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Abstract— The classical filtering problem is re-examined to many practical cases, our information about the system to be
take into account imprecision in the knowledge about the modeled may not allow us to characterize these functiorts wit
probabilistic relationships involved. Imprecision is moceled in single (precise) distributions. For example, in the Garssi
this paper by closed convex sets of probabilities. We deriva L .
solution of the state estimation problem under such a framewrk case,_we may only be able to _deter_mlr?e gn lnteryal that
that is very general: it can deal with any closed convex set contains the mean of the Gaussian distribution or, in more
of probability distributions used to characterize uncertainty in  general cases, we may only be able to state that the distribut
the prior, likelihood, and state transition models. This ismade of the noise belongs to some set of distributions.
possible by formulating the theory directly in terms of coheent  ne nogsiple solution to deal with a set of distributionies t

lower previsions, that is, of the lower envelopes of the exptations ledB . itivit \Vsig B . bust
obtained from the set of distributions. The general solutia is SO-Calledbayesian sensiiivity analysts: bayesian robustness

specialized to two particular classes of coherent lower présions.  [4] approach. Its basic idea is to check the robustness of the
The first consists of a family of Gaussian distributions whos estimate by applying Bayes’ rule to each pair of distribusgio

means are only known to belong to an interval. The second is in the set of prior and/or in the set of likelihood distrilarts
the so-called linear-vacuous mixture model, which is a fany i, orqer to form a set of posterior distributions and to check

made of convex combinations of a known nominal distribution heth Il th teri lead to th lusi
(e.g., a Gaussian) with arbitrary distributions. For the latter case, whether a ese posteriors lead to the same conclusions

we empirically compare the proposed estimator with the Kalnan ~ (€-9., the same estimate or the same credible interval)nWhe
filter. This shows that our solution is more robust to the pregnce this is the case, we declare that the model (i.e., the sets

of modelling errors in the system and that, hence, appears tbe  of distributions) is robust and that the conclusions frory an
a more realistic approach than the Kalman filter in such a case particular pair of distributions are reliable. Conversetyien
this is not the case the model is unreliable, and we can devise
Index Terms— Coherent lower previsions, epistemic irrele- three possible ways to overcome the problem.
vance, robustness, Kalman filter. The first consists of narrowing the sets of prior and like-
lihood functions through additional elicitation or obtizig
I. INTRODUCTION additional data, hopefully resulting in an increased ratess.

. ) o This approach is not always possible for several reasorss, (co
This paper deals with the problem of estimating the staf8,o hardness of the problem).

of a discrete-time stochastic dynamical system on the ba_sls]-he second alternative consists of replacing the set of

of observations. One way of approaching this problem [&iqjikelihood functions by a single element obtained by
to assume that the dynamics, the initial condition, and "@me kind of criterion such as, for instance, “averagingsrov

observations are corrupted by noise contributors Wbwn  {he class as in the hierarchical Bayesian approach. The basi
distributionsand then to find the conditional distribution of the a4 is to consider a (finite) sets of priors and/or likeliieo

state given the past observations. This is the so-calle@8ay ;, ;se observations to compute the corresponding set oépost

state estimation approach. . _ riors and, finally, to average them according to some caiteri
If the dynamics and observations are linear functions of the). 5 review of various techniques for model averaging see

state and the noise contributors are assumed to be Gauss{'@&n,[(s] [7]. For instance, in [7] the idea is to estimate the

it is well known that the optimal solution of the Bayesianyeraging weights from measurements. In this way, robsstne

state estimation problem is the Kalman filter (KF). In thgs gained also through adaptability. Model averaging has
non-linear/non-Gaussian case, an analytic solution oEBiay proven to be effective in several practical problems butsoa

state estimation is in general not available in closed forfLs some robustness problems w.r.. the choice of modebprio
and a numerical or analytical approximation is requirede Thynq model transition probabilities.
extended Kalman filter is the most known analytical approXi- The third path to robustness is based on a negative answer to

mation of the Bayesian state estimation prQbIem for noedin the following question [4]: When different reasonable psior
systems. Conversely, among the numerical techniques, fi@lihoods yield substantially different answers, is é@ason-

ones used most frequently are based on Monte Carlo samplifigle 1o state that there is a single answer? The idea is then to
methods, see for instance [1], [2], [3]. deal with all elements of the class of priors/likelihood&isT

A common trait to these techniques is that they assumgqs to alternative models of representation of uncegtain
that the distributions associated with the prior, statesition, pased on a set of probability distributions, suchpasoxes

and likelihood functions are perfectly known. However, gy, instance. Ap-box [8] is an enclosure of the Cumulative
) ) ) ) Distribution Function (CDF) of a random variabld; <
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distribution andF’, upper distribution. Also Choquet capacitie®one starts from satisfy the standard notion of independence
[9] and belief functions [10] can be included in this set ofvith CLPs, however, there are a number of less restrictive
alternative models, since they can be seen as special chsgsossibilities [22]. Among these, we shall consider in theuss
closed-convex sets of probability distributions. the notion ofepistemic irrelevancéVe refer to [21, Sects. 2.10

These techniques have also been applied successfullyaid 5.9] for a further comparison of the theory of CLPs with
many cases. For instance, in [11]pabox representation of the Bayesian sensitivity analysis approach.
the set of probability distributions is used for robust -esti Let us summarize the main contributions of this paper.
mation. In [12], the KF with a diffuse prior is derived inWe study the problem of estimating the state of a dynamical
the context of belief functions. Other approaches are tite ssystem when we do not have enough information to describe
valued Kalman filter [13] or the projection-based approadhe prior, the state transition and the likelihood modelthwi
[14] that model the initial state uncertainty as a convex sfdingle) precise probabilities. Instead, we shall modet ou
of probability distributions. On the other hand, in [15],tho uncertainty about the variables of interest by means of CLPs
system and measurement noise are modeled with convex setd derive a solution of the state estimation problem for
of probability density functions by also assuming that éheshe general case of CLPs. Our approach has the following
convex sets are polytopes (here polytope means the conebaracteristics. First, we can deal with any closed cone¢x s
hull of a finite number of distributions). Another possitjili of probability distributions used to characterize undetia
to deal with uncertainty is to consider a worst-case apgroaa the prior, likelihood and state transition models. Thés i
(i.e., to consider the worst-case distribution in the degding the main contribution of the paper and generalizes the tsesul
to minimax-estimators, as in [16], [17]. in [11], [13], [14], [15], [17], [18], [19] and [20]. Second,

We should also like to mention here a slightly differenour solution allows us to work directly with CLPs, i.e., the
approach to robustness that is presented in [18], [19] fer tlower envelopes of the set of probability distributions.isTh
case of linear state models. The authors assume that the @isan important difference between our paper and the usual
tributions of the noise terms belong to a set of unknown (noapproaches in literature for state estimation with a closed
Gaussian) distributions with known finite second momentsonvex set of probability distributions [15], which corisis
The main goal in these papers is not to solve the Bayesiahdirectly processing the distributions in the set. In #os
estimation by propagating this set of distributions (anid thapproaches, an essential assumption is to require thedclose
is one of the reasons the proposed method differs from tbenvex set of probability distributions to be a polytopehwit
aforementioned ones and from the one we present in tfiiisite sets of vertices (in this context vertex means an exg¢re
paper) but rather to provide a bound for the probability gfoint of the set of distributions). Then a Bayesian estimeto
the KF estimation error exceeding certain threshold valudsrived by element-wise processing the vertices of the-poly
(this probabilistic bound is computed in a manner simildopes associated with the prior (or to the previously corgut
to the Chebyshev inequality). By doing this, a tight outguosterior), likelihood and state transition models. A dvask
approximation of the true confidence intervals for the eaten of this approach is that the number of vertices needed to
of the state provided by the KF can be computed. This characterize the convex sets increases exponentiallytheer
another reason the proposed method differs from the one member of time steps [15]. This problem is overcome in our
present in this paper which, conversely, aims to computetexanodel by working directly with lower envelopes as we do not
robust confidence intervals. A similar path to [18], [19] iseed to explicitly compute the vertices. This nevertheless
followed in [20]; the method there is based on asymptotapproach guarantees that the conclusions drawn are egptival
theory that requires that the distributions of the noisenter [21] to those we should obtain by element-wise processiag th
become asymptotically Gaussian. distributions in the closed convex sets.

In this paper, we follow the third path to robustness using Third, we extend the ideas behind Bayesian decision mak-
Walley’s theory ofcoherent lower previsionf21], which is ing for state estimation to the CLP framework. Bayesian
also referred to atmprecise Probability(IP). In this context, methodology for decision making provides the estimate twhic
standard probability theory, which models uncertainty Bjng minimizes the expected posterior risk. If in particular we
a single probability distribution, is referred to gwecise consider a squared error loss risk, the Bayesian estimate is
probability. The choice of Walley's theory is motivated by thehe mean of the posterior distribution. This estimation is
fact that the alternative models of representation of uag#tly provided in general together with itwedibility region (also
discussed above can all be regarded as special casesalied confidence region), i.e., the region whose problgbili
coherent lower previsionR1]. A Coherent Lower Prevision of including the true value of the state exceeds a certain
(CLP) is the lower envelope of expectations with respect totlreshold. By extending these ideas to CLPs, we calculate
closed convex set of probability distributions. Thus, Cldaa the lower and upper mean of the state and a robust (CLP-
be easily interpreted in Bayesian sensitivity analysis,, if based) version of the credibility region. In particulag tiobust
we specify a family of precise models, they determine CLRsedibility region is evaluated by determining the minimum
by taking their lower envelopes. However, it is also moreolume region whoséower probability of including the true
general on some aspects [21]. One important differencevialue of the state exceeds a certain bound. This allows us
the context of this paper is related to the modelling of th® derive more reliable inferences. In this respect, theide
notion of independence: with the Bayesian sensitivity ysial of computing a robust credibility region is similar to the
interpretation we must require that all the admissible nedeapproach followed in [18], [19] for decision making. Howeve



as already discussed above in this section, our approdehsdif Bayesian filtering problemWe have

from the one in [18], [19] in the way these credibility regson eyt
t

are derived. p(xely’) = 1 P(Yele)

Our general solution is then specialized for two particular p(yely™) o
classes of CLPs. The first consists of a family of Gaussian _ / dry_y pl@|zi-1)p(yelze)p(zi-1]y )'
distributions whose means are only known to lie in an interva p(yely'=1)

This model can be used to address estimation problems s A3)

based on measurements that are affected by an unknown B4, (2) and (3), we see that botkizt|y*) andp(z|y!) can
bounded bias but, also, to describe uncertainties in thesys pe optained recursively. Onggz:|y') has been computed, it
parameters as in [17]. The second is the so-caliedar- g possible to compute the expected valify(z;)|y!] W.r.t.

vacuous mixturd21] or e-contaminr?\tion model [4], Which.is (z¢|y*) for any functiong(z;) of interest. A particular case
the family of all convex combinations of a known nomin f EqQ. (1) is given by

distribution (e.g., Gaussian) with arbitrary distribuigo This

family can be used to address estimation problems in which { Ter1 = A+ wy (4)
we take into account that our model (nominal distributica) c ye = Cig+ o,

be inexact and, thus, we perturb (contaminate) it to refl@st t |, ;. wy ~ N(0,Q1), v ~ N(0,Ry), zo ~ N (o, ), and

modelling uncertainty. For thBnear-vacuous mixturenodel, \\nere the matrices!;, C;, Q;, R; are assumed to be known

we empirically compare the proposed estimator with the K& o5ch time step. Then the conditional PDp(z|y") is also
and show that our solution is more robust to modelling eIMOfSaussian\V (i;, P;) whered, = Aydy_1 + Lylys — Cy Ayiiy_1]

and that, hence, it outperforms the KF in such a case. Sorpe _ AP AT+ Q, — LS,LT, S, = C[AP_ AT +

of the preliminary results of this work can be found in [23]Qt]CtT + Ry, Ly = [AP1 AT + Q)CT S and whereT

and results on statistical inference with CLPs in finite 83aCyenotes the transpose operator. These are the equatidms of t
can be found in [25]. Kalman filter.

Il. BAYESIAN FILTERING IIl. COHERENT LOWER PREVISIONS

Let us summarize the basic principles of Bayesian filtering. N this section we give an overview of the theory of coherent
Its goal is the estimation of the state variables of a diserefower previsions. This is a theory of probability generediz
time nonlinear system which is “excited” by a sequence & handle imprecisely specified probabilities through ssts
random vectors. It is assumed that nonlinear combinatiénsdistributions. Despite being a theory of probability, its-f
the state variables corrupted by noise are observed. We hB¥dation may look unusual to the reader familiar with more

thus traditional ways to present probability, and this can mdiee t
Tip1 = f(t,x) + wy ) theory s_omewhat uneasy to access. Because of this f_act, we
ye = h(t,z) + vy, shall point out here informally some of the differences ia th

formulations, in order to help the reader have a smoother sta

wheret is the time,z; € R" is the state vector at tim& into the theory. In particular, in this section we shall evithe
w, € R" is the process noisg, € R™ is the measurement main concepts of CLPs that we shall use later in the paper to
vector, v, € R™ is the measurement noise arfd-) and derive the solution of the filtering problem. We refer thedea
h(-) are known nonlinear functions. Having observed a finitg [21] for an in-depth study of coherent lower previsionsj a
sequencey’ = {yi,...,y:} of measurements, we may, iny [26] for a survey of the theory.
general, seek for an estimate of an entire sequence of statgsropability theory is most often defined, after Kolmogorov,
at = {zo,...,2}. using a triple made of aample spacea sigma algebraand a

In the Bayesian framework, all relevant information oprobability functionP. The functions from the sample space
a* = {xo,...,x;} attimet is included in the posterior distri- into the real numbers that are measurable with respect to the
bution p(z*|y*). In general, a Markov assumption is made tgigma algebra are calledndom variablesThe expectation of
model the system, which implies the following independenggrandom variable is defined on the basis of the probablity

conditions: Conditional probability is also defined usitybut only when
¢ the conditioning event is assigned positive probability/Ry
plze|zt™Y) = pladai), pytat) = H p(yr|zr). The theory of CLPs has its focus on expectation rather than
k—1 probability. We still have the sample space (which is uguall

referred to as th@ossibility space?). We also have a set of
Yndom variables, which are callgdmblesthese are bounded
functions from the possibility space to the real numbers Th
(2 )p (| we—1 )p(ye|e) set _of gamb_les does r_lot_need to be concern(_ad vyith measur-

) ) ability q_uestlo_ns, that is, it can be chosen arbitrarilyfiy,

' a CLP is defined as a functional, from the set of gambles

In many applications, we are interested in estimatiig |y?), to the real numbers, that satisfies some rationality caiteri
one of the marginals of the above PDF. This is the so-calléself-consistency). This function is conjugate to anotthert

Using these assumptions the probability density functi
(PDF) over all states can be written simply as:

P
p(a'ly’) =




is called a coherent upper prevision. The intuition behimel t We shall also use the notatic®" for Z; ;. This will be

notions of coherent lower and upper previsions is that oElowour possibility space in this paper. Note that, with thisation,

and upper expectation functiondldhen a CLP coincides we can deal with both sets of variables or sets of vectors.

with its conjugate coherent upper prevision, it is calldth@ar Definition 1. For any subsef of {1,...,n}, a gamblef on

prevision and it corresponds with the expectation functionat ; is a bounded real-valued functioh: Z; — R. The set of

with respect to a finitely additive probability. In general, all gambles onZ; is denoted byC(Z;). [ |

CLP is in a one-to-one correspondence with a set of linearA gamble represents an uncertain reward which depends on

previsions, and can therefore be regarded a set of protyabithe a priori unknown valu¢ ; = 2, i.e., if z; turns out to be

distributions. the true value oZ;, we receive an amount(z;) of utility.?
When the set of gambles where we apply the CLP are @kfinition 2. Consider two disjoint subset8 # 0,U of

indicator functions of events, the CLP is calledcaherent {1,... ,n}. We callEz, (-|Zy) a conditional linear prevision

lower probability and its conjugate is called a coherepper on the set of gamble§(Zouy ), if the following conditions

probability. When these two functionals coincide, we abtaihold for all zi; € 2y, f,g € L(Zour),® and A > 0:

_the fam|I|ar notion of prob_ab|I|ty._One important remarld!mt e Bz (flzv) > infzy oy f-

in the precise case there is no difference be_tween workitlg wi Ez, (M|zv) = MEz, (f|20).

evgnts (proba}b_ll|t|e_s) or gambles (ex_pectatlorjs), and?fpee « Bz (f +9glzv) = Ez, (fl2v) + Bz, (9]20).

a linear prevision is always determined by its restriction tlf U

events, which is a finitely additive probability. This is no

longer the case when imprecision enters the picture: a cLP’

not necessarily determined by the coherent lower proh:yibil'hence ifEy, is a linear prevision omC(2o), then we can
1 e} ’

which is given by its restriction to indicators of eventsdan i funci th L of foll )
this is why the theory is formulated in general in terms oqe IN€ a mass functiopy,, on the power et ato as 107lows:

gambles [21]. pzo(A) = Ez, (IA_), wherel 4 is their_1dicator functionof the
In the conditional framework, the differences between thSUbSEti1 gf ‘i’;o’ g!venlt)%/IA(w) Ttr11 'I tlr? bfelontgs tOA'tﬁnd
precise and the imprecise theories are even more marked. ) ?U)d_ 0 ]Szry¥|s|e. ddq{ns ou bab'l'te unc 'OWOaE us
instance, a conditional lower prevision can be defined witho. €lined is a ( Initely adal Ive) probabil y measure, 9o
any reference to an unconditional one, and it can even Bsethe expectation with respectmo. For instance, wheo
defined when the conditioning event has (lower or uppe'r% discrete, we have the equality
probability equal to zero [21, Ch. 6]. In a sense, the notion _
of conditional lower prevision is the fundamental one, and Bro(f)= 3 [(z0)pzo(z0)
the unconditional notion can be derived as a special case.
This change of perspective originates an issue that is notMe can make a similar comment for conditional linear
perceived in the theories that regard conditional proktgibil Previsions: if Ez,(-(Zy) is a conditional linear prevision
as a derived notion: that when we specify a set of conditiorfl the set of gamble£(Zo v ), then for everyzy € Zy
lower previsions, it is not guaranteed that those condition the functionalE'z, (-|zv) is the conditional expectation with
are automatically self-consistent. The theory of CLPs sledfSPect to a probabilityz, (-|zv ).
with this problem by imposing a notion callguint (or strong) Definition 3. Consider two disjoint subse® # 0,U of
coherenceThis notion implies the existence of a global mode{1, - .., n}. We callE,  (-|Zy) a separately coherent condi-
(an unconditional joint lower prevision) which is compéagib tional lower previsioron the set of gambleS(Zouy ), if it is
with all the CLPs. Even more strongly, joint coherence aldge lower envelope of a closed and convex set of conditional
prevents some inconsistencies to arise when conditioning l§1€ar previsions, which we denote byl(E,, (-|Zv)).i.e., if
sets of zero lower probability [21, Ch. 7], which is nofor all zy € Zy it holds that

uaranteed by the existence of the global model alone. .
J Y ? Ey, (flzv) = inf { Bz, (fl20) : Ezo (J20) € M(Eg, (|20))} -
)]

[ |

= (), this functional is called ar{unconditional) linear
revision £z, (-).4 [
SNote that linear previsions correspond to expectations.

zo€Z0

A. Main definitions and results
Lower previsions can be regarded Bmver expectation

functionals. Conditional lower previsions can also be give
the following axiomatic characterisation:

Theorem 1.E, (-|Zy) is a separately coherergonditional
Z; = (Zj)ies, lower prevision on the set of gamblg$Z,) if and only

Consider variablesZy, ..., Z,, taking values in the sets
Zy,..., 2y, respectively. For any subsgtC {1,...,n} we
shall denote byZ; the (new) variable

which takes values in the product space 2In the filtering problem,f can be the state variable (to compute the mean),
the quadratic-error (to compute the variance), etc.

SNote that in the domaiit (Zo ) we can also include the gamblgson
Z0, by making a correspondence with a gamflegiven by f’(zouv) :=
f(zo) for each compatiblep € Zp andzouu € Zouu-

1The reason we use the terms previsions for expectations améblgs for 4As discussed at the beginning of this section, we can redraraidtion of
utility functions is because the theory of CLPs is based @nlbhavioral conditional previsions as the fundamental one, and thendittonal notion
subjective approach to probability (see Remark 1 later omfore details). as a special case.

25 = XjeiZ;j.



if the following conditions hold for allz;y € Zy, f,g € for which our subject is neither disposed to buy nor to gell

L(Zour) and A > 0: at a pricek € [a,b]. His supremum acceptable buying price
(SCL) Ey, (flzv) = infzy 2y f- for f is then his lower previsiorZ; (f), and it holds that
(SC2) E, (Aflzu) = AE 4, (f|zv). the subject is disposed to accept the _ur)certain reward
(SCI) Ey, (f +9lzv) = E4, (fl2v) + E, (9]2v). E, (f) + ¢ for everye > 0; and his infimum acceptable

selling price for f is his upper prevision£ z,(f), meaning

u o

The necessity of the conditions (SC1)~(SC3) in this theordfit e is disposed to accept the rewakty, (f) — f + ¢
can easily be established using Expression (5): for inetang’r everye > 0. A consequence of this interpretation is that
in the case of (SC3) we can use the linearity of the ez, (f) = —Fz,(~f) for every gamblef on 2.
pectation operatofz,, (|zy) to see thatfly, (f + glzy) =  Similarly, given a gamblef on Zouy and zy € Zu,
Ez,(flzv) + Ez,(glzv) for eachf,g € L(Zouv). Using the_cor,1d|t|onal lower preV|S|onEZO_(f|zU)_ represents _the
now Eq. (5) together with the fact thahf[E,, (f|zv) + subject’s supremum a_cceptable buying price for the ungerta
Ez (glz0)] > inf Ez,(flz0) + inf Ez, (g|z0), we deduce réward modelled by, if he comes to know that the variable
(SC3). Zy has takgn the valuey. The cqnqnlonal upper prevision

The (conditional) lower prevision of a gamble can bd’zo (flzu) is then the subject’s infimum acceptable selling

regarded as a lower bound for its expectation. Any coRfice for the uncertain reward modelled bf; if he comes

ditional lower prevision is conjugate to another functipnal©® know that the variableZy has taken the valuey. Again,

called conditionalupper prevision, and which is given by £z, (fl2v) = —Ez,(=[|zv) for any gamblef on Zouu
Ez,(flev) = —E4 (—f|zv) for all gamblesf. A con- and anyzy € Zu. _ _ =
ditional upper prevision is called separately coherentrwhe AS We said before, in the case of linear previsions we
its conjugate conditional lower prevision is, and in thasea Nave the equalityE 7, (flzv) = Ez,(f|zv). This means

it is the upper envelope of the seu((E,_(-|Zy)). Upper that the set/\/l(ﬂ_zo(-|zU)) includes a single Imgar prevision
previsions can be regarded apper expectatioriunctionals. 7o (f|z0). In this sense, we can see the classical expectation
A conditional linear prevision corresponds to the case wiaer OPerator Bz, (f|zv) as the most informative CLP. On the
conditional lower prevision coincides with its conjugaper Other extreme, the least informative CLP is the so-called
prevision, i.e.E,_(f|2v) = Ez,(f|zv). More generally, we Vacuous previsian

have Example 1. Given a subséfy of Zp, the vacuous lower
Bz, (fl20) < Ezo(fl2v) < Bz (fl2v) previsionE z,, on £(Zo) is given by
for any Ez, (|zr7) € M(E,, (|2v)). Bzo(flev) = inf ' f(z0).

The representation of CLPs in terms of sets of linear pre-. . . -
visions allows us to give them Bayesian sensitivity analysis'® IS @ssociated to the set of linear previsiond(£,,) =
representation. Assume that, because of lack of knowled"%gz.o + Bzo (_ICO) =1} 1t _corresponds to th?. case yvhere all
about the probability of the different(zo) for all zo € Zo, the _mf_ormatlon we have_ is that the prob.a}bllltykib is 1. _
we are not able to define the expected utility (linear previsi Similarly, we can defin@acuous conditional lower previ-
Ez, (-|2v) for f, but only to placeEy, (-|z/) among a set sionsE,_(:|Zv). Here,_for eachyy V\llje can IetE_Zo(.|zU) be
of possible candidates\{(E,_(-|2)). Then the inferences the vacuous CLP relative to sonté5” < Zo, given by
we can make from\M (£, (-|zv)) are equivalent to the ones E, (flzv) = inf. f(z0,20);
we can make using the lower envelopg  (-|zy) of this set. zoekd’

This lower envelope is a CLP. Hence, all the developments.. thatxzv Z,, can vary with eachey € Zy. In this
H o) = .

we make with CLPs can also be made with the set of thelhse the set(E, (-[z1)) would be those linear previsions
assoqated expectation operators, which are Imgar POBES savisfying Ez, (,CZOUTZU) — 1 for everyzy € Zy. -

In this sense, there is a strong link between this theory and, j,aar and vacuous previsions are two examples of CLPs.
robust Bayesian apaIyS|s [4]. ' ... It follows from [21, Ch. 2] that we can construct CLPs by
Remark 1. Stemming from de Finetf7] work on subjective making convex combinations of the two. This gives rise to

probablllty, cpherent Io_wer_preV|S|ons can {;\Iso be given a special class of lower previsions that we introduce in the
behavioural interpretation in terms of buying and Se"'n%llowing example:
prices. Let us briefly sketch how this is done. Example 2. For eachy € Zy, consider a linear prevision

If we interpret a gamblef on Z; as a random reward, p. (-|zv) and a subseko (z7) € Zo and0 < e < 1. Define
- / C Zo U O\*U) = <0 - =
which depends on the a priori unknown valde = z;, then E, (-|zv) by
—Z0

the previsionEz, (f) represents a subject’s fair price for the

gamble f. This means that he should be disposed to accept E, (f|zv) = eEy (flzv) + (1 —¢€) inf  f(z0)

the uncertain rewards’ — Ez, (f) + € (i.e., tobuy f at the z0€Ko(zv)

price Ez,(f) —¢) and Ez,(f) — f + € (i.e., tosell f atthe for any f € L(Zouv). The CLPE,_(-|Zy) we can define

price Ez, (f) + €) for everye > 0. in this way is called dinear-vacuous mixturdt is the lower
More generally, the supremum acceptable buying price artvelope of the so calledcontamination mode]4], that is

the infimum acceptable selling prices for a gamble need ribie class of the convex combinationsigf_ (-|zy) with any

coincide, meaning that there may be a range of prige$] linear previsionE, (-|zy) that is associated to the vacuous



model with respect tdCZ, or, in other words, such that to arise when conditioning on sets of zero lower probability
Ez,(K§ |2v) = 1. B which is not guaranteed by the existence of the global model
There are three additional features of the theory of colieretone. It turns out that joint coherence becomes GBR when
lower previsions that we shall use in our solution to thee have one conditional and one unconditional CLP, and when
filtering problem. The first one is called tigeneralized Bayes the sample spaces are finite. The intuition of joint cohezenc
rule (GBR) [21, Sect. 6.4]. in that case is that, according to Eqg. (7), each conditional
Definition 4. LetE, ~ be an (unconditional) coherent lowerlinear prevision inM(E,_ (-|Zy)) is obtained by applying the
prevision, and le? , | (-|Zy) be a separately coherent CLP.classical Bayes rule on a joint linear prevision¥(E ;).

It is said to satisfy the generalized Bayes rule with, When we have hierarchical information, i.e., a finite number
when for every:; € Zy and every gambl¢ € £L(Zouy) the of CLPs conditional on a sequence of nested variables, a
value £, _(f|zv) satisfies way to combine them into an unconditional coherent lower
prevision while maintaining the property of joint coherenc
E oo Utz0y(f = Ezo (fl2v)] = 0. ®) s by means of a procedure calledarginal extensior21,

m Theorem 6.7.2], [28]. It is a generalisation of the law oftot

When £, (Ii20) = Lz, Iz xz07) = 0, Eq. (6) Probability, or chain rule:
may have an infinite number of possible solutions, tHeefinition 5. LetEy, Ey, (|Zv,),. ., Ey, (|Zv,) be
smallest of which iSinf,c(.,}xzo} f(w); however, when separately coherent conditional lower previsions withpes-

E...(Izyy) > 0 there is only one value of,_ (f|zv) tive domains£L(Z2o,),L(Z0,ur,)s---.L(Z0,,0v,,), Where

satisfying Eq. (6). Hence, in that case we can use GBR tg = 0 and U; = Uf:ll_(Ui U0;) = Uj1 UOj for

derive a separately coherent CLP from an unconditional one.= 2:---»™- Their marginal extensiorto £(Z") is given
This rule generalizes Bayes’ rule from classical probgpbili by

theory to CLPs. When it holds thdt,,  (I1.,}) > 0and  E(f)=E, (E, (...(E,, (f|Zv.)|.-)|Z0.)), (8)

we defineE,_(f|zv) via the Generalized Bayes Rule, then ! ? "

it is the lower envelope of the conditional linear previsa'onand i_t is CLP. - .
Ez,(f|2v) that we can define using Bayes' rule on the This procedure becomes the law of total probability in the
O

elements of\(E ), as we detail next: case of linear previsions and finite spaces. But it is applea
=Zouu /! .

Example 3. From Eq(6), it follows that0 = E I (f— in more general situations: for instance, when we are dgalin
W] is equél to o =Zouv =} with infinite spaces or when we have lower previsions instead

of linear ones [28].

inf  {Ezou L0 (f = )] : Ezouy € M(Ez, )} We f:onlclude thish.siction byllrecallingCtLr:De nﬁtion eq_fis- f
= inf{Es,, (I — uEz, (I, temic irrelevance which generalizes to s the notion o
{ Zg as U;J;)E #Ezov (Tizy) independence between variables [21, Sec. 9°1.1].

FHZoww € (—ZOUU)}' Definition 6. Given the coherent lower prevision

Assume now thatE,  (Ii.,;) > 0 and thus Ez(|Z;; Zk), we say thatZ; is epistemically irrelevant
Ezouu(Ifsyy) > 0 for all Ey,,, € M(E,, ). Then to Z condiional onZ; if there is E, (-|Z:) such that
u

the above infimum is equal to E. (12, Zk) = Eg,(:|Zy).
In other words, this means that we have the following
. Ezouw (I zpy f) equality:
inf {EZOUU(I{ZU}) {EZOU—(;U}) —u quality
oue itz Ez(flzoz) = inf {Bz(f(, 25,212 2)
 Ezouy € M@zm)}-  Ez,(12524) € M(E, (12,2))}

Hence, solving w.r.ty, it follows that the unique solution is: inf {EZ (f(Cs 255 21) |2k)

o Ezouu Ty f) 1 Ez,(|2r) € M(Eg, (+|2k))
p = infd ————=~
Ezovw Iz0}) = Ey(fla), 9)

inf { Bz, (fl2v) : Ezouy € M(Ez,,,)} - ) for all f € L(Z; x Z; x Zy), zj € Z; andz, € Z.
Note that epistemic irrelevance imposes the equality betwe

: EZOLJU € M(EZOUU)}

We introduced earlier in this section the notion of separa\%e infima, but does not make any additional constraints on

coherence, which states that the information provided by e;orrespondmg linear previsions Wt (E, ([2;,2)) and
CLP is self-consistent. However, when we have more than oﬁé’(—zi('V’C))'

CLP we must vern_‘y _the consistency of all the aSSESSMENtR, G ENERALISATION OF BAYESIAN STATE ESTIMATION
taken together. This is what we catlint coherenceand it

is studied in much detail in [21, Ch. 7]. This notion implies :
the existence of a global model (an unconditional joint lowéliScussed in Sec.
pl’eVISIOh)‘ V_Vh|Ch is compatible with all the CLP?' Ever] MOI€ 50ther possible generalisations of independence for CLRseafound in
strongly, joint coherence also prevents some inconsiigndz21, Ch. 9]. In this paper we shall restrict our attention pistemic irrelevance.

In this section, we generalize the Bayesian state estimatio
Il to Walley’s theory of coherent lower



previsions, and show that Bayesian state estimation isdiecl |
in our model as a particular case. Proof: By exploiting the marginal extension defined in &),
The aim of Bayesian state estimation is to compute thiee joint £y« y-[I{,} (9 — )] can be written as
conditional linear prevision ofX; given {Y; = uy;,Ys = R
y2,..., Yy = y}, Ex,[[|[Y? = y']. Hereafter we assume Ey, [Exl [E{/l{mﬂxt |:E}~/t {I{gt}(g—ﬂ)‘XtaYt_l}
X, € X, andY, € ), for eachk, where X}, and ), are i1 ot
bounded subsets &" andR™, respectively. Assume that the ‘X Y } e ‘XDXO] ‘XO]
available information does not allow us to specify a uniqu?his can be rewritten as
probability measure describing each source of uncertamty
the dynamical system. We can then use CLPs to model the ) . i1
available knowledge. Consider CL#S , E ., [|Xx—1] and Ex, [Eyt [I{m(g B H)‘X } X } ]’
Ey. [-|Xy] for k= 1,...,t, and let us derive from them a (14)
separately coherent conditional lower previsigg, [-|y']. Let whereE ., y.. is the joint lower prevision orC (X'~ x
Ex:y: be aCLP inZouy = X'UY", g: Xy — R gamble yt-1) which can be obtained by applying marginal exten-
andy’ € Y'. According to GBR in Eq. (6), sion recursively fromgy. [ X*] and E, [|X*~1] for k =
o _ _ 1,...,t — 1. By exploiting the fact thaf;:y = I,y 150
Exlolyl=n st Exeyilliyylg =ml =0 (10) and that I;;.-1, does not depend Olyigj 3Ne d{gdtc{g frcim
and there is a unique: satisfying this equation when[21, Prop. 6.2.6)] that (14) is equivalent to
Ex:y¢ [Ityy] > 0. However, in the continuous case the

probability that the random variable assumes a particuIaEXtil.Yti1 lf{gtl}ﬂxt {Eg {I{gt}(g_u)‘Xt} ‘Xt—l} ]

Ext—l yt-1

value is zero, which in our context means that we may
have E .y« [I{,+}] = 0; this would imply that GBR does
not define a unique conditional lower prevision. A way t ; _
overcome this problem in classical probability is to regard@mple of interesy i

tlence, by exploiting conditior{8 1}(12) and the fact that the
s a function ofx; only, we obtain that

the measurementg, for any k — 1,....¢ as idealisations £x: (v, [} (9 — )| X'| X" is a function ofX; ; only.
of discrete eventg, = B(yx,0), where B(yx, ) are nested Hence,

neighborhoods ofy;, with positive probability and which E [E {I . (g_‘u)‘Xt:| th}

converge tofy, } as their radiu® > 0 decreases to zero. For =Xe =¥ [Had (15)
instance, wheny, is a real variable, the neighborhoods might =FEy, {Eg {I{gt}(g - M)‘Xt} Xt—l} .

= N — < .6 . .
'rlli\éea?seur:)g?(i(%?gi(gér)e)zte rr;{ggsur'ezfnentysk |aE06£gg)k}és SeBﬁ%?pplymg the above step recursive(y3) follows. u
ote that the fact thag depends only on; is essential for

in practice because of the finite precision of the instrumen&l ) .
Having these ideas in mind, we shall assume that the s § equivalence between (13) and (14). If for instagosas

Y, we work with are finite ¢, being in fact a representation'r_]Stead a function of; -, the lower prevision in the left-hand
of B(yk,d(yx))), and thatE v, v [I{53] > 0; this allows us side member of (15) would be equal oy, {EYG gy (9 -

to apply GBR and thus to solve (10). Furthermore, to makg)| x, x, ,] Xt—laXt—2] An example in this sense can be
things compatible with Sec. I1l, we assume thas a bounded ¢5,,nd in [24, Sec. 7].

real-valued function.

Lemma 1. Consider the state vectdf, € X, and the
measurements vectdr, € ) for eachk and assume that
the CLPsEy,, Ey, [|Xx-1] and Ey, [|X] are known for
k=1,...,t. Furthermore, assume that, for eakh=1, ... ¢,
X* =2 and Y*~! are epistemically irrelevant taX), given

Lemma 1 states that we can write the joint CLP
Ex:y:[l{yy(g — p)] as a “nested function” of the CLPs
Ex, (prior), Ex, [|Xk-1] (state transition) andty. [-|Xi]
(likelihood). Given the joint, we can compute the target
conditional CLP E [¢|§'] as discussed in the following

o 5 ! theorem.
X1 and that X*=1 and Y*~! are irrelevant toY;, given
X, meaning that
Ex, [hllxkfl’gkfl] = Ey, [hi|zi-1], (11) Theorem 2. Consider the same assumptions as in Lemma 1
Eo holef 51 — B lh 12 and assume thaEXt,yt[I_{gt}] > 0 for any sequence of
By, [hale”, 57] By, [hafze); (12) measurementg’. Then, giveny’ = {1, %»,...,5:} and a
Vhy € L(XF x YF71) hy € L(XF x Y¥),a¥ 5F~1. Then, gambleg : X; — R, Ey [g]y!] is the unique valug:* such
given the sequence of measuremeyits= {71, 42, ..,9:}, @ thatu* = arg, (Ex,[g0] = 0), with
gambleg : X; — R, and a constanj, € R, it holds that:
gr—1(zr-1,1) = Ex [gk (I{ >0y By, g1 Xk]
Exf,yt [I{yt}(g —p)] = EXO {Exl [E{q { : - Tk | k] "
+ I oo B I Xk)‘:zrk,l],
B[ [t~ ] ] worBalioo el
(13) for k = 1,...,t, where I, ~¢; is the indicator of the set
8In general, the precision of the neighborhood, measured bgi(yy,) {ze = gr(zr,p) = 0}, Itg <oy is the indicator of its

may depend also opy,. complement ang(z, 1) = g(x¢) — p. u



Exo[], Ex,[|Xi—1] = Ex,[|Xk-1] = Ex,[|X3—1] and
Ey [|Xk] = By, [|Xx] = By, [|Xi]. Then Ey,[g7"] =

Proof: From Egs.(10) and (15), we obtain Ex,[9]7t] = Ex,lg|7], where:
N - ~t—1
0 = Extfl,f”*l [I{gtl} EX,: [E{/t [I{yjt} gt|Xt]‘Xt_1}‘| 5 [g|gt] EXtﬂ [EX,: [gEyt [I{yt}|Xt]‘Xt—1:| ‘yt }
X = .
Ex, , [Ext [E{/t [I{gt}|Xt]’Xt—1} ’@t_l]
= By [I{gtl} Ex, |9t (Lz01 By, L5y X4 (20.)
_ Proof:  Consider Eqg. (17). Since Ey, [I15,1|Xk] =
+ Ig <oy By, [I{z}t}|Xt]) ‘thl} Ey, [I15.41Xk] = By, [I15,11Xk], we have
= Exerpe {f{gffl} gt—l}a Iigi>0y By, [I{gk} Xk] + g By, [I{gk} :vk], (21)
(17)
whereg,_ is given by is equal to Ey, [I5,1|X%] and, replacing CLPsE with the
corresponding linear previsiong in (17), we obtain
gi-1 = Ey, [gt (I{thO}EY/t [,y 1Xe] (18)
+ Ig<oy By, [I{ﬂt}|Xt])‘Xt—1] 0 = Bxiig ll{gtl} Ex: {gtE{/f [I{gf”Xt]‘Xt_lH
Note that the second equality i{17) follows from the fact
that Ey. [I(5,) 9:|X:] is equivalent taliy, 115,y 9:(I{g,>0y + = Exea g | Lig=1390-1 15
Itg,<0y)|Xt]. Sinceg: Igy, >0y and —g; I¢,4, <oy are both non- (22)

negative and constant w.r§;, we can apply AxiongSC2) to

deduce that whereg; 1 = Fx, {gtEYt [I{gt}|Xt]‘Xt_1:|. If we replace now

g1 with go 1 — Ex, _, [9:1]9" ']+ Ex,_, [g:—1]y" '] in the

Ey, Uy 91(Ig,>01 + Iig,<0y)| Xt last equality in(22), we obtain

= 9t(Ig,>01) Ey, L1531 Xe] + (—9:(Tgg, <0y)) Ey, [~ 5,3 | Xi] ' L

= 91(I(g,>01) Ey, I 15,y |Xe] + 9:(I (g, <0y) By, U1 Xe]. L (gH = Exea g5
In fact, g, > 0 implies thatg;I;4, >0y > 0 and Iy, <oy = 0, + Extfl[gt_1|gt—1])}
whenceg; I, >0y iS @ positive constant and Axiof8C2) can B r I
be applied to obtain the first term of the above sum. Similarly ™~ Exi1 g _I{@H} (gtfl — Ex, 1 [9t-119 ])}
wheng; < 0 we have that-g:I(,, <oy > 0 and Iy, >o; = + By gi _I{ﬂtil}EXtil[gt_lwt—l]}

0, and using the conjugate relationship[—g] = —FE[g] for

CLPs and Axiom(SC2), the second term of.the sum follows. 0+ Exio1 g1 [I{gtfl}Ethl [gt71|gt71]}
Now, in(18) the only unknown quantities iy | are X; _ g B [ -]

and x. If we proceed recursively in this way, frof@7) we xe-ryet g o EX o -1l

obtain £, [go] = 0, where i ) ) . (23)
where the first equality follows by the linearity property of

linear previsions, the second is a consequence of Bayes' rul
9o = Ex, |0 (I{glzo}ﬂfﬁ [I{ﬂl} Xl] (GBR) and the third follows again from linearity. Hence,
(19) L
+ Igeo By, [Tg| 3] ) |X 0 = Bxis gl Bxis lona 7]
{1 <032y, [ H{on} |2 0l = Extfl,fftfl[j{gt’l}]
Finally, by iolvmgﬂmo [go] = 0 w.r.t. © we can derivey* = . Ex, ., |Ex,|9:Es. [I{gt}lXt]‘Xt—l} i1
By, lg(w0)l3"). o 5|
A nice side feature of the model presented in (16) is that, — By g Iy
as it is shown in [23].£ y. . is jointly coherent with all the XLy Y (24)
o e . . ~t . - B
initial assessments and with ., [-|7']. This means that our . Bx,, |Ex. |9Eg [T 1X4] th] gt=1
model is self-consistent.

Let us show that the above derivation includes as a particula — By g [Lige-1]
case Bayesian state estimation, once we express the efement XLy 7
of the model under the formalism of CLPs. We shall assume . Ex.  |Ex gt1‘|.
thus that our inputs are linear previsiofs,, Ex, [-|Xk—1] ot

andEy, [|X;] and use their linearity to obtain a more compact

solution. The term that multiplieg: is just Ey. y«[I(5+;], Which has
Corollary 1. Consider the same assumptions as in Thebeen assumed positive by hypothesis. Thus we can @f#ye
rem 2 and assume moreover th#ty [] = Ex,[] = W.t u obtaining(20). |

By g [ Xi]

Xt71:|




Assuming some regularity conditions [21, Sec. 6.10.4], asWith this in mind, the path followed in this paper is that
the radiusd(yi) of the neighborhoodg, = B(yx,d(yr)) of extending Bayesian decision making to the IP framework

converges td) for k = 1,...,t, we obtain Bayes’ rule for by calculating the lower=(z;) and upperE(z;) means and
conditional PDFs, i.e.FEx,[g]y'] is equal to: an IP version of the credibility region. In particular, the |
B -t drdar credibility region is evaluated by seeking the minimum voé&u
zt{lig(xt) p@de)p(zealy™ (e deidze regionx such thatE(I(,c,y) > 1 — a. It is easy to see that,
ol (2 lyi—1 VA der in the precise case, the IP credibility region coincidesfie
mt[lm{p( o1 )p(ee |yt (yelme)doeda— Bayesian one and thdt(z,) = E(z;) = &;.
(25)

Hence,Ex, [¢]y!] is a linear functional which is completely de-
termined by the PDFg(z;|x;—1), p(z¢—1]y' ™) andp(y|x:).

If we compare Egs. (17)—(19) with (20)—(23), we see that Let us consider next the linear time-invariant system in
in the imprecise case we cannot derive an expression for (#¢ but in the scalar case, i.er,,y, € R for eachk. It
conditional lower prevision similar to (20). This is due tds not difficult to generalize the results in this section to
the fact that CLPs are super-additive (see Axioms (SC2)e case wherer; and y; are vectors. We assume all the
(SC3)) instead of linear and therefore we cannot reprodulegpotheses for the KF given in Sec. Il apart from those of
steps (20)—(23). Hence, in order to compite [¢(z)|7] in ~continuous measurements and zero-mean measurement noise.
the imprecise case, it becomes necessary to go through limgoarticular, we assume that discrete measurements of the
joint, i.e., to propagate back in time the functionaluntil state are available and that the uncertainty on the measutem
the initial state is reached, and then to find the valug.of process can be represented witlinear prevision
which satisfiest, [go] = 0. This means that each step can
be heavy from a computational point of view. Possible waysy, (h|zk, k) = Z h(gx) /I{gk}(zk)N(zk; Cxp+0y, R) dz,
to overcome this computational issue are: (i) to find classes T e
of CLPs for which the computation of (16) is feasible; (ii) (26)
to truncate the recursion afté¥ steps in the past by findingWhere ¢, is the mean of the measurement noise at time
a CLP which approximate&'y, , [g/5'~"]. Concerning the Hence, the measurement noise has a non-zero bias. We assume
first point, examples of lower previsions, for which the sinin  that the only knowledge abou, for k = 1,...,¢, is that
of (16) is affordable, are discussed in Sects. V-VI. oL < 6r < 0Y, where the known scalag”, 0V define a

The idea of truncating the recursion afférsteps in the past bounded interval irR. We model the lack of information about
is based on the intuition that the influence of the past on tHee valued, of the variable, by using a vacuous prevision
present decreases at time goes by. According to this iotyiti (See Example 1)/, (9) =  inf g(6), for all gambles

. ; e e bic[6% 0]
if we are able to find an apprommatloQXFN[glyt ] g. Observe that, for the gambjéd;,) = 6y, this model implies

of Ey, ,[glg'~"] which, for any g, is easier to com- that Eg, (g9) = 0" andEe,(g) = 6V which, thus, describes
pute thanEy, [g/7"~"] and such thant,N[gWiN] < our prior knowledge or®,. In the derivations in Sec. 1V, the
Ex, . lgl5*~N], we could useq 7N[g|27th] as the new Mmeasurement process is described by the GLP (h[Xy).
prior E,_ from which to start the recursion (16). Note thatVe can obtain this CLP fronky, (-[zx,0k) and Eg, (-) by
Q. willno longer satisfy joint coherence with the local asmarginalisation o

o ovover e agvese et o i aprsmal 1, - [, 045 0

V. BIASED MEASUREMENT NOISE

where h is a gamble inL(X* x Y*). Hence, the main

A. Decision making and estimation difference w.r.t. Sec. IV is that now we have additional

We conclude this section by discussing briefly the decisiofariables ©* for k < t. Furthermore, in this case, the
making approach to estimation, which will be used later iimprecision is only ovelg, while we have a precise model
the paper. The Bayesian methodology provides the estiméne likelihood Ey. (-| Xk, ©y), state transitionEx, (+[Xx—1)
which minimizes the expected posterior risk. If in partaul and priorEx,(-). Thus, the target conditional CLE y, [g|7']
we consider a squared error loss risk, the Bayesian estime&® be obtained as follows:
is the mean of the posterior distribution. This estimatisn iTheorem 3. Suppose that:
provided in general together with itsredibility region a — .
100(1 — ) credibility region for a scalar random variabteis Exlol = Exolol = Exolg] = z{ 9(@o)N (zo; 2o, Po) dao,
a regiony such that&(I,c,y) = P(x € x) = 1 — o, where _
P(-) is the posterior distribution. When we consider sets of£x, [9/Xk—1] = Ex, [9]Xy—1] = Ex, [ Xp—1]
probabilities, we deal with lower and upper expectations, an = | g(zx)N (zk; 25-1, Q) dxy,
thus, with interval-valued expectatiofB(-), £(-)], leading to Er 27)
the problem of c_zleC|S|o_n_ma_k|ng under imprecision [21]. i; (11 Xy] = B [M X)) = By [h]X,] is defined as if26)
consequence of imprecision is that, when the lower and up%(?% Eg (9) = St g(b‘k)k. Assume that variable,
expectations are substantially different, we must abariden k 0r€[0L,0V]
idea of choosing a unique value for the estimate. andY}, for eachk = 1,...,¢ satisfy the epistemic irrelevance
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assumptions given by Eq€l1) and (12). Furthermore, sup- Thus, the target conditional CLE y, [¢|3*] corresponds to the
pose that®'! is irrelevant to X, given X*~! and Y*~! for valueu which solves the equatloﬁxt7yt7@t Uiy (g — )] =

eachk =1,...,t, and that®’ is irrelevant toY; given X*, 0. From Corollary 1 and, in particular, from(24), we can
Oy and V=1 for all Gke{l,. ..ty j#k ie.: rewrite Ex+ y+[I15:1(g — 1)|©'] as follows:
Exk[h1|9t i 1737k 1= Bx(mla" g7, (28)  Exen pe[Igeny 0871
By, [hol6, 2", 5" = By, [hol0k, 2", 5", (29)

Ex, ., |Ex, [Eﬁ[l{gtﬂxt,@t]‘xt_l} 71 ot-1].

Vhy € L(XF xyk—l), ho € L(XFxYF), 0, g+~ zF. Assume

also that®7 is irrelevant to ©,, for eachk < t and j =
Lk—1,k+1,...,< t ie, Eg (h¢7) = Eg, (h) for Ex, , |Ex, [gE{/t [I{gt}|Xta@t]’Xt—1} gt ettt
each©’ = ¢ and h € L(OY). iy
Then, given the set of observatiofis = {41, 72,...,7:} R
and a gambleg : X; — R, the target conditional CLP Ex, . |Ex, [E%[I{ﬂtﬂxtv@t] - } gt et

Ey,lgly'] is given by: (35)

o . . where, since the measurements have been assumed to be
Exloly’] = Or.o B0 V] /g(xt) N (w1 80=Mil6"], Pr) dovgie ete and using26), we have thatE. y.[I(;:}|0] >
Tt 0 and, thus,(35)) is well-defined (i.e., the denominator is
(30) " : . .

with positive). Thus, because of the expectations in the first row
‘ ‘ of (35) are positive, from(34) and (35) it follows that the
= Z [ H (1—L;C)A| L;b;, (31) unique valuey which solvestiy: y ¢ [I(51}(g — )] = 0 is:

i=1 | j=i+1 ~ .
= p=Ey,[gl§")=  inf

and wherez,;, P; and L, are given by the standard equations 01,..-,00€[0%,67]

of the KF. [ 1 i1
Proof: Equation(30) can be derived from the results of Sec. Exi | Bx, [gE?f Uiy X, Gt]‘Xt_l} y0
IV. First of all, notice that, with the assumptions of Theorg,

we can regardzg, for eachk <t as a prior information, i.e., Ex,_, |Ex, {EY/ gy Xe, @t]‘Xt_l} gt—1,9t-1
all other CLPs in our model are defined w.r.t. conditions of !

epistemic irrelevance fror®*. Thus, from(28)~(29), it follows (36)

that, given®?, the joint in Lemma 1 in this case becomes: Finally, we can use(25) to derive (30) from (36). To see
this, note first of all that when the discretisation St&y;)

Ext yi[Itzy(9 — )0 = Ex,[Ex, [Ey,[. .. in 4, = B(y:,d(yx)) is small enough, the integral ii26)
Ex, By, [I{5:(9 — 1)|X¢, ©¢]| Xe—1] - .. [ X1, 01] | Xo]). can be approximated ag(d(yx))N (yi; Cxy + 64, R) where
' (32) r(6(yr)) > 0 is the Lebesgue measure By, 6(yx)), which

) ) o has been assumed to be independent,ofHence,
Note that (32) is a linear prevision becausg26) (27)

and Ey, [h|X] are linear previsions. Since by assumption  Eg (h|z) ~ p(5(yk))2h(yj§) N(y;; Cze + 64, R),
Eg, (h|07) = Eg, (h) for each®’ = ¢/ and h € L(O"), 7
we can obtain the overall joint y: v g:[I{5:3(9 — p)] as

L . .
follows: where the prime iy, is used to denote the summation variable

which defines the neighborhoogls= B(y;, é(yx)). Thus, for
EXf,Yf,Gf[I{ﬂt}(g — /L)] = (33) h = I{yt}’ we haveE (I{Ur}|xt) X N(yt,C’xt + Gt,R)
Eg ... Eg [Ext yt[Iizy(g — p)01]...]. Then, using(25) and standard results from Kalman filtering,

. - we conclude that
Note that we only have imprecision ovBg,, for eachk and

that, because the assumptions of epistemic irrelevancengmo

T ~t-1 ot—1
©', the joint in(33) is invariant if we exchang&e, and E¢, Exia | Ex. [gEYf Uiy X, et]‘Xt_l} y.0
for i,j < t. Thus, sincellg, (9) = , %Lf (,U]g(ek) for each
€ s ~
k=1,...,t (33) becomes: ’ Ex, .| Ex, {E{a [I{ﬂt}|Xta9t]’Xt—1} gt et
Ext7yt,@t [I{Ut}(g - M)] = f g(It)N(ZEt,C&t — Mt[Ot],Pt) dCCt
= inf inf A inf Ext yi|lg,e — @t Tt
ele[lélL,ev] egef(?L,eU] Gte[lenL,é)U] xtyelly (9= Wl
_ inf Exeye gy (g — )01, where M, [0"] is given in(31) and, thus(30) follows straight-
01,00 €[00V Y forwardly from (36). [ |

uation says that if we knew the value of the ltias
(34)  Equation (30) says that if we knew the value of the t
. L .U i

“The subsequent derivations would hold, in a more complicéiem, also for eachk’ .e.,0 L 0° = O, V\.Ie C(.)U|d use the KF tO_ derive

if we only assumed thaExk [R|6%, 2k =1 g5 1] = Ex, [h|zh—1, 55— 1] the optimal solution of the estimation problem (providedtth

and By, [h|0%, 2%, §7] = Eg, [h|0k, %, 55 1]. the shifted observationg, — 6, are used). In fact, in this
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case, it is well-known that the optimal estimateijs- 1/,[#"] which depends on the width of the intervil”, Y] (see
wherez; is the standard KF estimate derived from the biasg@9] for issues related to the computation of lower and upper

measurements’, i.e., Fx,[g|7'] fmf g(x)N(z; 2, — covariances).
M, [0 |, P;)dx;. Conversely, when no other information about
0x thano® < 6, < 6V is availabile, we can only give a lower V1. LINEAR-VACUOUS MIXTURE MODEL

(or upper) bound ofEy, [g]3!]; this lower bound is exactly L
the CLP in (30). From (30), we can thus derive lower and Alss_ume now tha_t the l;ncl)vxijlec_ige on the initial s_tate and state
upper bounds for any gamble For instance, by selecting €V° ution process is modeled Hipear-vacuous mixtures

g(xy) = x4, we can compute the lower mean R .

) = Ex,(9) = o [ 9(x0) N(wo; 20, Py) drg +(1— ) inf g ),
— : A t x
z, = oo (glel%L,(-)U] Iftxt J\/(xt, Ty — Mt[o ], Pt) dIt xo (38)

t t
= & —> | [I 1-L;C)A| L; max(6*,0Y) Ex (9lzr-1) = €w /Q(Ik) N(2r; Azy—1, Q) duy,
i=1 | j=i+1 2 (39)
and the upper mean +(1—€yw) iilkfg(xk),

where the scalarg,, and e, belong to[0,1]. Furthermore,
assume that discrete measurements of the state are awailabl
and that the uncertainty on the measurement process can be
The differencez; — z, models the imprecision in the estimateepresented with knear previsiorf £y, _(h|zx) as in (26) (but

of z;, which is proportional to the width of the intervé/ — with 6, = 0). This generalizes the model given in (4) to
¢* and does not depend afy. Note that in this example the linear-vacuous mixtures and can be used for example to
the imprecision does not converge towhent — oo. This model the imprecision of the linear time-invariant systeth (
behaviour is due to the fact that the imprecision is penesijut where the process noiseus = e, wy + (1 — €,)ny and

in the measurement process. However, for this examplenit ¢g, ~ ¢, N (&g, Py) + (1 — €, )ex, and the noise terms;, and

be verified that, assuming that the p&id, C'} is observable, ¢, are assumed to have unknown distributions (not necessarily
this condition yields the existence of a steady-state &wlut constant w.r.t time). Note that the model for bath andz, is

for the KF filter (i.e., for the covariance matrix and the gainthe so-callect-contaminationmodel which has been defined
and, thus, also the convergencefot, [x|7'] — Ex, [z:/7'] to in Sec. lll-A. The correspondence between this system and
a finite value. Consider now the gamigler,) = I1; ez..z,)),  Egs. (38)~(39) follows from the following statements:

wherez,, z, € R. Its lower prevision is 1) Thee-contamination model fows, implies that [21, Sec.

t t
Ty =Ty — Z [ H (1—L70)A L; min(@L,é’U).

i=1 | j=it+1

o 2.9.2];
minL U f N(xt;:ﬁt—Mt[Ht],Pt) dl’t
O HEOROT] ) . Ewelgl = inf [ [ glwn)en N (wi;0,Q) duy
. Ty — Ty + M[07] k Eny Ly
= min 0.5 erf &P
O eClOR0T] e t + (1—€u)Ey, [g(nk)]}
05 ery (T2 SO = o [ glun) Nwii0,Q) dun
t Wk
whereer f(z) = (2//7) [ exp(—t?)dt is the error function. + (- Ew)iﬁ}fg(wk)’
The solution can be found numencally by solving the above _ - (40)
minimisation (or maximisation for the upper prevision) pro wheref,, denotes the expectation w.r.t. any distribution
lem. Thus, the IP credibility region is computed by seekimg t which characterizes the noisg.® See also Example 2.
smallest intervalz,, ;] such thatE(I(,c(s, 2,13) = 1 — a. 2) Hence, we can exploit a result from [30, Sec. 6] to prove
Finally, given the gamblg(x,) = (z;—v)?, its lower prevision that the knowledge ofy,. and the factry 1 = Az +
is wy, together imply Eq. (39) whenrlzy, is assumed to be
SN . known. This can also be derived from the fact that the
o ;?E{})L 0v) i{(xt = v)* N(ze; 3¢ — Mi[07], P2) day contamination onw{, induces a contamination iy 1,
= minL v (i’t—Mt[et] —U)2+Pt. €.,
01,...,0.€[01,0V] (37) Tpy1 = Axy + e wy, + (1 - Ew)nk

The minimum of (37) w.r.tv, which is P;, corresponds to the = ew(dzp +wp) + (1 - ew)(Azk + 7).

minimum variance. This is the variance of the KF when the

8We are assuming here a precise probabilistic model for th@sorement
bias of the measurement noise is known. The upper varlaryl:

ess instead of an imprecise one, such as the ones faritiaé state and

is the state evolution process, in order to simplify the deiove in this section.
9 We remark however that the model presented in Sec. IV is geaad allows
t t pU _ pL also for imprecise measurements.
> I @—L;,C)A| L, <7> + P, 9For the sake of notation, we have used the variafealso for the second
i=1 |j=i+1 2 integral in (40). The correct integration variable would bg.
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Hence, we can apply again Eq. (40) to derive (39). Thigperatorl,[-] which operates on the functiog(xy, ) and
holds also forxg and extends to CLPs the well-knownproduces a function af;_; and i. The second term can be
“change of variables result” for expectations. seen as an operatdf;[-] on the functiongy(zx, ), but it
Note that, ife, = ¢, = 1, we obtain the linear Gaussian cas@roduces a function of. only. Hence, at time, the previous
in Eq. (4). Furthermore, note that in (38) the epsilons argfjuation can be rewritten as follows:
the covariance matrices of the Gaussians have been assumed
to be time-invariant. The generalisation to the time-wvaria gr=1(@t—1, ) = Telge (e, )] + Mirlge (e, )], (44)
case is straightforward. When the discretisation stgp) in  and, thus, at the time— 1:
U = B(yk,0(yx)) is small enough, the last integral can be
approximated ag(d(yx))N (yx; Cax, R) Wherep(d(yx)) >0 gi—a2(zi—2, 1) = Ty []It [g¢ (e, )] + M [ge (e, H)]}

5 i e, s ) bt it
By, (hlee) ~ p(6(u)) 3 h(Gh) N (i Ca, R). (41) = feoalllgetee ol LMl o)
i + M {Ht [g¢ (¢, )] + Me[ge (e, M)]},
Recall that our aim is to obtain the conditional (updated) (45)

prevision, for which we need to solve Eq. (10). Applying!sing the linearity ofl and the fact thatVl;[g;(z:, )] is a
the results in Theorem 2, the target conditional CLP can Bénction of .z only. Hence, (42) can be decomposed as
calculated as follows:

Theorem 4. LeE . [], Ex, [|X—1] and Ey, [|X;] be given 0=E, [go(fco’“)}

by Egs.(38), (39) and (41), respectively, and assume they sat- = Iy[I;[... T;[-]]] + Io[1]M [-] + To [Ty [1]]M[-]+

isfy the epistemic irrelevance assumptions given by Edk. (46)
and (12). Giveng' = {41, 9a, ..., J:} and a gamble : X; — +o Do Lo UM [ + Mo {Hl [ L[]
t i .

R, then E . [g]y] is the unique valug: such that: + My [] + LMo [] +--- + T [... Ht_l[l]]Mt[-]},
0=E.,,(90) . ) where, for the sake of notation, the arguments of the operato
~ %zf go(@o, p) N(zo; &0, o) + (1~ e€z) inf go (2o, A): have not been made explicit, but can be recovered from

0 (42) EQgs. (44)—(45). Note that the operatdgsand M, are slightly
where go(zo, 1) can be obtained recursively by different from I, and My, for & > 0, as we can see from
(42). Let us give some comments on Eq. (46). The term

r-1(Tk—1, 1) ) To[L [... T,[]]] is equal to
= p(0(yr)ew | 2 Tigy W) gr(@e, wIN (zi; Azg—y, Q) ,

LT t,. .t 5

p(0(yr)) exes, T N(yr; CAZp—1, Sk)

N (yy,; Cay, R)d k=1 (47)

+p(0(y)) (1 — ew) inf g, 1) 3 Iy (5) N (s Ca, R) [ ge (e, ) N(aes e, Pr),

Yk
= p(0(yr))ew | gr(@i, N (215 Azi—1, Q)N (yr; Cok, R)dzkwhere Sp = R+ CPyp1CT, @k, P and Pyj_q =
B AP, 1 AT 4+ @ can be calculated by using the KF from the
+o(8(yr)) (1 — ew) ?f 9k (@rs N (y; Cg, R), prior N (zo; &0, Po). This gives the solution of the estimation
(43) problem in the precise case, i€, = ¢, = 1. The product
fork =1,....¢ with the final conditiony; (z:, ) = g(x1)—p-  [](-) in Eq. (47) represents the marginal w.r.t the measure-
) B ments. In the precise case, this term vanishes in the normal-
Proof: Eq.(43) follows by applying Theorem 2 to the CLPSsation constant. The generic tefil; 1 [...T;_; [arg]] with
(38), (39) and (41). The only difference is that, i43), it argumentarg] equal tog, (z, ), for 1 <i < j=t, ortol,
has also been exploited thaty, [-[X;] = Ey, [[Xk] is @ for1<i<j<¢ isequal to
linear prevision and thus satisfies E(R1). Moreover, since L
Ex,[]. Ex,[|Xx—1] and Ey. [-|X,] are linear Gaussian - P(5(yk))J_Z€%J_lf--~ f larg] NV (zi; Azi—1, Q)N (yi; Ci, R)
vacuous mixtures and the measurements have been assumed e
to be discrete (whencéy. [I(;1|X%] > 0), we have that o N(wj—13 Azjz, QN (yj-1; Ci, R).
ExiyiIz] > 0 and then it follows from the results . o . .
mentioné{é ]in Section Il that the solutign of Eq. (42) is ﬂ':l;tte that, by applying the matrix inversion lemma, it follow
unique. |
By exploiting the properties of the Gaussian PDFs, we can N (z;; Azi—1,Q) N (yi; Cxi, R) = N (yi; CAzi—1, W)
further specialize the result in (42)—(43). We see from B&) (N (zy; W,Q ' Az + W,C' Ry, W),
that the valuegy_1 (zx—1, 1) is the sum of two terms. The (49)
first one is the expected value 9f (zy, 1) W.r.t. a Gaussian where W, = R + CQC” and Wb’1 =Q '+ CTR'C.
and the second is the infimum of (x, 1), also weighted by We can see the second factor in the right-hand side of this
a Gaussian. The first term can also be regarded as a linequation ' (x;; W, Q" Ax;_1 +W,C’' R~ 1y;, W), as a prior

(48)
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distribution for the subsequent steps1, ..., 5. Then, we can dimensional system, the following cases have been sintlate
use KF to simplify Eq. (48) as follows:

Case €w PDF forn ¢ r/q

o i1 1 0.95 507/(1—€y) 0.1 1
p(6(yr)) el N (yis CAzi—1,Wa) ] N(yx; CAZE_,, k) 2 0.95 507/(1—€,) 0.1 0.1
k=i 309999 567/(1—e,) 0.1 1

J larg] N(zj—1587_1, Pj_y) djr, 4 095  N(0,125) 01 1

Tj1
(50) wheredy, is 1 when the time is equal tok and0 otherwise and
wherezy, P, S;; are calculated by using the KF starting from,, — .2, In the cases 1-3, the trajectory undergoes a jump of
the prior N(z;; WoQ ™" Az;1 + Wy, CT R™1y;, W3,). Agdain, 5 units at the time instartt= 7. This can be interpreted as an
the product[](-) in (50) represents the marginal w.r.t theinmodeled manoeuvre. For these cases, the simulatiorisresul
measurements. Fdsrg] = 1 the integral in (50) marginalises gre shown in Figures 1-3 for a fixed trajectory, i.e., Monte
to 1. The termslo[I1 [. .. I; [1]]], with 0 < j < ¢, are equal to  Carlo runs have been performed only w.r.t the measurement’s
, noise realisations. The figures report the true trajectdf),(
p(8(yr)) ewed, ll[ N(ye; CAz:_,, S5). (51) th averaged KF's estimate (KF) and the relafi9& credibil-
k=1 ity interval (Cred KF), the averaged lower (LP) and upper(UP
) means and the IP version of credibility interval (Cred IP) as
Comparing Egs. (50) and (51), we remark that the terfifined in Sec. IV-A. From Figure 1, we see that from time
N(yi; CAz; 1, W,) is absent from (51). In fact, represents {4 time ¢ the KF and the LGVM provide more or less the same
the prior information, i.e. there is no measuremgntNote e qipility interval and the upper and lower means are atmos
that the constantg(d(yx)) can be dropped out to solve (46).qqual and coincide with the KF estimate. At the jump’s instan
Inth\_e sequel, we refer to th_e alg_orlthm presented in Thedrer@ — 7, the KF estimate is wrong, since t198% credibility
and implemented as described in Egs. (44)-(51) adiear jnterval does not include the true state. This shows that the
Gaussian-Vacuous Mixtur GVM) filter. KF is not robust to large model errors. On the other hand,
the LGVM correctly detects the jump and it is able to enlarge
the credibility interval in order to include the true stalée
differenceE (z;) — E(x:) is related to the imprecision present
We have performed Monte Carlo simulations in order ! the system. From the instast= & to the end, the true

show the basic features of the LGVM filter presented in gHgectory enters again inside the KF credibility regiomcs
0 more jumps occur. We see also that the LGVM converges

previous section. These simulations compare the perfarmarrl]

of the LGVM with the KF, considering non-Gaussian situat-(,)wards the true state as can be seen from the reduction of the

tions. We have considered the following model: size of the credibility interval. However, the convergenate
' ' is slower than that of the KF and depends on the variance-

VII. NUMERICAL EXAMPLE

Tepn = Az + s ratio /g, as can be seen comparing F_igures 1-2, and on
ye = Cuxi+uy the value ofe,,, as can be seen comparing 1 and 3. These
1 T (52) results thus show that the LGVM filter outperforms the KF
A= [ 0 1 } , C= [ Lo } ) performance when a small value (small w.r.t the ratio) of

€ 1S selected. In fact, in these cases, LGVM is still robust to
whereT = 1 is the sampling intervalyf = e, w;+(1—¢,)n;, UnModeled errors and its convergence rate is fast. Obyiousl
wy ~ N(0,Q), zo = o (i.e., e = 1), #9 ~ N(0,Py), vy ~ @as We increase, towardsl there is a value of,, for which

N(0,R), LGVM and KF almost coincide. In case 4, the contaminating
term is a Gaussian with zero mean and variariie Thus, the

po_| P 0 0=|¢ 0 Rer noisew* is normally distributed with zero mean and variance
0 0 po |’ 1o ¢’ - Quw = 2Q + (1 — €,)?125 ~ 0.4. The width of the IP

version of the99% credibility interval has been compared
with po,q,7 > 0. It has also been assumed that the twwith the true99% credibility interval based of),, = 0.4. The
components of the state are constrained to lig-im00,100] average ratio between the size of the two intervalg.4§23
and, respectively,—30, 30]. Simulations have been performedor + = 1, 1.008(¢ = 2), 1.0027(¢t = 3) and it converges to
considering both the system in (52) and its one-dimensionahfter ¢ > 3. Thus, although the LGVM does not know the
restriction, i.e.A = 1, C' = 1 etc. Note that, in all simulations, contaminating term, it is able to correctly determine thettvi
both LGVM and KF were designed without assuming thef the credibility interval, while the KF can only underestite
knowledge of the contaminating terms. The aim is to its size.
investigate the relative sensitivity of the KF and the LGVM t  For the two-dimensional system, the following case has
(heavy tailed) disturbances of the nominal Gaussian densiieen simulated:
The performance of the fiIt_ers has be_en invest_iga_ted_canside Case o PDE for n 4 /q
ing different values of epsilon and different distributsofor 5 0.9999 [0,507/(1— )T 0.0 1
the contaminating term. A trajectory of15 time steps and : T = :
a Monte Carlo size of 100 runs are considered. For the orlgiis can be interpreted as an unmodeled manoeuvre which
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acts only on the second component of the state. For these —er ‘ N

cases, the simulation results are shown in Figure 4. Thisdigu N o8 .

reports the true trajectory (TS), the averaged KF's estmat Lo | :% i
<

(KF) and the averaged lower (LP) and upper (UP) means for
both components of the state. From Figure 4, upper plotnit ca
be noticed that the behaviour of KF and LGVM is similar to x 2
that discussed above for the one-dimensional system. $n thi A
plot, we have shown only the fir$d time instants, since after
that all filters converge to the same value. The only diffeeen
w.r.t. the one-dimensional system is that LGVM filter detect
the manoeuvre with a delay of one time instant (i.e., at time =
t = 8); this is because the manoeuvre is made on the second Time
component of Fhe stat_e, which is not dire_ctly observablés It Fig. 2. Case 2¢w = 0.95, 7/q = 0.1.
perhaps more interesting to remark the difference betwden K

and LGVM in the lower plot of Figure 4. We can see there that , ‘
at timet = 8 the upper mean goes 8% which is the upper "
bound for the second component of the state (remember that
we have assumed that this component is constrained to lie in
[—30,30]). This means that the upper mean is vacuous. This
behaviour is due to the lack of observability for the second st
component of the state. In fact, the manoeuvre is so stratg th !
the second term in the last equation in (43) becomes dominant A
Since this term depends only on the measurement equation,
the second component of the state is unobservable and, thus,
free to vary during the optimisation. In practice, becaudb® ,
manoeuvre, the information on the second component carried : o s
by the prior estimate:, is lost at timet = 8, and the LVGM

filter has to estimate it again from the measurements. ThusFig. 3. Case 3¢, = 0.9999, /¢ = 1.

one sense, the LGVM filter performs a re-initialisation afte

the manoeuvre.

o
/
,

8

- -LP

-+ -Up o
TS -

—*—KF 7

60 ¢ credIP ) ~ o

o Cred KF 1 RN 4

<
state - 1st component

x 2
30 T T T F=RK T T T —%— KF
g 2ol / ,.,\ -© -LP
oF a -+ -
g 1 \',\ up
s 10 ! N
E ! £ ,
N =
2r ) (ﬁW
o ~o -0-© 1
T
]

‘ ‘ Y - . . . . . . .
o 5 10 15 2 4 6 8 10 12 14 16 18
Time time

Fig. 1. Case lew = 0.95, /g = 1. .
Fig. 4. Case 5&, = 0.9999, r/q = 1.

Software availability case, that our extension outperforms the Kalman filter when

The software implementing the LGVM filter has beerlinOOIeIIIrlg errors are present in the system.

realized in Matlab. Sources and documentation are availabl With reSpect to future prospects, we can devise at least
at http:/www.idsia.chialessiol. three lines of investigation. The first might be concerned

with deepening the comparison with the classical resulbe T
second might focus on investigating the extension of LGVM
to the case where the contaminating distributions are udé@ho

In this paper, we have proposed an extension of the classiaatl/or symmetric [31], and also how our filter evolves as
filtering problem that allows for imprecision in our knowlgsel ¢ — oo, and which are the conditions for its convergence [32].
about the elements of the model, and which is arguably mdA&e envisage that, under some assumptions similar to those in
realistic in real situations. We have also shown, in a peatti [21, Sec. 6.10], our results will hold also for continuouseb

VIIl. CONCLUSIONS



vations, which is equivalent to assuming infinite precision

the measurement instruments. Finally, the third line miggnt
an extension of our approach to model the predictive confro
constrained linear systems affected by stochastic dishuods [23]
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