model
using Bayes’ rule. This means that in this case the530

approach in (Morais et al., 2019b) gives a precise
estimation of the presence of the factor WR in the
accident. The same happens for the factor FD: even
if this factor has several parents, there is enough
information in the MATA-D dataset for applying535

Bayes’ rule. These values are reported in the last
row in Tables 4 and 6.
Tables 4 and 6 also give the interval of lower and

upper probabilities for the probability of error for
FD and WR for different values of the distortion540

factor δ. Looking at these values, we observe that
the imprecision obtained using the linear vacuous
model is rather small: the difference between the
upper and lower probabilities is smaller than 0.0025
(FD) and 0.0011 (WR) for δ ≤ 0.005. The impreci-545

sion increases when considering the total variation
model: it is approximately twice the imprecision of
the linear vacuous model approach.

5.2. Observation Missed and Inadequate Procedure

We now consider two other factors: observation550

missed (OM) and inadequate plan (IP). The full
conditional probability tables are given in Table 5
for the frequentists estimation and the estimations
using the approach by Morais et al. and LV and TV
approaches with δ = 0.001. Both factors have four555

parents and, in contrast with WR and FD, here it is
not always possible to apply Bayes’ rule to estimate
the conditional probabilities because some combi-
nations of values of the parents have not been ob-
served in the dataset. In those cases, the approach560

in (Morais et al., 2019b) uses the vacuous model,
and the combination of all the values produces the
lower and upper probabilities in the last row of Ta-
bles 4 and 6.
These tables also show our estimation for the er-565

ror probabilities of these factors for different values
of the distortion factor δ. Note that, while these in-
tervals have always a non-empty intersection, they

neither include nor are included in general in the
one obtained in the approach by Morais et al.570

The graphical representation of the results ob-
tained with the linear vacuous and total variation
models can be seen in Figure 3.

5.3. Discussion

The results shown in Tables 4 and 6 for the linear575

vacuous and total variation models, respectively, or
the graphical representation in Figure 3, suggest
that the distortion model based approach is an in-
teresting and robust alternative for the estimation
of HEP. There are a number of reasons supporting580

our claim.

First of all, the estimations obtained are consis-
tent with those in (Morais et al., 2019b). It can be
seen that the precise estimations (for FD or WR)
are either included in the intervals determined by585

the lower and upper probabilities or, for very small
values of δ, the precise estimation from Morais et al.
(2019b) is very close to the lower bound of the inter-
val probability. For the interval estimations (OM or
IP), the interval probabilities obtained in (Morais590

et al., 2019b) and the ones obtained using the linear
vacuous or the total variation model are quite sim-
ilar, and in particular they are never disjoint; we
observe also that there is not in general a relation
of inclusion between the intervals.595

Secondly, as we can see from the detailed studies
of the distortion models in (Destercke et al., 2022;
Montes et al., 2020a,b), the estimations obtained
with the total variation model are uniformly more
imprecise than those obtained with the total varia-600

tion model. This means that for obtaining a similar
imprecision, the total variation approach requires a
smaller distortion parameter.

Thirdly, regarding the interval estimations (OM
and IP), it should be mentioned that the lower605

bounds obtained using the linear vacuous model
and the approach in (Morais et al., 2019b) are quite
similar for all the values considered for δ. Neverthe-
less, when considering the upper bound, the linear
vacuous approach gives a tighter estimation than610

the approach in (Morais et al., 2019b) for values of
δ ≤ 0.0005. There is an intuitive reason behind this
fact: in the approach of Morais et al., when there is
not enough information to apply Bayes’ rule, they
assign an interval probability of [0,1]. If we com-615

pare it with the one determined by our approach,
usually the value 0 will not be very distant from
the lower bound given by the linear vacuous model.
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Parent
Cognitive

True False
bias

Wrong
Frecuentist 0.294 0.0995

Reasoning
True Morais et al. 0.294 0.0995

LV (δ = 0.001) [0.2899,0.3039] [0.0994,0.1005]
TV (δ = 0.001) [0.2800,0.3080] [0.0984,0.1006]

Parents

Inadequate
True True False False

Plan
Cognitive

True False True False
Bias

Faulty
Frecuentist 0.5 0.155 0.444 0.065

Diagnosis
True Morais et al. 0.5 0.155 0.444 0.065

LV (δ = 0.001) [0.4839,0.5161] [0.1546,0.1571] [0.4330,0.4578] [0.0649,0.0668]
TV (δ = 0.001) [0.4703,0.5298] [0.1525,0.1575] [0.4180,0.4708] [0.0631,0.0669]

Table 3: Full conditional probability tables for the factors Wrong Reasoning (left) and Faulty Diagnosis (right) for the direct
estimation from the dataset (frequentist), the approach in (Morais et al., 2019a,b, 2022a) and the LV and TV approaches with
distortion parameter δ = 0.001.

Estimations with the Linear Vacuous Model
δ FD WR OM IP

0.00001 [0.13005,0.1301] [0.11338,0.11341] [0.15546,0.15562] [0.10344,0.10361]
0.00005 [0.13,0.13023] [0.11337,0.11347] [0.15541,0.15618] [0.10336,0.10423]
0.0001 [0.12993,0.1304] [0.11335,0.11357] [0.15537,0.1569] [0.10323,0.105]
0.00015 [0.12986,0.13057] [0.11333,0.11366] [0.15531,0.15765] [0.10319,0.10579]
0.0002 [0.1298,0.13074] [0.11331,0.11375] [0.15526,0.1583] [0.10302,0.10657]
0.0003 [0.12966,0.13108] [0.11327,0.11392] [0.15518,0.1597] [0.10274,0.10825]
0.0004 [0.12953,0.13142] [0.11322,0.1141] [0.15485,0.16139] [0.10254,0.10985]
0.0005 [0.12939,0.13176] [0.11318,0.11428] [0.15471,0.16279] [0.10261,0.11127]
0.0006 [0.12926,0.1321] [0.11314,0.11446] [0.1547,0.16381] [0.10243,0.11279]
0.0007 [0.12912,0.13245] [0.1131,0.11464] [0.15455,0.16504] [0.10219,0.11482]
0.0008 [0.12899,0.13279] [0.11306,0.11482] [0.1542,0.16676] [0.102,0.1159]
0.0009 [0.12885,0.13313] [0.11302,0.115] [0.15414,0.16825] [0.10196,0.11743]
0.001 [0.12872,0.13347] [0.11298,0.11518] [0.15406,0.16874] [0.10171,0.11932]
Result in

0.13 0.113 [0.155,0.168] [0.103,0.109]
(Morais et al., 2019b)

0.13 0.113 [0.155,0.168] [0.103,0.109]

Table 4: Estimation of the HEP with the linear vacuous model for different values of δ (FD: Faulty Diagnosis, WR: Wrong
Reasoning, OM: Observation Missed, IP: Inadequate Plan (IP)).

However, the upper probability 1 will be substan-
tially larger than the upper probability determined620

by the conditional linear vacuous model, and this is
what eventually leads to a too large upper estima-
tion of the HEP for OM and IP. As we explained
in previous sections, the vacuous model (the [0,1]
interval) adds too much imprecision in the model,625

and this is a problem that can be easily overcome
with the distortion based approach.

In spite of these positive comments regarding
the distortion based approach, a natural criticism
would be related to the appropriate election of the630

distortion parameter δ. Of course, choosing the ad-
equate distortion parameter is the crucial point of
this approach.

Indeed, the adequate choice of the distortion pa-
rameter has also been analysed in a number of635

other applications of distortion models (see for in-
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Figure 3: Graphical representation of the estimated HEP (Faulty Diagnosis (FD), Wrong Reasoning (WR), Observation Missed
(OM) and Inadequate Plan (IP)) using the approach from (Morais et al., 2019a,b) (in red), the linear vacuous model (in blue)
and the total variation model (in green).

stance (Antonini et al., 2020) for the linear vacuous
or (Langer, 2017) for the total variation model).
While we refer to Montes et al. (2020a,b) for a gen-
eral discussion of the interpretation of δ in the case640

of the linear vacuous and total variation models,
in the specific context of HRA we believe that the
election of the parameter should be made by an ex-
pert taking into account different facets: (i) we are
estimating small probabilities, hence the amount of645

imprecision we add to the model (directly related
to δ) should be “small”. Note that any δ > 0 al-
lows to give strictly positive upper probability to
any combination of factor, capturing the assump-
tion that all the combinations are possible, even if650

some of them may be rather improbable; (ii) the
problem with the approach in Morais et al. ap-
pears when there is not enough information to ap-
ply Bayes’ rule. This means that there are events
whose estimation in the sample is 0 (out of 238).655

If such an event appears in the next observation,
we would obtain an estimation of 1/239, hence it
seems natural to take a parameter δ smaller than
that value (which gives δ ≤ 0.0042); in fact, this
idea of taking the sample size into account when660

considering the amount of imprecision that is en-

tered into the model is also present in the recent
work by Morais et al. (2021); (iii) we should take
into account that, even if both the linear vacuous
and total variation models are preserved under con-665

ditioning, they both suffer from the problem of dila-
tion. This means that the distortion parameter in-
creases any time that we update the model. Hence,
the parameter δ should be small enough such that
after updating the model a number of times, the670

distortion parameter is still small enough. In order
to control the dilation, a strategy could be to fix the
amount of imprecision in the updated models, and
from this imprecision derive, using Equations (3)
or (4), the largest δ that assures that after condi-675

tioning we will always obtain an updated parameter
smaller than the fixed amount of imprecision.

All these comments led us to perform our analy-
sis with different values of δ varying from 0.0001 to
0.001. In fact, we have already argued that for dis-680

tortion factors δ ≤ 0.0005, the results from the lin-
ear vacuous model are quite consistent with those in
(Morais et al., 2019b), or even less imprecise. This
goes in line with our previous comments: choos-
ing a distortion factor smaller than the inverse of685

the sample size allows to obtain satisfactory results.
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If in addition the number of times that the model
must be updated is large, the expert may decrease
further to account for the dilation, as discussed ear-
lier.690

6. Conclusions

Our results show that the use of a distortion
model can be used to overcome the issues caused
by conditioning on sets of probability zero in the
Bayesian network, while at the same time provid-695

ing a robust interpretation of the model. Moreover,
the estimations are comparable to those obtained
by Morais et al. by means of a mixture of precise
and vacuous models, when the conditioning events
have positive and zero probability, respectively.700

One of the fundamental ideas of the distortion
model approach proposed in this paper is that it
allows to encompass the idea that any combination
of factors is possible, by giving it a positive upper
probability, even if this can be very small, consider-705

ing the sample size, the fact that it may have been
so far unobserved (see for instance Tables 3 and 5)
and the value of the distortion parameter chosen.

However, this is not to say that our approach
is without shortcomings. While the linear vacuous710

and total variation models have many interesting
properties, they also suffer from the phenomenon
of dilation, that means that the conditional models
also belong to the same family but are associated
with a greater distortion parameter. It would be715

interesting then to consider some alternative that
is not affected by this problem. Unfortunately, the
constant odds ratio model, that is the only dila-
tion free in our comparative, does not guarantee in
general that all conditioning events have positive720

upper probability, which is necessary if we want to
apply the procedure of regular extension to obtain
the conditional models.

In addition, it would be interesting to deepen into
our approach so as to give some further guidelines725

about the choice of the distortion parameter δ and
its relationship with the imprecision in the estima-
tion of the probabilities of the different events. This
would also allow us to deepen in the comparison
with the results of Morais et al.730

As future lines of research, it would also be inter-
esting to compare our estimations with the model
recently proposed by Morais et al. (2021), where
the transition between precise and imprecise con-
ditional probabilities in the nodes is made more735

gradual by introducing confidence boxes. In this
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Estimations with the Total Variation Model
δ FD WR OM IP

0.00001 [0.13002,0.13011] [0.11337,0.11341] [0.1554,0.15564] [0.10336,0.10364]
0.0005 [0.12983,0.1303] [0.11328,0.1135] [0.15508,0.15628] [0.10298,0.10435]
0.0001 [0.12959,0.13054] [0.11317,0.11361] [0.15464,0.15713] [0.10254,0.10521]
0.00015 [0.12935,0.13078] [0.11306,0.11372] [0.15418,0.15782] [0.10191,0.10619]
0.0002 [0.12912,0.13191] [0.11295,0.11383] [0.15368,0.15865] [0.10157,0.10699]
0.0003 [0.12865,0.13149] [0.11273,0.11405] [0.15276,0.16061] [0.10055,0.10874]
0.0004 [0.12817,0.13196] [0.11251,0.11427] [0.15193,0.16204] [0.099333,0.11092]
0.0005 [0.1277,0.13244] [0.11229,0.11449] [0.15097,0.16352] [0.098504,0.11249]
0.0006 [0.12723,0.13292] [0.11208,0.11471] [0.15033,0.1651] [0.097586,0.11414]
0.0007 [0.12676,0.1334] [0.11186,0.11493] [0.1497,0.16677] [0.096944,0.11597]
0.0008 [0.12629,0.13388] [0.11164,0.11515] [0.14908,0.16756] [0.095972,0.11806]
0.0009 [0.12582,0.13435] [0.11142,0.11537] [0.14825,0.16918] [0.095247,0.1197]
0.001 [0.12535,0.13483] [0.11121,0.11559] [0.14667,0.1709] [0.09371,0.12108]
Result in

0.13 0.113 [0.155,0.168] [0.103,0.109]
(Morais et al., 2019b)

0.13 0.113 [0.155,0.168] [0.103,0.109]

Table 6: Estimation of the HEP with the total variation model for different values of δ (FD: Faulty Diagnosis, WR: Wrong
Reasoning, OM: Observation Missed, IP: Inadequate Plan (IP)).

respect, one feature of our approach is that distor-
tion models can be used directly when the credal
network involves non-binary variables, and some of
their properties, such as the small number of ex-740

treme points of the associated credal set, are more
advantageous in that case; presumably, in such a
case confidence boxes may have to be replaced by
other models such as p-boxes. In addition, it would
be interesting to apply the distortion based ap-745

proach to the whole network with the 53 factors
considered in (Morais et al., 2022b).
Finally, our approach advocates the estimation of

the HEP from the available data and the only input
of the assessor is to introduce the cautious param-750

eter δ. As argued before, this parameter should
be smaller than the inverse of the sample size and
may also take into account the number of times the
model is updated. Nevertheless, there are of course
many interesting features in the models mentioned755

in the introduction that may be interesting to in-
corporate in our model and that should help to im-
prove the estimations. A deeper analysis of this
matter is our main open task for the future.
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