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Abstract

Sklar’s theorem is an important tool that connects bidimensional distribution
functions with their marginals by means of a copula. When there is imprecision
about the marginals, we can model the available information by means of p-
boxes, that are pairs of ordered distribution functions. Similarly, we can consider
a set of copulas instead of a single one. We study the extension of Sklar’s
theorem under these conditions, and link the obtained results to stochastic
ordering with imprecision.

Keywords: Sklar’s theorem, copula, p-boxes, natural extension, independent
products, stochastic orders.

1. Introduction

In this paper, we deal with the problem of combining two marginal models
representing the probabilistic information about two random variables X,Y into
a bivariate model of the joint behaviour of (X,Y ). In the classical case, this
problem has a simple solution, by means of Sklar’s well-known theorem [26],
that tells us that any bivariate distribution function can be obtained as the
combination of its marginals by means of a copula [19].

Here we investigate to what extent Sklar’s theorem can be extended in the
context of imprecision, both in the marginal distribution functions and in the
copula that links them. The imprecision in marginal distributions shall be
modelled by a probability box [10] (p-box, for short), that summarizes a set of
distribution functions by means of its lower and upper envelopes. Regarding
the imprecision about the copula, we shall also consider a set of copulas. This
set shall be represented by means of the newly introduced notion of imprecise
copula, that we study in Section 3.1. This imprecision means that in the bivari-
ate case we end up with a set of bivariate distribution functions, that we can
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summarize by means of a coherent bivariate p-box, a notion recently studied in
[22].

Interestingly, we shall show in Section 3.1 that Sklar’s theorem can be only
partly extended to the imprecise case; although the combination of two marginal
p-boxes by means of a set of copulas (or its associated imprecise copula) always
produces a coherent bivariate p-box, the most important aspect of the theorem
does not hold: not every coherent bivariate p-box can be obtained in this man-
ner. In Sections 3.2 and 3.3, we consider two particular cases of interest: that
where we have no information about the copula that links the two variables
together, and that where we assume that the two variables are independent. In
those cases, we use Walley’s notions of natural extension [28] and (epistemic)
independent products [4, 28] to derive the joint model.

In Section 4, we connect our results to decision making by applying the
notion of stochastic dominance in this setting, and we establish a number of
cases in which the order existing on the marginals is preserved by their respective
joints. We conclude the paper with some additional comments and remarks in
Section 5.

2. Preliminary concepts

2.1. Coherent lower previsions

Let us introduce the basic notions from the theory of coherent lower previ-
sions that we shall use later on in this paper. For a more detailed exposition of
the theory and for a behavioural interpretation of the concepts below in terms
of betting rates, we refer to [28].

Let Ω be a possibility space. A gamble is a bounded real-valued function
f : Ω→ R. We shall denote by L(Ω) the set of all gambles on Ω, and by L+(Ω)
the set of non-negative gambles. It includes in particular the indicator functions
of subsets B of Ω, i.e., the gambles that take value 1 on the elements of B and
0 elsewhere. In this paper, we shall use the same symbol for an event B and for
its indicator function.

A lower prevision is a functional P : K → R defined on some set of gambles
K ⊆ L(Ω). Here we are interested in lower previsions satisfying the property of
coherence:

Definition 1 (Coherent lower previsions). A lower prevision P : L(Ω)→ R
is called coherent when it satisfies the following conditions for every pair of
gambles f, g ∈ L(Ω) and every λ > 0:

(C1) P (f) ≥ infω∈Ω f(ω).

(C2) P (λf) = λP (f).

(C3) P (f + g) ≥ P (f) + P (g).

The restriction to events of a coherent lower prevision is called a coherent
lower probability, and more generally a lower prevision P on K is said to be
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coherent whenever it can be extended to a coherent lower prevision on L(Ω).
On the other hand, if P is a coherent lower prevision on L(Ω) and it satisfies
(C3) with equality for every f and g in L(Ω), then it is called a linear prevision,
and its restriction to events is a finitely additive probability. In fact, coherent
lower previsions can be given the following sensitivity analysis interpretation: a
lower prevision P on K is coherent if and only if it is the lower envelope of its
associated credal set,

M(P ) := {P : L(Ω)→ R linear prevision : P (f) ≥ P (f) ∀f ∈ K}, (1)

and as a consequence the lower envelope of a set of linear previsions is always a
coherent lower prevision [28, Section 3.3.3(b)].

One particular instance of coherent lower probabilities are those associated
with p-boxes.

Definition 2. [10] A (univariate) p-box is a pair (F , F ) where F , F : R→ [0, 1]
are cumulative distribution functions (i.e., monotone and such that F (−∞) =
F (−∞) = 0, F (+∞) = F (+∞) = 1) satisfying F (x) ≤ F (x) for every x ∈ R.

Define the set Ax = [−∞, x] for every x ∈ R, and let

E0 := {Ax : x ∈ R} ∪ {Ac
x : x ∈ R}.

Then [27] a p-box (F , F ) induces a coherent lower probability P (F,F ) : E0 →
[0, 1] by

P (F,F )(Ax) = F (x) and P (F,F )(A
c
x) = 1− F (x) ∀x ∈ R. (2)

2.2. Bivariate p-boxes

In [22], the notion of p-box from Definition 2 has been extended to the
bivariate case, to describe couples of random variables (X,Y ) in presence of
imprecision.

Definition 3. [22] A map F : R × R → [0, 1] is called standardized when it is
component-wise increasing, that is, F (t1, z) ≤ F (t2, z) and F (z, t1) ≤ F (z, t2)
for all t1 ≤ t2 and z, and satisfies

F (−∞, y) = F (x,−∞) = 0 ∀x, y ∈ R, F (+∞,+∞) = 1.

It is called a distribution function for (X,Y ) when it is standardized and satisfies

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0

for all x1, x2, y1, y2 ∈ R such that x1 ≤ x2, y1 ≤ y2 (with equality holding
whenever (x1 ≤ X < x2)∧(y1 ≤ Y < y2) is impossible). Given two standardized
functions F , F : R × R → [0, 1] satisfying F (x, y) ≤ F (x, y) for every x, y ∈ R,
the pair (F , F ) is called a bivariate p-box.
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Bivariate p-boxes are introduced as a model for the imprecise knowledge of a
bivariate distribution function. The reason why the lower and upper functions
in a bivariate p-box are not required to be distribution functions is that the
lower and upper envelopes of a set of bivariate distribution functions need not
be distribution functions themselves, as showed in [22].

Let (F , F ) be a bivariate p-box on R×R. Define A(x,y) = [−∞, x]× [−∞, y]

for every x, y ∈ R, and consider the sets

D := {A(x,y) : x, y ∈ R},Dc := {Ac
(x,y) : x, y ∈ R}, E := D ∪Dc.

Note that A(+∞,+∞) = R×R, whence both R×R and ∅ belong to E . Similarly

to Eq. (2), we can define the lower probability induced by a bivariate p-box (F , F )
on R× R as the map P (F,F ) : E → [0, 1] given by:

P (F,F )(A(x,y)) = F (x, y), P (F,F )(A
c
(x,y)) = 1− F (x, y) (3)

for every x, y ∈ R. Conversely, a lower probability P : E → [0, 1] determines a
couple of functions FP , FP : R× R→ [0, 1] defined by

FP (x, y) = P (A(x,y)) and FP (x, y) = 1− P (Ac
(x,y)) ∀x, y ∈ R. (4)

Then (FP , FP ) is a bivariate p-box as soon as the lower probability P is 2-
coherent [22]. 2-coherence is a weak rationality condition implied by coherence
[28, Appendix B], which in the context of this paper, where the domain E is
closed under complementation, is equivalent [22] to P (F,F ) being monotone,

normalised, and such that P (F,F )(E) + P (F,F )(E
c) ≤ 1 for every E ∈ E .

The correspondence between bivariate p-boxes and lower probabilities in
terms of precise models is given by the following lemma:1

Lemma 1. [22] Let (F , F ) be a p-box and P (F,F ) the lower probability it induces

on E by means of Eq. (3).

(a) Let P be (the restriction to E of) a linear prevision on L(R× R), and let
FP be its associated distribution function given by FP (x, y) = P (A(x,y))

for every x, y ∈ R. Then

P (A) ≥ P (F,F )(A) ∀A ∈ E ⇐⇒ F ≤ FP ≤ F .

(b) Conversely, let F be a distribution function on R × R, and let PF : E →
[0, 1] be the functional given by PF (A(x,y)) = F (x, y), PF (Ac

(x,y)) = 1 −
F (x, y) for every x, y ∈ R. Then

F ≤ F ≤ F ⇐⇒ PF (A) ≥ P (F,F )(A) ∀A ∈ E .

1We give a brief sketch of the proof: it suffices to establish the equivalences P (A(x,y)) ≥
P (F,F )(A(x,y)) ⇐⇒ FP (x, y) ≥ F (x, y) and P (Ac

(x,y)
) ≥ P (F,F )(A

c
(x,y)

) ⇐⇒ FP (x, y) ≤
F (x, y) for every x, y ∈ R. These follow easily from Eqs. (3) and (4).
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Given a bivariate p-box (F , F ), Lemma 1 implies that the coherence of its
associated lower probability P (F,F ) can be characterised through a set of distri-
bution functions:

Proposition 1. [22] The lower probability P (F,F ) induced by the bivariate p-box

(F , F ) by means of Eq. (3) is coherent if and only if F (resp., F ) is the lower
(resp., upper) envelope of the set

F = {F : R× R→ [0, 1] distribution function : F ≤ F ≤ F}. (5)

If P (F,F ) is coherent, the following conditions hold for every x1 ≤ x2 ∈ R and

y1 ≤ y2 ∈ R:

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI1)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI2)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI3)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI4)

Definition 4. A bivariate p-box (F , F ) is coherent whenever the lower probabil-
ity P (F,F ) it induces on E by means of Eq. (3) is coherent.

2.3. Copulas

In this paper, we are going to study to what extent bivariate p-boxes can be
expressed as a function of their marginals. In the precise case (that is, when we
have only one bivariate distribution function), this is done through the notion
of copula.

Definition 5. [19] A function C : [0, 1]× [0, 1]→ [0, 1] is called a copula when it
satisfies the following conditions:

C(0, u) = C(u, 0) = 0 ∀u ∈ [0, 1]. (COP1)

C(1, u) = C(u, 1) = u ∀u ∈ [0, 1]. (COP2)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0 ∀u1 ≤ u2, v1 ≤ v2 ∈ [0, 1].
(COP3)

It follows from the definition above that a copula is component-wise mono-
tone increasing. One of the main features of copulas lies in Sklar’s theorem:

Theorem 1 ([26], Sklar’s Theorem). Let F(X,Y) : R×R→ [0, 1] be a bivariate

distribution function with marginals FX : R→ [0, 1] and FY : R→ [0, 1], defined
by FX(x) = F(X,Y)(x,+∞) and FY(y) = F(X,Y)(+∞, y) for any x and y in R.
Then there is a copula C such that

F(X,Y)(x, y) = C(FX(x), FY(y)) for all (x, y) ∈ R× R.

Conversely, any transformation of marginal distribution functions by means of
a copula produces a bivariate distribution function.
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Any copula C must satisfy the Fréchet-Hoeffding bounds (see [11, 29]):

CL(u, v) := max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v} := CM(u, v) (6)

for every u, v ∈ [0, 1]. CL is called the  Lukasiewicz copula and CM the minimum
copula. Eq. (6) applies in particular to one instance of copulas that shall be
of interest in this paper: the product copula CP, given by CP(u, v) = u · v for
every u, v ∈ [0, 1]. It holds that two random variables X,Y are stochastically
independent if and only if their distribution functions are coupled by the product
copula.

For an in-depth review on copulas we refer to [19].

3. Combining marginal p-boxes into a bivariate one

One particular context where bivariate p-boxes can arise is in the joint ex-
tension of two marginal p-boxes. In this section, we explore this case in de-
tail, studying in particular the properties of some bivariate p-boxes with given
marginals: the largest one, that shall be obtained by means of the Fréchet
bounds and the notion of natural extension, and the one modelling the notion
of independence. In both cases, we shall see that the bivariate model can be
derived by means of an appropriate extension of the notion of copula.

Related results can be found in [27, Section 7], with one fundamental differ-
ence: in [27], the authors use the existence of a total preorder on the product
space (in the case of this paper, R×R) that is compatible with the orders in the
marginal spaces, and reduce the multivariate p-box to a univariate one. Here we
do no such reduction, and we consider only a partial order: the product order,
given by

(x1, y1) ≤ (x2, y2)⇔ x1 ≤ x2 and y1 ≤ y2.

Another related study was made by Yager in [30], considering the case in which
the marginal distributions are not precisely described and are defined by means
of Dempster-Shafer belief structures instead. He modelled this situation by
considering copulas whose arguments are intervals (the ones determined by the
Demspter-Shafer models) instead of crisp numbers, and whose images are also
intervals. He showed then that the lower (resp., upper) bound of the inter-
val of images corresponds to the copula evaluated in the lower (resp., upper)
bounds of the intervals. This can be seen as a particular case of our subsequent
Proposition 4.

3.1. A generalization of Sklar’s theorem

Let us study to which extent Sklar’s theorem can be generalised to a context
of imprecision, both in the marginal distribution functions to be combined and
in the copula that links them. In order to tackle this problem, we introduce the
notion of imprecise copula:

Definition 6. A pair (C,C) of functions C,C : [0, 1]× [0, 1]→ [0, 1] is called an
imprecise copula if:
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• C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u ∀u ∈ [0, 1].

• C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u ∀u ∈ [0, 1].

• For any u1 ≤ u2, v1 ≤ v2:

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0. (CI-1)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0. (CI-2)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0. (CI-3)

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0. (CI-4)

We are using the terminology imprecise copula in the definition above be-
cause we intend it as a mathematical model for the imprecise knowledge of a
copula; note however that the lower and upper functions C,C need not be copu-
las themselves, because they may not satisfy the 2-increasing property (COP3).

(CI-1)÷(CI-4) are useful in establishing the following properties of imprecise
copulas.

Proposition 2. Let (C,C) be an imprecise copula.

(a) C ≤ C.

(b) C and C are component-wise increasing.

(c) The Lipschitz condition

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| ∀u1, u2, v1, v2 ∈ [0, 1] (7)

is satisfied both by C = C and by C = C.

(d) The pointwise infimum and supremum of a non-empty set of copulas C
form an imprecise copula.

Proof. (a) This follows from inequality (CI-3), with u2 = u1.

(b) Use (CI-1) with, alternatively, v1 = 0 and u1 = 0 to obtain, respectively,

C(u2, v2)− C(u1, v2) ≥ 0 ∀v2, u1, u2 ∈ [0, 1], s.t. u1 ≤ u2

C(u2, v2)− C(u2, v1) ≥ 0 ∀u2, v1, v2 ∈ [0, 1], s.t. v1 ≤ v2

By these inequalities, C is component-wise increasing. Analogously, to
prove that C is component-wise increasing, apply (CI-4) with u1 = 0 and
(CI-3) with v1 = 0.

(c) Applying twice (CI-2) and the boundary conditions in Definition 5, first
with v2 = 1 and then with u2 = 1, we obtain, respectively,

C(u2, v1)− C(u1, v1) ≤ u2 − u1 (8)

C(u1, v2)− C(u1, v1) ≤ v2 − v1. (9)
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Because they are derived from (CI-2), Eqs. (8) and (9) hold, respectively,
for any v1, u1, u2 ∈ [0, 1] such that u1 ≤ u2, and for any u1, v1, v2 ∈ [0, 1]
such that v1 ≤ v2. In the general case, Eq. (8) is replaced by

|C(u2, v1)− C(u1, v1)| ≤ |u2 − u1|

and similarly for Eq. (9). Therefore, for arbitrary u1, u2, v1 and v2 in [0, 1],
|C(u2, v2)−C(u1, v1)| ≤ |C(u2, v2)−C(u2, v1)|+ |C(u2, v1)−C(u1, v1)| ≤
|u2−u1|+ |v2−v1|, which proves the Lipschitz condition for C. The proof
for C is similar (use (CI-4) with v2 = 1 and (CI-3) with u2 = 1).

(d) The boundary conditions are trivial, so let us prove (CI-1)÷(CI-4). Define
C(x, y) := infC∈C C(x, y), C(x, y) := infC∈C C(x, y). By applying (COP3)
to the copulas in C, we get that, for every C ∈ C and every u1 ≤ u2, v1 ≤
v2 ∈ [0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1) ≥ C(u1, v2) + C(u2, v1).

¿From this we deduce that, for every C ∈ C and every u1 ≤ u2, v1 ≤ v2 ∈
[0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

whence (CI-2) and (CI-1) hold.

As for (CI-3) and (CI-4), again from (COP3), we get that for every C ∈ C
and every u1 ≤ u2, v1 ≤ v2 ∈ [0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1).

This implies that for every C ∈ C and every u1 ≤ u2, v1 ≤ v2 ∈ [0, 1],

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1),

whence (CI-3) and (CI-4) hold.

According to [20, Corollary 2.3], the pointwise infimum and supremum of a
set of copulas are also quasi-copulas (see [21] for a study on the lattice struc-
ture of copulas). A quasi-copula [19] is a binary operator satisfying conditions
(COP1), (COP2) in Definition 5 and the Lipschitz condition given by Eq. (7).

By Proposition 2 (c), both C and C in an imprecise copula (C,C) are quasi-
copulas. Conversely, given two quasi-copulas C1 and C2 such that C1 ≤ C2,
(C1, C2) may not be an imprecise copula. To see that, it is enough to consider a
proper quasi-copula C, i.e. a quasi-copula which is not a copula (see for instance
[19, Example 6.3]). Then, the pair (C,C) is not an imprecise copula because it
does not satisfy the inequalities in Definition 6: in this case the inequalities all
reduce to (COP3). We may then conclude that an imprecise copula is formed by
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two quasi-copulas C1 ≤ C2, for which the additional inequalities (CI-1)÷(CI-4)
hold.

The converse of item (d) in this proposition is still an open problem at this
stage; it is formally equivalent to the characterisation of coherent bivariate p-
boxes studied in detail in [22]. So far, we have only established it under some
restrictions on the domains of the copulas. If it held, then we could regard
imprecise copulas as restrictions of sets of bivariate distribution functions of
continuous random variables with uniform marginals, similar to the situation
for precise copulas.

In the particular case when C = C := C, (C,C) is an imprecise copula if
and only if C is a copula. It is also immediate to establish the following:

Proposition 3. Let C1 and C2 be two copulas such that C1 ≤ C2. Then,
(C1, C2) forms an imprecise copula. In particular, (CL, CM) is the largest im-
precise copula, in the sense that, for any imprecise copula (C,C), it holds that
CL ≤ C ≤ C ≤ CM.

Proof. It is simple to check that (C1, C2) satisfies Definition 6. The proof of the
remaining part is similar to that of the Fréchet-Hoeffding inequalities. Consider
an imprecise copula (C,C). Since C is component-wise increasing by Proposi-
tion 2 (b), and applying the boundary conditions,

C(u, v) ≤ min(C(u, 1), C(1, v)) = min(u, v).

Using (CI-2) we deduce that:

1 + C(u, v) = C(1, 1) + C(u, v) ≥ C(u, 1) + C(1, v) = u+ v.

Then C(u, v) ≥ u+ v− 1, and by definition C is also non-negative. Finally, the
inequality C ≤ C follows from Proposition 2 (a).

Remark 1. Given a copula C : [0, 1]× [0, 1]→ [0, 1], it is immediate to see that
its extension C ′ : R× R→ [0, 1] given by

C ′(x, y) :=


C(x, y) if (x, y) ∈ [0, 1]× [0, 1]

0 if x < 0 or y < 0

min{x, y} if min{x, y} ∈ [0, 1] and max{x, y} ∈ [1,+∞]

1 otherwise

is a distribution function. Taking this into account, given any non-empty set
of copulas C, its infimum C and supremum C form a coherent bivariate p-
box. Moreover, an imprecise copula (C,C) can be extended to R × R in the
manner described above, and then it constitutes a bivariate p-box that satisfies
conditions (I-RI1)÷(I-RI4) (although it is still an open problem whether it is
coherent). �

Let us see to what extent an analogue of Sklar’s theorem also holds in an
imprecise framework. For this aim, we start by considering marginal imprecise
distributions, described by (univariate) p-boxes, and we use imprecise copulas
to obtain a bivariate p-box.
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Proposition 4. Let (FX, FX) and (FY, FY) be two marginal p-boxes on R, and
let C be a set of copulas. Consider the imprecise copula (C,C) defined from C
by C(u, v) = infC∈C C(u, v) and C(u, v) = supC∈C C(u, v) for every u, v ∈ [0, 1].
Define the couple (F , F ) by:

F (x, y) = C(FX(x), FY(y)) and F (x, y) = C(FX(x), FY(y)) (10)

for any (x, y) ∈ R× R. Then, (F , F ) is a bivariate p-box and it holds that:

(a) P (F,F ) is coherent.

(b) The credal set M(P (F,F )) associated with the lower probability P (F,F ) by

means of Eq. (1) is given by

M(P (F,F )) = {P linear prevision | C(FX, FY) ≤ FP ≤ C(FX, FY)}.

Proof. Note that F ≤ F , since F = C(FX , FY ) ≤ C(FX , FY ) ≤ C(FX , FY ) =
F . It is easy to check that both F , F are standardized and as a consequence
(F , F ) is a bivariate p-box.

(a) Let F be the set of distribution functions associated with the bivariate
p-box (F , F ) by means of Eq. (5). Since FX, FX, FY, FY are marginal
distribution functions, Sklar’s theorem implies that C(FX(x), FY(y)) and
C(FX(x), FY(y)) are bivariate distribution functions for any C ∈ C. More-
over, they necessarily belong to F by Eq. (10). From this we deduce that

F (x, y) ≤ inf
F∈F

F (x, y) ≤ C(FX(x), FY(y)) = F (x, y),

and therefore F (x, y) = infF∈F F (x, y). Similarly, we can prove that
F (x, y) = supF∈F F (x, y). Applying now Proposition 1, we deduce that
P (F,F ) is coherent.

(b) This follows from the first statement and Lemma 1.

In particular, when the available information about the marginal distribu-
tions is precise, and it is given by the distribution functions FX and FY, the
bivariate p-box in the proposition above is given by

F (x, y) = inf
C∈C

C(FX(x), FY(y)) and F (x, y) = sup
C∈C

C(FX(x), FY(y))

for every (x, y) ∈ R × R. As a consequence, the result above generalizes [20,
Theorem 2.4], where the authors only focused on the functions F and F , showing
that F (x, y) = C(FX(x), FY(y)) and F (x, y) = C(FX(x), FY(y)). Instead, in
Proposition 4 we are also allowing for the existence of imprecision in the marginal
distributions, that we model by means of p-boxes. Note that we have also
established the coherence of the joint lower probability P (F,F ) and therefore of

the p-box (F , F ).
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Proposition 4 generalizes to the imprecise case one of the implications in
Sklar’s theorem: if we combine two marginal p-boxes by means of a set of
copulas, we obtain a coherent bivariate p-box, which is thus equivalent to a
set of bivariate distribution functions. We focus now on the other implication:
whether any bivariate p-box can be obtained as a function of its marginals.2

A partial result in this sense has been established in [23, Theorem 9]. In our
language, it ensures that if the restriction on D of P (F,F ) is (a restriction of) a 2-

monotone lower probability, then there exists a function C : [0, 1]×[0, 1]→ [0, 1],
which is component-wise increasing and satisfies (COP1) and (COP2), such that
F (x, y) = C(FX(x), FY(y)) for every (x, y) in R×R. This has been used in the
context of random sets in [1, 24].

Somewhat surprisingly, we show next that this result cannot be generalized
to arbitrary p-boxes.

Example 1. Let P1, P2 be the discrete probability measures associated with the
following masses on X × Y = {1, 2, 3} × {1, 2}:

(1, 1) (2, 1) (1, 2) (2, 2) (3, 1) (3, 2)
P1 0.2 0 0.3 0 0 0.5
P2 0.1 0.2 0.5 0.1 0 0.1

Let P be the lower envelope of {P1, P2}. Then, P is a coherent lower probability,
and its associated p-box (F , F ) satisfies

FX(1) = FX(2) = 0.5, FY(1) = 0.2, F (1, 1) = 0.1 < F (2, 1) = 0.2.

If there was a function C such that F (x, y) = C(FX(x), FY(y)) for every (x, y) ∈
R× R, then we should have

F (1, 1) = C(FX(1), FY(1)) = C(FX(2), FY(1)) = F (2, 1).

This is a contradiction. As a consequence, the lower distribution in the bivariate
p-box cannot be expressed as a function of its marginals. �

This shows that the direct implication of Sklar’s theorem does not hold in the
bivariate case: given a coherent bivariate p-box (F , F ), there is not in general
an imprecise copula (C,C) determining it by means of Eq. (10). The key point
here is that the lower and upper distribution functions of a coherent bivariate
p-box may not be distribution functions themselves, as showed in [22]; they need
only be standardized functions. Indeed, if F , F were distribution functions we
could always apply Sklar’s theorem to them, and we could express each of them

2A similar study was made in [9, Theorem 2.4] in terms of capacities and semi-copulas,
showing that the survival functions induced by a capacity can always be expressed as a semi-
copula of their marginals. Here we investigate when the combination can be made in terms
of an imprecise copula. Note moreover that our focus is on coherent bivariate p-boxes, which
produces capacities that are most restrictive than those considered in [9] (they are closer to
the precise case, so to speak). This is why we also consider the particular case where the
semi-copulas constitute an imprecise copula.
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as a copula of its marginals. What Example 1 shows is that this is no longer
possible when F , F are just standardized functions, nor in general when (F , F )
is coherent. We can thus summarize the results of this section in the following
theorem:

Theorem 2 (Imprecise Sklar’s Theorem). The following statements hold:

(a) Given two marginal p-boxes (FX, FX) and (FY, FY) on R and a set of
copulas C, the functions F , F given by Eq. (10) determine a bivariate p-
box on R× R, whose associated lower probability is coherent.

(b) Not every bivariate p-box can be expressed by means of its marginals and
a set of copulas by Eq. (10), not even when its associated lower probability
is coherent.

3.2. Natural extension of marginal p-boxes

Next we consider two particular combinations of the marginal p-boxes into
the bivariate one. First of all, we consider the case where there is no information
about the copula that links the marginal distribution functions.

Lemma 2. Consider the univariate p-boxes (FX, FX) and (FY, FY) on R, and
let P be the lower probability defined on

A∗ := {A(x,+∞), A
c
(x,+∞), A(+∞,y), A

c
(+∞,y) : x, y ∈ R} ⊆ E

by

P (A(x,+∞)) = FX(x) P (Ac
(x,+∞)) = 1− FX(x) ∀x ∈ R, (11)

P (A(+∞,y)) = FY(y) P (Ac
(+∞,y)) = 1− FY(y) ∀y ∈ R. (12)

Then:

1. P is a coherent lower probability.

2. M(P ) =M(CL, CM), where CL, CM are the copulas given by Eq. (6) and

M(CL, CM) = {P linear prevision : CL(FX, FY) ≤ FP ≤ CM(FX, FY)}.

Proof. 1. We use C∗ to denote the set of all copulas. By Propositions 3 and
4 and Eq. (6),

F (x, y) = C(FX(x), FY(y)) = inf
C∈C∗

C(FX(x), FY(y))

= CL(FX(x), FY(y)),

and similarly F (x, y) = C(FX(x), FY(y)) = CM(FX(x), FY(y)). Let
P (F,F ) the coherent lower probability induced by (F , F ) by Eq. (3). Then

P (F,F )(A(x,+∞)) = F (x,+∞) = CL(FX(x), FY(+∞))

= max{FX(x) + FY(+∞)− 1, 0}
= max{FX(x), 0} = FX(x) = P (A(x,+∞))
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and also

P (F,F )(A
c
(x,+∞)) = 1− F (x,+∞) = 1− CM(FX(x), FY(+∞))

= 1−min{FX(x), FY(+∞)} = 1−min{FX(x), 1}
= 1− FX(x) = P (Ac

(x,+∞)).

With an analogous reasoning, we obtain P (F,F )(A(+∞,y)) = P (A(+∞,y))

and P (F,F )(A
c
(+∞,y)) = P (Ac

(+∞,y)). Therefore, P coincides with P (F,F )

in A∗, and consequently P is coherent.

2. Let P ∈ M(CL, CM). Then, P ≥ P (F,F ) on E by Lemma 1. Since P

coincides with P (F,F ) on A∗, P ∈M(P ).

Conversely, let P ∈M(P ), and let FP be its associated distribution func-
tion. Then, Sklar’s Theorem assures that there is C ∈ C∗ such that
FP(x, y) = C(FP(x,+∞), FP(+∞, y)) for every (x, y) ∈ R× R. Hence,

CL(FX(x), FY (y)) ≤ CL(FP(x,+∞), FP(+∞, y))
≤ C(FP(x,+∞), FP(+∞, y))
≤ C(FX(x), FY (y)) ≤ CM(FX(x), FY (y)),

taking into account that any copula is component-wise increasing and lies
between CL and CM. Therefore, P ∈ M(CL, CM) and as a consequence
M(P ) =M(CL, CM).

¿From this result we can immediately derive the expression of the natural
extension [28] of two marginal p-boxes, that is the least-committal (i.e., the most
imprecise) coherent lower probability that extends P to a larger domain:

Proposition 5. Let (FX, FX) and (FY, FY) be two univariate p-boxes. Let P
be the lower probability defined on the set A∗ by means of Eqs. (11) and (12).
The natural extension E of P to E is given by

E(A(x,y)) = CL(FX(x), FY(y)) and E(Ac
(x,y)) = 1− CM(FX(x), FY(y)),

for every x, y ∈ R. As a consequence, the bivariate p-box (F , F ) associated with
E is given by:

F (x, y) = CL(FX(x), FY(y)) and F (x, y) = CM(FX(x), FY(y)).

Proof. The lower probability P is coherent from the previous lemma, and in
addition its associated credal set isM(P ) =M(CL, CM). The natural extension
of P to the set E is given by:

E(A(x,y)) = infP∈M(P ) FP(x, y)
= infP∈M(CL,CM) FP(x, y) = CL(FX(x), FY(y)).

E(Ac
(x,y)) = infP∈M(P )(1− P (A(x,y))) = 1− supP∈M(P ) FP(x, y)

= 1− supP∈M(CL,CM) FP(x, y) = 1− CM(FX(x), FY(y)).

The second part is an immediate consequence of the first.
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The intuition of this result is clear: if we want to build the joint p-box
(F , F ) from two given marginals (FX, FX), (FY, FY), and we have no informa-
tion about the interaction between the underlying variables X, Y , we should
consider the largest, or most conservative, imprecise copula: (CL, CM). This
corresponds to combining the compatible univariate distribution functions by
means of all possible copulas, and then taking the envelopes of the resulting
set of bivariate distribution functions. What Proposition 5 shows is that this
procedure is equivalent to considering the natural extension of the associated
coherent lower probabilities, and then take its associated bivariate p-box. In
other words, the following diagram commutes:

PX, PY E = P (F,F )

(FX, FX), (FY, FY) (F , F )

Eq. (3)Eqs. (11), (12)

6 6

-

-

Natural extension

(CL, CM)

3.3. Independent products of random variables

Next, we consider another case of interest: that where the variables X,Y
are assumed to be independent. Under imprecise information, there is more
than one way to model the notion of independence; see [2] for a survey on this
topic. Because of this, there is more than one manner in which we can say that
a coherent lower prevision P on the product space is an independent product
of its marginals PX, PY. Since the formalism considered in this paper can be
embedded into the theory of coherent lower previsions, here we shall consider
the notions of epistemic irrelevance and independence, which seem to be more
sound under the behavioural interpretation that is at the core of this theory.

The study of independence under imprecision suffers from a number of draw-
backs when the underlying possibility spaces are infinite [13]. Because of this
fact, we shall consider that the variables X,Y under study take values in respec-
tive finite spaces X ,Y. Then the available information about these variables is
given by a coherent lower prevision P on L(X ×Y). We shall denote by PX, PY

its respective marginals on L(X ),L(Y). Note that, similarly to Eq. (4), we
can consider the bivariate p-box (F , F ) induced by P on X × Y, and also the
univariate p-boxes (FX, FX), (FY, FY) induced by PX, PY on X ,Y.

We say then that the random variable Y is epistemically irrelevant to X
when

PX(f |y) := PX(f(·, y)) ∀f ∈ L(X × Y), y ∈ Y.

The variables X,Y are said to be epistemically independent when each of them
is epistemically irrelevant to the other:

PX(f |y) := PX(f(·, y)) and PY(f |x) := PY(f(x, ·)) (13)
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for every f ∈ L(X × Y), x ∈ X , y ∈ Y.
Here a conditional lower prevision P (·|X ) on X × Y is a collection of co-

herent lower previsions {P (·|x) : x ∈ X}, so that P (·|x) models the available
information about the outcome of (X,Y ) when we know that X takes the value
x.3 Note that given f ∈ L(X × Y), P (f |X ) is the gamble on X × Y that takes
the value P (f |x) on the set {x} × Y. Analogous comments can be made with
respect to P (·|Y).

If we have a coherent lower prevision P and conditional lower previsions
P (·|X ), P (·|Y), we should check if the information they encompass is globally
consistent. This can be done by means of the notion of (joint) coherence in [28,
Def 7.1.4], and from this we can establish the following definition:

Definition 7. Let P be a coherent lower prevision on L(X ×Y) with marginals
PX, PY. We say that P is an independent product when it is coherent with the
conditional lower previsions PX(·|Y), PY(·|X ) derived from PX, PY by means
of Eq. (13).

Given PY and PY, one example of independent product is the strong product,
given by

PX � PY := inf{PX × PY : PX ≥ PX, PY ≥ PY}, (14)

where PX×PY refers to the linear prevision uniquely determined by4 the finitely
additive probability such that (PX × PY)(x, y) = PX(x) · PY(y) ∀x ∈ X , y ∈ Y.
The strong product is the joint model satisfying the notion of strong indepen-
dence. However, it is not the only independent product, nor is it the smallest
one. In fact, the smallest independent product of the marginal coherent lower
previsions PX, PY is called their independent natural extension, and it is given,
for every gamble f on X × Y, by

(PX ⊗ PY)(f)

:= sup{µ : f − µ ≥ g − PX(g|Y) + h− PY(h|X ) for some g, h ∈ L(X × Y)}.

One way of building independent products is by means of the following
condition:

Definition 8. A coherent lower prevision P on L(X × Y) is called factorising
when

P (fg) = P (fP (g)) ∀f ∈ L+(X ), g ∈ L(Y)

and
P (fg) = P (gP (f)) ∀f ∈ L(X ), g ∈ L+(Y).

3Strictly speaking, P (·|X ) refers to the lower prevision conditional on the partition {{x}×
Y : x ∈ X} of X × Y, and we use P (f |x) to denote P (f |{x} × Y). The reason for this is that
Walley’s formalism defines lower previsions conditional on partitions of the possibility space
[28, Chapter 6].

4Recall that this is possible because we are assuming that the possibility spaces X ,Y are
finite; to see that the procedure above may not work with infinite spaces, we refer to [13].
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Both the independent natural extension and the strong product are fac-
torising. Indeed, it can be proven [4, Theorem 28] that any factorising P is
an independent product of its marginals, but the converse is not true. Under
factorisation, the following result holds:

Proposition 6. Let (FX, FX), (FY, FY) be marginal p-boxes, and let PX, PY

be their associated coherent lower previsions. Let P be a factorising coherent
lower prevision on L(X ×Y) with these marginals. Then it induces the bivariate
p-box (F , F ) given by

F (x, y) = FX(x) · FY(y) and F (x, y) = FX(x) · FY(y) ∀(x, y) ∈ X × Y.

Proof. Let x∗, y∗ denote the maximum elements of X ,Y, respectively. Since
the indicator functions of A(x,y∗), A(x∗,y) are non-negative gambles such that
A(x,y) = A(x,y∗) · A(x∗,y) and taking also into account that P is factorising and
positively homogeneous, we get

P (A(x,y)) = P (A(x,y∗) ·A(x∗,y)) = P (A(x,y∗)) · P (A(x∗,y)) = FX(x) · FY(y).

Similarly, if P is the conjugate upper prevision of P , given by P (f) = −P (−f)
for every f ∈ L(X × Y), it holds that

P (A(x,y)) = P (A(x,y∗) ·A(x∗,y))

= −P (A(x,y∗) · (−A(x∗,y))) = −P (A(x,y∗) · (P (−A(x∗,y))))

= −P (−A(x,y∗) · (P (A(x∗,y)))) = −P (−A(x,y∗)) · P (A(x∗,y))

= P (A(x,y∗)) · P (A(x∗,y)) = FX(x) · FY(y).

¿From this it is easy to deduce that the p-box (F , F ) induced by a factorising
P is the envelope of the set of bivariate distribution functions

{F : F (x, y) = FX(x) · FY(y) for FX ∈ (FX, FX), FY ∈ (FY, FY)}.

In other words, the bivariate p-box can be obtained by applying the imprecise
version of Sklar’s theorem (Proposition 4) with the product copula.

Further, it has been showed in [13] that a coherent lower prevision P with
marginals PX, PY is factorising if and only if it lies between the independent
natural extension and the strong product:

PX ⊗ PY ≤ P ≤ PX � PY; (15)

as Walley showed in [28, Section 9.3.4], the independent natural extension and
the strong product do not coincide in general, and this means that there may
be an infinite number of factorising coherent lower previsions with marginals
PX, PY. What Proposition 6 tells us is that all these factorising coherent lower
previsions induce the same bivariate p-box: the one determined by the product
copula on the marginal p-boxes.

Interestingly, this applies to other independence conditions that guarantee
the factorisation, such as the Kuznetsov property [3, 4]. This would mean that
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any Kuznetsov product of the marginals PX, PY induces the bivariate p-box
given by the product copula of the marginals.

However, not all independent products are factorising [4, Example 3], and
those that do not may induce different p-boxes, as we show in the following
example:

Example 2. Consider X = Y = {0, 1}. Let P1, P2 be the linear previsions on
L(X ) given by

P1(f) = 0.5f(0) + 0.5f(1), P2(f) = f(0) ∀f ∈ L(X )

and let P3, P4 be the linear previsions on L(Y) given by

P3(f) = 0.5f(0) + 0.5f(1), P4(f) = f(0) ∀f ∈ L(Y).

Consider the marginal lower previsions PX := min{P1, P2}, PY := min{P3, P4}
on L(X ),L(Y), respectively. Applying Eq. (14), their strong product is given
by

PX � PY = min{P1 × P3, P1 × P4, P2 × P3, P2 × P4}
= min{(0.25, 0.25, 0.25, 0.25), (0.5, 0, 0.5, 0), (0.5, 0.5, 0, 0), (1, 0, 0, 0)},

where in the equation above a vector (a, b, c, d) is used to denote the vector of
probabilities {(P (0, 0), P (0, 1), P (1, 0), P (1, 1))}.

Let P be the coherent lower prevision determined by the mass functions

P : = min{P1 × (0.5P3 + 0.5P4), (0.5P1 + 0.5P2)× P3, P2 × P4}
= min{(0.375, 0.125, 0.375, 0.125), (0.375, 0.375, 0.125, 0.125), (1, 0, 0, 0)},

where (0.5P3 + 0.5P4) denotes the linear prevision on L(Y) given by

(0.5P3 + 0.5P4)(f) = 0.5P3(f) + 0.5P4(f) ∀f ∈ L(Y),

and similarly for (0.5P1 + 0.5P2). Then the marginals of P are also PX, PY.
Moreover, since the extreme points of M(P ) are convex combinations of those
of M(PX � PY), we deduce that P dominates PX � PY. Applying [13, Propo-
sition 5], we deduce that P is also an independent product of the marginal
coherent lower previsions PX, PY. Since it dominates strictly the strong prod-
uct, we deduce from Eq. (15) that P is not factorising.

Now, since

P ({(0, 0)}) = 0.375 > 0.25 = (PX � PY)({(0, 0)}),

we see that the p-boxes associated with P and PX � PY differ. We conclude
thus that not all independent products induce the bivariate p-box that is the
product copula of its marginals. �
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Remark 2. Interestingly, we can somehow distinguish between the strong prod-
uct and the independent natural extension in terms of bivariate p-boxes, in the
following way: if we consider the set of bivariate distribution functions

F := {FX × FY : FX ∈ (FX, FX), FY ∈ (FY, FY)},

then it follows from Eq. (14) that

PX � PY := inf{P : FP ∈ F}. (16)

This differs from the coherent lower prevision given by

P := min{P : FP ∈ (FX · FY, FX · FY)},

which will be in general more imprecise than the independent natural extension
PX ⊗ PY. Moreover, a characterisation similar to Eq. (16) cannot be made for
the independent natural extension, in the sense that there is no set of copulas
C such that

PX ⊗ PY := inf{P : FP = C(FX, FY)

for some C ∈ C, FX ∈ (FX, FX), FY ∈ (FY, FY)};

indeed, just by considering the precise case we see that C should consist just
of the product copula, and this would give back the definition of the strong
product. �

4. Stochastic orders and copulas

Next, we are going to apply the previous results to characterize the pref-
erences encoded by p-boxes. To this end, let us first of all recall some basic
notions on stochastic orders (see [12, 18, 25] for more information):

Definition 9. Given two univariate random variables X and Y with respective
distribution functions FX and FY, we say that X stochastically dominates Y ,
and denote it X �SD Y , when FX(t) ≤ FY(t) for any t.

This is one of the most extensively used methods for the comparison of
random variables. It is also called first order stochastic dominance, so as to
distinguish it from the (weaker) notions of second, third, ..., n-th order stochastic
dominance.

An alternative for the comparison of random variables is statistical prefer-
ence.

Definition 10 ([5, 6]). Given two univariate random variables X and Y , X is
said to be statistically preferred to Y if P (X ≥ Y ) ≥ P (Y ≥ X). This is denoted
by X �SP Y .

This notion is particularly interesting when the variables X,Y take values
in a qualitative scale [8].
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In addition to comparing pairs of random variables, or, more generally, cou-
ples of ‘elements’, with a preorder relation, we may be interested in comparing
pairs of sets (of random variables or other ‘elements’) by means of the given
order relation. We can consider several different possibilities:

Definition 11. Let � be a preorder over a set S. Given A,B ⊆ S, we say that:

1. A �1 B if and only if for every a ∈ A, b ∈ B it holds that a � b.

2. A �2 B if and only if there exists some a ∈ A such that a � b for every
b ∈ B.

3. A �3 B if and only if for every b ∈ B there is some a ∈ A such that a � b.

4. A �4 B if and only if there are a ∈ A, b ∈ B such that a � b.

5. A �5 B if and only if there is some b ∈ B such that a � b for every a ∈ A.

6. A �6 B if and only if for every a ∈ A there is b ∈ B such that a � b.

The relations �i in Definition 11 have been discussed in [17] in the case that
� is the stochastic dominance relation �SD and in [16] in the case of statistical
preference, showing that several of them are related to decision criteria explored
in the literature of imprecise probabilities.

Figure 1 illustrates some of these extensions. In Figure 1a, A �1 B because
all the alternatives in A are better than all the alternatives in B; in Figure 1b,
A �2 B because there is an optimal element in A, a1, that is preferred to all
the alternatives in B; Figure 1c shows an example of A �4 B because there are
alternatives a1 ∈ A and b2 ∈ B such that a1 � b2; finally, Figure 1d shows an
example of A �5 B because there is a worst element in B, b1 that is dominated
by all the elements in A. The difference between the second and the third
extensions (resp., fifth and sixth) lies in the existence of a maximum (resp.,
minimum) or a supremum (resp., infimum) element in A (resp., B).

4.1. Univariate orders

Although stochastic dominance does not imply statistical preference in gen-
eral5, in the univariate case a number of sufficient conditions have been es-
tablished for the implication, in terms of the copula that determines the joint
distribution from the marginal ones. This is for instance the case when:

(SD-SP1) X and Y are stochastically independent random variables, i.e., they
are linked by the product copula (see [5, 7, 15]);

5Consider for instance the case where the joint distribution is given by P (X = 0, Y =
0.5) = 0.2, P (X = 0.5, Y = 0) = P (X = 1, Y = 0) = P (X = 0.5, Y = 1) = 0.1 and
P (X = 1, Y = 1) = 0.5. Then X and Y are equivalent with respect to stochastic dominance
because their cumulative distribution functions coincide; however, Y is strictly statistically
preferred to X.
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(a) A �1 B (b) A �2 B

(c) A �4 B (d) A �5 B

Figure 1: Examples of the extensions of �i. In this picture ai → bj means ai � bj .

(SD-SP2) X and Y are absolutely continuous random variables and they are
coupled by an Archimedean copula (see [14]).

(SD-SP3) X,Y are either comonotonic or countercomonotonic, and they are
both either simple or absolutely continuous.

In such cases, the implication transfers to the relations comparing sets of random
variables, by means of the following lemma. Its proof is immediate and therefore
omitted.

Lemma 3. Let � be a preorder in a set S and A,B ⊆ S. Let also w be a
preorder that extends �, i.e. x � y ⇒ x w y ∀x, y ∈ S. Then, A �i B ⇒ A wi

B for all i = 1, . . . , 6.

Here A, B are sets of random variables, denoted VX, VY. The following
special case of Lemma 3 is an instance.

Proposition 7. Consider two sets of random variables VX,VY. Assume that
any X ∈ VX, Y ∈ VY satisfy one of the conditions (SD-SP1)÷(SD-SP3) above.
Then, for all i = 1, . . . , 6:

VX �SDi
VY ⇒ VX �SPi

VY.

Proof. As we have remarked, conditions (SD-SP1)÷(SD-SP3) above ensure that
the statistical preference relation is an extension of stochastic dominance. The
result follows from Lemma 3.

4.2. Bivariate orders

Next we consider the following extension of stochastic dominance to the
bivariate case:
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Definition 12. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors
with respective bivariate distribution functions FX1,X2 and FY1,Y2 . We say that
(X1, X2) stochastically dominates (Y1, Y2), and denote it (X1, X2) �SD (Y1, Y2),
if FX1,X2

(s, t) ≤ FY1,Y2
(s, t) for all (s, t) ∈ R2.

This definition establishes a way of comparing two bivariate vectors X =
(X1, X2), Y = (Y1, Y2) in case their associated distribution functions are pre-
cisely known. However, it is not uncommon to have uncertain information about
these distribution functions, that we can model by means of respective sets of
distribution functions FX,FY. If we now take Definition 11 into account, we
can propose a generalisation of Definition 12 to the imprecise case:

Definition 13. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with
respective sets of bivariate distribution functions FX,FY. We say that (X1, X2)
i-stochastically dominates (Y1, Y2), and denote it (X1, X2) �SDi

(Y1, Y2), if
FX ≤i FY.

Since by Remark 1 copulas can be interpreted as bivariate distribution func-
tions, the extensions ≤i are also applicable to them.

Note that the sets of distribution functions FX,FY may be obtained by com-
bining two respective marginal p-boxes by means of a set of copulas. In that case,
we may study to which extent the relationships between the sets FX,FY can
be determined by means of the relationships between their marginal univariate
p-boxes. In other words, if we have information stating that X1 stochastically
dominates Y1 and X2 stochastically dominates Y2, we may wonder in which
cases the pair (X1, X2) i-stochastically dominates (Y1, Y2). The following result
gives an answer to this question:

Proposition 8. Given two random vectors X = (X1, X2), Y = (Y1, Y2), let
(FX1

, FX1
), (FX2

, FX2
), (FY1

, FY1
), (FY2

, FY2
) be the marginal p-boxes associ-

ated with X1, X2, Y1, Y2 respectively. Let CX and CY be two sets of copulas.
Define the following sets of bivariate distribution functions FX,FY:

FX := {C(FX1 , FX2) : C ∈ CX, FX1 ∈ (FX1
, FX1), FX2 ∈ (FX2

, FX2)},
FY := {C(FY1 , FY2) : C ∈ CY, FY1 ∈ (FY1

, FY1), FY2 ∈ (FY2
, FY2)}.

Consider i ∈ {1, . . . , 6} and assume that (FXj
, FXj) ≤i (FYj

, FYj) for j =
1, 2. Then:

CX ≤i CY ⇒ (X1, X2) �SDi
(Y1, Y2).

Proof. (i = 1) We know that:

∀FXj
∈ (FXj

, FXj
), FYj

∈ (FYj
, FYj

), FXj
≤ FYj

, (j = 1, 2);

∀CX ∈ CX, CY ∈ CY, CX ≤ CY,

Consider FX ∈ FX and FY ∈ FY . They can be expressed in the following
way: FX(x, y) = CX(FX1(x), FX2(y)) and FY(x, y) = CY(FY1(x), FY2(y)),
where CX ≤ CY. Then:

FX(x, y) = CX(FX1
(x), FX2

(y)) ≤ CX(FY1
(x), FY2

(y))
≤ CY(FY1

(x), FY2
(y)) = FY(x, y),
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where the inequalities hold because copulas are component-wise increas-
ing.

(i = 2) We know that:

∃F ∗Xj
∈ (FXj

, FXj) s.t. F ∗Xj
≤ FYj ∀FYj ∈ (FYj

, FYj), (j = 1, 2).

∃C∗X ∈ CX s.t. C∗X ≤ CY ∀CY ∈ CY.

Consider FX(x, y) := C∗X(F ∗X1
(x), F ∗X2

(y)), and let us see that FX ≤ FY

for any FY = CY(FY1
, FY2

) in FY :

FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(FY1(x), FX2(y))
≤ CY(FY1(x), FX2(y)) = FY(x, y).

(i = 3) We know that:

∀FYj
∈ (FYj

, FYj
),∃F ∗Xj

∈ (FXj
, FXj

) s.t. F ∗Xj
≤ FYj

, (j = 1, 2).

∀CY ∈ CY ∃C∗X ∈ CX s.t. C∗X ≤ CY.

Let FY ∈ FY . Then, there are CY ∈ CY , FY1 ∈ (FY1
, FY1) and FY2 ∈

(FY2
, FY2

) such that FY(x, y) = CY(FY1
(x), FY2

(y)). Let us check that
there is FX in FX such that FX ≤ FY. Let FX(x, y) = C∗X(F ∗X1

(x), F ∗X2
(y)).

Then:

FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(FY1
(x), FY2

(y))
≤ CY(FY1

(x), FY2
(y)) = FY(x, y).

(i = 4) We know that:

∃F ∗Xj
∈ (FXj

, FXj), F
∗
Yj
∈ (FYj

, FYj) s.t. F ∗Xj
≤ F ∗Yj

, (j = 1, 2).

∃C∗X ∈ CX, C∗Y ∈ CY s.t. C∗X ≤ C∗Y.

Let us consider the distribution functions FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y))
and FY(x, y) = C∗Y(F ∗Y1

(x), F ∗Y2
(y)). It holds that FX ≤ FY:

FX(x, y) = C∗X(F ∗X1
(x), F ∗X2

(y)) ≤ C∗X(F ∗Y1
(x), F ∗Y2

(y))
≤ C∗Y(F ∗Y1

(x), F ∗Y2
(y)) = FY(x, y).

(i = 5, i = 6) The proof of these two cases is analogous to that of i = 2 and
i = 3, respectively.

4.3. Natural extension and independent products

To conclude this section, we consider the particular cases discussed in Sec-
tions 3.2 and 3.3: those where the bivariate p-box is the natural extension or a
factorising product.

By Proposition 5, the natural extension of two marginal p-boxes (FX, FX)
and (FY, FY) is given by:

F (x, y) = CL(FX(x), FY(y)) and F (x, y) = CM(FX(x), FY(y)). (17)

This allows us to prove the following result:
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Corollary 1. Consider marginal p-boxes (FX1
, FX1), (FX2

, FX2), (FY1
, FY1)

and (FY2
, FY2

). Let (FX, FX) (resp., (FY, FY)) be the natural extension of

the p-boxes (FX1
, FX1

), (FX2
, FX2

) (resp., (FY1
, FY1

), (FY2
, FY2

)) by means
of Eq. (17). Then for i = 2, . . . , 6,

(FXj
, FXj

) ≤i (FYj
, FYj

), j = 1, 2⇒ (X1, X2) �SDi
(Y1, Y2).

Proof. Take CX = CY = {CL, CM} in Proposition 8. Since CL ≤ CL, CM ≤ CM

and CL ≤ CM, we get CX ≤i CY, i = 2, . . . , 6. Then, Proposition 8 ensures
{FX, FX} ≤i {FY, FY} (i = 2, . . . , 6). It is not difficult to check then that this
implies also (FX, FX) ≤i (FY, FY) (i = 2, . . . , 6), because of the special form of
CX, CY.

To see that the result does not hold for ≤1, consider the following example:

Example 3. For j = 1, 2, let FXj
= FXj

= FYj
= FYj

be the distribution
function associated with the uniform probability distribution on [0, 1], given by
F (x) = x for every x ∈ [0, 1]. Then trivially

F = (FXj
, FXj

) ≤1 (FYj
, FYj

) = F ∀j = 1, 2.

However, (FX, FX) �1 (FY, FY), since CM(F, F ) ∈ (FX, FX), CL(F, F ) ∈
(FY, FY) and

CM(F, F )(0.5, 0.5) = CM(F (0.5), F (0.5)) = CM(0.5, 0.5) = 0.5 > 0

= CL(0.5, 0.5) = CL(F (0.5), F (0.5)) = CL(F, F )(0.5, 0.5).�

On the other hand, Proposition 6 implies that, given two finite spaces X ,Y,
any factorising coherent lower prevision P on L(X × Y) determines a bivariate
p-box that is the product of its marginal p-boxes by means of the product
copula. Taking this property into account, we can compare two factorising
independent products in terms of the relationships between their marginals.
From Proposition 8, we deduce the following:

Corollary 2. Consider marginal p-boxes (FX1
, FX1), (FY1

, FY1), (FX2
, FX2)

and (FY2
, FY2

), and let us define the following sets of bivariate distribution
functions FX ,FY by

FX := {FX1
· FX2

: FX1
∈ (FX1

, FX1
), FX2

∈ (FX2
, FX2

)},
FY := {FY1 · FY2 : FY1 ∈ (FY1

, FY1), FY2 ∈ (FY2
, FY2)}.

Then, for i = 1, . . . , 6,

(FXj
, FXj

) ≤i (FYj
, FYj

), j = 1, 2⇒ (X1, X2) �SDi
(Y1, Y2).

Proof. The result is the particular case of Proposition 8 where CX = CY =
{CP}.
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5. Conclusions and open problems

In this work we have studied the extension of Sklar’s theorem to an impre-
cise framework, where instead of random variables precisely described by their
distribution functions, we have considered the case when they are imprecisely
described by p-boxes. For this aim, we have introduced the notion of imprecise
copula, and have proven that if we link two marginal p-boxes by means of a
set of copulas we obtain a bivariate p-box whose associated lower probability is
coherent. Unfortunately, the main implication of Sklar’s theorem does not hold
in the imprecise framework: there exist coherent bivariate p-boxes that are not
uniquely determined by their marginals.

We have investigated two particular cases: on the one hand, we considered
the absence of information about the copula that links the marginals. In that
case, we end up with the natural extension of the marginal p-boxes, that can
be expressed in terms of the  Lukasiewicz and the minimum copulas. On the
other hand, we looked upon the case where the marginal distributions satisfy
the condition of epistemic independence, and showed that the joint p-box can
be obtained in most, but not all cases, by means of the product copula.

There are a few open problems that arise from our work in this paper: on the
one hand, we should deepen the study of the properties of imprecise copulas from
the point of view of aggregation operators. With respect to Sklar’s theorem, we
intend to look for sufficient conditions for a bivariate p-box to be determined as
an imprecise copula of its marginals. A third open problem would be the study
in the imprecise case of the other extensions of stochastic dominance to the
bivariate case, based on the comparisons of survival functions or expectations.
Finally, it would be interesting to generalize our results to the n-variate case.
An interesting work in this respect was carried out by Durante and Spizzichino
in [9].
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