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Abstract. The conditions under which a 2-monotone lower prevision can be

uniquely updated (in the sense of focusing) to a conditional lower prevision are

determined. Then a number of particular cases are investigated: completely
monotone lower previsions, for which equivalent conditions in terms of the

focal elements of the associated belief function are established; random sets,

for which some conditions in terms of the measurable selections can be given;
and minitive lower previsions, which are shown to correspond to the particular

case of vacuous lower previsions.
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1. Introduction

The theory of imprecise probabilities contains a wide variety of mathematical
models which are of interest in situations where it is unfeasible to determine, with
certain guarantees, the probability model associated with an experiment. It includes
for instance 2-monotone capacities [4], belief functions [43], possibility and necessity
measures [24, 56], random sets [17, 41] or coherent lower previsions [48]. Under any
of them, one important problem is that of updating the model under the light
of new information. Unfortunately, this matter is far from settled, and quite a
number of different rules has been proposed (see for instance [52] for an overview
in the case of possibility measures). Among the most popular are Dempster’s rule
of conditioning [17, 43], regular extension [9, 29] and natural extension [48].

In order to be able to choose one rule above the others for a particular problem,
it is essential to have a clear interpretation of the mathematical model we are
using, and of what we mean by updating in our context. In this paper we deal
with epistemic probabilities, where we model degrees of (partial) knowledge from
a subject, and more specifically we focus on the behavioural approach championed
by Peter Walley [48], that has its roots in the works on subjective probability by
Bruno de Finetti [16]. This approach regards the lower and upper probabilities of
an event as its supremum and infimum acceptable betting rates, and focuses on a
consistency notion between these betting rates called coherence. Although this may
seem restrictive at first, we argue that this is not the case, for a number of reasons:

• Imprecise probability models satisfying the notion of coherence (from now
on coherent lower previsions) are always the envelopes of a convex set of
probability measures. As a consequence, the behavioural approach is also
compatible with a Bayesian sensitivity analysis interpretation.

• Almost all models of imprecise probabilities considered in the literature can
be seen as particular instances of coherent lower previsions [51], and as a
consequence our results shall be applicable also to them.
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With respect to the meaning of updating, although in the case of a precise prob-
ability model this is relatively straightforward, and it amounts to applying Bayes’
rule, when we move to the imprecise case the situation becomes more complicated.
There are basically two main scenarios:

• Belief revision [1, 30], where we modify either the generic knowledge or
the factual evidence about the problem under the light of new knowl-
edge/evidence. The modification is usually done under the principle of
minimal change. In the context of imprecise probabilities it gives rise to
rules such as Dempster’s rule of conditioning [17, 27].
• Focusing [27, Section 6], where we condition our generic knowledge on fac-

tual evidence. This produces rules such as the regular extension [29].

Within Walley’s behavioural approach to imprecise probabilities, the interpre-
tation of the lower prevision of a gamble conditional on an event B corresponds to
the current supremum acceptable betting rate we would establish for the gamble,
assuming that later we come to know that the outcome of the experiment belongs
to B. As such, it tells us which are the predictions associated with our current
model, and therefore the process of updating corresponds to a problem of focusing.

Using this interpretation, Walley proposes in [48, Chapter 6] a notion of co-
herence that tells us if the conditional betting rates are compatible with the un-
conditional ones. However, this notion does not suffice to uniquely determine the
conditional models from the unconditional ones. This was shown for instance in
[37], where it was established that in general we may have an infinite number of
conditional models compatible with the unconditional one, and that the smallest
and greatest such models are respectively determined by the procedures called nat-
ural and regular extension, whose underlying differences we shall discuss later in
the paper. Here, we investigate under which conditions the natural and the regular
extensions coincide, and as a consequence there is only one conditional model that
is coherent with the unconditional one. This would mean that in those cases it is
not necessary to choose between the natural and the regular extensions (or any of
other coherent rules that lie between them).

The rest of the paper is organised as follows: we shall recall the basics from the
theory of coherent lower previsions in Section 2. Then we shall focus on a particular
case of coherent lower previsions: those satisfying the property of 2-monotonicity
[4, 14]; these have the advantage that, unlike general coherent lower previsions,
they are uniquely determined by their restrictions to events (a 2-monotone lower
probability) by means of the Choquet integral.

After establishing a necessary and sufficient condition for the uniqueness of the
coherent extensions in Section 3, we focus on two particular cases of 2-monotone
lower previsions. First, in Section 4 we consider completely monotone lower previ-
sions, which correspond to the Choquet integral with respect to a belief function
[14]. We show that the necessary and sufficient condition mentioned above can be
simplified by means of the focal elements of the belief function. Moreover, com-
pletely monotone lower previsions are associated with random sets, and from this
we characterize the equality between the natural and the regular extensions in terms
of the images of the random set; we also give an equivalent expression of the regular
extension in terms of the measurable selections.

In Section 5 we focus on a second instance of 2-monotone lower previsions: the
Choquet integral functionals with respect to Boolean necessity measures. Taking
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into account some recent results [12, 13], these are related to the so-called vacuous
lower previsions, which model a situation of complete ignorance about the outcome
of an experiment. Interestingly, we show that both the natural and regular ex-
tensions also produce vacuous models, although they do not coincide in general;
moreover, there exist also non-vacuous models coherent with our unconditional
lower prevision.

One interesting fact stems from our results in this last section: that the problem
of checking the coherence between the unconditional and the conditional models
is not equivalent for lower probabilities and for lower previsions; and this even
when the lower previsions, both in the unconditional and the conditional case,
are uniquely determined by their associated lower probabilities. Indeed, in [52]
it is proved that the smallest and greatest conditional possibility measures that
are coherent with an unconditional possibility measure are the ones determined by
Dempster’s rule and by natural extension, respectively. This leads the authors to
propose the harmonic mean between these two possibility measures as an updat-
ing rule. As we shall show, if we consider the upper previsions determined from
these unconditional and conditional possibility measures by means of the Choquet
integral, we obtain models that are not necessarily coherent.

We conclude the paper with some additional remarks in Section 6.

2. Preliminary concepts

Let us introduce the main concepts of the theory of coherent lower previsions
we shall use in this paper. We refer to [48] for a more detailed exposition of the
theory, and in particular of the behavioural interpretation of the concepts we shall
introduce below. A survey of the theory can be found in [36].

2.1. Coherent lower previsions. Consider a possibility space Ω, that we shall
assume in this paper to be finite. A gamble is a real-valued functional defined on
Ω. We shall denote by L(Ω) the set of all gambles on Ω. One instance of gambles
are the indicators of events. Given a subset A of Ω, the indicator function of A is
the gamble that takes the value 1 on the elements of A and 0 elsewhere. We shall
denote this gamble by IA, or by A when no confusion is possible.

A lower prevision is a functional P defined on a set of gamblesK ⊆ L(Ω). Given a
gamble f , P (f) is understood to represent a subject’s supremum acceptable buying
price for f , in the sense that for any ε > 0 the transaction f−P (f)+ε is acceptable
to him.

Using this interpretation, we can derive a notion of coherence:

Definition 1. A lower prevision P : L(Ω) → R is called coherent if and only if it
satisfies the following properties for every f, g ∈ L(Ω) and every λ > 0:

(C1) P (f) ≥ min f .
(C2) P (λf) = λP (f).
(C3) P (f + g) ≥ P (f) + P (g).

The interpretation of this notion is that the acceptable buying prices encom-
passed by {P (f) : f ∈ L(Ω)} are consistent with each other, in the sense defined
in [48, Section 2.5]. In particular, when P satisfies (C3) with equality for every
f, g ∈ L(Ω), it is called a linear prevision. Any coherent lower prevision is the
lower envelope of the set of linear previsions that dominate it, i.e.,

P (f) = min{P (f) : P linear prevision, P ≥ P}.
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The conjugate functional P of a coherent lower prevision P is called a coherent upper
prevision, and it is given by P (f) = −P (−f) for every f ∈ L(Ω). It corresponds
to the upper envelope of the set of linear previsions that dominate P .

A coherent lower prevision defined on indicators of events only is called a co-
herent lower probability. Its conjugate function P , given by P (A) = 1− P (Ac) for
every subset A of Ω, is a coherent upper probability. In particular, the restriction
of a linear prevision to indicators of events is a probability measure. In fact, co-
herent lower previsions can be equivalently defined as lower envelopes of closed and
convex sets of probability measures, and as such they can also be given a Bayesian
sensitivity analysis interpretation.

One particular case of coherent lower previsions are the vacuous ones. They
correspond to the case where the only information we have is that the outcome
of the experiment belongs to a subset A of Ω. In that case, our coherent lower
prevision is given by

P (f) = min
ω∈A

f(ω) for every f ∈ L(Ω). (1)

Although a linear prevision is uniquely determined by the probability measure
that is its restriction to events, this is not the case for lower previsions: a coherent
lower probability will have in general more than one coherent extension to the
set of all gambles. This is the reason why the theory is established in terms of
gambles instead of events. Interestingly, there are some cases where the restriction
to events uniquely determines the coherent lower prevision. One instance that shall
be important in this paper is that where the restriction to events is 0–1-valued:

Lemma 1. [48, Note 4, Section 3.2.6] Let P be a coherent lower prevision on L(Ω)
whose restriction to events is 0–1-valued1. Then P is the unique coherent extension
of its restriction to events, and it is given by

P (f) = max
D:P (D)=1

min
ω∈D

f(ω) for every f ∈ L(Ω);

moreover, the class {D ⊆ Ω : P (D) = 1} is a filter on Ω.

This applies in particular to the vacuous lower previsions in Eq. (1).

2.2. Conditional lower previsions. The theory of coherent lower previsions can
also be extended to the conditional case in the following way: given a partition2 B
of the set of outcomes, a conditional lower prevision on L(Ω) is a functional P (·|B)
on L(Ω) that to any gamble f and any B ∈ B assigns the value P (f |B); this value
represents a subject’s supremum acceptable buying price for f , if he comes to know
later that the outcome of the experiment belongs to the subset B of Ω. By putting
all these values together, we end up with the gamble

P (f |B) :=
∑
B∈B

IB P (f |B).

1Note that this implies that the restriction to events of P is a (Boolean) necessity measure.
2We are using partitions here because we are sticking to Walley’s formulation of the theory in

[48, Chapter 6]. Nevertheless, this assumption is not important in the context of this paper, where
the possibility space Ω is finite, as Walley’s theory is then equivalent to the one formulated by

Peter Williams in [53], which does not make use of partitions. Note also that in the mathematical
developments we shall make from Section 3 onwards we shall deal with each of the conditioning
events separately.
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Similarly to conditions (C1)–(C3), we can establish a notion of coherence for con-
ditional lower previsions.

Definition 2. A conditional lower prevision P (·|B) on L(Ω) is separately coherent
when the following properties hold for every f, g ∈ L(Ω), λ > 0 and B ∈ B:

(SC1) P (f |B) ≥ minω∈B f(ω).
(SC2) P (λf |B) = λP (f |B).
(SC3) P (f + g|B) ≥ P (f |B) + P (g|B).

The behavioural interpretation of this notion is that, for every set B in the
partition B, the acceptable conditional buying prices encompassed by P (·|B) are
consistent with each other. A separately coherent conditional lower prevision sat-
isfies P (B|B) = 1 for every B ∈ B.

If we start with a coherent lower prevision P and consider a partition B of the
space Ω, there is in general not a unique way of updating P into a separately
coherent conditional lower prevision P (·|B). This is related to the problem of
conditioning on sets of probability zero, which has attracted a lot of attention in
the literature [20, 35]. In particular, de Finetti’s behavioural approach [16] is at the
root of a number of interesting studies on the verification of coherence of conditional
assessments, both in the precise [3, 6], and the imprecise case [2, 5]. In this paper
we shall consider the approach considered by Walley in [48, Chapter 6].

In the next section we detail how the conditional lower prevision may be derived
and we formulate the problem under study. Note that under Walley’s interpre-
tation, a conditional lower prevision models the consequences of the assessments
encompassed by the unconditional lower prevision P . In other words, the elicitation
of the conditional lower prevision is a model of focusing, in the sense discussed in
the introduction. For a study of coherence in the dynamic case, we refer to [45, 57].

2.3. Formulation of the problem. Consider a coherent lower prevision P on
L(Ω), let B be a partition of Ω. Assume we want to update the coherent lower
prevision P into a separately coherent conditional lower prevision P (·|B) on L(Ω).

One strategy to derive P (·|B) from P is to verify that the assessments present
in these two lower previsions are compatible with each other. This gives rise to
the concept of joint coherence, which is studied in much detail in [48, Chapters 6
and 7]. In the context of this paper, where the possibility space Ω is finite, joint
coherence is characterized in the following way:

Proposition 1. [48, Theorem 6.5.4] Consider a coherent lower prevision P and a
separately coherent conditional lower prevision P (·|B) on L(Ω), where Ω is a finite
space. They are jointly coherent when

P (B(f − P (f |B))) = 0 for every f ∈ L(Ω), B ∈ B. (2)

In the particular case where P , P (·|B) are precise previsions, that we can then
denote P, P (·|B), Eq. (2) becomes

P (B(f − P (f |B))) = 0 for every f ∈ L(Ω), B ∈ B.

This means that whenever P (B) > 0 it must be P (f |B) = P (Bf)
P (B) , i.e., the con-

ditional prevision must be defined by means of Bayes’ rule. Because of this fact,
Eq. (2) is called the Generalised Bayes Rule. The rationale behind it is that the
assessments modelled by P , P (·|B) should be consistent with each other, in the
sense that a combination of them should not allow us to raise the already specified
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supremum acceptable buying price for a gamble. More specifically, it turns out to
be equivalent to the following two conditions:

sup [f − P (f) + g − P (g|B)− (h− P (h))] ≥ 0 ∀f, g, h ∈ L(Ω)

sup [f − P (f) + g − P (g|B)−B(h− P (h|B))] ≥ 0 ∀f, g, h ∈ L(Ω), B ∈ B.
See [48, Section 6.3] for more details on this behavioural interpretation.

Unfortunately, this rule does not permit to determine P (·|B) uniquely, in the
sense that for a given coherent lower prevision there may be more than one condi-
tional lower prevision satisfying Eq. (2) with it. If we fix the conditioning event B,
we can distinguish a number of cases.

The first one is when P (B) > 0; then for every gamble f there is a unique real
number λ such that P (B(f − λ)) = 0, and as a consequence there is only one
conditional lower prevision P (·|B) that is compatible with P .

The second case is when P (B) = 0. In that case, any real number λ satisfies
P (B(f − λ)) = 0, and this means that any conditional lower prevision P (·|B) is
compatible with P . Thus, Walley’s definition of joint coherence does not provide
any guidance as to how to update our unconditional model. Although we shall not
deal with this case in the paper, there are a number of possibilities that may be
considered, such as the full conditional measures of Dubins [20] or the theory of
zero layers by Coletti and Scozzafava [6, 32].

The last and most interesting case is that where the conditioning event has zero
lower probability and positive upper probability, i.e., that of P (B) = 0 < P (B). In
that case, there may be an infinite number of conditional lower previsions that are
compatible with P ; there were characterised in [37], where it was proven that they
are bounded by the so-called natural and regular extensions.

Definition 3. Given B ∈ B, the natural extension E(·|B) induced by P is given by:

E(f |B) :=

{
inf{P (f |B) : P ≥ P} if P (B) > 0

minω∈B f(ω) otherwise

for any gamble f ∈ L(Ω).

The natural extension is vacuous when the conditioning event has zero lower
probability, and is uniquely determined by Eq. (2) otherwise. Although it produces
a conditional lower prevision that is coherent with P , it is arguably too uninforma-
tive. A more informative alternative is called the regular extension:

Definition 4. Given B ∈ B, the regular extension R(·|B) induced by P is given by:

R(f |B) :=

{
inf{P (f |B) : P (B) > 0, P ≥ P} if P (B) > 0

minω∈B f(ω) otherwise

for any gamble f ∈ L(Ω).

Hence, regular extension corresponds to applying Bayes’ rule whenever possible
on the set of precise models compatible with our conditional lower prevision, and
to take then the lower envelope of the resulting set of conditional previsions. It
has been proposed as an updating rule in a number of works in the literature
[9, 29, 31, 34, 49]. In particular, it has been advocated also from the decision-
theoretic point of view in [28, 42], under the name full Bayesian updating. From
the behavioural point of view, it is based on an axiom of desirability that is stronger
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than the ones assumed in the definition of the natural extension: that a gamble f
such that P (f) = 0 < P (f) should be desirable for our subject. See [48, Appendix J]
for more details.

Remark 1. The difference between the natural and the regular extension can also
be understood if we consider a sensitivity analysis interpretation. Consider thus
that our model is given by a set of previsions M (or M(P )), and that we want to
update this model assuming that a set B ⊆ Ω has been observed. Then we can
express M as the union of two disjoint sets by M =M1 ∪M2, where:

• M1 := {P ∈ M : P (B) > 0}. Each of these P determines a conditional
model P (·|B) by means of Bayes’ rule.
• M2 := {P ∈ M : P (B) = 0}. For these P we cannot apply Bayes’ rule,

and any conditional model P (·|B) is compatible with them.

Then if we maintain our sensitivity analysis interpretation, we may consider the
set of conditional models that are compatible with at least one of the models inM.
There are a number of possibilities:

• M2 = ∅, or in other words, P (B) > 0. Then we consider the set of
conditional models derived from the elements in M1. The lower envelope
of this set produces both the natural and the regular extension, which in
this case coincide.
• M1 = ∅, i.e., P (B) = 0. Then we consider the set of conditional models

derived from the elements in M2, which is the set of all P (·|B). Its lower
envelope is the vacuous lower prevision. Again here the natural and the
regular extensions coincide.
• M1 6= ∅ 6= M2, i.e., P (B) = 0 < P (B). Then the regular extension

considers only the conditional models derived from the elements of M1,
while the natural extension takes also into account the ones derived from
M2 (and becomes thus vacuous). �

We see that the natural extension is dominated by the regular extension, and
they coincide when the conditioning event B has either positive lower probability
or zero upper probability. However, the natural extension may be strictly smaller
than the regular extension when the conditioning event has zero lower probability
and positive upper probability (see for instance Example 3 later on).

Our interest in these two updating rules for coherent lower previsions lies in the
following theorem:

Proposition 2. [37, Theorem 9] Let P be a coherent lower prevision on L(Ω)
and B a partition of Ω such that P (B) > 0 for any B ∈ B. Then a sepa-
rately coherent conditional lower prevision P (·|B) is coherent with P if and only
if P (f |B) ∈ [E(f |B), R(f |B)] for every f ∈ L(Ω) and every B ∈ B.

Since Eq. (2) holds trivially when P (B) = 0, the problem of coherently updating
P into a conditional lower prevision P (f |B) only needs to be studied for those
conditioning events B with positive upper probability, and then Proposition 2 tells
us that the possible models lie between the natural and the regular extension3. In

3The key issue in the difference between the natural and the regular extensions seems to be

that of conditioning on a set of probability zero (see again the comments in Remark 1): either
we avoid this possibility whenever possible (like with the regular extension) or for those P with

P (B) = 0 we specify a set of full conditional measures. The most extreme case is that where we
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this paper, we are going to characterise the equality between these two conditional
lower previsions. We shall focus on one interesting particular case of coherent lower
previsions: the 2-monotone ones.

3. Updating 2-monotone lower previsions

One important instance of coherent lower previsions are the n-monotone ones,
which were first introduced by Choquet in [4]:

Definition 5. A coherent lower prevision P on L(Ω) is called n-monotone if and
only if

P

(
p∨
i=1

fi

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P

(∧
i∈I

fi

)
(3)

for all 2 ≤ p ≤ n, and all f1, . . . , fp in L(Ω), where ∨ denotes the point-wise
maximum and ∧ the point-wise minimum.

In particular, a coherent lower probability P : P(Ω)→ [0, 1] is n-monotone when

P

(
p⋃
i=1

Ai

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P

(⋂
i∈I

Ai

)
(4)

for all 2 ≤ p ≤ n, and all subsets A1, . . . , Ap of Ω.

Remark 2. We mentioned in Section 2 that a coherent lower prevision is not de-
termined uniquely by its restriction to events, in the sense that a coherent lower
probability may be the restriction of many different coherent lower previsions. In-
terestingly, we can uniquely determine this extension when we require in addition
the property of n-monotonicity, in the following sense: given a n-monotone lower
probability, its only n-monotone extension to L(Ω) is the Choquet integral [18] with
respect to this non-additive measure [14, 47], so we have that

P (f) := (C)

∫
fdP = inf f +

∫ sup f

inf f

P (f ≥ t)dt for every f ∈ L(Ω).

Note, however, that there is a subtlety here: if P is a n-monotone lower prevision
on L(Ω), its restriction to events is a n-monotone lower probability; however, a n-
monotone lower probability on P(Ω) can be in general extended by many different
coherent lower previsions. Out of these, only one is n-monotone on all gambles:
the one determined by the Choquet integral.�

A coherent lower prevision on L(Ω) that is n-monotone for all n ∈ N is called
completely monotone, and its restriction to events is a belief function. One example
of completely monotone coherent lower previsions are the vacuous ones in Eq. (1);
the linear previsions are another one, and they moreover satisfy Eq. (3) with equality
for every n.

In particular, a coherent lower prevision P on L(Ω) is 2-monotone if and only if
it satisfies Eq. (3) for n = 2, that is, if and only if

P (f ∨ g) + P (f ∧ g) ≥ P (f) + P (g)

consider the set of all full conditional measures, and this produces the natural extension. Indeed,

the separately coherent conditional lower previsions P (·|B) between the natural and the regular
extension can be seen to correspond to a subset of full conditional measures for those P ≥ P s.t.
P (B) = 0.
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for every f, g ∈ L(Ω). On the other hand, we deduce from Eq. (4) that a coherent
lower probability on P(Ω) is 2-monotone whenever

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) for every A,B ⊆ Ω.

This property is also called supermodularity or convexity.
In this section, we are going to determine under which conditions a 2-monotone

lower prevision P on L(Ω) can be uniquely updated to a conditional lower prevision
P (·|B) that is coherent with P , in the sense of Eq. (2). In order to do this, we shall
use an equivalent expression for the conditional lower probability determined by
regular extension:

Proposition 3. [47, Theorem 7.2] Let P be a 2-monotone lower prevision on L(Ω),
and consider B ⊆ Ω such that P (B) > 0. Then for any event A,

R(A|B) =


P (A ∩B)

P (A ∩B) + P (Ac ∩B)
if P (Ac ∩B) > 0,

1 otherwise.

(5)

Moreover, R(·|B) is 2-monotone on events.

The proof makes use of the fact that, for any 2-monotone lower prevision P on
L(Ω) and any A ⊆ B ⊆ Ω, there is some P ≥ P such that P (A) = P (A) and
P (B) = P (B) [47, Corollary 6.5]. This allows to deduce that

R(A|B) ≤
P (A ∩B)

P (A ∩B) + P (Ac ∩B)
if P (Ac ∩B) > 0,

while the converse inequality holds for any coherent lower prevision.
A similar result is also presented in [28]. We shall show in Example 4 later on

that in general R(·|B) need not be 2-monotone on gambles, because it will not
correspond to the Choquet integral with respect to its restriction to events (see
again Remark 2). Indeed, we shall see that 2-monotonicity on gambles is only
guaranteed when the conditioning event has zero lower probability and positive
upper probability.

To see that Eq. (5) does not hold without the assumption of 2-monotonicity,
consider the following example:

Example 1. Consider Ω = {a, b, c, d} and let P1, P2 be the linear previsions deter-
mined by the mass functions p1, p2 given by

a b c d

p1 0.5 0.5 0 0
p2 0.25 0.25 0.25 0.25

It has been shown in [47, Section 6] that the lower envelope P of {P1, P2} is a
coherent lower prevision that is not 2-monotone. Consider B = {a, b} and A = {a}.
Then P (Ac ∩B) = P ({b}) = 0.5 > 0, and

P (A ∩B)

P (A ∩B) + P (Ac ∩B)
=

P ({a})

P ({a}) + P ({b})
=

0.25

0.25 + 0.5
=

1

3
;

on the other hand any P ≥ P is given by αP1 + (1 − α)P2, where α ∈ [0, 1]; since
P1({a}) = P1({b}) and P2({a}) = P2({b}), it follows that any P ≥ P must satisfy
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P ({a}) = P ({b}) too, whence

R(A|B) = inf{P ({a}|{a, b}) : P ≥ P , P ({a, b}) > 0} = 0.5.

Hence, Eq. (5) does not hold. �

The key in this example is that there is no linear prevision P ≥ P such that
P (A∩B) = P (A∩B) = P2({a}) and P (Ac∩B) = P (Ac∩B) = P1({b}). Note also
that in the example P (B) > 0 and as a consequence the natural and the regular
extensions coincide.

Example 2. If we want instead an example when the natural and regular extensions
do not coincide and the regular extension is not given by (5), it suffices to take
the same coherent lower prevision as in Example 1, and consider B = {c, d} and
A = {c}. In that case the lower probability of B is zero, so E(A|B) = 0. On the
other hand,

R(A|B) = inf{P (A|B) : P (B) > 0, P ≥ P}
= inf

{
αp1({c})+(1−α)p2({c})

αp1({c,d})+(1−α)p2({c,d}) : α ∈ [0, 1)
}

= 1
2 .

If we apply Eq. (5) we obtain that

P (A ∩B)

P (A ∩B) + P (Ac ∩B)
=

P ({c})

P ({c}) + P ({d})
=

0

0 + 0.5
= 0.

Hence, natural and regular extensions do not coincide and the latter cannot be
computed by means of Eq. (5). �

From Proposition 3 we deduce the following:

Proposition 4. Let P be a 2-monotone lower prevision on L(Ω) and consider
B ⊆ Ω such that P (B) = 0 < P (B). Then for any gamble f it holds that

R(f |B) = min
ω∈C

f(ω),

where C is the smallest subset of B satisfying R(C|B) = 1.

Proof. First of all, since P (B) = 0 implies that P (A ∩ B) = 0, we deduce from
Proposition 3 that R(A|B) = 0 if P (Ac ∩ B) > 0. The same formula tells us also
that R(A|B) = 1 if P (Ac ∩B) = 0. Hence, for such a B the restriction to events of
R(·|B) is 0–1-valued. Applying Lemma 1, R(·|B) is the unique coherent extension
to L(Ω) of its restriction to events, and it is given by

R(f |B) = max
D:P (D|B)=1

min
ω∈D

f(ω).

Since we are dealing here with finite spaces, it follows that the filter of sets {D ⊆ Ω :
R(D|B) = 1} is fixed and has thus a smallest set C. Hence, R(f |C) = minω∈C f(ω)
and the proof is complete. �

Interestingly, this shows that, if the lower prevision P satisfies 2-monotonicity,
when the conditioning event B has zero lower probability and positive upper proba-
bility, the regular extension R(·|B) is a completely monotone lower prevision, even
if the lower prevision P we start from is not completely monotone.

Using these results, we can determine in which cases the natural and regular
extensions coincide:
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Proposition 5. Let P be a 2-monotone lower prevision on L(Ω), and consider
B ⊆ Ω with P (B) > 0 = P (B). The following are equivalent:

(1) E(f |B) = R(f |B) for every f ∈ L(Ω).
(2) E(A|B) = R(A|B) for every A ⊆ Ω.
(3) P ({ω}) > 0 for every ω ∈ B.

Proof. (1⇔ 2) The direct implication is trivial. For the converse, note that the
restrictions to events of both E(·|B) and R(·|B) are 0–1-valued. Applying
Lemma 1, we deduce that E(·|B) = R(·|B) on gambles if and only if they
agree on events.

(2⇒ 3) To see that the second statement implies the third, note that if there is
some ω in B for which P ({ω}) = 0, then given A = B \ {ω}, applying
Eq. (5) it holds that R(A|B) = 1 while E(A|B) = 0, because P (B) = 0.

(3⇒ 2) Conversely, since P (B) = 0, it follows that E(A|B) = 0 for any A ⊆ Ω such
that B ∩ Ac 6= ∅. Now, if P ({ω}) > 0 for every ω ∈ B, we deduce that
P (Ac ∩B) > 0 for every A ⊆ Ω with B ∩Ac 6= ∅. Applying Proposition 3,
we deduce that

R(A|B) =
P (A ∩B)

P (A ∩B) + P (Ac ∩B)
=

0

P (Ac ∩B)
= 0,

where the one-but-last equality holds because P (A ∩B) = P (B) = 0.
On the other hand, for any A ⊆ Ω such that Ac ∩ B = ∅, it holds that

B ⊆ A, and thus E(A | B) = minω∈B IA(ω) = 1 = R(A|B). We conclude
that the regular and natural extensions coincide. �

The equivalence between the first and the third statements can also be derived
easily from Proposition 4: R(·|B) = E(·|B) if and only if there is no proper subset
C of B such that R(C|B) = 1. From Proposition 3, this holds if and only if
P (B ∩Cc) > 0 for every proper subset C of B, and this in turn is equivalent to the
third statement.

Now, since the natural and the regular extensions coincide whenever the condi-
tioning event has positive lower or zero upper probability, we immediately deduce
the following:

Theorem 1. Let P be a 2-monotone lower prevision on L(Ω), and let B be a
partition of Ω. Then:

E(·|B) = R(·|B)⇔ P ({ω}) > 0 for every ω ∈ B ∈ B s.t. P (B) = 0 < P (B).

To see that this result cannot be extended to arbitrary coherent lower previ-
sions, it suffices to consider the coherent lower prevision P in Example 2, for which
P ({ω}) > 0 for every ω ∈ Ω but where the natural and the regular extensions do
not necessarily coincide: we saw there that given B = {c, d} and A = {c}, we have
R(A|B) = 0.5 > 0 = E(A|B).

4. Coherent updating of completely monotone lower previsions

We consider next the case where the unconditional lower prevision P on L(Ω)
is completely monotone. Then its restriction to events is a belief function, i.e., it
satisfies Eq. (4) for every natural number n; its conjugate upper probability is a
plausibility function.
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One of the most important updating rules for plausibility functions is Dempster’s
rule of conditioning [17, 43]. Given a plausibility function P on Ω and a conditioning
event B with P (B) > 0, the conditional plausibility is defined by

P (A|B) :=
P (A ∩B)

P (B)
.

However, this conditional upper probability is not coherent with the unconditional
upper probability P [54]4; see also [48, Section 5.13] and [50]. This is not surpris-
ing because, as discussed by Dubois et al. in [7, 22, 26, 27], Dempster’s rule of
conditioning is meant for a problem of belief revision, where we update our model
by considering new evidence. On the contrary, in this paper we are dealing instead
with a problem of focusing, for which it makes more sense to consider the rules of
natural and regular extension.

Taking into account that a completely monotone lower prevision is in particular
2-monotone, given a conditioning event B with P (B) > 0, we can compute the
regular extension by means of Eq. (5). This formula has also been derived in a
few papers ([29, Theorem 3.4]; [31, Proposition 4]; and see also [9, 17]). Moreover,
it has been established in [29, 31, 46] that the restriction of R(·|B) to events is a
belief function whenever the conditioning event B satisfies P (B) > 0.

The equality between the natural and the regular extensions of P is characterised
by Theorem 1. In this section, we give equivalent conditions in terms of the focal
elements of P .

Definition 6. [43] Given a belief function P on P(Ω), its Möbius inverse is the map
m : P(Ω)→ [0, 1] given by

m(A) =
∑
B⊆A

(−1)|A\B|P (B) for every A ⊆ Ω.

It holds that

P (A) =
∑
B⊆A

m(B), (6)

and m is called a basic probability assignment within the evidential theory of Shafer.
For the plausibility function P that is conjugate to P , it holds that

P (A) =
∑

B∩A6=∅

m(B) for every A ⊆ Ω. (7)

For the results in this section, it shall be interesting to work with the focal
elements of the belief function:

Definition 7. [43] Given a belief function P with Möbius inverse m, a subset B ⊆ Ω
is called a focal element when m(B) > 0. The union F of all the focal elements of
P is called the support5 of the belief function P .

4Interestingly, Dempster’s rule of conditioning is coherent in the particular case of possibility

measures, as we shall discuss in Section 5.
5This is called core by Shafer. We have followed a reviewer’s suggestion and called it support

instead. We think this terminology is better because it extends the idea of support from probability
measures. Note also that the term core is sometimes used to refer to the credal set associated

with the belief function.
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We shall be particularly interested in those belief functions whose focal elements
are a covering of the possibility space Ω. Following Daniel [8], we call these belief
functions non-exclusive:

Definition 8. [8] A belief function P with support F is called non-exclusive when
F = Ω, and it is called exclusive otherwise.

Since P (F c) =
∑
B∩F c 6=∅m(B) = 0, given an exclusive belief function, any set

included in F c will have zero upper probability. Equivalently, if P is a non-exclusive
belief function, any subset B of Ω has a positive plausibility.

We have mentioned repeatedly that E(·|B) = R(·|B) when P (B) > 0 or P (B) =
0. Hence, the natural and regular extensions will agree as soon as there is no
conditioning event with zero lower probability and positive upper probability. This
situation is characterised by the following definition:

Definition 9. A belief function is called scattered if for every focal element B, it
holds that m({ω}) > 0 for every ω ∈ B.

Scattered and non-exclusive belief functions can be characterised in the following
way:

Proposition 6. Let P be a belief function on P(Ω).

(1) P is scattered if and only if for any B ⊆ Ω either P (B) = 0 or P (B) > 0.
(2) P is non-exclusive if and only if for any B ⊆ Ω, P (B) > 0.
(3) P is non-exclusive and scattered if and only if P (B) > 0 for every B ⊆ Ω.

Proof. (1) Assume first of all that P is scattered, and let F be the support of
P . Given a subset B of Ω, there are two possibilities: either (a) B ⊆ F c,
and then P (B) = 0; or (b) B ∩ F 6= ∅. In this second case the definition of
the support and of a scattered belief function implies that P (B) > 0.

Conversely, if P is not scattered there is some focal element B such
that m({ω}) = 0 for some ω ∈ B. Then Eqs. (6) and (7) imply that
P ({ω}) = 0 < P ({ω}), a contradiction.

(2) The second statement follows trivially from Definition 8.
(3) The third statement is a consequence of the first and the second. �

When the conditioning event B has zero lower probability and positive upper
probability the equality between the natural and the regular extensions is charac-
terised by Proposition 5: we need that P ({ω}) > 0 for every ω ∈ B; in the case
of belief functions, this is equivalent to B ⊆ F , the support of the belief function.
From this we deduce the following result:

Proposition 7. Let P be a completely monotone lower prevision on L(Ω), and let
µ denote the belief function that is the restriction of P to events. Then,

E(·|B) = R(·|B) ∀B ⊆ Ω⇔ µ is either non-exclusive or scattered.

Proof. First of all, if µ is scattered it follows from Proposition 6 that for any B ⊆ Ω
either P (B) = 0 or P (B) > 0, and in any of these two cases E(·|B) = R(·|B).

On the other hand, if µ is non-exclusive, it follows from Proposition 6 that
P (B) > 0 for every B ⊆ Ω. Applying Proposition 5, we deduce that in this case
R(·|B) = E(·|B).

Conversely, assume that the belief function µ is both exclusive and not scattered.
Then there is some B ⊆ Ω such that P (B) = 0 < P (B). Applying (6) and (7), we
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deduce that there is some focal element C such that C ∩B 6= ∅ 6= C ∩Bc. On the
other hand, if µ is exclusive there is some ω ∈ F c, where F denotes the support of
µ. Hence, given D = B ∪ {ω},

P (D) =
∑

C focal:C⊆D

m(C) =
∑

C focal:C⊆B

m(C) = P (B) = 0,

Moreover, from the monotonicity of P it follows that P (D) ≥ P (B) > 0. Now, since
ω ∈ D satisfies P ({ω}) = 0, we deduce that R({ω}c|D) = 1 > 0 = E({ω}c|D). �

This result allows to easily provide an example of a completely monotone lower
prevision whose natural and regular extensions do not coincide6:

Example 3. Consider Ω = {a, b, c, d}, and let P be the completely monotone lower
prevision given by

P (f) = min{f(b), f(c)} ∀f ∈ L(Ω).

The restriction to events of P is the belief function associated with the basic prob-
ability assignment m where

m({b, c}) = 1 and m(C) = 0 for every C 6= {b, c}.
Obviously, this belief function is exclusive. If we take B = {a, b} and A = {b},
then any probability P ≥ P satisfying P (B) > 0 must satisfy P ({b}) > 0, because
P ({a}) ≤ P ({a}) = 0. But then P will satisfy P (A|B) = 1, and from this we
deduce that

R(A|B) = 1 > 0 = E(A|B),

where E(A|B) is equal to 0 because P (B) = 0. Hence, the natural and regular
extensions do not coincide. �

Moreover, for completely monotone lower previsions we can give an alternative
expression of the regular extension to that in Proposition 4.

Proposition 8. Let P be a completely monotone lower prevision, and let F be the
support of its associated belief function. Then for any B ⊆ Ω such that P (B) =
0 < P (B),

R(f |B) = min
ω∈B∩F

f(ω) for every f ∈ L(Ω).

Proof. From Proposition 4, it suffices to show that B ∩ F is the smallest subset C
of B such that R(C|B) = 1.

On the one hand, since P (F c) = 0, and as a consequence also P (F c ∩ B) = 0,
we deduce from Proposition 3 that R(B ∩ F |B) = 1.

Conversely, consider a subset C of B such that R(C|B) = 1. Then if it were
P (Cc ∩B) > 0, then Proposition 3 would imply that

R(C|B) =
P (C ∩B)

P (C ∩B) + P (Cc ∩B)
=

0

0 + P (Cc ∩B)
= 0,

taking into account that P (C ∩B) ≤ P (B) = 0. This is a contradiction.
We deduce that P (Cc ∩B) = 0, and as a consequence it must be Cc ∩B ⊆ F c.

Hence, F ⊆ C ∪Bc and therefore F ∩B ⊆ C ∩B = C. �

We can summarise the above results in the following theorem. Its proof is im-
mediate and therefore omitted.

6Recall that the coherent lower prevision in Example 2 was not 2-monotone.
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Theorem 2. Let P be a completely monotone lower prevision on L(Ω) and let B
be a partition of Ω. If the restriction to events µ of P is either non-exclusive or
scattered, then E(·|B) = R(·|B).

Note that the sufficient condition in this theorem is not necessary: for instance,
it may be that µ is neither non-exclusive nor scattered and µ(B) > 0 for every B
in the partition B, and then E(·|B) = R(·|B). The result in the theorem proves
the equality between the natural and the regular extension for all the conditioning
events, that is, irrespective of the partition B.

4.1. Random Sets. One context where completely monotone lower previsions
arise naturally is that of measurable multi-valued mappings, or random sets [17, 41].

Definition 10. Let (X,A, P ) be a probability space, (Ω,P(Ω)) a measurable space,
where Ω is finite, and Γ : X → P(Ω) a non-empty multi-valued mapping. It is
called a random set when it satisfies the following measurability condition:

Γ∗(A) := {x ∈ X : Γ(x) ⊆ A} ∈ A for every A ⊆ Ω.

Its associated lower probability P∗Γ : P(Ω)→ [0, 1] is the functional given by

P∗Γ(A) = P (Γ∗(A)) for every A ⊆ Ω, (8)

and it is a belief function.

The focal elements of P∗Γ are given by

{A ⊆ Ω : P (Γ−1(A)) > 0},

and its Möbius inverse is given by m = P ◦ Γ−1, where Γ−1 is defined by:

Γ−1(A) = {x : Γ(x) = A} for every A ⊆ Ω.

The conjugate plausibility measure is denoted by P ∗Γ and called the upper probability
of the random set Γ. It satisfies

P ∗Γ(A) = 1− P∗Γ(Ac) = P ({x : Γ(x) ∩A 6= ∅}),

where the set {x : Γ(x) ∩ A 6= ∅} is the upper inverse of A by Γ, and is usually
denoted by Γ∗(A). The Choquet integral with respect to P∗Γ is a completely mono-
tone lower prevision on L(Ω). If we want to update this completely monotone lower
prevision, we can use the natural or the regular extensions, that, by Proposition 7,
coincide on all gambles if and only if P∗Γ is either non-exclusive or scattered. These
two properties can be easily characterised in terms of the images of Γ:

Proposition 9. Let (X,A, P ) be a probability space, Ω a finite set and Γ : X →
P(Ω) a random set with associated lower probability P∗Γ. Let F denote the support
of P∗Γ.

(1) P∗Γ is non-exclusive ⇔ F = Ω ⇔ P ∗Γ(B) > 0 ∀B ⊆ X ⇔ P ∗Γ({ω}) > 0 for
all ω ∈ Ω⇔ P ({x : ω ∈ Γ(x)}) > 0 for all ω ∈ Ω.

(2) P∗Γ is scattered ⇔ ∀ω ∈ F, P (Γ−1(ω)) > 0.

Moreover, E(·|B) = R(·|B) for all B ⊆ Ω if and only if P∗Γ is either non-exclusive
or scattered.

Proof. The result follows immediately from Propositions 6 and 7. �
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One interesting interpretation of random sets is the epistemic one, where they are
seen as models for the imprecise knowledge of a random variable [33]. In that case,
our information about this random variable is provided by the measurable selections
of Γ: those measurable mappings U : X → Ω such that U(x) ∈ Γ(x) ∀x ∈ X. We
shall denote by S(Γ) the set of measurable selections of Γ and by P (Γ) the set of
the probability measures they induce. This set is included in the class M(P∗Γ) of
probabilities that dominate P∗Γ. Although both sets do not coincide in general,
when Ω is finite it can be checked that:

Proposition 10. [39, Theorem 1] Let Γ : X → P(Ω) be a random set, where Ω is
finite. Then Ext(M(P∗Γ)) ⊆ P (Γ) and M(P∗Γ) = Conv(Ext(M(P∗Γ))).

In other words, the lower probability of the random set can also be determined by
the set of measurable selections. The epistemic interpretation is thus related to that
of Bayesian sensitivity analysis we have mentioned before; in both cases we assume
the existence of a precise model that is imprecisely observed. The difference lies in
that the epistemic interpretation focuses on the random variable and the Bayesian
sensitivity analysis on the probability distribution it induces; however, both give
rise to the same coherent lower prevision (or probability).

Moreover, from [17] M(P∗Γ) has a finite number of extreme points, that are
related to the permutations of the final space.

For any subset B such that P ∗Γ(B) > 0, the regular extension of P∗Γ can be
expressed by:

R(f | B) = min{P (f |B) : P ∈M(P∗Γ), P (B) > 0} for every f ∈ L(Ω).

The epistemic interpretation can be carried on towards the regular extension, in the
sense that the regular extension can be computed as the envelope of the conditional
expectations associated with the measurable selections:

Proposition 11. Let (X,A, P ) be a probability space, Ω a finite set and Γ : X →
P(Ω) a random set with associated lower probability P∗Γ. Consider B ⊆ Ω with
P ∗Γ(B) > 0. Then,

R(f | B) = min{P (f | B) : P ∈ P (Γ), P (B) > 0} for every f ∈ L(Ω).

Proof. Since P (Γ) ⊆ M(P∗Γ), one of the inequalities is obvious. Let us prove
the other one. Let {P1, . . . , Pm} be the class of the extreme points ofM(P∗Γ), and
consider P ≥ P∗Γ such that P (B) > 0. From Proposition 10, there are α1, . . . , αm ≥
0 such that α1 + · · ·+ αm = 1 and P = α1P1 + . . .+ αmPm.

Assume ex-absurdo that

P (f |B) < min{Pi(f |B) : Pi(B) > 0}.
Then it follows that P (f |B)Pi(B) < Pi(fIB) if Pi(B) > 0, and P (f |B)Pi(B) =
Pi(fIB) if Pi(B) = 0. Since P (B) > 0, there must be some i in {1, . . . ,m} such
that Pi(B) > 0 and αi > 0. As a consequence,

P (f | B) =
P (fIB)

P (B)
=
α1P1(fIB) + · · ·+ αmPm(fIB)

α1P1(B) + · · ·+ αmPm(B)

>
α1P (f | B)P1(B) + . . .+ αmP (f | B)Pm(B)

α1P1(B) + . . .+ αmPm(B)
= P (f | B),

a contradiction. We deduce that

R(f |B) = min{P (f |B) : P ∈ P (Γ), P (B) > 0} = min{Pi(f |B) : Pi(B) > 0}. �
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To conclude this section, we use random sets to establish that the conditional
lower prevision we obtain when we update a completely monotone lower prevision
by means of Generalised Bayes Rule is not necessarily completely monotone, even
if its restriction to events is always a belief function, as shown in [29, 31]. The
key here is that the conditional lower prevision determined by Generalised Bayes
Rule does not correspond to the Choquet integral with respect to its restriction to
events. To us, this seems to indicate that, even if complete monotonicity is a useful
mathematical property, its behavioural interpretation remains unclear; in particu-
lar, it is a property that is not necessarily preserved by the updating procedures
from the behavioural theory of imprecise probabilities.

Example 4. Consider the probability space (X,P(X), P ), where X = {a, b, c, d, e},
and P is the probability measure determined by the equalities P (a) = P (b) = 1/8,
and P (c) = P (d) = P (e) = 1/4. Let Γ be the multi-valued mapping Γ : X →
P({1, 2, 3, 4}) given by

Γ(a) = {1}, Γ(b) = {2}, Γ(c) = {1, 4}, Γ(d) = {2, 4}, Γ(e) = {3, 4}.

Let P∗Γ denote the lower probability induced by this random set. This is a belief
function, and the lower prevision P on L({1, 2, 3, 4}) given by P (f) = (C)

∫
fdP∗Γ

is a completely monotone lower prevision.
It follows from Eq. (8) that

P∗Γ({1, 2, 3}) = P ({x : Γ(x) ⊆ {1, 2, 3}}) = P ({a, b}) =
1

4
> 0.

As a consequence, the natural and regular extensions coincide, and we deduce from
Proposition 11 that

R(f |{1, 2, 3}) = min{P (f |{1, 2, 3}) : P ∈ P (Γ)}. (9)

Let us consider the gamble f on {1, 2, 3, 4} given by f(ω) = 4 − ω for all ω ∈
{1, 2, 3, 4}. This gamble can be expressed by f = 1 I1,2,3 + 1 I1,2 + 1 I1, i.e., it
is the sum of comonotone functions. Since the Choquet integral with respect to a
monotone set function is comonotone additive ([18, Proposition 5.1]), we deduce
that the Choquet integral of f with respect to R(· | {1, 2, 3}) is given by:

(C)

∫
f dR(·|{1, 2, 3}) = 1 +R({1, 2}|{1, 2, 3}) +R({1}|{1, 2, 3}).

We deduce from Eq. (9) that

R({1}|{1, 2, 3}) =
1

6
and R({1, 2}|{1, 2, 3}) =

1

2
;

to see this, it suffices to determine the measurable selections that determine the
smallest conditional probabilities. In the first case the measurable selection we get
is given by the vector (U1(a), U1(b), U1(c), U1(d), U1(e)) = (1, 2, 4, 2, 3), and in the
second case it is given by (U2(a), U2(b), U2(c), U2(d), U2(e)) = (1, 2, 4, 4, 3). From
this, we deduce that

(C)

∫
f dR(·|{1, 2, 3}) = 5/3.

On the other hand, the smallest value of {P (f |{1, 2, 3}) : P ∈ P (Γ)} is given
by 7/4 > 5/3, considering again the measurable selection U2. This means that
R(f |{1, 2, 3}) > (C)

∫
fdR(·|{1, 2, 3}).
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But it has been established in [14, 47] that if we have a 2-monotone lower proba-
bility on all events (as is the case for R(·|{1, 2, 3}), the only 2-monotone extension to
all gambles is the Choquet integral. This means that the conditional lower prevision
R(·|{1, 2, 3}) is not 2-monotone on L({1, 2, 3}). �

Note that in this example the natural and regular extensions coincide, and as
a consequence there is only one conditional lower prevision P (·|{1, 2, 3}) satisfying
Eq. (2) with P . This means that in this case complete monotonicity cannot be
preserved by Walley’s updating procedure.

5. Coherent updating of minimum-preserving previsions

We narrow our focus a bit further by considering now the particular case of com-
pletely monotone lower previsions that are minimum-preserving, i.e., lower previ-
sions P such that

P (f ∧ g) = min{P (f), P (g)}
for every pair of gambles f, g on Ω. They correspond to the Choquet integral with
respect to their restriction to events, which is a necessity measure that we shall
denote N . The conjugate upper prevision P is the Choquet integral with respect
to the possibility measure Π that is determined by N using duality.

From Proposition 7, we deduce the following:

Corollary 1. Let P be a minimum-preserving coherent lower prevision. Then
E(·|B) = P (·|B) for all B ⊆ Ω if and only if either of the following conditions
holds:

(i) P ({ω}) > 0 for all ω ∈ Ω.
(ii) P ({ω}) = 1 for some ω ∈ Ω.

Proof. Let N be the necessity measure that results from restricting P to events.
From [43], all the focal elements of N are nested. It follows that P is non-exclusive
if and only if Ω is a focal element; if this is the case then by Eq. (7) P ({ω}) =∑
ω∈Bm(B) ≥ m(Ω) > 0 for every ω ∈ Ω. Conversely, if Ω is not a focal element,

then the support F of N is a proper subset of Ω. Thus, if we take ω /∈ F , it holds
that P ({ω}) = 0.

On the other hand, we deduce from Definition 9 that µ is scattered if and only
if it corresponds to a degenerate probability measure: since the focal elements are
nested, at most one singleton {ω} can be a focal element. Hence, P is scattered if
and only if the only focal element is {ω}, i.e., if and only if P corresponds to the
assessment P ({ω}) = 1.

The result follows then from Proposition 7. �

The result in Corollary 1 can be simplified further taking into account an inter-
esting result that de Cooman and Aeyels proved in [12] (see also [13]): a coherent
upper prevision P on L(Ω) is maximum-preserving if and only if its restriction to
events is a 0–1-valued possibility measure. This is interesting because for every
natural number n there is a one-to-one correspondence between n-monotone lower
previsions and n-monotone lower probabilities, by means of the Choquet integral:
the restriction to events of any n-monotone lower prevision is a n-monotone lower
probability, and the Choquet integral w.r.t. the latter is a n-monotone lower pre-
vision. However, the correspondence only holds in one direction for the particular
case of minimum-preserving lower previsions: although the restriction to events
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of a minimum-preserving lower prevision is again minimum-preserving (that is, a
necessity measure), the Choquet integral with respect to a necessity measure will
not be in general minimum-preserving (although by the result mentioned above it
shall be completely monotone).

If we assume then that the restriction to events of P is 0–1-valued and define
F := {ω : P ({ω}) = 1}, it turns out that F is the support of the possibility measure,
since P (F c) = 0, and moreover it is the only focal element of P : if there was another
focal element F ′ ( F , then we would have

0 < m(F ) ≤ P (F \ F ′) =
∑

B∩(F\F ′)6=∅

m(B) ≤ 1−m(F ′) < 1,

a contradiction. Thus, it must be m(F ) = 1, and as a consequence P is the vacuous
lower prevision on F :

P (f) = min
ω∈F

f(ω) ∀f ∈ L(Ω).

In the context of game theory this means that the restriction of P to events is the
unanimity game ([19, 44]) associated with F . These are important because they
correspond to the extreme points in the class of belief functions.

Now, given a conditioning event B ⊆ F , there are a number of possibilities:

• F ⊆ Bc. Then P (B) = 0 and both the natural and regular extensions are
vacuous on B.
• B ∩ F 6= ∅ 6= Bc ∩ F . Then P (B) = 0 < 1 = P (B), whence E(·|B) is

vacuous on B and R(·|B) is vacuous on B ∩ F . Hence, in that case the
natural and regular extensions do not coincide.
• F ⊆ B. Then P (B) = 1, whence E(·|B) and R(·|B) coincide. It follows

from their definition that they correspond to the vacuous lower prevision
on F .

Note that in this case the restriction of P to events is only scattered when F
is a singleton (i.e., when P corresponds to the expectation operator with respect
to a degenerate probability measure), and P is non-exclusive if and only if F = Ω,
meaning that P corresponds to the vacuous model. Hence, we only have the equality
between the natural and the regular extensions for all B ⊆ Ω in these two extreme
cases. They correspond to particular cases of quasi-Bayesian belief functions in the
sense of [8].

We summarise the coherent updating of a minimum-preserving lower prevision
in the following theorem. Its proof is immediate, and therefore omitted.

Theorem 3. Let P be a minimum-preserving lower prevision on L(Ω), and con-
sider a partition B of Ω. Consider F ⊆ Ω such that P (f) = minω∈F f(ω) ∀f ∈
L(Ω). Given B ∈ B and f ∈ L(Ω),

(1) E(f |B) =

{
minω∈B f(ω) if F * B

minω∈F f(ω) if F ⊆ B.

(2) R(f |B) =

{
minω∈B∩F f(ω) if F 6⊆ Bc

minω∈B f(ω) if F ⊆ Bc.
(3) E(f |B) = R(f |B) if and only if either F ⊆ B or F ⊆ Bc.
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(4) Moreover, a separately coherent conditional lower prevision P (·|B) is co-
herent with P if and only if

min
ω∈B

f(ω) ≤ P (f |B) ≤ min
ω∈B∩F

f(ω) ∀f ∈ L(Ω),∀B ∈ B s.t B ∩ F 6= ∅ 6= Bc ∩ F.

Remark 3. This theorem helps to illustrate the difference between the process of
focusing we are considering in this paper and one of belief revision: in the latter, if
we start with the vacuous lower prevision on F and observe some set B such that
B ∩ F c 6= ∅, we should remove the elements from M(P ) that are not compatible
with the observation of B (i.e., those with P (B) = 0), and this means that it makes
no sense to consider a vacuous updated prevision on a set that is not included in
B ∩ F . This would rule out the use of the natural extension.

However, in our context if we update the models P ∈M(P ) for which P (B) = 0
(i.e., those with P (Bc ∩ F ) = 1), then we can consider any conditional linear
prevision because Bayes’ rule holds trivially, and then their lower envelope, which
is the natural extension, produces the vacuous lower prevision on F . See again
Remark 1. �

Remark 4. This result can be applied in particular in the context of multi-valued
mappings. Assume that Γ : X → P(Ω) is a random set, and let P∗Γ be its as-
sociated lower probability. Then it follows from [38, Proposition 7] that P∗Γ is a
necessity measure if and only if there is some A ∈ A with P (A) = 1 such that for
every ω1, ω2 ∈ A, either Γ(ω1) ⊆ Γ(ω2) or Γ(ω2) ⊆ Γ(ω1). Taking into account
Proposition 9 and Corollary 1, we deduce that E(· | B) = R(· | B) for all B ⊆ Ω if
and only if one of the following conditions holds:

(1) Γ = Ω a.s.
(2) There is some ω ∈ Ω such that Γ = {ω} a.s.

The first of these conditions is equivalent to P∗Γ being non-exclusive, and the
second one is equivalent to P∗Γ being scattered. �

From Theorem 3, the bounds determined by natural and regular extension are
both minimum-preserving, and as a consequence they correspond to the Choquet
integral of their respective restrictions to events. However, not every conditional
lower prevision between them is also minimum-preserving, as we can see in the
following example:

Example 5. Consider the finite set Ω = {a, b, c, d} and let P be the coherent lower
prevision from Example 3, given by

P (f) = min{f(b), f(c)} for every f ∈ L(Ω).

Define P (·|B) as P (f |B) = 0.5 · E(f |B) + 0.5 · R(f |B) for every B ⊆ Ω and every
gamble f ∈ L(Ω). Then it follows from Proposition 2 that for every partition
B of Ω, the separately coherent conditional lower prevision P (·|B) thus defined is
coherent with P .

To see that P (·|B) is not minimum-preserving for all subsets B of Ω, consider
B = {a, b}. Then it follows from Theorem 3 that

E(f |B) = min{f(a), f(b)} and R(f |B) = f(b) for every f ∈ L(Ω).
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Take now the following gambles:

a b c d
f 0 1 0 0
g 1 0.5 0 0

Then E(f |B) = 0 and R(f |B) = 1, whence P (f |B) = 0.5; and E(g|B) = 0.5 =
R(g|B), whence P (g|B) = 0.5. However, the minimum of f and g is given by

a b c d
f ∧ g 0 0.5 0 0

whence E(f ∧ g|B) = 0, R(f ∧ g|B) = 0.5 and therefore P (f ∧ g|B) = 0.25 <
min{P (f |B), P (g|B)}. �

5.1. Comparison with the updating of possibility measures. Next, we com-
pare our work with the problem of updating a possibility measure. This problem
has received quite some attention in the literature [10, 11, 23, 25, 50]. In particular,
in [52] it was studied which of the rules for defining a conditional possibility satisfy
the property of coherence with the unconditional model.

The conjugate of a possibility measure is a 2-monotone lower probability, and
as such is has only one 2-monotone extension to the space of all gambles: its
Choquet integral. However, the coherence of this 2-monotone lower probability
with a conditional 2-monotone lower probability is not equivalent to the coherence
of the lower previsions they induce by means of the Choquet integral. This is
the reason behind the apparent contradiction with the results in [52]: it is shown
there that Dempster’s rule is a coherent updating rule for updating a possibility
measure, even if it can be more informative than the conditional possibility we
obtain by regular extension.

To make this clearer, let us study the results in [52] in more detail. The authors
consider two finite sets X and Y. They take a possibility measure Π(·, ·) on P(X×Y)
and look for the smallest and greatest conditional possibility measures Π(·|Y ) that
satisfy coherence with Π. Note that, since we are dealing with upper previsions
now, it follows from conjugacy and Proposition 2 that a conditional upper prevision
P (·|B) is coherent with P if and only if P (f |B) ∈ [R(f |B), E(f |B)] for every gamble
f and every B ⊆ X ×Y s.t. P (B) > 0, where R(·|B) and E(·|B) are the conjugate
upper previsions of the regular and natural extensions, respectively.

In [52], the focus is on conditional upper probabilities instead of previsions, and
in particular on those conditional possibility measures Π(·|Y ) that satisfy coherence
with the unconditional possibility measure Π7. They prove in [52, Theorem 4] that
the greatest such conditional possibility measure is given by natural extension,
whose possibility distribution is

πNE(x|y) =


π(x, y)

π(x, y) + 1−max{π(x, y),Π({y}c)} if Π({y}c) < 1

1 if Π({y}c) = 1,

while the smallest such conditional possibility measure is determined by Demp-
ster’s rule8, which produces the possibility measure associated with the following

7Here the notation Π(·|Y ) refers to the conditional upper prevision associated with the partition

{X × {y} : y ∈ Y} of X × Y.
8One reason why Dempster’s rule is coherent in the case of possibility measures and not for

other, more general models, such as plausibility functions, can be found in the characterisation of



22 ENRIQUE MIRANDA, IGNACIO MONTES

possibility distribution:

πDE(x|y) =


π(x, y)
π(y)

if π(y) > 0.

1 if π(y) = 0.
(10)

Then in [52], it is advocated to use the harmonic mean between Dempster’s rule
and natural extension as an informative updating rule for updating a possibility
measure Π. Their reason for this is that the conditional possibility it produces is
more informative than the one determined by natural extension, and also that it
avoids some of the problems associated with Dempster’s rule9. The harmonic mean
determines the possibility measure defined by the possibility distribution

πHM (x|y) =


2π(x, y)

π(x, y) + π(y) + 1−max{π(x, y),Π({y}c)} if π(y) > 0

1 if π(y) = 0.

However, this rule may be dominated by the regular extension, that produces
the conditional possibility measure

πRE(x|y) =


π(x, y)

π(x, y) + 1−max{π(x, y),Π({y}c)} if π(yc) < 1

0 if Π({y}c) = 1, π(y) > π(x, y) = 0

1 otherwise,

(11)

and as a consequence it is not a valid updating rule if we are working with upper
previsions instead of upper probabilities. Consider the following example:

Example 6. Consider X = {x1, x2},Y = {y1, y2} and let Π be the possibility mea-
sure associated with the possibility distribution

π(x1, y1) = 0.3, π(x1, y2) = 1, π(x2, y1) = 0.5, π(x2, y2) = 0.2.

Then the conditional possibility distributions determined by regular extension and
the harmonic mean rule are given by the following table:

π(x1|y1) π(x2|y1) π(x1|y2) π(x2|y2)

Dempster’s rule 0.6 1 1 0.2
Natural extension 1 1 1 0.285
Harmonic mean 0.75 1 1 0.235

Regular extension 1 1 1 0.285

This shows that the conditional possibility measure determined by the harmonic
mean is dominated by the one produced by regular extension, and as a consequence
the conditional upper prevision determined by means of the Choquet integral with
respect to Π(·|Y ) is not coherent with the unconditional upper prevision associated
with Π. �

Note, however, that the Choquet integral with respect to the necessity measure
associated with the possibility distribution in this example, while ∞-monotone, is

coherence provided in [52, Lemma 3], that can be verified for Dempster’s rule using that possibility

measures are maximum-preserving. See nonetheless the next footnote.
9Namely, that Dempster’s rule cannot guarantee coherence when we want to determine two

conditional possibilities Π(·|X ),Π(·|Y) at the same time; see [52, Section 6] for details.



COHERENT UPDATING OF NON-ADDITIVE MEASURES 23

not minimum-preserving: this follows from the results in [12], because the possibil-
ity distribution in Example 6 is not {0, 1}-valued. In fact, for minimum-preserving
lower previsions we can establish the following result:

Proposition 12. Let P be a maximum-preserving coherent lower prevision on
L(X × Y), and let π be the possibility distribution associated with its restriction Π
to events.

(1) πRE(x|y) = πDE(x|y) =

{
0 if π(x, y) = 0 < 1 = π(y)

1 otherwise.

(2) Given a conditional possibility measure Π1(·|Y ) and the separately coherent
conditional upper prevision P 1(·|Y ) given by its Choquet integral, it holds
that

P , P 1(·|Y ) coherent ⇔ π1(x|y) ∈ [πRE(x|y), πNE(x|y)] ∀y s.t. π(y) > 0,∀x
⇔ Π,Π1(·|Y ) coherent.

Proof. (1) This follows from Equations (10) and (11).
(2) The first equivalence follows from Proposition 2, taking into account that

Eq. (2) is trivial when π(y) = 0, and also that, given y s.t. π(y) > 0, it
holds that

π1(x|y) ∈ [πRE(x|y), πNE(x|y)] ∀x

⇔ (C)

∫
fdπ1(·|y) ∈

[
(C)

∫
fdπRE(·|y), (C)

∫
fdπNE(·|y)

]
∀f.

The second equivalence follows from [52, Theorem 4] and the first state-
ment. �

We see then that, even though the problem of coherently updating 2-monotone
lower previsions cannot be simplified to that of coherently updating 2-monotone
lower probabilities, both problems are equivalent in the particular case when the
lower prevision is minimum-preserving.

6. Conclusions

In this work we have considered the problem of conditioning a coherent lower
prevision while preserving the property of coherence. This problem has a simple
solution when the conditioning event has a positive lower probability, as shown by
Walley in [48]: it suffices to apply Generalised Bayes Rule. However, when the
conditioning event has zero lower probability and positive upper probability, there
may be an infinite number of coherent updated models. These were characterised
in [37] for the particular case of finite referential spaces, and it was proven that
a conditional lower prevision is coherent with the unconditional model if and only
it lies between the conditional lower previsions determined by the procedures of
natural and regular extension.

When there is an infinite number of coherent conditional models, it becomes
necessary to determine a rule to elicit the appropriate one for the problem at hand.
From our discussion in this paper, the following differences can be established be-
tween the natural and the regular extension:
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• The natural extension is the most conservative model that satisfies the
property of coherence with the unconditional lower prevision, while the
regular extension is the most informative.
• From the behavioural point of view, regular extension should be used if we

assume that a gamble with zero lower prevision (i.e., that we would accept
if they offer it to us in addition with a positive but arbitrarily small amount
of utility) and positive upper prevision (meaning that there is a positive
utility that we would not accept in exchange for selling the gamble) should
be desirable to us.
• If we interpret coherent lower previsions as models for the imprecise knowl-

edge of a precise probability, natural extension amounts to working with
full conditional measures when some of the possible precise models give
zero probability to the conditioning event, while regular extension entails
avoiding full conditional measures whenever possible.

Here, we have studied in which cases the matter can be avoided, because the
procedures of natural and regular extension give rise to the same updated model.
We have considered the particular case when our unconditional model satisfies
the property of 2-monotonicity, which guarantees that the lower prevision is the
Choquet integral of the coherent lower probability that is its restriction to events,
and we have obtained necessary and sufficient conditions for the equality between
the natural and regular extensions.

As particular cases, we have also considered the updating problem for completely
monotone lower previsions, random sets and minimum-preserving previsions. We
have obtained necessary and sufficient conditions in terms of the focal elements of
the associated belief function, and we have shown that the procedure of regular
extension is compatible with the epistemic interpretation of random sets. As a
summary of our results, the natural and regular extensions E(·|B), R(·|B) coincide
if the conditioning event B has zero upper probability of positive lower probability.
When P (B) = 0 < P (B), the natural and the regular extensions coincide, and
there is only one way of coherently updating P , under the following conditions:

Properties of the
Equivalent conditions for E(·|B) = R(·|B)

lower prevision P

2-monotone P (ω) > 0 ∀ω ∈ B

∞-monotone B ⊆ F , where F is the union of the focal elements

minimum-preserving B ⊆ F , where F is the only focal element

Another interesting property we have explored in this paper is to which extent
n-monotonicity is satisfied by the updated model. In this sense, we have to consider
three cases:

• When P (B) = 0, both the natural and the regular extensions coincide, and
they are the vacuous lower prevision on B, that is minimum-preserving
(note that this holds irrespective of the properties of the unconditional
model).
• When P (B) = 0 < P (B), the natural and the regular extensions may

not coincide; the natural extension E(·|B) is the vacuous lower prevision
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on B, which is minimum-preserving; if P is 2-monotone, then the regular
extension R(·|B) is also minimum-preserving (although it may be a vacuous
prevision on a proper subset of B).
• Finally, when P (B) > 0, then again the natural and regular extensions

coincide; they are the only updated model P (·|B) satisfying coherence,
that is determined by the Generalized Bayes Rule. Its properties are the
following:

Properties of the
P (·|B) on events P (·|B) on gambles

lower prevision P

2-monotone 2-monotone NOT 2-monotone

∞-monotone ∞-monotone NOT 2-monotone

minimum-preserving minimum-preserving minimum-preserving

Recall on the other hand that the properties of the natural and the regular
extension are not shared in general by all the conditional models that are coherent
with the unconditional one, as we can see from Example 5.

Finally, let us stress once again that, even if the property of 2-monotonicity
means that the lower prevision is uniquely determined by its lower probability, the
problem of coherently updating 2-monotone lower probabilities is not equivalent to
that of updating 2-monotone lower previsions; this can be seen from the results in
Section 5.1.

With respect to the open problems arising from this work, in our opinion the
most important one from the technical point of view would be the extension of
our results to infinite spaces. Although some work in this direction was already
carried out in [37], we expect the problem to be much more difficult; one of the
reasons is that the coherence condition between the unconditional and conditional
lower previsions must take into account the property of conglomerability. See [48,
Chapter 6] and [40] for more details. Another interesting line of research may be
the extension of our work to the case where we want to update our model by more
than one partition. In that case, we should distinguish between the notions of weak
and strong coherence studied by Walley in [48, Chapter 7]. Some results in this
sense have been obtained in [37], and in [52] in the context of possibility measures.
Finally, another open problem is the study of the coherent updating of other types
of non-additive measures.

On the other hand, the interest of our results is restricted to the case where
the problem of conditioning is regarded as a problem of querying, or focusing,
because this is the interpretation that in our opinion underlies Walley’s notion
of coherence for conditional and unconditional lower previsions. As discussed by
Dubois et al. [7, 21, 27], the situation is different if we consider a problem of belief
revision, because in that case it is acceptable that our coherent lower prevision
is not coherent with the conditional one, since we are in the possession of new
knowledge. See [48, Section 6.1.2] for some comments in this respect. It would
be interesting to conduct a similar study to the one carried out in this paper to
compare the different possibilities of belief revision in the imprecise case.

Similarly, it would be interesting to study the extension of the results we have
considered here to a context of dynamic coherence, in the manner discussed by
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Skyrms [45] or with the work by Zaffalon and Miranda in [57], which is closer to
Walley’s spirit.
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