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Abstract. The aim of this work is to extend the notion of stochastic order

to the pairwise comparison of fuzzy random variables. We consider the three

most important stochastic orders in the literature: expected utility, stochastic
dominance and statistical preference, which are related to the comparisons of

the expectations, distribution functions and medians of the underlying vari-

ables. We discuss how to generalize these notions to the fuzzy case, when an
epistemic interpretation is given to the fuzzy random variables. In passing, we

investigate to which extent the earlier extensions of stochastic dominance and

expected utility to the comparison of sets of random variables can be useful as
fuzzy rankings. Finally, we illustrate our results in a decision making problem.
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1. Introduction

Since they were introduced by Zadeh [1965], fuzzy sets have been widely used as
a mathematical model of linguistic information. Their use was boosted further by
the introduction by Féron of the notion of fuzzy random variables [Féron, 1976],
as generalization of random variables to situations where the images are fuzzy sets
(see for example Chaci and Taheri [2011], Couso and Sánchez [2011], González
Rodŕıguez et al. [2009], Thuan et al. [2014] for recent advances).

The widespread use of fuzzy sets has lead naturally to the consideration of deci-
sion making problems with fuzzy information (see for example Bellman and Zadeh
[1970], Hong and Choi [2000], Mardani et al. [2015], Wu and Chiclana [2014]). In
order to solve them, it is necessary to use methods that allow to rank fuzzy sets and
fuzzy random variables. The first of these two cases has been widely investigated
(see for instance the surveys on fuzzy rankings in Wang and Kerre [2001a], Yuan
[1991] or a new approach from an imprecise probability point of view by Destercke
and Couso [2015]) but, to the best of our knowledge, the only proposals on rankings
for fuzzy random variables have been established in Aiche and Dubois [2010, 2012].

In this paper, we try to remedy this situation somewhat by proposing a few
manners in which two fuzzy random variables can be compared. The choice between
the very many options that arise can be made by means of several criteria:

• First of all, it is important to take into account the interpretation we give
to the fuzziness inherent to our model. In this respect, there are two main
interpretations of fuzzy random variables: the ontic, where the images of
the variable are fuzzy objects, and the epistemic, where the fuzzy images are
a model for the imprecise knowledge of a crisp value. While the proposals in
Aiche and Dubois [2010, 2012] work better under the ontic interpretation, in
this paper we will give fuzzy random variables an epistemic interpretation.

1



2 IGNACIO MONTES, ENRIQUE MIRANDA, AND SUSANA MONTES

• Since then we assume an underlying precise random variable, our proposals
will be based in extending orders for pairs of random variables. Specifically,
we will focus on stochastic dominance, expected utility and statistical pref-
erence. Then one first choice should be which of these models we want
to use in the precise case: expected utility is based in the comparison of
the expectations, and has been shown to be reasonable for axiomatizing
preferences in a decision problem under uncertainty; the stronger notion
of stochastic dominance compares the distribution functions and has been
deemed useful in economics; while statistical preference can be regarded
as a more robust alternative to expected utility, that is also useful when
utilities are expressed in a qualitative scale.
• Finally, even for each of these models there will be several possible exten-

sions to the imprecise case. The choice between them can be made by means
of the interpretation of the extension, that we shall discuss later, and also
by means of their mathematical properties, that we shall also investigate.

The remainder of the paper is organized as follows: we begin the paper in Sec-
tion 2 by introducing the main notions of fuzzy set theory, stochastic ordering, and
imprecise probabilities that are employed later in the paper.

In earlier works [Montes et al., 2014a,b], we already extended these stochastic
orders to the comparison of sets of random variables, as a first step when modeling
imprecise information. We use some of the results from those papers in Section 3,
when we compare a number of imprecise probability models related to fuzzy random
variables: random sets, or measurable multi-valued mappings, that are determined
by the α-cuts of the fuzzy random variable; probability boxes, that correspond
to sets of distribution functions and that arise when extending stochastic domi-
nance; and possibility measures, that are an imprecise probability model that is
mathematically equivalent to a fuzzy set.

One possibility for comparing fuzzy random variables is to consider a fuzzy set
that is representative of the fuzzy random variable (for instance its expectation),
and to reduce the problem of comparing the fuzzy random variables to that of
comparing their associated fuzzy sets. The latter can be solved by means of fuzzy
rankings. The elicitation of a fuzzy ranking among the vast number of proposals
in the literature can be done taking into account the desirable properties discussed
in Wang and Kerre [2001a,b]. In Section 4 we investigate which of these properties
are satisfied by imprecise stochastic dominance and imprecise expected utility.

Next in Section 5 we study how these stochastic orders may be extended towards
the comparison of fuzzy random variables: our definitions give rise to the notions of
fuzzy expected utility, fuzzy stochastic dominance and fuzzy statistical preference.
The first of these possibilities makes the comparison of the fuzzy expectations of the
variables by means of a fuzzy ranking, or an imprecise stochastic order; the second
compares the values of their fuzzy distribution functions; and the third compares
the images of the fuzzy random variables. We also make a fourth proposal where
we compare the fuzzy random variables by looking at the random sets that their
α-cuts determine, and we investigate the properties of all these notions in the case
of fuzzy random variables with trapezoidal values. In addition, we show that our
notion of fuzzy expected utility encompasses the orders that can be derived from
Walley’s upper and lower probability models for a fuzzy random variable.
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Section 6 illustrates the proposals in this paper on a decision problem with fuzzy
information. We conclude the paper in Section 7 with some additional comments
and remarks.

2. Preliminary concepts

2.1. Fuzzy sets and fuzzy random variables. From Zadeh [1965], a fuzzy set
X is a mathematical model for linguistic information, and is determined by a mem-
bership function µX : Ω→ [0, 1], so that for every ω ∈ Ω the value µX(ω) represents
the acceptability of the statement ‘ω satisfies the concept encoded by the fuzzy set
X’. The set of elements with strictly positive membership value is called the sup-
port of X, and we shall denote it supp(X). We shall denote by F(Ω) the class of all
fuzzy sets over a referential space Ω.

The membership function can be extended to subsets of the possibility space Ω.
It has been argued that this extension should be supremum-preserving, so that the
acceptability in which the fuzzy concept is satisfied by set A is given by

Π(A) = sup
ω∈A

µ(ω).

This function is a possibility measure [Dubois and Prade, 1988, Zadeh, 1978], and
the membership function µ is its associated possibility distribution.

Fuzzy numbers is one prominent family of fuzzy sets that would play an im-
portant role in this work. A fuzzy set is a fuzzy number if there exists a closed
non-empty interval [a, b] such that:

µ(x) =


1 for x ∈ [a, b];

l(x) for x < a;

r(x) for x > b;

where l : (−∞, a) → [0, 1] is a non-decreasing and right-continuous function such
that l(x) = 0 for x < ω1, and r : (b,∞) → [0, 1] is a non-increasing and left-
continuous function such that r(x) = 0 for x > ω2, for some ω1, ω2 in the real line
R. From this definition, it follows that the α-cuts of a fuzzy number are closed
intervals (see for example Figure 1).
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Figure 1. Example of a fuzzy number (left picture) and one of
its α-cuts (right picture).

In this paper we focus on fuzzy random variables, which extend the notion of
random variable to the case where the images are fuzzy sets.

Definition 1. Kruse and Meyer [1987] Let (Ω,A, P ) be a probability space. A fuzzy

random variable is a map X̃ : Ω → F(R) such that the α-cuts X̃α : Ω → P(R)
given by

X̃α(ω) = {r ∈ R : X̃(ω)(r) ≥ α}
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are random sets, meaning that

{ω ∈ Ω : X̃α(ω) ∩A 6= ∅} ∈ A ∀A ∈ βR, (1)

where βR denotes the class of Borel subsets of R.

Fuzzy random variables were introduced by Féron [1976] as a generalization of
random variables to the case where the images are fuzzy subsets. They have been
given two main interpretations: the ontic one, considered by Puri and Ralescu
[1986], where they can be regarded as random variables whose values are (vague)
linguistic assessments, and the epistemic one, developed by Kruse and Meyer [1987],
which has its roots in the work by Kwakernaak [1978], in which fuzzy random vari-
ables are a model for the imprecise knowledge of a random variable. We refer to
Couso and Sánchez [2008], Couso et al. [2014] for a review of the different inter-
pretations. In this paper we align with the works in Couso and Sánchez [2008], de
Cooman [2005], de Cooman and Walley [2002] and follow the epistemic interpreta-
tion. According to it, fuzzy random variables model the imprecise knowledge about

a random variable U0: for any ω′ ∈ R, X̃(ω)(ω′) is interpreted as the acceptability
degree of the proposition “U0(ω) = ω′”. Following these lines, it is possible to
define a fuzzy set on the class of measurable functions from Ω to R, µX̃ , such that
it associates the value:

µX̃(U) = inf{X̃(ω)(U(ω)) : ω ∈ Ω} (2)

to any measurable function U : Ω→ R. This value can then be understood as the
acceptability degree of the proposition “U = U0”.

Using this interpretation, Couso [1999] defined the probabilistic envelope of a
fuzzy random variable.

Definition 2. [Couso, 1999, Definition 5.1.1] Let X̃ : Ω→ F(R) be a fuzzy random

variable. The probabilistic envelope of X̃ is the map PX̃ : A → F([0, 1]) with the
membership function

PX̃(A)(p) = sup{µX̃(U) | U : Ω→ R r.v., PU (A) = p}
for any A ∈ A and p ∈ [0, 1].

With a similar reasoning, PX̃(A)(p) can be interpreted as the acceptability degree
of the proposition “PU0(A) = p”. In fact, using the probabilistic envelope it is

possible to define the envelope of the cumulative distribution function of X̃ as the
map FX̃ : R→ F(R) such that

FX̃(x)(p) = sup{µX̃(U) : FU (x) = p}. (3)

Then, FX̃(x) = PX̃((−∞, x]) for any x ∈ R, and FX̃(x)(p) can be interpreted as
the acceptability degree of the proposition “FU0

(x) = p”.
Following Couso [1999], Grzegorzewski [1998], Kruse and Meyer [1987], the fuzzy

version of any parameter can be defined for fuzzy random variables. Formally, if the
parameter belongs to the parametric space Θ, the fuzzy version of the parameter
is defined by:

θX̃ ∈ F(Θ), θX̃(θ′) = sup{µX̃(U) : θ(PU ) = θ′}. (4)

θX̃(θ′) represents the acceptability degree of the proposition θ(PU0
) = θ′. In par-

ticular, the expectation of a fuzzy random variable can be defined using Eq. (4):

E(X̃)(r) = sup{µX̃(U) : E(U) = r}, (5)
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and E(X̃)(r) can be interpreted as the acceptability degree of the proposition
“E(U0) = r”. Under some regularity conditions, and in particular when the images
of the fuzzy random variable are fuzzy numbers, this coincides [Couso, 1999, Kruse
and Meyer, 1987, Puri and Ralescu, 1986] with the fuzzy set whose α-cuts are given
by

(E(X̃))α = (A)

∫
X̃αdP, (6)

where the integral above is the Aumann integral [Aumann, 1965] of the random set

determined by the α-cut of X̃, whose definition was given in Eq. (1).

2.2. Stochastic orders. Stochastic orders are methods that compare random vari-
ables by means of their probabilistic information [Müller and Stoyan, 2002, Shaked
and Shantikumar, 2006]. We shall denote a stochastic order by �, and shall use �
and ≡ to denote its associated strict preference and indifference relations.

The most important stochastic order is expected utility : given two random vari-
ables X,Y defined on a probability space (Ω,A, P ), we define

X �E Y ⇔ E(X) ≥ E(Y ),

whenever both expectations exist.
In this paper, we shall also consider two other stochastic orders. The first one is

called stochastic dominance.

Definition 3. Let X and Y be two random variables and let FX and FY be their
respective cumulative distribution functions. X is said to stochastically dominate
Y if

FX(t) ≤ FY(t) for every t ∈ R,
and it is denoted by X �SD Y .

Stochastic dominance can be characterized by means of the comparison of the
expectations of adequate transformations of the random variables.

Theorem 1. [Müller and Stoyan, 2002] Let X and Y be two random variables,
and define

U := {u : R→ R increasing}.
Then, X �SD Y if and only if E(u(X)) ≥ E(u(Y )) for all u ∈ U . In particular,
X �SD Y implies X �E Y .

Another alternative for comparing random variables is statistical preference
[David, 1963, De Schuymer et al., 2003], which is based on the notion of probabilistic
relation [Bezdek et al., 1978]. Given a set of alternativesA, a map Q : A×A → [0, 1]
is called a probabilistic relation if Q(a, b) +Q(b, a) = 1 for any a, b ∈ A.

Definition 4. Consider two random variables X,Y , and let Q be the probabilistic
relation given by

Q(X,Y ) = P (X > Y ) +
1

2
P (X = Y ).

Then X is said to be statistically preferred to Y , and it is denoted X �SP Y , when
Q(X,Y ) ≥ Q(Y,X), or equivalently, when P (X ≥ Y ) ≥ P (Y ≥ X).

Unlike expected utility and stochastic dominance, statistical preference takes
into account the joint behavior of the two variables, and it can be used to estab-
lish degrees of preference between the two variables. It has been proved useful in
decision making problems with qualitative utilities by Dubois et al. [2003].
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2.3. Lower and upper previsions. In this paper we will consider earlier works
extending stochastic orders to the comparisons of sets of random variables. For
this, we shall consider different models that can be used to summarize a set of
probability measures. One of these will be the possibility measures induced by
fuzzy sets we saw in Section 2.1; in this section we shall introduce other possible
models.

A prominent model within imprecise probability theory are lower and upper
previsions [Walley, 1991]. Given a possibility space Ω, a gamble is a bounded
random variable f : Ω → R. The set of all gambles is denoted L(Ω). A lower
prevision is a mapping P : K → R where K is a subset of L(Ω). It can be given a
behavioral interpretation in terms of buying and selling prices. A lower prevision
defined on indicators of events only is called a lower probability.

A lower prevision P defines an upper prevision P from −K = {−f : f ∈ K} to
R by P (f) = −P (−f).

When K = L(Ω) and P (f) = P (f) for every f , then P is called a linear prevision,
and its restriction to events is a finitely additive probability. Then if we consider
the set

M(P ) = {P linear prevision : P (f) ≤ P (f) ≤ P (f) ∀f ∈ K},
it is said that P is coherent when it is the lower envelope of M(P ).

Completely monotone and minimum-preserving lower previsions are particular
instances of coherent lower previsions:

Definition 5. A lower prevision P defined on a lattice of gambles K is n-monotone
when: ∑

I⊆{1,...,p}

(−1)|I|P

(
f ∧

∧
i∈I

fi

)
≥ 0

for any p ≤ n, f, f1, . . . , fp ∈ K. It is called completely monotone when it is n-
monotone for any n, and it is minimum preserving when P (f ∧ g) = P (f) ∧ P (g)
for any f, g ∈ K.

It can be proven that a minimum preserving lower prevision is in particular
completely monotone. Although coherent lower and upper previsions are more
informative in general than their associated lower and upper probabilities, in the
sense that two different coherent lower previsions may have the same restriction to
events, under 2-monotonicity this is not the case, in the sense that a 2-monotone
lower probability P defined on P(Ω) has only one 2-monotone extension to L(Ω):
its Choquet integral [Choquet, 1953, Denneberg, 1994], given by

P (f) = (C)

∫
fdP = inf f +

∫ ∞
−∞

P (f ≥ t)dt and

P (f) = (C)

∫
fdP = inf f +

∫ ∞
−∞

P (f ≥ t)dt.

for every gamble f .
For a complete review on lower and upper previsions, we refer to Miranda [2008].

3. Imprecise stochastic orders

In Montes et al. [2011, 2012], we extended the stochastic orders introduced in
Section 2.2 towards the comparison of sets of random variables. We refer to Montes
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et al. [2014a,b] for a unified approach, to Denoeux [2009] for a study of stochastic
dominance for belief functions and to Couso and Dubois [2012] for a posterior
alternative study in terms of lower and upper previsions. The following definitions
were considered:

Definition 6. [Montes et al., 2014a, Definition 5] Let X and Y be two sets of random
variables, and let � be a stochastic order. It is said that:

(1) X �1 Y if and only if for every X ∈ X , Y ∈ Y it holds that X � Y .
(2) X �2 Y if and only if there is some X ∈ X such that X � Y for every

Y ∈ Y.
(3) X �3 Y if and only if for every Y ∈ Y there is some X ∈ X such that

X � Y .
(4) X �4 Y if and only if there are X ∈ X , Y ∈ Y such that X � Y .
(5) X �5 Y if and only if there is some Y ∈ Y such that X � Y for every

X ∈ X .
(6) X �6 Y if and only if for every X ∈ X there is Y ∈ Y such that X � Y .

The first of these extensions is the most restrictive one, and it requires that each
element of X dominates each element of Y; as such, it produces many instances of
incomparability. The second and third definitions have an underlying interpretation
of risk-seeking, as they focus on the best alternative within each set: they require
that each alternative in Y is dominated by some alternative in X (the same in
�2, not necessarily in �3). The risk-aversion counterpart is given by the fifth
and sixth definitions, where we require that each alternative in X dominates some
alternative in Y (the same in the case of �5, not necessarily in the case of �6).
Finally, the fourth extension is the weakest, as it only requires the existence of a
pair X ∈ X , Y ∈ Y such that X dominates Y .

The relationships between these conditions are summarized in the following fig-
ure:

�4

�1

�6 �3

�5 �2

Figure 2. Relationships between the extensions of the stochastic orders.

It can be checked that no additional implication holds in general.
When � is given by stochastic dominance, statistical preference or expected

utility, we shall refer to the extensions �i for i = 1, . . . , 6 as imprecise stochastic
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dominance, imprecise statistical preference or imprecise expected utility, and we
shall denote them by �SDi , �SPi or �Ei , respectively.

In particular, in Montes et al. [2014b] we showed that imprecise expected utility is
related to some other generalizations of expected utility to the imprecise framework,
such as interval dominance [Zaffalon et al., 2003], maximax [Satia and Lave, 1973],
maximin [Gilboa and Schmeidler, 1989] or E-admissibility [Levi, 1980]. See Couso
and Dubois [2012], Troffaes [2007] for a review on these methods.

Next, we are going to show how the definition above can be applied in a number
of particular cases: the comparison of random sets, possibility measures and sets of
distribution functions. These three models are related to fuzzy random variables
and, as a consequence, our results in this section shall be useful when comparing
fuzzy random variables in Section 5.

3.1. Random sets. As we mentioned in Section 2.1, the α-cuts of a fuzzy random
variable are random sets. As we will discuss in Section 5.5, one possible way of
comparing two fuzzy random variables is to compare their α-cuts for all, or some,
α in [0, 1]. In this section we investigate how this comparison of the α-cuts can
be done. Recall that in this paper we are considering an epistemic interpretation
[Montes et al., 2014a], and regard random sets as a model for the imprecise knowl-
edge of a random variable. We refer to Cascos and Molchanov [2003] to a study of
stochastic orders for random sets under an ontic interpretation.

Our focus in this paper shall be on random closed intervals Miranda et al. [2005].
These are random sets Γ = [L,R], where L,R are random variables defined on a
probability space (Ω,A, P ) and such that L ≤ R. Under the epistemic interpreta-
tion mentioned above, the information about the unknown random variable is given
by the set of measurable selections of Γ, given by

S(Γ) = {U random variable : U(ω) ∈ Γ(ω) ∀ω}.
Thus, the comparison between two random closed intervals ΓX,ΓY shall be done

by means of their associated sets of measurable selections S(ΓX) and S(ΓY), using
Definition 6. We shall denote ΓX �i ΓY to refer to S(ΓX) �i S(ΓY).

Proposition 1. Let ΓX = [LX, RX] and ΓY = [LY, RY] be two random closed
intervals, and let � be a stochastic order that is compatible with monotonicity, in
the sense that

if W1 ≥ V1 and V2 ≥W2, then V1 � V2 ⇒W1 �W2 (7)

for any random variables W1,W2, V1, V2 defined on the same probability space. Then
the following conditions hold:

(1) ΓX �1 ΓY ⇔ LX � RY.
(2) ΓX �2 ΓY ⇔ ΓX �3 ΓY ⇔ RX � RY.
(3) ΓX �4 ΓY ⇔ RX � LY.
(4) ΓX �5 ΓY ⇔ ΓX �6 ΓY ⇔ LX � LY.

Proof. Since LX, RX ∈ S(ΓX) and LY, RY ∈ S(ΓY), it follows from Eq. (7) that

RX � V � LX ∀V ∈ S(ΓX) and RY � V � LY ∀V ∈ S(ΓY).

The result then follows immediately from Definition 6. �

Note that Eq. (7) is satisfied by the three stochastic orders we have introduced
in Section 2.2: expected utility, stochastic dominance and statistical preference.
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3.2. Sets of distribution functions. Another possible manner in which we can
compare two fuzzy random variables is to consider a fuzzy set that is representative
of each fuzzy random variable (for instance its expectation). This fuzzy set is
mathematically equivalent to a possibility measure, and also to a set of distribution
functions. In our next two sections we consider these two models and study how
imprecise stochastic orderings apply to them.

Definition 7. Let F , F : R → [0, 1] be two monotone functions satisfying F ≤
F and such that limx→−∞ F (x) = limx→−∞ F (x) = 0 and limx→+∞ F (x) =
limx→+∞ F (x) = 1. Then the p-box (F , F ) is the set of distribution functions
bounded between F and F .

An instance is represented in the following figure:

R0

1

F F

Figure 3. Example of a p-box.

Note that F , F need not be distribution functions, because we are not requiring
them to be right-continuous; they will only be distribution functions associated with
a finitely additive probability. In this paper, we shall follow the work in Montes
et al. [2014b] and regard p-boxes as sets of σ-additive distribution functions; for
other works in the literature where p-boxes are considered sets of finitely additive
distribution functions we refer to Troffaes and Destercke [2011].

When the imprecise probability models to be compared are given by two p-boxes,
(FX, FX) and (FY, FY), the comparison between them can be made by means of
the extensions of stochastic dominance and expected utility (we do not consider
statistical preference here because it requires the comparison of the images of the
random variables inducing these distributions, which we are not known in general).

Consider a p-box (F , F ) with bounded support and such that both F , F are
distribution functions. They induce probabilities PF , PF on the field generated by

{(−∞, x], (x,+∞) : x ∈ R}.

We shall denote by µF , µF the inner extensions of PF , PF to P(R), and by

(C)

∫
udF and (C)

∫
udF

the Choquet integrals of a function u with respect to µF , µF , respectively. It follows
from monotonicity that for any u ∈ U

(C)

∫
udF ≤ inf

F∈(F,F )

∫
udF and (C)

∫
udF ≥ sup

F∈(F,F )

∫
udF ; (8)
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note that since F , F have bounded support, we can assume without loss of generality
that any u ∈ U is bounded. In addition, when F , F are distribution functions, then
it holds that (C)

∫
udF =

∫
udF and (C)

∫
udF =

∫
udF .

With respect to imprecise expected utility, it is then easy to establish the fol-
lowing:

Proposition 2. Consider two p-boxes (FX, FX) and (FY, FY), with bounded sup-
port and including their respective lower and upper distribution functions.

(1) (FX, FX) �E1 (FY, FY)⇔
∫
id dFX ≥

∫
id dFY.

(2) (FX, FX) �E2
(FY, FY) ⇔ (FX, FX) �E3

(FY, FY) ⇔
∫
id dFX ≥∫

id dFY.

(3) (FX, FX) �E4 (FY, FY)⇔
∫
id dFX ≥

∫
id dFY.

(4) (FX, FX) �E5
(FY, FY) ⇔ (FX, FX) �E6

(FY, FY) ⇔
∫
id dFX ≥∫

id dFY.

Proof. The result follows immediately from Eq. (8), taking also into account that
by assumption FX, FX ∈ (FX, FX) and FY, FY ∈ (FY, FY). �

With respect to imprecise stochastic dominance, some results were already estab-
lished in [Montes et al., 2014a, Theorem 8] and [Montes et al., 2014b, Proposition 3]
for the comparison of arbitrary sets of distribution functions. Next we show that
the converses of this second result hold when the sets of distribution functions to
be compared are determined by respective p-boxes.

Proposition 3. Consider two p-boxes (FX, FX) and (FY, FY) with bounded sup-
port and including their respective lower and upper distribution functions.

(1) (FX, FX) �SD1
(FY, FY)⇔

∫
udFX ≥

∫
udFY for every u ∈ U .

(2) (FX, FX) �SD2 (FY, FY)⇔ (FX, FX) �SD3 (FY, FY)

⇔
∫
udFX ≥

∫
udFY for every u ∈ U .

(3) (FX, FX) �SD4
(FY, FY)⇔

∫
udFX ≥

∫
udFY for every u ∈ U .

(4) (FX, FX) �SD5 (FY, FY)⇔ (FX, FX) �SD6 (FY, FY)

⇔
∫
udFX ≥

∫
udFY for every u ∈ U .

Proof. The result follows taking into account that, by [Montes et al., 2014b, Corol-
lary 1], the following equivalences hold:

(SD1) (FX, FX) �SD1 (FY, FY)⇔ FX ≤ FY;
(SD2-3) (FX, FX) �SD2 (FY, FY)⇔ (FX, FX) �SD3 (FY, FY)⇔ FX ≤ FY;

(SD4) (FX, FX) �SD4
(FY, FY)⇔ FX ≤ FY;

(SD5-6) (FX, FX) �SD5
(FY, FY)⇔ (FX, FX) �SD6

(FY, FY)⇔ FX ≤ FY,
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and also that, given two distribution functions F1, F2, it follows from Theorem 1
that F1 ≤ F2 if and only if

∫
udF1 ≥

∫
udF2 for every u ∈ U . �

It follows from these two results that �SDi
implies �Ei

for every i = 1, . . . , 6 in
this context, and this agrees with Theorem 1.

3.3. Possibility measures. Another imprecise probability model closely related
to fuzzy set theory are possibility measures [Zadeh, 1978]: recall that the member-
ship function of a fuzzy set can be interpreted as a possibility distribution, and as
a consequence its associated possibility measure extends the membership function
towards subsets of the referential space.

A possibility measure Π on P(R) determines a set of probability measures by
means of

M(Π) = {P prob. : P (A) ≤ Π(A) ∀A ∈ βR}. (9)

It coincides with the set of probability measures that dominate the conjugate ne-
cessity measure of Π, given by N(A) = 1−Π(Ac) ∀A ⊆ Ω.

In this paragraph we shall consider possibility measures induced by fuzzy num-
bers. For them, we can establish a simple characterization of stochastic dominance
and of expected utility. The case of stochastic dominance was already considered
in [Montes et al., 2014b, Section 4.4], for possibility measures on the unit interval.
What follows is a straightforward extension of [Montes et al., 2014b, Lemma 2].

Consider thus Π1,Π2 two possibility measures defined on the power set of R
whose respective possibility distributions are fuzzy numbers, and letM(Π1),M(Π2)
be the sets they induce by Eq. (9). We shall also denote by F1,F2 the corresponding
sets of cumulative distribution functions. Our following lemma shows that these
sets are indeed determined by the possibility measures and their conjugate necessity
measures.

Lemma 1. Let Π be a possibility measure on R associated with a fuzzy number,
and let F denote the set of cumulative distribution functions associated withM(Π).
Then the lower and upper envelopes of F belong to F and they coincide with the
ones determined by N and Π.

Proof. Denote by FN and FΠ the cumulative distribution functions associated with
N and Π, respectively. Then it holds that:

F (x) = supP≤Π P ((−∞, x]) = Π((−∞, x]) = FΠ(x).
F (x) = infP≤Π P ((−∞, x]) = 1−Π((x,+∞))

= 1− supy>x π(y) = N((−∞, x]) = FN (x).

To see that these bounds are indeed attained, note that by Goodman [1982] the
random set Γ : [0, 1] → P(R) given by Γ(α) = {x : π(x) ≥ α} satisfies P ∗Γ = Π.
Moreover, it follows that when Π is associated with a fuzzy number, this random
set is compact-valued. Applying [Castaldo et al., 2004, Lemma 3.3] to the identity
map id : R→ R we deduce that there exists a measurable selection U ∈ S(Γ) such
that FU = FΠ. Since the probability measure of any measurable selection is always
dominated by the upper probability, it follows that FΠ = max{FP : P ≤ Π}. The
result for FN follows by duality. �

Using this lemma, we can establish the following characterization of imprecise
expected utility for possibility measures:
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Corollary 1. Let ΠX and ΠY be two possibility measures on R associated with fuzzy
numbers, and let FX,FY denote their associated sets of distribution functions.

(1) FX �E1
FY ⇔

∫
id dFΠX

≥
∫
id dFNY

.

(2) FX �E2 FY ⇔ FX �E3 FY ⇔
∫
id dFNX ≥

∫
id dFNY .

(3) FX �E4
FY ⇔

∫
id dFNX

≥
∫
id dFΠY

.

(4) FX �E5
FY ⇔ FX �E6

FY ⇔
∫
id dFΠX

≥
∫
id dFΠY

.

Proof. This is a consequence of Proposition 2 and Lemma 1. �

A similar result can be established for imprecise stochastic dominance:

Proposition 4. Consider two possibility measures ΠX and ΠY on R associated with
fuzzy numbers, and denote by FX,FY their associated sets of distribution functions.
The following statements hold:

(1) FX �SD1
FY ⇔ ΠX((−∞, t]) ≤ NY((−∞, t]) ∀t.

(2) FX �SD2
FY ⇔ FX �SD3

FY ⇔ NX((−∞, t]) ≤ NY((−∞, t]) ∀t.
(3) FX �SD4

FY ⇔ NX((−∞, t]) ≤ ΠY((−∞, t]) ∀t.
(4) FX �SD5 FY ⇔ FX �SD6 FY ⇔ ΠX((−∞, t]) ≤ ΠY((−∞, t]) ∀t.

Proof. From the proof of Lemma 1, we see that

FX(t) = ΠX((−∞, t]), FX(t) = NX((−∞, t])
FY(t) = ΠY((−∞, t]), FY(t) = NY((−∞, t])

for every t ∈ R. The result follows then from Eqs. (SD1)– (SD5-6). �

Proposition 3 established a connection between the comparison of p-boxes by
imprecise stochastic dominance and the comparison of integrals. Next we establish
an analogous result for particular case of p-boxes induced by possibility measures.

Corollary 2. Let ΠX and ΠY be two possibility measures on R associated with fuzzy
numbers, and let FX,FY denote their associated sets of distribution functions. The
following statements hold:

(1) FX �SD1
FY ⇔

∫
udFΠX

≥
∫
udFNY

for every u ∈ U .

(2) FX �SD2
FY ⇔ FX �SD3

FY ⇔
∫
udFNX

≥
∫
udFNY

for every u ∈ U .

(3) FX �SD4 FY ⇔ (C)

∫
udFNX ≥

∫
udFΠY for every u ∈ U .

(4) FX �SD5
FY ⇔ FX �SD6

FY ⇔
∫
udFΠX

≥
∫
udFΠY

for every u ∈ U .

Proof. The result follows immediately from Proposition 3 and Lemma 1. �

Taking these results into account, whenever we have to compare two possibility
measures ΠX,ΠY whose possibility distributions are fuzzy numbers, we shall con-
sider only definitions �1,�2,�4 and �5 whenever � refers to stochastic dominance
or expected utility, since in both cases we have �2⇔�3 and �5⇔�6. Moreover,
we shall use the notation ΠX �i ΠY to refer to FX �i FY for simplicity.
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Also, it follows that imprecise stochastic dominance implies imprecise expected
utility when applied to fuzzy numbers. This is consistent with the relation between
stochastic dominance and expected utility in Theorem 1.

4. Imprecise stochastic orders as fuzzy rankings

A fuzzy ranking is a method that allows to establish comparisons between fuzzy
sets. Several fuzzy rankings have been proposed in the literature [Abbasbandy and
Asady, 2006, Chen, 1985, de Campos and González Muñoz, 1989, Deng, 2014, Ezzati
et al., 2012, Fortemps and Roubens, 1996, Kim and Park, 1990, Lee et al., 2004,
Wang, 2015]; we refer to Bortolan and Degani [1985], Wang and Kerre [2001a,b],
Yuan [1991] for critical reviews. They can be classified in three types: those that
transform the fuzzy sets into a real number and compare these with the usual order
in R; those that measure the distance from the fuzzy sets to a reference set (usually
the maximum of the fuzzy sets); and those that provide a fuzzy relationship in
order to compare the fuzzy sets.

Since a fuzzy set is formally equivalent to a possibility measure, we can use the
ideas from Section 3.3 and regard the methods we have considered in the previous
section as fuzzy rankings. There is, however, one fundamental difference with the
ones considered above: we are allowing for incomparability between the fuzzy sets,
which in our view is natural under the epistemic interpretation we are giving to
fuzziness in this paper. In this sense, our proposal aligns with the one by Dubois
and Prade [1983]: they propose several indices for the comparison between two
fuzzy sets but in case of discrepancy leave the final choice to the decision maker,
under the light of the information provided. See Zhang et al. [2014] for a somewhat
related idea, where the image of the fuzzy ranking is a fuzzy set, and Bronevich
and Rozenberg [2014] for an approach based on inclusion indices.

The use of stochastic orders as fuzzy rankings has already been investigated by
Destercke and Couso [2015]. A key difference with our approach is that the authors
of that paper make assumptions on the possible dependence between the fuzzy
sets, according to which they express stochastic dominance, statistical preference
and the comparison of expectations in terms of the comparison of lower/upper
expectations with respect to adequate functions. On the other hand, in this paper
we are not making any assumption about dependence between the fuzzy sets to
be compared. As a consequence, we shall not consider statistical preference in this
section, because it requires the knowledge of a joint model for the two fuzzy sets,
and we are considering only marginal information.

We shall study the properties of imprecise stochastic dominance and imprecise
expected utility as fuzzy rankings. We shall focus on the application of these orders
to trapezoidal fuzzy numbers, for which the orders shall take a simple expression.
Recall that a trapezoidal fuzzy number [Cheng, 1998] is a fuzzy set determined by
four parameters (t1, t2, t3, t4); its membership function is given by:

µ(x) =



0 if x < t1.
x−t1
t2−t1 if t1 ≤ x < t2.

1 if t2 ≤ x ≤ t3.
t4−x
t4−t3 if t3 < x ≤ t4.
0 if x > t4.

(10)
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In Figure 4 we can see an example of the membership function of a triangular
fuzzy number.

1

t2 t3t1 t4

Figure 4. Example of a trapezoidal fuzzy number.

The α-cuts of a trapezoidal fuzzy number are given by the interval [TL(α), TU (α)],
where:

[TL(α), TU (α)] = [t1 + (t2 − t1)α, t4 − (t4 − t3)α]. (11)

One particular family of trapezoidal fuzzy sets are triangular fuzzy sets. A trian-
gular fuzzy set is denoted by (z1, z2, z3), and it represents the trapezoidal fuzzy set
(z1, z2, z2, z3). This means that the maximum membership degree is only attained
in one point: z2.

4.1. Imprecise expected utility as a fuzzy ranking. Given a possibility mea-
sure induced by a trapezoidal fuzzy number, we also establish a simple characteri-
zation of imprecise expected utility. To see how this comes about, note that if Π is
determined by the membership function of a trapezoidal fuzzy number (t1, t2, t3, t4),
then ∫

id dFΠ =
t1 + t2

2
and

∫
id dFN =

t3 + t4
2

.

Applying Corollary 1, we deduce the following:

Proposition 5. Let (x1, x2, x3, x4) and (y1, y2, y3, y4) be two trapezoidal fuzzy num-
bers, and denote by ΠX and ΠY the possibility measures they determine.

(1) ΠX �E1
ΠY ⇔ x1+x2

2 ≥ y3+y4
2 .

(2) ΠX �E2 ΠY ⇔ x3+x4

2 ≥ y3+y4
2 .

(3) ΠX �E4
ΠY ⇔ x3+x4

2 ≥ y1+y2
2 .

(4) ΠX �E5 ΠY ⇔ x1+x2

2 ≥ y1+y2
2 .

In Wang and Kerre [2001a,b], a number of desirable properties for fuzzy rankings
� are discussed. Here we shall consider the following1:

(A0) For any pair of fuzzy numbers A,B, either A � B or B � A. [Completeness]
(A1) A � A for any fuzzy number A. [Reflexivity]
(A2) A � B,B � A⇒ A = B. [Antisymmetry]
(A3) A � B and B � C ⇒ A � C. [Transitivity]
(A4) inf supp(A) > sup supp(B)⇒ A � B.
(A5) A � B ⇒ A+ C � B + C for any fuzzy number C.
(A6) supp(C) ⊆ [0,+∞), A � B ⇒ AC � BC.

1Wang and Kerre assume that the fuzzy ranking produces a complete order, which is not always

the case for our imprecise stochastic orders; this is why we have included (A0) in our discussion.
In addition, our axiom (A4),(A5) and (A6) correspond to (A4’),(A6) and (A7) in that paper, their

(A5) not being too interesting in our context.
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Using Proposition 5, we can establish the following:

Proposition 6. Let �Ei
denote the extension of expected utility to the imprecise

case by means of Definition 6. They satisfy the following properties as fuzzy rank-
ings of trapezoidal fuzzy numbers:

(A0) (A1) (A2) (A3) (A4) (A5) (A6)

�E1
• • •

�E2 • • • • •
�E4 • • • • •
�E5

• • • • •

Proof. The properties that are satisfied follow immediately from Proposition 5. Let
us give counterexamples for those that do not hold:

(A0,A1) Take A = (1, 2, 3, 4). Then A is incomparable to itself with respect to �E1
,

and as a consequence �E1 does not induce a complete relationship.
(A2) Note that (1, 2, 3, 4) ∼Ei (0, 1, 3, 4), i = 2, 4, and (1, 2, 3, 4) ∼E5 (1, 2, 4, 5).
(A3) (0, 1, 1, 2) �E4

(1, 2, 2, 3) �E4
(2, 3, 3, 4), but (0, 1, 1, 2) �E4

(2, 3, 3, 4).
(A5) Take A = (2, 3, 3, 4), B = (1, 2, 2, 3) and C = (0, 1, 1, 2). Then A �E1

B =
B + C. However, A+ C = (2, 4, 4, 6) �E1

(1, 3, 3, 5).
(A6) The same A,B,C in the previous item satisfy also AC = (0, 3, 3, 8) �E1

(0, 2, 2, 6) = BC.
On the other hand, if we consider A′ = (−2,−1, 1, 2), B′ = (−3, 0, 0, 3)

and C ′ = (0, 1, 2, 3), it holds that A′ ∼E2,E5
B′ but A′C ′ = (−6,−2, 2, 6),

B′C ′ = (−9, 0, 0, 9), whence A′C ′ �E2
B′C ′ �E5

A′C ′. �

Unsurprisingly, the antisymmetry property is only satisfied by the most stringent
extension (�E1

), while transitivity is not satisfied by the weakest one (�E4
). It

is also interesting to remark that the first extension may produce instances of
incomparability, unlike the others. Note also that, although all our versions of
imprecise expected utility satisfy axiom (A4), this is not the case for all fuzzy
rankings: as shown by Wang and Kerre [2001a], it is violated for instance by Kerre’s
fuzzy ranking [Kerre, 1982].

Although it is an open problem at this stage, we think that the properties in
Proposition 6 also hold when we compare arbitrary fuzzy sets by means of imprecise
expected utility.

C

B A

0 1 2 3 4

Figure 5. Graphical representation of the trapezoidal fuzzy sets.

It is also interesting to discuss the behavior of these orders in the controversial
case discussed in [Wang and Kerre, 2001a, Section 1.2], that we depict in Figure 5:
we consider the trapezoidal fuzzy sets A = (2, 3, 3, 4), B = (1, 3, 3, 4) and C =
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(0, 1, 3, 4). We deduce from Proposition 5 that

A �E5
B �E5

C, A ≡E2
B ≡E2

C, A ≡E4
B ≡E4

C, (12)

and that they are incomparable with respect to �E1 . This is because the order �E5

is looking at the lower limits of the fuzzy sets, for which we can establish a strict
order, while �E2

is looking at the upper limits, where the three fuzzy sets coincide.

4.2. Imprecise stochastic dominance as a fuzzy ranking. When the possibil-
ity measures to be compared are induced by trapezoidal fuzzy numbers, imprecise
stochastic dominance takes a simple expression:

Proposition 7. Let X and Y be two trapezoidal fuzzy numbers with parameters
(x1, x2, x3, x4) and (y1, y2, y3, y4), respectively, and let ΠX and ΠY be the possibility
measures they determine.

(1) ΠX �SD1
ΠY ⇔ y3 ≤ x1 and y4 ≤ x2.

(2) ΠX �SD2
ΠY ⇔ y3 ≤ x3 and y4 ≤ x4.

(3) ΠX �SD4
ΠY ⇔ y1 ≤ x3 and y2 ≤ x4.

(4) ΠX �SD5 ΠY ⇔ y1 ≤ x1 and y2 ≤ x2.

Proof. From Eq. (10), we can deduce that the lower and upper distributions induced
by a trapezoidal fuzzy number with parameters (t1, t2, t3, t4) are given by:

F (x) =


0 if x ≤ t3.
1− t4−x

t4−t3 if t3 < x ≤ t4.
1 if x > t4.

F (x) =


0 if x < t1.
x−t1
t2−t1 if t1 ≤ x < t2.

1 if x ≥ t2.

Taking these formulas into account, the result follows from Proposition 4. �

We shall use this result to study the properties of imprecise stochastic dominance
as a fuzzy ranking. They are summarized in the following proposition:

Proposition 8. Let �SDi
denote the extensions of stochastic dominance to the

imprecise case by means of Definition 6. They satisfy the following properties as
fuzzy rankings of trapezoidal fuzzy numbers:

(A0) (A1) (A2) (A3) (A4) (A5) (A6)

�SD1
• • • •

�SD2
• • • • •

�SD4
• • • • •

�SD5 • • • • •

Proof. Let us study each of the axioms:

(A0) Given A = (1, 2, 3, 4) and B = (0, 2.5, 2.5, 4.5), it follows from Proposition 7
that A,B are incomparable with respect to �SDi

for i = 1, 2, 5. On the
other hand, given X = (x1, x2, x3, x4) and Y = (y1, y2, y3, y4), if y1 > x3

or y2 > x4 it follows that x1 ≤ y3 and x2 ≤ y4. Thus, �SD4
induces a

complete relationship.
(A1) For �SDi , i = 2, 4, 5, this follows immediately from Proposition 7. To see

that it does not hold for �SD1
, use the same counterexample of Proposi-

tion 6.
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(A2) A ∼SD1
B implies that b3 ≤ a1 ≤ a3 ≤ b1 and that b4 ≤ a2 ≤ a4 ≤ b2,

whence a1 = · · · = a4 = b1 = · · · = b4 and in particular A = B. To see that
(A2) does not hold for the other relationships, use the same examples as in
Proposition 6.

(A3) For �SDi
, i = 1, 2, 5, this follows immediately from Proposition 7. To see

that it does not hold for �SD4
, use the same example as in Proposition 6.

(A4) This is a consequence of Proposition 7.
(A5) Given trapezoidal fuzzy numbers A = (a1, a2, a3, a4), B = (b1, b2, b3, b4) and

C = (c1, c2, c3, c4),it holds that A+ C = (a1 + c1, a2 + c2, a3 + c3, a4 + c4)
and B+C = (b1 + c1, b2 + c2, b3 + c3, b4 + c4). From here the result follows
by Proposition 7.

(A6) Given trapezoidal fuzzy numbers A = (a1, a2, a3, a4), B = (b1, b2, b3, b4)
and C = (c1, c2, c3, c4) with c1 ≥ 0, it follows that

AC = ( min{a1c1, a1c4, a4c1, a4c4},min{a2c2, a2c3, a3c2, a3c3},
max{a2c2, a2c3, a3c2, a3c3},max{a1c1, a1c4, a4c1, a4c4})

and, similarly

BC = ( min{b1c1, b1c4, b4c1, b4c4},min{b2c2, b2c3, b3c2, b3c3},
max{b2c2, b2c3, b3c2, b3c3},max{b1c1, b1c4, b4c1, b4c4}).

Using these expressions and Proposition 7, we can show that �SDi
, i =

2, 4, 5, satisfy (A6). To see that it is not the case for �SD1 , take for instance
A = (2, 3, 3, 4), B = (1, 2, 2, 3) and C = (0, 1, 1, 2); then A �SD1 B while
AC = (0, 3, 3, 8) �SD1

(0, 2, 2, 4) = BC. �

It is also interesting to discuss again the behavior of these orders in the case
discussed in Figure 5. From Proposition 7, we immediately see that

A �SD5 B �SD5 C, A ≡SD2 B ≡SD2 C, A ≡SD4 B ≡SD4 C,

and that they are incomparable with respect to �SD1
. In fact, taking into account

that �SDi
implies �Ei

for i = 1, . . . , 6 when comparing trapezoidal fuzzy numbers,
this also allows us to obtain some of the relationships in Eq. (12).

We conclude this section by giving necessary and sufficient conditions for impre-
cise stochastic dominance when applied to fuzzy numbers (not necessarily trape-
zoidal). They shall be useful when considering fuzzy stochastic dominance in Sec-
tion 5.6.

It can be shown that the comparison of the possibility measures induced by fuzzy
numbers by means of imprecise stochastic dominance is related to the comparison
of the α-cuts. In order to do this, let us introduce the following orders between real
intervals [a, b] and [a′, b′] Dubois et al. [2000], Fisburn [1985]:

[a, b] . [a′, b′] when a ≤ b′. (13)

[a, b] ≤ [a′, b′] when a ≤ a′. (14)

[a, b] 0 [a′, b′] when b ≤ b′. (15)

[a, b]� [a′, b′] when b ≤ a′. (16)

These orders are at the basis of Denoeux’s work on stochastic dominance for
belief functions [Denoeux, 2009]. We have established the following:
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Proposition 9. Let X,Y be two fuzzy numbers and denote by ΠX,ΠY the possibility
measures they induce. Then:

(1) παY � παX for any α ∈ (0, 1] ⇒ ΠX �SD1
ΠY ⇒ παY � παX for any α ∈

(0.5, 1];
(2) ΠX �SD2 ΠY ⇔ παY 0 π

α
X for any α ∈ (0, 1];

(3) παY . π
α
X for α = 1⇒ ΠX �SD4

ΠY;
(4) ΠX �SD5

ΠY ⇔ παY ≤ παX for any α ∈ (0, 1].

Proof. It follows from its definition that the α-cut of the fuzzy number determined
by the numbers a, b and the maps l, r is given by

[inf{x : l(x) ≥ α}, sup{x : r(x) ≥ α}]
for α ∈ (0, 1].

On the other hand, if we consider the possibility measure Π it induces and its
corresponding p-box (F , F ), the latter is given by:

F (t) =


0 if t < ω1.

l(t) if t ∈ [ω1, a).

1 if t ≥ a.
F (t) =


0 if t ≤ b.
1− r(t) if t ∈ (b, ω2].

1 if t > ω2.

(17)

Now, let πx and πY be the fuzzy numbers defined by lX, rX, a, b, ω1, ω2 and
lY, rY, a′, b′, δ1, δ2, respectively. We shall apply the characterisation of imprecise
stochastic dominance in Proposition 4.

(1) Assume that ΠX �SD1
ΠY, whence FX ≤ FY. From Eq. (17), we deduce

that:
• b′ ≤ ω1;
• δ2 ≤ a; and
• lX(t) ≤ 1− rY(t) for any t ∈ [ω1, δ2].

Now, assume ex-absurdo that there is α > 1
2 such that παY 6� παX. This

implies that:

inf{x : lX(x) ≥ α} < sup{x : rY(x) ≥ α}.
Thus, there are x1, x2 such that:

x1 < x2, lX(x1) ≥ α, rY(x2) ≥ α.
Furthermore, since x1 < x2, lX(x2) ≥ lX(x1) ≥ α, and therefore:

lX(x2) + rX(x2) ≥ 2α > 1,

a contradiction. We conclude that παY � παX for any α ∈ (0.5, 1].
On the other hand, if παY � παX for every α > 0, then it must be δ2 ≤ ω1,

since

ω1 = inf{t : lY(t) > 0} = lim
α↓0

inf{t : lY(t) ≥ α}

≥ lim
α↓0

sup{t : rX(t) ≥ α} = sup{t : rX(t) > 0} = δ2,

where the second and third equalities follow from the right-continuity of lY
and the left-continuity of rX. As a consequence, rY(t) + lX(t) ≤ 1 for every
t ∈ [b′, a], because only one of the terms is non-zero for each t.

(2) Assume now that ΠX �SD2 ΠY, whence FX ≤ FY. From Eq. (17), we
deduce that:
• δ2 ≤ ω2;
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• b′ ≤ b, and
• 1− rX(t) ≤ 1− rY(t) for any t ≥ b′.

Then, rX(t) ≥ rY(t) for t ≥ b′. As a consequence, if rY(t) ≥ α, also
rX(t) ≥ α, whence

sup{x : rY(x) ≥ α} ≤ sup{x : rX(x) ≥ α}.
We conclude from Eq. (15) that παY 0 π

α
X for α ∈ (0, 1].

Conversely, assume that παY 0 π
α
X for α ∈ (0, 1]. Taking α = 1 we obtain

that b′ ≤ b. Ex-absurdo, assume that ω2 < δ2. Then:

rX

(
ω2 + δ2

2

)
= 0 < rY

(
ω2 + δ2

2

)
.

Taking α = rY

(
ω2+δ2

2

)
, it holds that

rY

(
ω2 + δ2

2

)
≥ α > rX

(
ω2 + δ2

2

)
,

but this contradicts the hypothesis παY 0 παX. Finally, it only remains to
see that 1 − rX(t) ≤ 1 − rY(t) for any t ≥ b. Ex-absurdo, assume that
1− rY(t) < 1− rX(t), and then rX(t) < rY(t) for a given t. Take α = rY(t).
Then:

rY(t) = α > rX(t),

and this implies that παX 60 παY, a contradiction.
(3) Since [a′, b′] = π1

Y . π
1
X = [a, b], it follows from Eq. (13) that a′ ≤ b. Thus,

FX ≤ FY, and applying (SD4) we conclude that ΠX �SD4
ΠY.

(4) Finally, assume that ΠX �SD5 ΠY. By (SD5-6), this is equivalent to FX ≤
FY. This implies that:
• δ1 ≤ ω1;
• a′ ≤ a; and
• lX(t) ≤ lY(t) for any t ≤ a′.

Thus l
−1]
X (α) ≥ l−1]

Y (α), and therefore παY ≤ παX for any α ∈ (0, 1].
Conversely, assume that παY ≤ παX for any α ∈ (0, 1]. By Eq. (14), if we

consider α = 1, π1
Y = [a′, b′] ≤ [a, b] = π1

X, then a′ ≤ a. Ex-absurdo, assume

that ω1 < δ1. Then lX
(
ω1+δ1

2

)
> 0 = lY

(
ω1+δ1

2

)
. Taking α = lX

(
ω1+δ1

2

)
,

we conclude that l
−1]
X (α) < l

−1]
Y (α), but this implies that παY 6≤ παX, a

contradiction. Finally, it only remains to see if lX(t) ≤ lY(t) for any t ∈
[δ1, a]. Take α = lY(t). Then, we know that:

t = l
−1]
Y (α) ≤ l−1]

X (α) = l
−1]
X (lY(t))⇒ lX(t) ≤ lY(t).

We conclude that FX �SD FY and therefore ΠX �SD5
ΠY. �

5. Comparison of fuzzy random variables

Next, we shall apply the results in the previous section to the comparison of
fuzzy random variables. Through this section we shall assume that the images of
the fuzzy random variables are fuzzy numbers2, and also that they are uniformly

bounded, meaning that for each fuzzy random variable X̃ there is a compact interval

[a, b] such that the support X̃(ω) is included in [a, b] for every ω.

2These are also called fuzzy random variables of the L-R type in [Aiche and Dubois, 2010,
Aiche et at., 2013].
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We shall consider a number of possibilities, and in particular we are going to
discuss how the stochastic orders given by stochastic dominance, statistical pref-
erence and expected utility can be generalized to the comparison of fuzzy random
variables.

5.1. Lower/upper probabilities. The fuzzy set µX̃(U) defined in Eq. (2) mea-
sures how compatible is the random variable U with the unknown random variable

that X̃ is modeling. In a similar manner we can define a fuzzy set on the set of
probabilities:

µ′
X̃

(P ) = sup{µX̃(U) : PU = P}.
Following the same interpretation, µ′

X̃
(P ) measures how compatible is P with the

probability induced by the unknown random variable that X̃ is modeling; as such,
µ′
X̃

is a second order possibility over a set of probabilities. Using the notion of

natural extension, Walley [1997] introduced a method to reduce µ′
X̃

to a first order

model. Next, we shall show how the resulting model can be used for the compari-
son of fuzzy random variables, by establishing links with well-known criteria from
Imprecise Probability Theory.

Walley defines the lower and upper previsions Pα, P
α

on the set L(R) by

Pα(f) = inf{P (f) : µ′
X̃

(P ) ≥ α} and Pα(f) = sup{P (f) : µ′
X̃

(P ) ≥ α}, (18)

and then he derives the (first order) lower and upper previsions by:

PW (f) =

∫ 1

0

Pα(f) dα and P
W

(f) =

∫ 1

0

Pα(f) dα. (19)

When we consider fuzzy random variables whose images are fuzzy numbers, it holds
that µ′

X̃
(P ) ≥ α if and only if there exists a random variable U such that PU = P

and µX̃(U) ≥ α. On the other hand:

µ′
X̃

(PU ) ≥ α ⇔ inf{X̃(ω)(U(ω)) ≥ α ∀ω ∈ Ω} ⇔ ∀ω ∈ Ω, X̃(ω)(U(ω)) ≥ α
⇔ ∀ω ∈ Ω, U(ω) ∈ X̃α(ω)⇔ U ∈ S(X̃α).

Then, {P : µ′
X̃

(P ) ≥ α} = {PU : U ∈ S(X̃α)}. In other words, the coherent

lower previsions Pα and Pα given by Eq. (18) correspond to the lower and upper
expectation functionals of the random sets determined by the α-cuts.

In particular, if we use the notation X̃α(ω) = [lα(ω), rα(ω)], we can use a proce-
dure analogous to Eq. (19) and define the lower and upper expectation associated
with µ′

X̃
by:

EW =

∫ 1

0

E(lα) dα and E
W

=

∫ 1

0

E(rα) dα. (20)

Using the notions of interval dominance [Zaffalon et al., 2003], minimax [Satia
and Lave, 1973], maximax [Gilboa and Schmeidler, 1989] and E-admissibility [Levi,
1980] of Imprecise Probability Theory, we can compare fuzzy random variables in
the following manner.

Definition 8. Let X̃ and Ỹ be two uniformly bounded fuzzy random variables whose

images are fuzzy numbers. Denote by EW
X̃
, E

W

X̃ and EW
Ỹ
, E

W

Ỹ the lower and upper

expectations obtained by Eq. (20). We say that X̃ is preferred to Ỹ by:

• Interval dominance when EW
X̃
≥ EWỸ .
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• Maximin when EW
X̃
≥ EW

Ỹ
.

• Maximax when E
W

X̃ ≥ E
W

Ỹ .

• E-admissibility when E
W

X̃ ≥ E
W
Ỹ

.

In this manner, we can compare fuzzy random variables using some of the gen-
eralizations of expected utility to the imprecise case. We refer to Troffaes [2007] for
a detailed comparison of these notions. As we shall see next, these conditions are
particular cases of fuzzy expected utility.

5.2. Fuzzy expected utility. The stochastic order given by expected utility con-
siders preferable the random variable with the higher expectation, i.e., X �E Y ⇔
E(X) ≥ E(Y ). When we want to compare fuzzy random variables, their expecta-
tions are given by fuzzy sets (see Eq. (5)), and as a consequence we must consider
a fuzzy ranking on them.

It follows from Eq. (6) that the α-cuts of the expectation are given by the Au-

mann integral of the random set X̃α. When the images of the fuzzy random variable

are fuzzy numbers, it follows that X̃α is a random closed interval for every α ∈ (0, 1].
Since by [Castaldo et al., 2004, Theorem 4.1] we have that

min(A)

∫
X̃α dP =

∫
id dP∗X̃α and max(A)

∫
X̃α dP =

∫
id dP ∗

X̃α
,

the linearity of the integral implies that

(A)

∫
X̃α dP =

[∫
id dP∗X̃α ,

∫
id dP ∗

X̃α

]
,

and as a consequence the expectation E(X̃) is a fuzzy number.
From the point of view of imprecise probabilities, we can also consider the possi-

bility measures associated with these fuzzy sets, and one of the imprecise stochastic
orders we have discussed in Section 3.3. The following example illustrates both these
possibilities.

Example 1. Assume we are trying to model two unknown random variables de-

fined in ([0, 1], β[0,1], λ[0,1]) by means of the fuzzy random variables X̃, Ỹ : [0, 1]→
F([0, 1]) given by:

X̃(ω)(r) =

{
2r if r ≤ 1

2 .

2− 2r if r > 1
2 .

Ỹ (ω)(r) =


0 if ω ∈ [0, 1

2 ] and r 6= 0.

1 if ω ∈ [0, 1
2 ] and r = 0.

1 if ω ∈ ( 1
2 , 1] and r ≥ 1

2 .

0 if ω ∈ ( 1
2 , 1] and r < 1

2 .

The graphical representation of X̃(ω), Ỹ (ω) are depicted in Figure 6.
Note that the images of these fuzzy random variables are fuzzy numbers. The

expectations of these fuzzy random variables, E(X̃) and E(Ỹ ), depicted in Figure 7,
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1

10

X̃(ω)(r)

1

10

Ỹ (ω)(r)

ω ∈ [0, 0.5]

1

10

Ỹ (ω)(r)

ω ∈ (0.5, 1]

Figure 6. Images of X̃(ω) and Ỹ (ω).

are the fuzzy sets given by:

E(X̃)(r) =

{
2r if r ∈ [0, 1

2 ).

2− 2r if r ∈ [ 1
2 , 1].

E(Ỹ )(r) =

{
1 if r ∈ [ 1

4 ,
1
2 ].

0 otherwise.

1

10

E(X̃)(r)

1

10

E(Ỹ )(r)

Figure 7. Graphical representation of the expectations of X̃ and

Ỹ .

Let us for instance compare these two sets by means of the fuzzy ranking defined
by de Campos and González Muñoz [1989], given by

A �CM B ⇐⇒ CM(A) :=

∫ 1

0

a−α + a+
α

2
dα ≥

∫ 1

0

b−α + b+α
2

dα := CM(B), (21)

where a−α , a
+
α (resp., b−α , b

+
α ) denote the infimum and the supremum of the α-cut of

A (resp., B). Here we are considering the particular version of the fuzzy ranking
where the optimism-pessimism index 0.5. Other fuzzy rankings with a similar idea
can be found in Ezzati et al. [2012], Yu and Dat [2014]. We obtain that

CM(E(X̃)) =
1

2
>

3

8
= CM(E(Ỹ )),

and as a consequence we would conclude that the fuzzy random variable X̃ is

preferred to Ỹ .
On the other hand, we can also interpret these expectations as possibility dis-

tributions, and we can thus compare them by means of imprecise expected utility.
Denote by ΠX and NX the possibility and necessity distributions associated with

E(X̃) and by ΠY and NY the possibility and necessity distributions associated with

E(Ỹ ). We have that∫
iddFΠX

=
1

4
,

∫
iddFNX

=
3

4
,

∫
iddFΠY

=
1

4
,

∫
iddFNY

=
1

2
.
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Applying Corollary 1, we conclude that X̃ �E2
Ỹ , X̃ ≡E4,E5

Ỹ , and that they are
incomparable with respect to the first definition. �

This example also helps illustrating how the different versions of imprecise ex-
pected utility put the focus on different features of the fuzzy set, and thus end up
producing different orders.

Next result establishes a connection between fuzzy expected utility, when the
comparison is made by means of the imprecise expected utility, and the compari-
son of the lower/upper expectation given by Walley’s procedure for fuzzy random
variables whose images are fuzzy numbers. A somewhat similar result has been
established in [Couso and Sánchez, 2011, Section 7] 3.

Theorem 2. Let X̃ be a fuzzy random variable with bounded support whose images
are fuzzy numbers, and let f : R → R be a bounded random variable. Consider

PW , P
W

given by Eq. (19), let Π the possibility measure associated with E(X̃), and
define

EΠ(f) := inf

{∫
fdP : P ≤ Π

}
and EΠ(f) := sup

{∫
fdP : P ≤ Π

}

Then, it holds that:

PW (f) = EΠ(f) and E
W

(f) = EΠ(f).

Proof. Let us establish the result for the lower previsions; the proof for the upper

previsions follows by duality. Let [a, b] denote the support of X̃, and define K =
{f ∈ L([a, b]) measurable}.

By construction, the coherent lower prevision EΠ is minimum-preserving on
L([a, b]). As a consequence, we deduce from [de Cooman et al., 2008, Theorem 11]
that EΠ is completely monotone. This means in particular [de Cooman et al., 2008,
Theorem 15] that it is the Choquet integral with respect to its restriction to events.

On the other hand, since X̃α is a random closed interval for every α, it fol-
lows from [Miranda et al., 2010, Theorem 14] that for any f ∈ K it holds that
Pα(f) =

∫
fd(PX̃α)∗, where (PX̃α)∗ denotes the lower probability associated with

the random set X̃α. As a consequence, the restriction of Pα to K is also completely
monotone. From this we can deduce, using the linearity of the integral, that the

3Our result is more general because we establish the equality between these two lower previsions
on gambles, and not only events, and for this we need to establish the complete monotonicity of

these previsions; for clarity, note that in Couso and Sánchez [2011] the functional PΠ is expressed

by means of Dubois and Prade’s mean value of a fuzzy number [Dubois and Prade, 1987].
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lower prevision PW is also completely monotone: given f1, ..., fp ∈ K, it holds that

PW

(
p∨
i=1

fi

)
=

∫ 1

0

Pα

(
p∨
i=1

fi

)
dα

≥
∫ 1

0

 p∑
i=1

Pα(fi)−
∑
i,j

Pα(fi ∧ fj) + · · ·+ (−1)p+1Pα

(
p∧
i=1

fi

) dα

=

p∑
i=1

∫ 1

0

Pα(fi)dα−
∑
i,j

∫ 1

0

Pα(fi ∧ fj)dα+ · · ·+ (−1)p+1

∫ 1

0

Pα

(
p∧
i=1

fi

)
dα

=

p∑
i=1

PW (fi)−
∑
i,j

PW (fi ∧ fj) + · · ·+ (−1)p+1PW

(
p∧
i=1

fi

)
,

where the inequality follows using that Pα is completely monotone in K for every
α.

Applying again [de Cooman et al., 2008, Theorem 15], we deduce that for every
f ∈ K it holds that

PW (f) = (C)

∫
fdPW = inf f +

∫ +∞

−∞
PW (f ≥ t)dt

Now, it has been established in [Couso and Sánchez, 2011, Section 7] that PW and
PΠ coincide on measurable events. As a consequence,

inf f +

∫ +∞

−∞
PW (f ≥ t)dt = inf f +

∫ +∞

−∞
PΠ(f ≥ t)dt = (C)

∫
fdPΠ = PΠ(f).

Thus, PW = PΠ on K. �

In particular, we deduce that the result holds when f is the identity function.
This allows us to establish the following:

Theorem 3. Let X̃ and Ỹ be two fuzzy random variables with bounded support

whose images are fuzzy numbers. Denote by EW
X̃
, EX̃ , E

W
Ỹ
, E

W

Ỹ the lower and upper

expectations given by Eq. (20). Then:

(1) E(X̃) �E1
E(Ỹ )⇔ EW

X̃
≥ EWỸ .

(2) E(X̃) �E2
E(Ỹ )⇔ EW

X̃
≥ EW

Ỹ
.

(3) E(X̃) �E4
E(Ỹ )⇔ E

W

X̃ ≥ E
W
Ỹ

.

(4) E(X̃) �E5 E(Ỹ )⇔ E
W

X̃ ≥ E
W

Ỹ .

Proof. This follows from the previous theorem and Corollary 1, taking into account

that E(X̃), E(Ỹ ) are fuzzy numbers. �

According to Definition 8, the comparison of expectations with respect to impre-
cise expected utility is also related to the notions of minimax, maximax, interval
dominance and E-admissibility.

Example 2. Consider again the fuzzy random variables from Example 1. There,

we have seen that E(X̃) �E2
E(Ỹ ) and E(X̃) ∼Ei

E(Ỹ ) for i = 4, 5, while the are

incomparable for �E1
. Using Theorem 3, we conclude that X̃ is preferred to Ỹ with
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respect to the maximin criterion, while they are equivalent with respect to maximax
and E-admissibility, and incomparable with respect to interval dominance. �

5.3. Fuzzy stochastic dominance. Next we consider the extension of stochastic
dominance to the imprecise case. Recall that given two random variables X,Y , X
is said to stochastically dominate Y when FX(t) ≤ FY (t) for every t. When we

consider two fuzzy random variables X̃, Ỹ , it follows from Eq. (3) that for every
real number t, FX̃(t), FỸ (t) are fuzzy sets on [0, 1]. Hence, we should compare them
by means of a fuzzy ranking, and this gives rise to the following definition:

Definition 9. Let % be a fuzzy ranking, and consider two fuzzy random variables

X̃, Ỹ . We say that X̃ %-stochastically dominates Ỹ when FỸ (t) % FX̃(t) for every
real number t.

As we discussed in Section 2.2, stochastic dominance is quite a strong require-
ment, and gives rise to many instances of incomparable random variables. Because
of this, some weaker versions of stochastic dominance, such as the second, third,...-
order stochastic dominance have been proposed [Levy, 1998].

When we consider the extension of stochastic dominance to the fuzzy case in
the definition above, we end up with quite a stringent condition when the fuzzy
ranking % we consider does not produce a complete order, as is for instance the case
with some versions of imprecise stochastic dominance or imprecise expected utility.
Because of this, we think it makes more sense to use fuzzy stochastic dominance
with respect to a complete fuzzy ranking. The following example illustrates the
procedure:

Example 3. Consider again the fuzzy random variables X̃, Ỹ from Example 1. FX̃
is given in any point ω by the membership function:

FX̃(ω)(r) =

{
2ω if r ∈ (0, 1],

1 if r = 0,

when ω ∈ [0, 0.5), and by

FX̃(ω)(r) =

{
2− 2ω if r ∈ [0, 1),

1 if r = 1,

when ω ∈ [0.5, 1]. Similarly, FỸ is given by:

FỸ (ω)(r) =

{
1 if r = 0.5,

0 if r 6= 0.5,

for ω ∈ [0, 0.5), by:

FỸ (ω)(r) =

{
1 if r ∈ [0.5, 1],

0 if r ∈ [0, 0.5),

when ω ∈ [0.5, 1) and, finally, by:

FỸ (ω)(r) =

{
1 if r = 1,

0 if r ∈ [0, 1),

for ω = 1. Figure 8 is a graphical representation of FX̃(ω)(r) and FỸ (ω)(r).
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1

10

F
X̃

(ω)(r)
ω ∈ [0, 0.5)

2ω

1

10

F
X̃

(ω)(r)
ω ∈ [0.5, 1]

2− 2ω

1

10

FỸ (ω)(r)
ω ∈ [0, 0.5)

1

10

FỸ (ω)(r)
ω ∈ [0.5, 1)

1

10

FỸ (1)(r)

Figure 8. Graphical representation of FX̃(ω)(r) and FỸ (ω)(r).

If we compare them by means of the fuzzy ranking in Eq. (21), we obtain that
CM(FX̃(ω)) = ω for every ω ∈ [0, 1] while

CM(FỸ (ω)) =


0.5 if ω ∈ [0, 0.5)

0.75 if ω ∈ [0.5, 1)

1 if ω = 1.

As a consequence, X̃ and Ỹ are incomparable with respect to %CM -stochastic
dominance. �

Finally, we would like to remark that another extension of stochastic dominance
to the comparison of fuzzy random variables has been proposed by Aiche, Abbas and
Dubois in [Aiche and Dubois, 2010, 2012, Aiche et at., 2013]. As in our definition

above, their idea is to require that, for every real number t, P (X̃ ≥ t) ≥ P (Ỹ ≥ t).
However, the comparisons (X̃ ≥ t), (Ỹ ≥ t) are made by means of two orders for ran-
dom intervals µ1, µ2, that provide a degree of dominance: then for a fixed threshold

β ∈ [0, 1) they compute the sets {ω : µ1(X̃(ω), t) ≥ β} and {ω : µ2(Ỹ (ω), t) ≥ β},
and then compare these by means of the initial probability measure P . This is
somewhat related to the ideas in Chanas et al. [1993] and to the indices proposed
by Dubois and Prade [1983]. Note that, unlike our approach, that is based on an
epistemic interpretation of fuzzy random variables, the aforementioned work makes
more sense from the ontic point of view. This can be seen for instance in their
allowance for a partial ordering between the intervals.

5.4. Fuzzy statistical preference. From Section 2.2, given two random variables
X,Y defined on the same probability space (Ω,A, P ), X is said to be statistically
preferred to Y when P (X ≥ Y ) ≥ P (Y ≥ X).

When the images of X,Y are fuzzy sets, the comparison between them must be
made by means of a fuzzy ranking. In our view, only complete fuzzy rankings make
sense in this context. This gives rise to the following definition4:

Definition 10. Let X̃, Ỹ : Ω→ F(R) be two fuzzy random variables on a probability

space (Ω,A, P ), and let % be a complete fuzzy ranking. We say that X̃ is %-P

4We refer to [Aiche and Dubois, 2012, Section 5] for an alternative definition based on an
imprecise ranking between random intervals, that makes more sense under an ontic interpretation.
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statistically preferable to Ỹ , and denote it X̃ %P Ỹ , if

P ({ω ∈ Ω : X̃(ω) % Ỹ (ω)}) ≥ P ({ω ∈ Ω : Ỹ (ω) % X̃(ω)}).

This extension of statistical preference is intermediate between two other notions
that in our view are either too strong or too weak, meaning that they lead too often
to an assessment of incomparability or indifference:

• X̃ is called %-strongly statistically preferable to Ỹ , and we denote it X̃ %s Ỹ
if X̃(ω) % Ỹ (ω) for any ω ∈ Ω.

• X̃ is called %-weakly statistically preferable to Ỹ , and we denote it X̃ %w Ỹ
if X̃(ω) % Ỹ (ω) for some ω ∈ Ω.

It is immediate to show that

X̃ %s Ỹ ⇒ X̃ %P Ỹ ⇒ X̃ %w Ỹ

for any pair of fuzzy random variables X̃ and Ỹ .
It is also straightforward that, when the fuzzy ranking % agrees with the natural

order when restricted to the real numbers (as is virtually the case of almost all fuzzy
rankings in the literature), then the notion defined above is indeed an extension of
statistical preference: for any pair of random variables X,Y , it holds that

X %P Y ⇔ X �SP Y.

The main advantage of fuzzy statistical preference is that it allows us to give a

degree of preference between the fuzzy random variables X̃, Ỹ . In this sense, it is
similar to other fuzzy rankings considered in the literature, such as Chen [1985],
Kerre [1982]. Another strength of statistical preference is that it has been deemed
interesting within decision making with qualitative utilities (and in particular with
those in a linguistic scale), and as such it links straightforwardly with fuzzy set
theory.

Example 4. Consider again the fuzzy random variables X̃, Ỹ from Example 1, and
the fuzzy ranking given by Eq. (21). Then we obtain that:

CM(X̃(ω)) = 0.5 > 0 = CM(Ỹ (ω)) ∀ω ∈ [0, 0.5] and

CM(X̃(ω)) = 0.5 < 0.75 = CM(Ỹ (ω)) ∀ω ∈ (0.5, 1],

whence P (X̃ �CM Ỹ ) = P (Ỹ �CM X̃) and as a consequence X̃, Ỹ would be
indifferent according to statistical preference. �

5.5. Comparison by means of α-cuts. Finally, let us consider an alternative
ranking method for fuzzy random variables, based on the comparison of their α-

cuts. Recall that for any fuzzy random variable X̃ and any α ∈ [0, 1], its α-cut

X̃α : Ω −→ P(Ω′)

is a random set. Thus, one possible way of comparing two fuzzy random variables
is by considering a ranking on their α-cuts, in the manner we have discussed in
Section 3.1. This gives rise to the following definitions:

Definition 11. Consider two fuzzy random variables X̃ and Ỹ , and let � be a
stochastic order on random sets. We say that:

• X̃ is �-strongly preferred to Ỹ , denoted by X̃ �s Ỹ , if X̃α � Ỹα for every
α ∈ [0, 1].
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• X̃ is �-weakly preferred to Ỹ , denoted by X̃ �w Ỹ , if X̃α � Ỹα for some
α ∈ [0, 1].

• X̃ is α �-preferred to Ỹ , denoted by X̃ �α Ỹ , if X̃α∗ � Ỹα∗ for any
α∗ ∈ [α, 1].

The last of the possibilities in the above definition corresponds to an scenario
where we fix a threshold α and consider that only the information encompassed by
the fuzzy random variable with a certainty level greater than α is of relevance.

It follows immediately from the definition that for any pair of fuzzy random

variables X̃ and Ỹ and any stochastic order � on random sets, it holds that:

X̃ �s Ỹ ⇒ X̃ �α Ỹ ⇒ X̃ �w Ỹ .
Next we illustrate these notions in the example we have discussed throughout this

section, by considering the two fuzzy rankings we have introduced in this paper by
means of imprecise stochastic dominance, imprecise expected utility and imprecise
statistical preference:

Example 5. Consider again the fuzzy random variables X̃, Ỹ from Example 1. Their
α-cuts are given, for any α ∈ [0, 1], by:

X̃α(ω) =
[
α
2 , 1−

α
2

]
.

Ỹα(ω) =

{
{0} if ω ∈ [0, 0.5).

[0.5, 1] if ω ∈ [0.5, 1].

Fix α ∈ [0, 1], and let us compare these two random sets by means of a stochastic
order. First of all, if we compare them by means of imprecise stochastic dominance,
we must determine their associated p-boxes. These are given by:

F X̃α(t) =

{
0 if t ∈ [0, 1− α

2 ).

1 if t ∈ [1− α
2 , 1].

F X̃α(t) =

{
0 if t ∈ [0, α2 ).

1 if t ∈ [α2 , 1].

F Ỹα(t) =

{
0.5 if t ∈ [0, 1).

1 if t = 1.

F Ỹα(t) =

{
0.5 if t ∈ [0, 0.5).

1 if t ∈ [0.5, 1].

Now, if we take into account Eqs. (SD1)– (SD5-6), we conclude that X̃α �SD4 Ỹα
and that they are incomparable with respect to the other definitions.

Next, if we use imprecise expected utility, we obtain that:∫
id dF X̃α =

α

2
,

∫
id dF X̃α = 1− α

2
.∫

id dF Ỹα =
1

4
,

∫
id dF Ỹα =

1

2
.

Applying Proposition 2, we conclude that X̃ ≡sE4
Ỹ , X̃ ≡wE5

Ỹ and X̃ �sE2
Ỹ .

Finally, if we use imprecise statistical preference, we need to consider the sets of
measurable selections of these α-cuts. They are given by:

S(X̃α) = {U r.v. : U(ω) ∈ [α2 , 1−
α
2 ]}.

S(Ỹα) = {V r.v. : V (ω) = 0 ∀ω ∈ [0, 0.5), V (ω) ∈ [0.5, 1] ∀ω ∈ [0.5, 1]}.
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The maximum and minimum measurable selections are given by:

U1(ω) = maxU∈S(X̃α) U(ω) = 1− α
2 , U2(ω) = minU∈S(X̃α) U(ω) = α

2 .

V1(ω) = maxV ∈S(Ỹα) V (ω) = I(0.5,1], V2(ω) = minV ∈S(Ỹα) V (ω) = 1
2I(0.5,1].

From this we obtain the following values for α ∈ (0, 1):

Q(U1, V1) = 1
2 , Q(U1, V2) = 1,

Q(U2, V1) = 1
2 , Q(U2, V2) = 1

2 ,

whence X̃α �SP1
Ỹα for any α ∈ (0, 1). On the other hand, taking into account

that X̃1 is the constant random variable in 1
2 , we also deduce that X̃1 �SP5

Ỹ1 and

X̃1 ∼SP2,SP4 Ỹ1. �

5.6. Particular case: trapezoidal fuzzy random variables. In this section

we study the particular case where the images of X̃ and Ỹ are trapezoidal fuzzy
numbers. We refer to these as trapezoidal fuzzy random variables.

The first possibility we have considered in this section is the comparison of

fuzzy random variables by means of their expectations. Let X̃ be a fuzzy random

variable such that X̃(ω) is the trapezoidal fuzzy number (aω1 , a
ω
2 , a

ω
3 , a

ω
4 ) for any

ω. Note that it follows by the definition of fuzzy random variables that the maps
a1, . . . , a4 : Ω→ R are measurable. Moreover, its α-cuts were given in Eq. (11).

Proposition 10. Consider a fuzzy random variable X̃ such that X̃(ω) is a trape-
zoidal fuzzy number (aω1 , a

ω
2 , a

ω
3 , a

ω
4 ) for any ω. Consider the functions fi : Ω → R

given by fi(ω) = aωi for i = 1, . . . , 4. Then, E(X̃) = (e1, e2, e3, e4) is also a trape-
zoidal fuzzy number, where ei = E(fi) for i = 1, . . . , 4.

Proof. Applying Eq. (6), we know that:

E(X̃)α = (A)

∫
X̃αdP

=

{∫
UdP : U(ω) ∈ [aω1 + α(aω2 − aω1 ), aω4 − α(aω4 − aω3 )] ∀ω

}
=

[∫
f1 + α(f2 − f1)dP,

∫
f4 − α(f4 − f3)dP

]
= [E(f1) + α(E(f2)− E(f1)), E(f4)− α(E(f4)− E(f3))]
= [e1 + α(e2 − e1), e4 − α(e4 − e3)].

From this we deduce that E(X̃) is a trapezoidal fuzzy number. �

This result extends earlier work for triangular fuzzy random variables by Dengjie
[2009] and Loquin and Dubois [2010].

Taking into account Proposition 5 and Theorem 3, we obtain the following sim-
ple characterization of the comparison of trapezoidal fuzzy random variables by

means of imprecise expected utility. Given X̃ = (aX1
, aX2

, aX3
, aX4

) and Ỹ =

(aY1 , aY2 , aY3 , aY4) with respective expectations E(X̃) = (eX1 , eX2 , eX3 , eX4) and

E(Ỹ ) = (eY1
, eY2

, eY3
, eY4

), it holds that:

• X̃ �E1
Ỹ ⇔ EW

X̃
=

eX1
+eX2

2 ≥ eY3+eY4
2 = E

W

Ỹ ⇔ X̃ is preferred to Ỹ with
respect to interval dominance.

• X̃ �E2 Ỹ ⇔ E
W

X̃ =
eX3

+eX4

2 ≥ eY3+eY4
2 = E

W

Ỹ ⇔ X̃ is preferred to Ỹ with
respect to maximax.
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• X̃ �E4
Ỹ ⇔ EX̃ =

eX3
+eX4

2 ≥ eY1+eY2
2 = EW

Ỹ
⇔ X̃ is preferred to Ỹ with

respect to E-admissibility.

• X̃ �E5
Ỹ ⇔ EW

X̃
=

eX1
+eX2

2 ≥ eY1+eY2
2 = EW

Ỹ
⇔ X̃ is preferred to Ỹ with

respect to maximin.

Now, we compare trapezoidal fuzzy random variables by means of fuzzy sto-
chastic dominance. For this, we need the expression of the cumulative distribution
function. It turns out that if the initial probability space is non-atomic, the images
of this fuzzy distribution function are fuzzy numbers.

Proposition 11. Let (Ω,A, P ) be a non-atomic probability space, and X̃ : Ω →
F(R) a fuzzy random variable whose images are fuzzy numbers.

(1) For any t ∈ R, FX̃(t) is a fuzzy number.

(2) If X̃ is the trapezoidal fuzzy random variable determined by the maps fi :
Ω→ R, i = 1, . . . , 4, then for every t ∈ R the α-cut of FX̃(t) is

[Fαf3+(1−α)f4(t), Fαf2+(1−α)f1(t)].

Proof. (1) Note that this first statement is mentioned without proof in [Couso,
1999, Proposition 5.2.1], so here we add the proof for the aim of complete-
ness. For the first statement it suffices to show that the α-cuts of FX̃(t)
are closed intervals for all α ∈ [0, 1].

From the definition, it follows that µX̃(U) ≥ α if and only if U ∈ S(X̃α),
and by Eq. (3) we deduce that the α-cut of FX̃(t) is given by

{FU (t) : U ∈ S(X̃α)}.

Since the images of X̃ are fuzzy numbers, it follows that X̃α is a random
closed interval, whence the set above is closed [Couso et al., 2002]. Since
moreover the non-atomicity of (Ω,A, P ) guarantees that it is convex [Couso,
1999, Proposition 2.1.6], we deduce that it is a closed interval.

(2) This follows from the first statement, taking also into account that

X̃α = [αf2 + (1− α)f1, αf3 + (1− α)f4]. �

Note that this does not imply that FX̃(t) is a trapezoidal fuzzy number, as we
can see from Example 3.

The proposition above, together with Proposition 9, allows us to establish the
following result:

Proposition 12. Let X̃ and Ỹ be two trapezoidal fuzzy random variables on

a non-atomic probability space such that X̃(ω) = (aω1 , a
ω
2 , a

ω
3 , a

ω
4 ) and Ỹ (ω) =

(bω1 , b
ω
2 , b

ω
3 , b

ω
4 ), and consider the functions fi(ω) = aωi and gi(ω) = bωi for i =

1, . . . , 4. Then:

(1) αf3 + (1 − α)f4 �SD αg3 + (1 − α)g4 ∀α ∈ (0, 1] ⇒ X̃ �SD1 Ỹ ⇒ αf3 +
(1− α)f4 �SD αg3 + (1− α)g4 ∀α ∈ (0.5, 1].

(2) X̃ �SD2
Ỹ ⇔ αf2 + (1− α)f1 �SD αg2 + (1− α)g1∀α ∈ (0, 1].

(3) f4 �SD g1 ⇒ X̃ �SD4
Ỹ .

(4) X̃ �SD5
Ỹ ⇔ αf3 + (1− α)f4 �SD αg3 + (1− α)g4 ∀α ∈ (0, 1].

Another possibility is to compare the images of the trapezoidal fuzzy random
variables by means of a fuzzy statistical preference, in the manner we have discussed
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in Section 5.4. As an example, we consider the fuzzy rankings associated to the
comparison indices of Dubois and Prade [1983].

Definition 12. Let A and B be two fuzzy numbers, and define:

• Possibility of Dominance: PD(A,B) = supx≥y(min(A(x), B(y))).
• Possibility of Strict Dominance: PSD(A,B) = supx infy≥x(min(A(x), 1 −
B(y))).
• Necessity of Dominance: ND(A,B) = infx supy≤x(max(1−A(x), B(y))).
• Necessity of Strict Dominance: NSD(A,B) = 1−supx≤y(min(A(x), B(y))).

Each of these indices allows to determine a fuzzy ranking: for instance, we shall
say A �PD B when PD(A,B) ≥ PD(B,A). When the rankings determined by
these indices differ, Dubois and Prade advocate leaving the final ranking in the
hands of the decision maker.

In the case of trapezoidal fuzzy numbers, some of these definitions can be sim-
plified:

Lemma 2. Let A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4) be two trapezoidal fuzzy
numbers. Then:

A �PD B ⇔ A �NSD B ⇔ a2 > b3

A ∼PD B ⇔ A ∼NSD B ⇔ [a2, a3] ∩ [b2, b3] 6= ∅.

Proof. From the definition, it follows that

PD(A,B) = sup
x≥y

(min(A(x), B(y))) =

{
1 if b2 ≤ a3

α < 1 if b2 > a3,

and similarly

PD(B,A) = sup
x≥y

(min(B(x), A(y))) =

{
1 if a2 ≤ b3
β < 1 if a2 > b3.

Since moreover either b2 ≤ a3 or a2 ≤ b3 (or both), we deduce that A �PD B ⇔
PD(A,B) = 1⇔ b2 ≤ a3. As a consequence, A ∼PD B ⇔ [a2, a3]∩ [b2, b3] 6= ∅ and
A �PD B ⇔ a2 > b3.

Analogously, we deduce from its definition that

NSD(A,B) = 1− sup
x≤y

(min(A(x), B(y))) =

{
0 if a2 ≤ b3
α > 0 if a2 > b3

and similarly

NSD(B,A) = 1− sup
x≤y

(min(B(x), A(y))) =

{
0 if b2 ≤ a3

β > 0 if b2 > a3;

and again since either b2 ≤ a3 or a2 ≤ b3 (or both), we deduce that A �NSD B ⇔
NSD(A,B) > 0⇔ a2 > b3 and A ∼NSD B ⇔ [a2, a3] ∩ [b2, b3] 6= ∅. �

Using this lemma, we can simplify Definition 10 for these fuzzy rankings.

Proposition 13. Given two trapezoidal fuzzy random variables X̃ and Ỹ such that

X̃(ω) = (aω1 , a
ω
2 , a

ω
3 , a

ω
4 ) and Ỹ (ω) = (bω1 , b

ω
2 , b

ω
3 , b

ω
4 ) for any ω ∈ Ω,

X̃ %PPD Ỹ ⇔ X̃ %PNSD Ỹ ⇔ P ({ω ∈ Ω : aω3 ≥ bω2 }) ≥ P ({ω ∈ Ω : bω3 ≥ aω2 }).
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Proof. From Lemma 2,

P ({ω ∈ Ω : X̃(ω) %PD Ỹ (ω)}) = P ({ω ∈ Ω : aω3 ≥ bω2 })

and

P ({ω ∈ Ω : Ỹ (ω) %PD X̃(ω)}) = P ({ω ∈ Ω : bω3 ≥ aω2 }),
and similarly for NSD. Then, the result trivially follows. �

Finally, and similarly to Section 5.5, we can compare two triangular fuzzy random
variables by means of their α-cuts, following the ideas in Section 3.1. In the case

of a trapezoidal fuzzy random variable X̃, its α-cuts are given by:

X̃α(ω) = [aω1 + α(aω2 − aω1 ), aω4 − α(aω4 − aω3 )].

These are random closed intervals that depend only on the mappings f1, f2, f3, f4

and on the value of α. If we fix α and compare X̃α ≡ [f1+α(f2−f1), f4−α(f4−f3)]

with Ỹα ≡ [g1 +α(g2 − g1), g4 −α(g4 − g3)] by means of imprecise expected utility,
we deduce from Proposition 1 that

(1) X̃α �1 Ỹα ⇔ αE(f2) + (1− α)E(f1) ≥ αE(g3) + (1− α)E(g4).

(2) X̃α �2 Ỹα ⇔ X̃α �3 Ỹα ⇔ αE(f3)+(1−α)E(f4) ≥ αE(g3)+(1−α)E(g4).

(3) X̃α �4 Ỹα ⇔ αE(f3) + (1− α)E(f4) ≥ αE(g1) + (1− α)E(g2).

(4) X̃α �5 Ỹα ⇔ X̃α �6 Ỹα ⇔ αE(f1)+(1−α)E(f2) ≥ αE(g1)+(1−α)E(g2).

6. Decision making application

This section presents an application of the previous definitions to a decision
making problem. We use the setting considered in [Merigó et al., 2014, Section 6.2]:
a company operating in UK is considering the possibility of expanding to new
markets. They consider four alternatives:

A1: Expand to the French market. A3: Expand to the Italian market.
A2: Expand to the German market. A4: Expand to the Spanish market.

The evaluation of the strategies depends on the economic situation for the next
year, which may take four different values:

S1: Bad economic situation. S3: Good economic situation.
S2: Regular economic situation. S4: Very good economic situation.

The probabilities for each state are estimated as 0.1, 0.3, 0.3 and 0.3, respectively.
Then, we can define the probability space (Ω,P(Ω), P ), where Ω = {S1, S2, S3, S4},
and model each alternative as a fuzzy random variable taking the following values,
which represent the expected benefits:

S1 S2 S3 S4

A1 (0.2, 0.3, 0.4) (0.6, 0.7, 0.8) (0.2, 0.3, 0.4) (0.5, 0.6, 0.7)
A2 (0.5, 0.5, 0.5) (0.3, 0.4, 0.5) (0.4, 0.5, 0.7) (0.4, 0.5, 0.6)
A3 (0.1, 0.2, 0.4) (0.6, 0.8, 0.9) (0.8, 0.9, 1) (0.7, 0.8, 0.9)
A4 (0.3, 0.4, 0.5) (0.3, 0.4, 0.6) (0.5, 0.5, 0.5) (0.3, 0.4, 0.5)

Since these alternatives are triangular fuzzy random variables, we can apply the
results from Section 5.6.

Let us compare these alternatives by means of the different possibilities we have
discussed in the previous section.
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6.1. Comparison by fuzzy expected utility. A first possibility is to compare
these alternatives by means of a fuzzy ranking on their expectations. In the case
of the example, we deduce from Proposition 10 that the expectations of A1, . . . , A4

are the triangular fuzzy numbers given by:

EA1 = (0.41, 0.51, 0.61) EA2 = (0.38, 0.47, 0.59).
EA3

= (0.64, 0.77, 0.88) EA4
= (0.36, 0.43, 0.53).

If for instance we compare these by means of imprecise expected utility, Propo-
sition 5 allows us to establish the following results:

A1 A2 A3 A4

A1 · �E2,5
− �E2,5

A2 ≡E4 · − �E2,5

A3 �E1 �E1 · �E1

A4 ≡E4
≡E4

− ·

A3 seems to be the most adequate option, because it is preferable to the other
alternatives with respect to the first extension of the expected utility (and as a
consequence also with respect to any of the other extensions). Taking into account
Theorem 3, the same result is obtained when we apply Walley’s approach since

E(X̃) and E(Ỹ ) are continuous.
We can also consider other fuzzy rankings. Let us for instance take the fuzzy

ranking defined by Adamo [1980], which is one of the most interesting according to
the study in Wang and Kerre [2001a]. It fixes some value α ∈ (0, 1) and defines the
value ADα(A) = sup{x : µA(x) ≥ α}. Then the ranking between two fuzzy sets
A,B is based on the comparison of the values ADα(A), ADα(B). Given α ∈ (0, 1),
it follows that

ADα(EA1
) = 0.61− 0.1α ADα(EA2

) = 0.59− 0.12α,

ADα(EA3
) = 0.88− 0.11α ADα(EA4

) = 0.53− 0.1α,

whence EA3
�AD EA1

�AD EA2
�AD EA4

. Note that this order does not depend
on the value of α we are considering.

6.2. Comparison by fuzzy stochastic dominance. Let us now use fuzzy sto-
chastic dominance to compare the alternatives. For this aim we have to compare
FAi(t) and FAj (t) for any t ∈ [0, 1], and we shall use imprecise stochastic dominance
to do that.

Let us start comparing A1 and A2, whose associated fuzzy distribution functions
on 0.65 are given by:

FA1
(0.65)(p) =


0.5 if p = 0.1, 0.4.

1 if p = 0.7.

0 otherwise.

FA2(0.65)(p) =


0.125 if p = 0.7.

1 if p = 1.

0 otherwise.
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If we denote by (F , F ) and (G,G) the p-boxes associated with FA1
(0.65) and

FA2(0.65), respectively, it holds that:

F (t) =

{
0 if t < 0.7.

1 if t ≥ 0.7.
G(t) =


0 if t < 0.7.

0.125 if t ∈ [0.7, 1).

1 if t = 1.

Then, F (t) ≥ G(t) for any t ∈ [0, 1], with strict preference for t ∈ [0.7, 1). Then,
according to Proposition 4, FA2

(0.65) �SD1
FA1

(0.65).
With similar computations, it holds that FA2(0.35) �SD1 FA1(0.35), and this

allows us to conclude that A1 and A2 are incomparable with respect to �SDi for
any i.

Following a similar procedure, we can establish the following:

A1 Vs A4: They are incomparable under all versions of imprecise stochastic domi-
nance, because

FA4(0.65) �SD1 FA1(0.65) and FA1(0.35) �SD1 FA4(0.65).

A2 Vs A3: They are incomparable under all versions of imprecise stochastic domi-
nance, because

FA3
(0.25) �SD1

FA2
(0.25) and FA2

(0.8) �SD1
FA3

(0.8).

A3 Vs A4: They are incomparable under all versions of imprecise stochastic domi-
nance, because

FA3
(0.25) �SD1

FA4
(0.25) and FA4

(0.8) �SD1
FA3

(0.8).

A1 Vs A3: It can be proved that FA1
(t) �SD4

FA3
(t), with strict inequality for some

t ∈ [0, 1], and then A3 �SD4
A1.

A2 Vs A4: It can be proved that A2 ≡SD A4.

Our next table summarizes the obtained relationships:

A1 A2 A3 A4

A1 · − �SD4
−

A2 − · − ≡SD4

A3 − − · −
A4 − ≡SD4 − ·

This illustrates the fact that fuzzy stochastic dominance is usually too strin-
gent to produce meaningful comparisons. This is due to the fact that stochastic
dominance is already strong in the case of (precise) random variables, and it gives
rise quite often to instances of incomparability. This feature is exacerbated in the
imprecise case.

6.3. Comparison by fuzzy statistical preference. Our generalization of statis-
tical preference to the comparison of fuzzy random variables consists in considering
a fuzzy ranking �, and to use it for the comparison of two fuzzy random variables

X̃, Ỹ , by considering P (X̃ � Ỹ ) and P (Ỹ � X̃). In this example, we are going to
consider the fuzzy ranking associated with the four indices defined by Dubois and
Prade (see Definition 12).

First of all, if we compare them pairwisely by means of PD and NSD, Lemma 2
assures that the two fuzzy rankings reduce to the comparison of the modal points
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of the triangular fuzzy numbers. The resulting preference degrees are summarized
in the following table:

A1 A2 A3 A4

A1 · 0.6 0.1 0.6
A2 0.4 · 0.1 0.8
A3 0.9 0.9 · 0.9
A4 0.4 0.2 0.1 ·

With respect to PSD, we obtain the following:

A1 A2 A3 A4

A1 · 0.6 0.1 0.6
A2 0.4 · 0.1 0.9
A3 0.9 0.9 · 0.9
A4 0.4 0.1 0.1 ·

However, when using ND the preference degrees change a little bit:

A1 A2 A3 A4

A1 · 0.6 0.1 0.6
A2 0.4 · 0.1 0.4
A3 0.9 0.9 · 0.9
A4 0.4 0.6 0.1 ·

To sum up, the four indexes agree in that A3 �SP A1 �SP A2, A4. With respect
to these last two alternatives, A2 �SP A4 with respect to PD,PSD and NSD,
while A4 �SP A2 with respect to ND. In any case, we conclude again that the best
alternative is A3, that is, to invest into the Italian market.

6.4. Comparison by means of the α-cuts. Finally, we shall compare the alter-
natives by considering statistical preference on the α-cuts. For this aim, note that
for any α ∈ (0, 1],

S1 S2

A1,α [0.2 + 0.1α, 0.4− 0.1α] [0.6 + 0.1α, 0.8− 0.1α]
A2,α [0.5, 0.5] [0.3 + 0.1α, 0.5− 0.1α]
A3,α [0.1 + 0.1α, 0.4− 0.2α] [0.6 + 0.2α, 0.9− 0.1α]
A4,α [0.3 + 0.1α, 0.5− 0.1α] [0.3 + 0.1α, 0.6− 0.2α]

and
S3 S4

A1,α [0.2 + 0.1α, 0.4− 0.1α] [0.5 + 0.1α, 0.7− 0.1α]
A2,α [0.4 + 0.1α, 0.7− 0.2α] [0.4 + 0.1α, 0.6− 0.1α]
A3,α [0.8 + 0.1α, 1− 0.1α] [0.7 + 0.1α, 0.9− 0.1α]
A4,α [0.5, 0.5] [0.3 + 0.1α, 0.5− 0.1α]

Denote by S(Ai,α) the set of measurable selections associated with Ai,α for i =
1, 2, 3, 4. It holds that:

P (minS(A3,α) > maxS(A1,α)) ≥ P (S3 ∪ S4) = 0.6 > 0.5.
P (minS(A3,α) > maxS(A2,α)) ≥ P (S2 ∪ S3 ∪ S4) = 0.9 > 0.5.
P (minS(A3,α) > maxS(A4,α)) ≥ P (S2 ∪ S3 ∪ S4) = 0.9 > 0.5.

This means that in the worst situation, S(A3,α) is preferred to the best alternative
in S(Ai,α), for i = 1, 2, 4, whence A3,α �SP1 Ai,α for i = 1, 2, 4. Since this holds for
any α ∈ [0, 1], we conclude that A3 �sSP1

Ai, for i = 1, 2, 4.
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Similarly:

P (minS(A1,α) > maxS(A4,α)) ≥ P (S2 ∪ S4) = 0.6 > 0.5.

Then, we conclude that A1 �sSP1
A4. If we compare A2 and A4, we obtain the

following:

P (minS(A2,α) > maxS(A4,α)) =

{
P (S1) = 0.1 if α ≤ 0.5.

P (S1 ∪ S4) = 0.4 if α > 0.5.

P (minS(A4,α) > maxS(A2,α)) = 0.

Then, also A2 �sSP1
A4. Finally, let us compare A1 and A2:

P (minS(A1,α) > maxS(A2,α)) =

{
P (S2) = 0.3 if α ≤ 0.5

P (S2 ∪ S4) = 0.6 if α > 0.5.

P (minS(A2,α) > maxS(A1,α)) = P (S1 ∪ S3) = 0.4.

Then, we conclude that A1 �0.5
SP1

A2, but there is not strong preference. Finally,
it can also be proven that A1 �sSPi

A2 for i = 2, 5. Next table summarizes the
relationships:

A1 A2 A3 A4

A1 · �0.5
SP1

,�2
SP2

,�sSP5
− �sSP1

A2 − · − �sSP1

A3 �sSP1
�sSP1

· �sSP1

A4 − − − ·
We see then that there is a strong statistical preference between A3 and A1 and

between A2 and A4, and a slightly weaker one between A1 and A2.

7. Conclusions

The results in this paper show that a theory of fuzzy decision making under
uncertainty can be established through the generalizations of stochastic orders to a
fuzzy framework. We have provided a number of extensions of the most important
stochastic orders in the literature: expected utility and stochastic dominance. We
have also investigated statistical preference, that we find particularly interesting in
a context of fuzzy information.

We have proposed several fuzzy stochastic orders in this paper; the choice of one
particular order over the others can be made according to a number of criteria: on
the one hand, for those based on the imprecise stochastic orders in Definition 6, it
should be remarked that the different extensions take into account different under-
lying criteria, such as robustness or risk aversion; a more thorough discussion of
this topic has been made in Montes et al. [2014a,b].

On the other hand, many of the orders, such as fuzzy expected utility or fuzzy
statistical preference, require the use of an underlying fuzzy ranking. This second
choice is a problem that has been widely discussed, and we refer to Wang and Kerre
[2001a] for a critical review. One possibility is to make the choice by means of desir-
able axiomatic properties of the fuzzy ranking, such as the ones we have investigated
in Section 4 for imprecise expected utility and imprecise stochastic dominance. We
should also take into account the interpretation of the fuzzy information we have
in the particular problem under consideration. Finally, let us remark that some of
the new fuzzy rankings we have introduced in this paper do not produce a complete
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order. We think that this is a feature that may be interesting in contexts where
the information is vague or scarce.

Our interpretation of fuzzy random variables in this paper has been an epistemic
one, as a model for the imprecise knowledge of a random variable; using this inter-
pretation, Walley defined the lower and upper probability models associated with
a fuzzy random variable, that can be used to establish a fuzzy ranking. We have
proven that this procedure is equivalent to our notion of fuzzy expected utility,
where the fuzzy ranking we apply on the expectations is imprecise expected utility.

The more stringent notion of fuzzy stochastic dominance turns out to produce
incomparability in quite a few cases, and we have proposed two solutions for this:
one is to consider a complete fuzzy ranking when comparing the images of the
fuzzy distribution functions; the other to use instead weaker versions of stochastic
dominance, such as the stochastic dominance of the n-th order.

As future lines of research, we would like to point out the following: on the
one hand, we would like to deepen in the comparison between the different fuzzy
stochastic orderings, by studying their behavior in a number of real-life examples;
from a more theoretical point of view, it would be interesting to generalize some
of the results in this paper to arbitrary fuzzy random variables, and to study the
comparisons between n-tuples of fuzzy random variables, instead of just pairs of
them. Finally, it would be useful to obtain an axiomatic characterization of some
of these orders, in the vein of the existing ones for the precise case.
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Féron, R. (1976) Ensembles aléatoires flous. Comptes Rendus Hebdomanaires des
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