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Abstract

We consider a set of comparative probability judgements over a finite possibility space and study the structure of the set
of probability measures that are compatible with them. We relate the existence of some compatible probability measure
to Walley’s behavioural theory of imprecise probabilities, and introduce a graphical representation that allows us to
bound, and in some cases determine, the extreme points of the set of compatible measures. In doing this, we generalise
some earlier work by Miranda and Destercke on elementary comparisons.
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1. Introduction

The elicitation of probability measures, which is partic-
ularly relevant in the context of subjective probability, can
be cumbersome in situations of imprecise or ambiguous
information. These can arise due to the presence of missing
data or contradictory sources of information, or due to the
limitations of the measurement devices. To deal with this
problem, a number of approaches have been put forward
in the literature: (i) we may work with sets of probability
measures, or credal sets [30]; (ii) we can provide lower
and/or upper bounds for the ‘true’ probability measure,
representing the information in terms of non-additive meas-
ures [11, 16, 44]; or (iii) we could model the information
in terms of its behavioural implications [48]. The different
models are sometimes referred to with the common term
imprecise probabilities [2].

When the available information comes from expert
judgements, it may be easier to model it in terms of com-
parative assessments of the form ‘event 𝐴 is at least as
probable as event 𝐵.’ This leads to comparative probabilit-
ies, that were studied first by de Finetti [10] and later by
other authors such as Koopman [28], Good [24] or Savage
[41]; see also [8, 20, 26, 29, 46, 49] for some relevant sub-
sequent work. For a recent thorough overview, as well as
an extensive philosophical justification and a summary of
the most important results, we refer to [27].

In this paper, we consider a collection of comparative
probability judgements over a finite possibility space and
study the structure of the set of compatible probability
measures. Specifically, we shall investigate in which cases
this set is non-empty, the number of its extreme points
and their features, and the properties of its associated
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lower probability. While most earlier work on comparative
probabilities has mainly focused on the complete case—that
is, the case where any two events are compared—ours is not
the first study of the incomplete one; in this respect, the
most influential works for this paper are those of Walley [48,
Section 4.5] and Miranda and Destercke [32]. Our present
contribution has the same goals as that of Miranda and
Destercke, but our setting is more general: where they
exclusively focused on the specific case of comparisons
between elementary events, we generalise some of their
results to the case of comparisons between arbitrary events.

The paper is organised as follows. We start with a
formal introduction of comparative assessments in Section 2,
and subsequently discuss the compatibility problem and
show that it can be easily tackled using Walley’s theory
of lower previsions. From Section 3 on, we study the set
of extreme points of the associated credal set. To this
end, we introduce a graphical representation in Section 4;
this representation allows us to determine the number of
extreme points in a number of special cases in Section 5,
where we also argue that this approach cannot be extended
to the general case. We conclude in Section 7 with some
additional comments and remarks. In order to ease the
reading, proofs have been gathered in an appendix.

We have already reported the results of this contri-
bution in [18]. Two key differences between the present
contribution and our previous presentation are that (i) we
give a bit more background in Sections 2.1 and 6, and (ii)
we provide formal proofs for our results.

2. Comparative assessments and compatibility

Consider a finite possibility space X with cardinality 𝑛,
and a (finite) number 𝑚 of comparative judgements of the
form ‘the event 𝐴 is at least as likely as the event 𝐵.’ For
ease of notation, we will represent the 𝑖-th judgement as a
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pair (𝐴𝑖, 𝐵𝑖) of events—that is, subsets of the possibility
space X . We collect all 𝑚 judgements in the comparative
assessment

C := {(𝐴𝑖, 𝐵𝑖) : 𝑖 ∈ {1, . . . ,𝑚}, 𝐴𝑖, 𝐵𝑖 ⊆ X }.

Equivalently, the comparative judgements can be repres-
ented in terms of a (possibly partial) binary relation ⪰
on 2X , the power set of the possibility space X , with
𝐴 ⪰ 𝐵 being equivalent to (𝐴,𝐵) ∈ C . Miranda and
Destercke [32] exclusively dealt with comparative assess-
ments that concern singletons, or equivalently, are a subset
of {({𝑥}, {𝑦}) : 𝑥, 𝑦 ∈ X }. We follow them in calling such
comparative assessments elementary.

Throughout this contribution we will use a running
example to illustrate much of the introduced concepts.

Running example. Let X := {1, 2, 3, 4} and

C := {({1}, {2}), ({1, 2}, {3}), ({1, 3}, {4}), ({1, 2}, {4})}.

Clearly, the corresponding partial binary relation ⪰ is given
by {1} ⪰ {2}, {1, 2} ⪰ {3}, {1, 3} ⪰ {4} and {1, 2} ⪰ {4}.

Let ΣX denote the set of all probability mass func-
tions on X . We follow the authors of [27, 32, 39, 48] in
considering the set

MC :=

{︂
𝑝 ∈ ΣX :

(∀(𝐴,𝐵) ∈ C )
∑︁
𝑥∈𝐴

𝑝(𝑥) ≥
∑︁
𝑥∈𝐵

𝑝(𝑥)

}︂
(1)

of all probability mass functions that are compatible with
the comparative judgements. Following Levi [30], we call
MC the comparative credal set.

Given a set C of comparative judgements, we should
first of all determine whether or not there is at least one
compatible probability measure—that is, if the comparative
credal set MC is non-empty. If that is the case, we shall
call the comparative assessments compatible. In the case
of elementary judgements [32], this is trivial because the
uniform probability distribution is compatible with any
elementary comparative assessment. Unfortunately, when
more elaborate judgements are allowed this is no longer
the case, as is demonstrated by the following example.

Example 1. Consider the possibility space X := {1, 2, 3}
and the comparative assessment

C := {({1}, {2, 3}), ({2}, {1, 3}), ({3}, {1, 2})}.

It follows immediately from these judgements that any com-
patible probability mass function 𝑝 should satisfy 𝑝(1) ≥ 1/2,
𝑝(2) ≥ 1/2 and 𝑝(3) ≥ 1/2. However, this is clearly im-
possible, so MC = ∅.

The problem of the existence of a compatible probabil-
ity measure with a number of comparative assessments on
events has been considered quite extensively in the liter-
ature [20, 29]. In what follows, we approach this problem
by means of the behavioural theory of sets of desirable
gambles, for which we give next a succinct introduction.

2.1. Connection with sets of desirable gambles

The existence of a compatible probability measure was
characterised in [42, Theorem 4.1] in the case of complete
comparative assessments and in [40, Proposition 4] and [39,
Section 2] in the case of partial comparative assessments;
see also [48, Section 4.5.2]. In this section, we use Walley’s
result to establish a connection with the theory of sets of
almost-desirable gambles2, from which we shall derive a
number of additional results. We refer to [48] for a detailed
account of the theory.

A gamble 𝑓 is a real-valued map on our finite possibility
space X . The set of all gambles on X is denoted by ℒ,
and dominance between gambles is understood pointwise.
Within ℒ we may consider the subset

ℒ+ := {𝑓 ∈ ℒ : 𝑓 ≥ 0, 𝑓 ̸= 0}

of non-negative gambles, that in particular includes the
indicator I𝐴 of some event 𝐴 ∈ 2X , taking value 1 on 𝐴
and 0 elsewhere. In the context of this paper, non-negative
gambles will allow us to encompass trivial comparisons of
the type 𝐴 ⪰ ∅.

It is often convenient to think of a gamble 𝑓 as an uncer-
tain reward expressed in units of some linear utility scale:
in case the outcome of our experiment is 𝑥, our subject
receives the—possibly negative—pay-off 𝑓(𝑥). With this
interpretation, our subject can specify a set of almost de-
sirable gambles 𝒦, being some set of gambles—or uncertain
rewards—that she considers acceptable. Such a set 𝒦 of al-
most desirable gambles can be extended to include gambles
that are implied by rational behaviour; the least-committal
of these extensions is the natural extension of 𝒦, which
is defined as 𝒟𝒦 := posi(𝒦 ∪ ℒ+), where we consider the
topological closure under the supremum norm and the posi
operator is defined for any set of gambles 𝒦′ ⊆ ℒ as

posi(𝒦′) :=

{︃
𝑘∑︁

𝑖=1

𝜆𝑖𝑓𝑖 : 𝑘 ∈ N, 𝜆𝑖 > 0, 𝑓𝑖 ∈ 𝒦′

}︃
,

with N the set of natural numbers—that is, not including
zero. We say that a set of almost desirable gambles 𝒦
avoids sure loss if and only if max 𝑓 ≥ 0 for all 𝑓 ∈ 𝒟𝒦,
and that it is coherent whenever 𝒦 = 𝒟𝒦. It turns out that
𝒟𝒦 is coherent if and only if 𝒦 avoids sure loss, and that 𝒦
avoids sure loss if and only if there exists a probability mass
function 𝑝 such that

∑︀
𝑥∈X 𝑓(𝑥)𝑝(𝑥) ≥ 0 for every 𝑓 ∈ 𝒦.

As a consequence, the compatibility of C is equivalent to
verifying that

𝒦C := {I𝐴 − I𝐵 : (𝐴,𝐵) ∈ C } (2)

avoids sure loss, which immediately leads to the following
proposition—see also [40, Proposition 4], [39, Section 2] or
[48, Lemma 3.3.2].

2The reader should not get confused with the more general theory
of sets of (really) desirable gambles, that is more informative than
credal sets; see [2, Chapter 1] for details.
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Proposition 1. The comparative credal set MC is non-
empty if and only if for all 𝜆1, . . . , 𝜆𝑚 in N ∪ {0},

max

𝑚∑︁
𝑖=1

𝜆𝑖(I𝐴𝑖
− I𝐵𝑖

) ≥ 0.

It is well-known—see for example [48, Section 3.8]—
that a coherent set of almost desirable gambles 𝒦 has two
equivalent representations. The first one is the credal set

M𝒦 :=

{︃
𝑝 ∈ ΣX : (∀𝑓 ∈ 𝒦)

∑︁
𝑥∈X

𝑓(𝑥)𝑝(𝑥) ≥ 0

}︃
,

which is non-empty, closed and convex. Conversely, any
non-empty subset M of ΣX corresponds to a coherent set
of almost desirable gambles

𝒦M :=

{︃
𝑓 ∈ ℒ : (∀𝑝 ∈ M )

∑︁
𝑥∈X

𝑓(𝑥)𝑝(𝑥) ≥ 0

}︃
.

Interestingly, 𝒦 = 𝒦M𝒦 if and only if 𝒦 is a coherent set of
almost desirable gambles, and for any non-empty subset M
of ΣX , M = M𝒦M if and only if M is closed and convex.
The second equivalent representation of the coherent set of
almost desirable gambles 𝒦 is the lower prevision 𝑃𝒦 on
ℒ, defined by

𝑃𝒦(𝑓) := sup{𝜇 ∈ R : 𝑓 − 𝜇 ∈ 𝒦} for all 𝑓 ∈ ℒ.

Sometimes, it will be convenient to use the conjugate upper
prevision 𝑃𝒦, defined by 𝑃𝒦(𝑓) := −𝑃𝒦(−𝑓) for all 𝑓 ∈ ℒ.
Conversely, any real-valued map 𝑃 on ℒ corresponds to a
set of almost desirable gambles

𝒦𝑃 := {𝑓 ∈ ℒ : 𝑃 (𝑓) ≥ 0},

and we call 𝑃 a coherent lower prevision if and only if
𝒦𝑃 is a coherent set of almost desirable gambles. Here
as well, 𝒦 = 𝒦𝑃𝒦

if and only if 𝒦 is a coherent set of
almost desirable gambles, and 𝑃 = 𝑃𝒦𝑃

if and only if 𝑃 is
a coherent lower prevision. Clearly, there is also a one-to-
one correspondence between coherent lower previsions and
non-empty, closed and convex credal sets. More precisely,
any coherent lower prevision 𝑃 on ℒ corresponds to the
non-empty, closed and convex credal set

M𝑃 :=

{︃
𝑝 ∈ ΣX : (∀𝑓 ∈ ℒ)

∑︁
𝑥∈X

𝑓(𝑥)𝑝(𝑥) ≥ 𝑃 (𝑓)

}︃
,

and a non-empty credal set M corresponds to the coherent
lower prevision 𝑃M on ℒ defined by

𝑃M (𝑓) := inf

{︃∑︁
𝑥∈X

𝑓(𝑥)𝑝(𝑥) : 𝑝 ∈ M

}︃
for all 𝑓 ∈ ℒ.

It is clear that MC as defined in Eqn. (1) is the credal
set corresponding to 𝒦C , and it is not difficult to verify

that MC = M𝒟′ , with 𝒟′ := 𝒟𝒦C as defined in Eqn. (2).
Throughout this contribution, we let 𝑃C and 𝑃C denote
the lower and upper previsions determined by 𝒟𝒦C . Recall
from Proposition 1 that MC is non-empty—meaning that
there is a compatible probability mass function—if and only
if 𝒦C avoids sure loss or 𝒟𝒦C is coherent. Whenever this is
the case, there are three equivalent ways of representing the
same information: the closed and convex credal set MC ,
the coherent set of almost-desirable gambles 𝒟𝒦C and the
coherent lower prevision 𝑃C . The correspondences between
these equivalent representations is depicted in Figure 1.

We can use 𝑃C to verify whether or not a comparat-
ive judgement is saturated and/or redundant. We call a
judgement redundant if removing it from the assessment
does not affect the credal set of compatible probability
measures; saturation means that there is at least one com-
patible probability measure that satisfies the constraint
with equality. The removal of redundant constraints is
mainly interesting from a theoretical point of view. From a
practical point of view, it could reduce the computational
costs associated with the set of compatible probability
measures; however, there is a trade off involved because
removing the redundant constraints also has a computa-
tional cost. An arguably more relevant practical use for
the removal of redundant constraints is that it could also
help the elicitator understand better the implications of
her assessments.

Proposition 2. Consider an assessment C such that MC

is non-empty, and let 𝑃C be its associated lower prevision.

(i) If there is a comparative judgement (𝐴,𝐵) ∈ C such
that I𝐴−I𝐵 ∈ posi(ℒ+∪𝒦C ∖{I𝐴−I𝐵}), then MC =
MC∖{(𝐴,𝐵)}.

(ii) If no (𝐴,𝐵) ∈ C satisfies the condition in (i), then
𝑃C (I𝐴 − I𝐵) = 0 for every (𝐴,𝐵) ∈ C .

This means that we should first analyse whether or not
each constraint (𝐴𝑖, 𝐵𝑖) can be expressed as a positive linear
combination of the other constraints in C together with
trivial assessments of the type (𝐴, ∅) with ∅ ≠ 𝐴 ∈ 2X ; if
this is the case, we can remove (𝐴𝑖, 𝐵𝑖) from our assessment.
Once we have removed all these redundant constraints, any
remaining constraint will be saturated by some 𝑝 ∈ MC

when this set is non-empty.

3. Bounding the number of extreme points

It follows immediately from the properties of probability
mass functions that the comparative credal set MC defined
in Eqn. (1) is a convex polytope as it is the intersection of
𝑛+𝑚+1 half spaces, or equivalently, bounded by 𝑛+𝑚+1
linear (in)equalities. It is well-known—see for instance [5,
Section 2]—that whenever a convex polytope is non-empty,
it is completely determined by its extreme points, and that
any such extreme point must saturate 𝑛 = |X | linearly
independent constraints.
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𝑃C MC

𝒟𝒦C

𝒟𝒦C
=

{︀ 𝑓
∈
ℒ :

𝑃 C
(𝑓
) ≥

0
}︀

𝑃 C
(𝑓
)
:=
su
p
{︀ 𝜇

∈
R
: 𝑓
−
𝜇
∈
𝒟𝒦C

}︀
𝒟
𝒦
C
= {︀

𝑓 ∈
ℒ
: (∀𝑝 ∈

M
C ) ∑︀

𝑥∈
X

𝑓(𝑥)𝑝(𝑥) ≥
0 }︀

M
C
= {︀

𝑝 ∈
Σ

X

: (∀𝑓 ∈
𝒟
𝒦

C ) ∑︀
𝑥∈

X

𝑓(𝑥)𝑝(𝑥) ≥
0 }︀

MC =
{︀
𝑝 ∈ ΣX : (∀𝑓 ∈ ℒ)

∑︀
𝑥∈X 𝑓(𝑥)𝑝(𝑥) ≥ 𝑃C (𝑓)

}︀

𝑃C (𝑓) = min
{︀∑︀

𝑥∈X 𝑓(𝑥)𝑝(𝑥) : 𝑝 ∈ MC

}︀
Figure 1: Correspondences between the three representations.

Studying the extreme points is useful because they
provide an equivalent—and sometimes more succinct and/or
more practical—representation of MC . For instance, given
the set of extreme points, the lower and upper prevision
of some gamble 𝑓 in ℒ can then be computed by determ-
ining the minimum and maximum of the expectation of 𝑓
with respect to the extreme points; Miranda and Destercke
[32] mention several other cases where the extreme points
might be of interest: for example inferences in graphical
and statistical models. For this reason, it is interesting that
(i) we can bound the number of extreme points a priori;
and (ii) there is some procedure to determine them.

A bound on the number of extreme points follows from
McMullen’s theorem [17]:

|ext(MC )| ≤
(︂
𝑚 + 1 + ⌊𝑛

2 ⌋
𝑚 + 1

)︂
+

(︂
𝑚 + ⌈𝑛

2 ⌉
𝑚 + 1

)︂
, (3)

where ⌊𝑛/2⌋ and ⌈𝑛/2⌉ denote the largest non-negative in-
teger 𝑘 such that 𝑘 ≤ 𝑛/2 and the smallest non-negative
integer ℓ such that ℓ ≥ 𝑛/2, respectively.

It is also possible to establish an upper bound on the
number of extreme points that is independent on the num-
ber of comparative judgements; its proof is a relatively
straightforward modification of the proofs of [12, The-
orem 4.4] or [50, Theorem 5.13].

Proposition 3. For any assessment C ,

|ext(MC )| ≤ 𝑛! 2𝑛

To give a sense of the absolute and relative performance
of these bounds, we reconsider our running example.

Running example. One can easily verify that the extreme
points of the credal set MC are

𝑝1 := (1, 0, 0, 0), 𝑝2 := (1/2, 1/2, 0, 0),

𝑝3 := (1/2, 0, 1/2, 0), 𝑝4 := (1/2, 0, 0, 1/2),

𝑝5 := (1/3, 1/3, 0, 1/3), 𝑝6 := (1/3, 0, 1/3, 1/3),

𝑝7 := (1/4, 1/4, 1/2, 0), 𝑝8 := (1/5, 1/5, 1/5, 2/5),

𝑝9 := (1/6, 1/6, 1/3, 1/3).

Hence, |ext(MC )| = 9; the upper bounds on the number
of extreme points of Eqn. (3) and Proposition 3 are 27 and
384, respectively.

On the other hand, the minimum number of extreme
points of a non-empty comparative credal set MC , re-
gardless of the cardinality of the possibility space, is 1: if
X := {1, . . . , 𝑛} and

C := {({𝑖}, {𝑖 + 1}) : 𝑖 = 1, . . . , 𝑛− 1} ∪ {({𝑛}, {1})},

then MC only includes the uniform distribution on X ,
and as a consequence there is only one extreme point.

Our upper bound on the number of extreme points
depends on the cardinality of the space 𝑛 and the number
𝑚 of comparative assessments; thus, the bound can be made
tighter if we remove constraints that are redundant because
they are implied by other constraints and the monotonicity
and additivity properties of probability measures. For
instance, we may assume without loss of generality that

(∀(𝐴,𝐵) ∈ C ) 𝐴 ̸= X , 𝐵 ̸= ∅, 𝐴 ∩𝐵 = ∅. (C0)

This allows us to bound the cardinality of C :

Proposition 4. If C satisfies (C0), then

𝑚 ≤ 3𝑛 − 2𝑛+1 + 1.
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Similarly, we may assume without loss of generality
that any (𝐴,𝐵) ∈ C cannot be made redundant in the
following senses:

(i) (@(𝐴′, 𝐵′) ∈ C , (𝐴′, 𝐵′) ̸= (𝐴,𝐵)) 𝐴′ ⊆ 𝐴,𝐵′ ⊇ 𝐵;

(ii) (@(𝐴1, 𝐵1), (𝐴2, 𝐵2) ∈ C ) 𝐴 = 𝐴1 ∪ 𝐴2, 𝐵 = 𝐵1 ∪
𝐵2, 𝐴1 ∩𝐴2 = ∅;

(iii) (@𝐵1, 𝐴2 ∈ 2X , 𝐵1 ⊇ 𝐴2) (𝐴,𝐵1) ∈ C , (𝐴2, 𝐵) ∈ C .

Nevertheless, it is more fruitful to detect redundant con-
straints using the theory of coherent lower previsions, as
we did in Proposition 2. In this manner, given an initial
(finite) set C of comparative assessments, we may proceed
iteratively and remove all the redundant constraints, and
then use Eqn. (3) to bound the number of extreme points of
the comparative credal set MC with this reduced number
of constraints.

4. A graphical approach

Essential for the results established in [32] is the rep-
resentation of the elementary comparative assessments as
a digraph. In the non-elementary case, such a graphical
representation will also be helpful. Throughout this contri-
bution we use the graph theoretic terminology as defined
in [21]; we do allow ourselves one difference, though: we
prefer to use nodes instead of vertices.

4.1. Representing the comparative assessment as a graph

Miranda and Destercke [32] proposed a straightforward
but powerful representation of the elementary comparative
assessment C as a digraph: the atoms of the possibility
space correspond to the nodes, and a directed edge is
added from 𝑥 to 𝑦 for every ({𝑥}, {𝑦}) ∈ C . The extreme
points of the credal set are then obtained through the
top subnetworks generated by certain sets of nodes [32,
Theorem 1].

Because we do not limit ourselves to elementary com-
parative judgements, we cannot simply take over their con-
struction. One straightforward generalisation of the afore-
mentioned construction is to add a directed edge from 𝑥
to 𝑦 if there is a comparative judgement (𝐴,𝐵) ∈ C with
𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. However, this approach is not terribly
useful because there is loss of information: clearly, the
digraph alone does not contain sufficient information to
reconstruct the comparative judgements it represents. To
overcome this loss of information and to end up with one-
to-one correspondence, we borrow a trick from Miranda
and Zaffalon [34] and add dummy nodes to our graph.

We represent the assessment C as a digraph 𝒢C as
follows. First, we add one node for every atom 𝑥 in the
possibility space X . Next, for every comparison (𝐴𝑖, 𝐵𝑖)
in the assessment C , we add an auxiliary node 𝜉𝑖, and
we add a directed edge from every atom 𝑥 in 𝐴𝑖 to this
auxiliary node 𝜉𝑖 and a directed edge from the auxiliary

node 𝜉𝑖 to every atom 𝑦 in 𝐵𝑖. Formally, the set of nodes
is 𝒩C := X ∪ {𝜉1, . . . , 𝜉𝑚} and the set of directed edges is

ℰC :=

𝑚⋃︁
𝑖=1

{(𝑥, 𝜉𝑖) : 𝑥 ∈ 𝐴𝑖} ∪ {(𝜉𝑖, 𝑦) : 𝑦 ∈ 𝐵𝑖}.

Running example. The corresponding digraph 𝒢C is
depicted in Figure 2.

1 𝜉1 2 𝜉2 3 𝜉3 𝜉4 4

Figure 2: The digraph 𝒢C that corresponds to the assessment C or
our running example.

Fix some node 𝜈 in the digraph 𝒢C . Following [32], we
use 𝐻(𝜈) to denote the set that consists of the node 𝜈 itself
and all of its predecessors, being those nodes 𝜈′ such that
there is a directed path from 𝜈′ to 𝜈. Following [9, 32],
for any subset 𝑁 of the set of nodes 𝒩C , we let 𝐻(𝑁) :=
∪𝜈∈𝑁𝐻(𝜈) be the so-called top subnetwork generated by
𝑁 . We will exclusively be concerned with the restriction
of these top subnetworks to non-auxiliary nodes; therefore,
we define 𝐻 ′(𝑥) := 𝐻(𝑥)∩X for any 𝑥 in X and 𝐻 ′(𝐴) :=
𝐻(𝐴) ∩ X = ∪𝑥∈𝐴𝐻

′(𝑥) for all 𝐴 ∈ 2X .

Running example. The top subnetwork of the node 1 is
𝐻(1) = {1} and that of node 3 is 𝐻(3) = {1, 𝜉1, 2, 𝜉2, 3}.
Hence, 𝐻 ′({1, 3}) = {1, 2, 3}.

4.2. Some basic observations

The following results are straightforward observations
that follow almost immediately from our graphical repres-
entation 𝒢C of the comparative assessment C . The first
lemma gives a useful sufficient condition for the existence
of a compatible probability measure.

Lemma 5. If the digraph 𝒢C has a node with indegree
zero3, then MC ̸= ∅.

To facilitate the statement of the following and future
results, we introduce some additional notation. For any non-
empty event 𝐴 ∈ 2X , we denote the uniform distribution
over 𝐴 as 𝑝𝐴. In the particular case that the event 𝐴 is the
singleton {𝑥}, we also speak of the degenerate distribution
on 𝑥. The second lemma links atoms without predecessors
with extreme points that are degenerate distributions.

Lemma 6. The degenerate distribution 𝑝{𝑥} on 𝑥 is an
extreme point of the comparative credal set MC if and only
if 𝑥 ∈ X is a node with indegree zero.

3The indegree of a node is the number of directed edges entering
into this node, see [21, Section 4.1.6]. Hence, a node with indegree
zero is a node without predecessors.
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Running example. Observe that the node 1 is the only
node with indegree zero. Thus, Lemmas 5 and 6 imply
that (i) the comparative credal set MC is non-empty; and
(ii) the degenerate distribution on 1 is an extreme point
of MC .

Our next result uses the well-known fact—see for in-
stance [21, Sections 1.6 and 1.4.1]—that any digraph ℋ
can be uniquely decomposed into its connected components:
the subdigraphs ℋ1, . . . ,ℋ𝑘 such that (i) ℋ = ∪𝑘

𝑖=1ℋ𝑖, (ii)
each subdigraph ℋ𝑖 is connected, and (iii) ℋ𝑖 and ℋ𝑗 are
not connected for any 𝑖 ̸= 𝑗. For elementary comparative
assessments, it is shown in [32, Proposition 2] that the
extreme points of the comparative credal set can be ob-
tained by determining the extreme points of the (elementary
assessments induced by the) connected components separ-
ately. Our next result extends this to general comparative
assessments.

Proposition 7. Denote the connected components of the
digraph 𝒢C by 𝒢1, . . . ,𝒢𝑘. For every connected component
𝒢𝑖, we denote its set of non-auxiliary nodes by X𝑖 and we let
C𝑖 be the comparative assessment with possibility space X𝑖

that is in one-to-one correspondence with 𝒢𝑖. Then

ext(MC ) =

𝑘⋃︁
𝑖=1

{extend(𝑝𝑖) : 𝑝𝑖 ∈ ext(MC𝑖
)},

where extend(𝑝𝑖) is the cylindrical extension of 𝑝𝑖 to X
that is obtained by assigning zero mass to X ∖ X𝑖.

Because of this result, without loss of generality we can
restrict our attention in the remainder to digraphs 𝒢C that
are connected.

Finally, we establish the following result regarding cycles
in the assessment.

Proposition 8. Consider a comparative assessments C ,
and let

C ′ := C ∪ {(𝐴,𝐵) : 𝐴,𝐵 ∈ 2X ;𝐴 ⊃ 𝐵}.

If there is a cycle 𝐴1 ⪰ 𝐴2 ⪰ 𝐴3 ⪰ · · · ⪰ 𝐴𝑘 ⪰ 𝐴𝑘+1 = 𝐴1

in C ′, then for any 𝑝 ∈ MC , any 𝑖, 𝑗 ∈ {1, . . . , 𝑘} such that
𝐴𝑗 ⊂ 𝐴𝑖 and any 𝑥 ∈ 𝐴𝑖 ∖𝐴𝑗, 𝑝(𝑥) = 0.

In the language of Section 2, this means that 𝑃C (I𝐴𝑖
−

I𝐴𝑖+1
) = 0 if 𝐴𝑗 ⊂ 𝐴𝑖, so any atom in 𝐴𝑖 ∖𝐴𝑗 will always

have zero mass. Hence, we can simplify the digraph 𝒢C by
removing nodes that are sure to have zero mass: (i) any
atom in 𝐴𝑖 ∖ 𝐴𝑗 with 𝐴𝑗 ⊂ 𝐴𝑖; and (ii) if these removals
result in the formation of one or more extra disconnected
components, the entirety of those disconnected components
that used to be connected exclusively by incoming directed
edges from (the direct successors of) the previously removed
atoms.

Example 2. Consider X = {1, 2, 3, 4, 5, 6} and let

C = {({1}, {2, 3}), ({2}, {4, 5}), ({3}, {6}), ({4}, {1})}.

Then in C ′ we can form the cycle

{1} ⪰ {2, 3} ⪰ {2} ⪰ {4, 5} ⪰ {4} ⪰ {1}.

Thus, by Proposition 8, any 𝑝 ∈ MC should satisfy 𝑝(3) =
𝑝(5) = 0, and as a consequence also 𝑝(6) = 0. From
this it follows that MC has only one element, namely the
probability mass function (1/3, 1/3, 0, 1/3, 0, 0).

Remark 1. Our graphical representation also allows us to
simplify somewhat the study of the compatibility problem
and the extreme points in the following manner. We define
a relationship 𝑅 between the elements of X as

𝑥𝑅𝑦 ⇔ there is a directed cycle going through 𝑥 and 𝑦.

It is easy to see that 𝑅 is an equivalence relationship. Hence,
we may consider the different equivalence classes and the
directed edges between them that can be derived from 𝒢C ,
leading to a new acyclic digraph 𝒢′

C on the equivalence
classes. Let 𝒢′

𝑖 denote the subdigraph associated with the
𝑖-th equivalence class and C𝑖 the corresponding subset of
comparative judgements. Observe that

(i) the set MC is non-empty if and only if there is some
subdigraph 𝒢′

𝑖 with no predecessors in 𝒢′
C such that

MC𝑖 is non-empty;

(ii) if a subgraph 𝒢′
𝑖 is such that MC𝑖

is empty, then for
each of its successors 𝒢′

𝑗 any element of MC gives
zero probability to the nodes in 𝒢′

𝑗.

This also allows us to remove redundant parts of the graph.
To illustrate this, we consider the following example:

let X = {1, 2, 3, 4, 5, 6, 7, 8} and let

C = {({1}, {2, 3}), ({2}, {1}), ({2}, {8}),

({4}, {5, 6}), ({5}, {4, 6}), ({6}, {4, 5}),

({4}, {3}), ({3}, {7})}.

Then the equivalence classes with respect to 𝑅 are given
by 𝐴1 = {1, 2}, 𝐴2 = {3}, 𝐴3 = {4, 5, 6}, 𝐴4 = {7} and
𝐴5 = {8}, and the relationships between them are given by
the graph depicted in Figure 3. From the assessment

𝐴1

𝐴2

𝐴3

𝐴4𝐴5

Figure 3: Graph of the equivalence classes in Example 1

C3 = {({4}, {5, 6}), ({5}, {4, 6}), ({6}, {4, 5})}

associated with the equivalence class 𝐴3, it follows that the
credal set MC3

is empty. This means that we can remove
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from our set of assessments those involving {4, 5, 6} as well
as those associated with the equivalence classes that are
their successors in the graph above, namely 𝐴2 and 𝐴4,
because all those elements are bound to have probability
zero.
The resulting graph is the one associated with the equival-
ence classes 𝐴1 and 𝐴5. Since only the first one has no
predecessors, it follows that the set MC will be non-empty
if and only if MC1

is non-empty, where C1 is obtained by
making the intersection of C with the nodes in 𝐴1 = {1, 2},
that is,

C1 = {({1}, {2}), ({2}, {1})}.

4.3. Acyclic digraphs

If a digraph is free of directed cycles, then we call it
acyclic [21, Section 4.2]. Any acyclic digraph has at least
one node with indegree zero [21, Lemma 4.1]. Therefore,
the following result is an immediate corollary of Lemma 5;
alternatively, it is also a corollary of Propositions 11 and
13 further on.

Corollary 9. If the digraph 𝒢C associated with the com-
parative assessment C is acyclic, then the associated com-
parative credal set MC is non-empty.

On the other hand, a digraph is acyclic if and only
if it has a topological ordering, sometimes also called an
acyclic numbering [21, Proposition 4.1]. This necessary
and sufficient condition allows us to establish the following
result.

Proposition 10. The digraph 𝒢C associated with C is
acyclic if and only if there is an ordering 𝑥1, . . . , 𝑥𝑛 of the
atoms of the possibility space X such that

(∀(𝐴,𝐵) ∈ C )(∃𝑖 ∈ {1, . . . , 𝑛− 1})

𝐴 ⊆ {𝑥1, . . . , 𝑥𝑖} and 𝐵 ⊆ {𝑥𝑖+1, . . . , 𝑥𝑛}.

Running example. It is easy to verify using Figure 2
that the graph 𝒢C is acyclic. Thus, by Corollary 9, the
comparative credal set is non-empty, which confirms what
we have previously seen. Clearly, 1, 2, 3, 4 is an ordering of
X that satisfies the condition of Proposition 10.

4.4. Strict comparative assessments

Our graphical representation also has implications when
we consider a strict preference relation, where 𝐴 ≻ 𝐵 is
to be interpreted as ‘the event 𝐴 is more likely than the
event 𝐵.’ For a given set C of comparative judgements,
we now consider the set

M>
C :=

{︂
𝑝 ∈ ΣX : (∀(𝐴,𝐵) ∈ C )

∑︁
𝑥∈𝐴

𝑝(𝑥) >
∑︁
𝑦∈𝐵

𝑝(𝑦)

}︂
of probability mass functions that are compatible with
the strict comparative judgements. Since the set MC is

a polytope, it follows that it is the closure of M>
C (in the

topology associated with the Euclidean distance), provided
that this latter set is non-empty. In our case, we can prove
something stronger: M>

C is the topological interior of MC .

Proposition 11. For any comparative assessment C , it
holds that M>

C = int(MC ).

In our next result, we establish a necessary and sufficient
condition for M>

C to be non-empty; by Proposition 11, this
condition ensures that MC is non-empty.

Proposition 12. Let C be a comparative assessment.
Then the following are equivalent:

(i) M>
C is non-empty.

(ii) Given the set 𝒦C defined by Eqn. (2), 0 /∈ posi(𝒦C ∪
ℒ+).

(iii) For every (𝐴,𝐵) ∈ C , 𝑃C (I𝐴 − I𝐵) > 0.

In the case of elementary comparisons, it was established
in [32, Lemma 1] that M>

C is non-empty if and only if the
digraph 𝒢C is acyclic. In the general case, the lack of
directed cycles turns out to be sufficient as well, leading to
a result akin to Corollary 9.

Proposition 13. Let C be a set of strict comparative
assessments. If the associated digraph 𝒢C is acyclic, then
M>

C is non-empty.

Quite remarkably and in contrast with the case of ele-
mentary probability comparisons, M>

C can be non-empty
even though the digraph 𝒢C has directed cycles. For ex-
ample, if X = {1, 2, 3} and we make the assessments
({1, 2}, {3}) and ({3}, {1}), then the graph has a cycle in-
volving 1 and 3; however, the probability mass function
(0.25, 0.45, 0.3) is compatible with the strict assessments.

On the other hand, a necessary condition for M>
C to be

non-empty is that we cannot derive from C a cycle of the
type 𝐴1 ≻ 𝐴2 ≻ · · · ≻ 𝐴𝑘 ≻ 𝐴1. This is equivalent to the
graph being acyclic in the case of elementary probability
comparisons, and this is what leads to [32, Lemma 1]; how-
ever, the two conditions are not equivalent in the general
case.

Finally, we may also consider the mixed scenario where
we consider the union of some set C1 of strict comparisons—
that is, of the type ‘𝑃 (𝐴) > 𝑃 (𝐵)’—and a set C2 of weak
comparisons—as in ‘𝑃 (𝐴) ≥ 𝑃 (𝐵)’. It follows from Propos-
ition 11 that in that case the set of compatible probability
measures M is a convex set whose interior is M>

C1∪C2
and

whose closure is MC1∪C2
. Proposition 13 implies that if

the associated digraph 𝒢C is acyclic, then M is non-empty.
Finally, with a proof similar to that of Proposition 12 we
can prove that M is non-empty when 𝑃C1∪C2(I𝐴−I𝐵) > 0
for every (𝐴,𝐵) ∈ C1.

5. Extreme points of the comparative credal set

As we have often mentioned before, Miranda and Dester-
cke [32] show that in the case of elementary comparative
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assessments, the extreme points of the comparative credal
set can be determined using a graphical representation.
More specifically, they show that

E1. all the extreme points of MC correspond to uniform
probability distributions [32, Lemma 2];

E2. if 𝐶 ∈ 2X is the support of an extreme point, then
𝐶 = 𝐻 ′(𝐶) [32, Lemma 3];

E3. there are at most 2𝑛−1 extreme points, and this bound
is tight [32, Theorem 4].

Unfortunately, these observations do not hold in the case of
non-elementary comparative assessments, as is illustrated
by the following example.

Example 3. Let X := {1, . . . , 5}, and let C be given by

C := {({1, 4}, {5}), ({2, 4}, {1}), ({2, 5}, {1}),

({2, 3, 5}, {4}), ({2, 3}, {1}), ({2, 4, 5}, {3}),

({1, 2, 3}, {4, 5}), ({3, 4}, {5}), ({1, 5}, {3}),

({1, 3, 4, 5}, {2}), ({1, 3, 5}, {4}), ({3, 4, 5}, {1})}.

The 34 extreme points of MC are reported in Table 1. Note
that 34 > 25 = 32. We observe that (E1) does not hold
because 𝑝4 is not a uniform distribution; (E2) does not hold
because the support of 𝑝1 is {1, 2, 4} but 𝐻 ′({1, 2, 4}) =
{1, 2, 3, 4, 5}; and (E3) does not hold because there are
more than 25−1 = 16 extreme points.

In fact, we see from Example 3 that a comparative credal
set can have more than 2𝑛 extreme points. Consequently,
we cannot use the strategy of [32, Algorithm 1]—that is,
construct the possible supports and use the uniform distri-
bution over them—to immediately determine the extreme
points of the comparative credal set for some general com-
parative assessment. This being said, we have nevertheless
identified some special cases other than the elementary one
in which we can generate the extreme points using the
digraph 𝒢C .

In the upcoming sections, we will consider a few of these
cases by placing conditions on the structure of comparative
assessments. As we have mentioned already, [32] deals
with the case where all the events are singletons. It is
straightforward to show that similar results hold when we
consider comparisons on an element of a partition of the
possibility space. Our first result takes this idea a bit
further.

5.1. Multi-level partitions of comparative assessments

As a first special case, we consider a straightforward
extension of [32] using a multi-level approach. At the
core of this special case are some nested partitions of the
possibility space and the restriction that the comparative
judgements can only concern events that are on the same
level of the nested partitions and belong to the same part
of the partition in the previous level. We will here only
explain the two-level case in detail; extending the approach
to multiple levels is straightforward.

Let 𝐶1, . . . , 𝐶𝑘 be a partition of the possibility space X .
A comparative assessment C is two-level over this partition
if it can be partitioned as

C = C ′ ∪
𝑘⋃︁

𝑖=1

C𝑖,

with C ′ := C ∩ {(𝐴,𝐵) : 𝐴,𝐵 ∈ {𝐶1, . . . , 𝐶𝑘}} and C𝑖 :=
C ∩ {({𝑥}, {𝑦}) : 𝑥, 𝑦 ∈ 𝐶𝑖} for all 𝑖 ∈ {1, . . . , 𝑘}. Observe
that if such a decomposition exists, then we can interpret
C ′ as an elementary comparative assessment with possibil-
ity space X ′ := {𝐶1, . . . , 𝐶𝑘} and, for all 𝑖 ∈ {1, . . . , 𝑘}, we
can interpret C𝑖 as an elementary comparative assessment
with possibility space 𝐶𝑖. Hence, we may use the algorithm
described in [32] to determine the extreme points of the
comparative credal sets corresponding to these element-
ary comparative assessments, which we shall denote by
M ′

el, Mel,1, . . . , Mel,𝑘, respectively. The following result
establishes that we can combine these extreme points to ob-
tain the extreme points of the original comparative credal
set MC .

Proposition 14. Consider a comparative assessment C
that is two-level over the partition 𝐶1, . . . , 𝐶𝑘 of the possib-
ility space X . Then ext(MC ) is given by{︀

comb(𝑝, 𝑝1, . . . , 𝑝𝑘) :

𝑝 ∈ ext(M ′
el), (∀𝑖 ∈ {1, . . . , 𝑘}) 𝑝𝑖 ∈ ext(Mel,𝑖)

}︀
,

where comb(𝑝, 𝑝1, . . . , 𝑝𝑘) is the probability mass function
defined for all 𝑖 ∈ {1, . . . , 𝑘} and 𝑥 ∈ 𝐶𝑖 as

comb(𝑝, 𝑝1, . . . , 𝑝𝑘)(𝑥) := 𝑝(𝐶𝑖)𝑝𝑖(𝑥).

Furthermore, as a corollary of Proposition 14 and [32,
Theorem 4] we obtain the following bound on the number
of extreme points.

Corollary 15. Consider a comparative assessment C that
is two-level over some partition. Then |ext(MC )| ≤ 2𝑛−1.

The following example illustrates the result.

Example 4. Consider X = {1, 2, 3, 4}, and let C be given
by

C = {({1, 2}, {3, 4}), ({1}, {2}), ({3}, {4})}.
This corresponds to a two-level comparative assessment
associated with the partition 𝐶1 := {1, 2} and 𝐶2 := {3, 4}}.
It is not difficult to see that ext(M ′

el) = {(1, 0), ( 12 ,
1
2 )} (on

X ′ = {𝐶1, 𝐶2}), ext(Mel,1) = {(1, 0), ( 1
2 ,

1
2 )} (on 𝐶1 =

{1, 2}) and ext(Mel,1) = {(1, 0), ( 1
2 ,

1
2 )} (on 𝐶2 = {3, 4}).

Applying Proposition 14 we conclude that ext(MC ) is given
by

𝑝1 := (1, 0, 0, 0), 𝑝2 := (1/2, 1/2, 0, 0),

𝑝3 := (1/2, 0, 1/2, 0), 𝑝4 := (1/2, 0, 1/4, 1/4),

𝑝5 := (1/4, 1/4, 1/2, 0), 𝑝6 := (1/4, 1/4, 1/4, 1/4),

resulting from the combination of the extreme points at
the different levels.
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Table 1: The extreme points of the comparative assessment in Example 3.

𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

𝑝𝑖(1) 1
3

1
3

1
4

3
8

1
7

1
5

1
5 0 1

6
1
4

1
4

1
3

1
4

1
4

1
3

3
14

4
11

𝑝𝑖(2) 1
3

1
3 0 2

8 0 0 1
5

1
2 0 1

4
1
8

1
3

1
4

1
4

1
3

1
14

3
11

𝑝𝑖(3) 0 1
3

1
4

1
8

3
7

2
5

2
5 0 1

3 0 1
8 0 0 1

4
1
6

3
14

1
11

𝑝𝑖(4) 1
3 0 1

4
1
8

1
7

1
5 0 1

4
1
6

3
8

3
8

1
6

1
4 0 0 2

14
1
11

𝑝𝑖(5) 0 0 1
4

1
8

2
7

1
5

1
5

1
4

1
3

1
8

1
8

1
6

1
4

1
4

1
6

5
14

2
11

𝑖 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

𝑝𝑖(1) 3
12 0 1

10
1
6

1
5

2
12 0 1

4
1
4

1
4

1
6

1
8

1
4 0 0 1

4
1
7

𝑝𝑖(2) 1
12

1
4 0 0 1

5
1
12

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
2

1
2

1
7

𝑝𝑖(3) 2
12

1
4

4
10

1
3

1
5

3
12

1
6 0 0 1

4
1
6

1
4

1
8

1
6

1
8

1
8

3
14

𝑝𝑖(4) 2
12

1
4

2
10

1
3

2
5

5
12

1
6

1
4

1
8 0 0 0 0 1

3
1
4

1
4

3
7

𝑝𝑖(5) 4
12

1
4

3
10

1
6 0 1

12
1
6 0 1

8 0 1
6

1
8

1
8

1
6

1
8 0 1

14

Remark 2. While simple, the result in this section allows
us to generalise some of the comments on [32, Section 5.2]
about imprecise mass functions; see also [1] and [19].

Imprecise mass functions arise in the context of eviden-
tial theory, where a measure 𝑚 of imprecise information is
allocated into the subsets of X , and then this determines
the lower envelope 𝑃 of the set of compatible probability
measures by means of

𝑃 (𝐴) =
∑︁
𝐵⊆𝐴

𝑚(𝐵).

The lower probability obtained in this manner is a belief
function, and is therefore connected with a random set.

As discussed in [32], we may have imprecise inform-
ation about the mass function 𝑚, and model this inform-
ation through some comparative assessments of the type
𝑚(𝐴𝑖) ≥ 𝑚(𝐴𝑗) for different 𝐴𝑖, 𝐴𝑗 ⊆ X . We may con-
sider then the set of compatible mass functions ℳ that in
turn shall determine a convex set of probability measures.
Note that this is equivalent to consider second-order probab-
ility models, that have been deemed of interest in psychology
[14, 23, 31].

While in [32] only comparisons between disjoint subsets
of X where considered, we may consider general comparis-
ons, by noticing that (i) these will correspond to elementary
subsets of 𝒫(X ), and so the results on elementary com-
parative probabilities are applicable if we place ourselves
in that framework; and (ii) that even in X we could also
consider the more general structures tackled in this paper.

5.2. Acyclic digraphs

Recall from Section 4.4 that the absence of cycles sim-
plifies things if we are interested in the compatibility with

strict comparative judgements. Hence, it does not seem all
too far-fetched that determining the (number of) extreme
points of the comparative credal set induced by a (non-
strict) comparative assessment also simplifies under the
absence of cycles. As will become clear in the remainder,
this is only certainly so in some special cases.

First, we revisit the three main points of [32] that we
recalled at the beginning of this section in the case of
acyclic graphs. Our running example shows that also in
the acyclic case (E1) does not hold because 𝑝7, 𝑝8 and
𝑝9 are not uniform; (E2) does not hold because 𝑝3 has
support 𝐶3 := {1, 3} but 𝐻 ′(𝐶3) = {1, 2, 3} ≠ 𝐶3; and
(E3) does not hold because there can be more than 24−1 =
8 extreme points. Furthermore, since different extreme
points can have the same support—in our running example,
this is the case for 𝑝7, 𝑝8 and 𝑝9—there is no reason why
the number of extreme points should be bounded above
by 2𝑛. Nevertheless, and despite our rather extensive
search, we have not succeeded in finding an example of a
comparative assessment C with an acyclic digraph 𝒢C that
has a comparative credal set with more than 2𝑛 extreme
points. This is in contrast with the cyclic case, as we have
shown in Example 3.

While the absence of cycles alone does not seem to
allow us to efficiently determine the extreme points, there
are two interesting special cases that permit us to do so.
Essential to both these special cases is a specific class of
subdigraphs of the digraph 𝒢C . To define this class, we first
need to introduce two concepts from graph theory. The
first concept is that of the root of a digraph ℋ: a node 𝜈
such that for any other node 𝜈′, there is a directed path
from 𝜈 to 𝜈′. The second concept is that of an arborescence:
a digraph that has a root and whose underlying graph is

9



a tree. We see for instance that the graph depicted in
Figure 2 is not an arborescence, since there is more than
one path between the elements 1 and 4, while the digraph
depicted in Figure 4 is an arborescence.

1 𝜉1 2 𝜉2 3 𝜉3

Figure 4: An arborescence that is a subdigraph of the acyclic di-
graph 𝒢C depicted in Figure 2.

We now call a subdigraph 𝒢′ of the digraph 𝒢C an
extreme arborescence if (i) it is an arborescence whose
root 𝑥⋆ has no predecessors in the digraph 𝒢C ; and (ii)
each of its auxiliary nodes has one direct predecessor and
one direct successor.

Running example. The digraph depicted in Figure 4 is
not an extreme arborescence for 𝒢C , because the auxiliary
node 𝜉3 has no direct successor. Figure 5 depicts some
examples of subdigraphs of 𝒢C that are extreme arbores-
cences.

1 𝜉1 2

1 𝜉1 2 𝜉2 3 𝜉3 4

1 𝜉2 3

Figure 5: Some extreme arborescences for the digraph 𝒢C depicted
in Figure 2.

Important to note is that all extreme arborescences can
be easily procedurally generated. In essence, one needs
to (i) select a node 𝑥 without predecessors in the original
digraph 𝒢C ; (ii) either stop or, if possible, (a) add one of
the outgoing edges of 𝑥 and the auxiliary node 𝜉 in which
it ends, (b) add one of the outgoing edges of 𝜉 and the
corresponding successor atom 𝑦 given that 𝑦 is not already
in the arborescence; (iii) repeat step (ii) but with 𝑥 being
any of the atoms already in the arborescence.

5.2.1. Singular assessments

The first special case of acyclic digraphs concerns rep-
resenting digraphs where every (node corresponding to an)
atom of has at most one direct predecessor. We call a
comparative assessment C singular if

(∀𝑥 ∈ X ) |{(𝐴,𝐵) ∈ C : 𝑥 ∈ 𝐵}| ≤ 1.

That the asessment is singular means that the events
{𝐵𝑖 : 𝑖 = 1, . . . ,𝑚} in our set C are pairwise disjoint. This
could be of interest for instance if we consider partitions of
X and for each element 𝐵 in the partition we bound above
its probability by determining a disjoint subset 𝐴 such that
𝑃 (𝐴) ≥ 𝑃 (𝐵); working with partitions could be useful
when we first group the elements of X in clusters and later
we model our uncertainty about them using comparative
probabilities.

Remark 3. The underlying idea to singular graphs is re-
lated to the notion of sources of contradiction considered in
[34]. Roughly speaking, it was proven there that the prob-
lem of the compatibility of a number of (possibly imprecise)
conditional probability assessments becomes trivial when the
associated coherence graph satisfies two properties: being
acyclic and having no nodes with more than one parent.
The property of singularity we have introduced accounts for
this second condition in our different, and unconditional,
context. Like the notion of source of contradiction of co-
herence graphs, it allows us to simplify the analysis of the
structure of the credal set by preventing interactions that
may lead to potential conflicts between the assessments.

Running example. We see that the comparative assess-
ment C is not singular, since 4 appears in both the assess-
ments ({1, 3}, {4}) and ({1, 2}, {4}), while the comparative
assessment

C ′ := {({1}, {2}), ({1, 2}, {3}), ({2, 3}, {4})},

whose corresponding digraph is depicted in Figure 6, is.

1 𝜉1 2 𝜉2 3 𝜉3 4

Figure 6: A singular digraph 𝒢C ′

The graph associated with a singular assessment need
not be acyclic—for example, let X = {1, 2, 3} and con-
sider the comparative judgements ({1}, {2}), ({2}, {3}) and
({3}, {1}). In case it is, we can establish the following two
lemmas.

Lemma 16. Consider a singular assessment C with cor-
responding digraph 𝒢C that is acyclic, and let 𝑝 be an
extreme point of the comparative credal set MC with sup-
port X𝑝 := {𝑥 ∈ X : 𝑝(𝑥) > 0}. Then

(i) X𝑝 contains one atom 𝑥⋆ without predecessors;
(ii) there is a subdigraph 𝒢′ of 𝒢C that is an extreme

arborescence with root 𝑥⋆ and atoms X𝑝.

Lemma 17. Consider a singular assessment C such that
the corresponding digraph 𝒢C is acyclic, and fix a non-
empty event 𝐶 ∈ 2X . If there is a subdigraph 𝒢′ of 𝒢C that
is an extreme arborescence with atoms 𝐶, then there is an
extreme point that has 𝐶 as support.

These two lemmas allow us to establish the following
result.

Theorem 18. Consider a singular assessment C such that
the associated digraph 𝒢C is acyclic. Then every extreme
point 𝑝 of MC corresponds to a unique extreme arbores-
cence 𝒢′ ⊆ 𝒢C and vice versa, in the sense that 𝑝 is the
unique probability mass function that saturates the com-
parative constraints associated with the auxiliary nodes in
𝒢′ and the non-negativity constraints associated with the
atoms that are not in 𝒢′.

10



Because we can procedurally generate all extreme arbor-
escences, it follows that we can use Theorem 18 to generate
all extreme points of the comparative credal set. Another
consequence of Theorem 18 is that we can establish a lower
and upper bound on the number of extreme points in the
singular case.

Theorem 19. Consider a singular assessment C such that
the associated digraph 𝒢C is acyclic. Then

𝑛 ≤ |ext(MC )| ≤ 2𝑛−1.

These lower and upper bounds are reached, as we can
see from [32, Section 4.1].

5.2.2. Arborescences

Finally, we consider the case that the corresponding di-
graph 𝒢C is an arborescence. Clearly, for this it is necessary
that C is singular and that

(∀(𝐴,𝐵) ∈ C ) |𝐴| = 1. (4)

We see that the graph depicted in Figure 6 is not an ar-
borescence, while the one associated with the assessment
C := {({1}, {2, 3}), ({2}, {4}), ({3}, {5})}, depicted in Fig-
ure 7, is. This also illustrates the fact that in the case of
singular assessments the sets 𝐵 must be pairwise disjoint,
but they need not be singletons, as was the case with the
graph in Figure 6.

1 𝜉1 2 3 𝜉2 4 𝜉3 5

Figure 7: An example of a digraph 𝒢C that is an arborescence.

As arborescences are special types of acyclic digraphs,
we can strengthen Theorem 18 to be—in some sense—
similar to [32, Theorem 1]. The key idea here is that
with arborescences, we can establish a total order on the
possibility space that is compatible with the partial order
underlying to the graph, and this allows to somewhat
‘partition’ our possibility space according to the order, thus
making a connection with elementary comparisons. First
of all, we establish the following two lemmas.

Lemma 20. Consider an assessment C such that the asso-
ciated digraph 𝒢C is an arborescence. Let 𝑝 be an extreme
point of MC with support X𝑝 := {𝑥 ∈ X : 𝑝(𝑥) > 0}.
Then X𝑝 = 𝐻 ′(X𝑝) and the closest common predecessor
of any two 𝑥 and 𝑦 in X𝑝 is a non-auxiliary node.

Lemma 21. Consider an assessment C such that the
associated digraph 𝒢C is an arborescence. Let 𝐶 be a set of
states such that for any distinct 𝑥 and 𝑦 in 𝐶, their closest
common predecessor is a non-auxiliary node. Then

𝑝 : X → R : 𝑥 ↦→ 𝑝(𝑥) :=

{︃
1

|𝐻′(𝐶)| if 𝑥 ∈ 𝐻 ′(𝐶),

0 otherwise

is the unique extreme point of MC with support 𝐻 ′(𝐶).

Using these two lemmas, we can derive the following
result.

Theorem 22. Consider and assessment C such that the
associated digraph 𝒢C is an arborescence. Then the set of
extreme points of MC consists of the uniform distributions
on 𝐻 ′(𝐶), where 𝐶 is any set of atoms such that for all
𝑥, 𝑦 ∈ 𝐶, the closest common predecessor of 𝑥 and 𝑦 is a
non-auxiliary node.

We also observe that the bound on the number of
extreme points established in Theorem 19 is still valid.

Example 5. To see that this result does not extend to
singular assessments when condition (4) is not satisfied,
note that the extreme points of the assessment C depicted
in Figure 6 are

𝑝1 := (1, 0, 0, 0), 𝑝2 := (1/2, 1/2, 0, 0),

𝑝3 := (1/2, 0, 1/2, 0), 𝑝4 := (1/4, 1/4, 1/2, 0),

𝑝5 := (1/3, 1/3, 0, 1/3), 𝑝6 := (1/3, 0, 1/3, 1/3),

𝑝7 := (1/7, 1/7, 2/7, 3/7),

and that not all of these correspond to uniform distribu-
tions.

6. Connection with other fields and possible exten-
sions

In this section, we briefly discuss some connections
between our results in this paper and other fields as well
as some possible extensions of our work.

6.1. Ranking sets of objects

The partial orders we have considered in this paper can
also be found in the problem of ranking sets of objects [4, 22,
37]. Given a possibility space, a (possibly) partial order ⪰
is established on the subsets of X , with the interpretation
that 𝐴 ⪰ 𝐵 means that ‘the group formed by the elements
of 𝐴 is preferred to that formed by the elements of 𝐵’.
Then it is analysed under which condition a total ranking
can be established over the elements of X , possibly based
on a quantitative measure. This has links also with the
problem of measuring the strenghts of the coallitions in
coallitional game theory [3, 45]. Since the seminal work of
Kannai and Peleg [25], a number of impossibility theorems
have been established.

The partial orders ⪰ we have considered in this paper
can thus be embedded into this context, accounting to
the case where the ranking is based on some partially
known probability measure. Then our characterisation of
the extreme points of the set of compatible probabilities
allows us to determine the associated lower and upper
probabilities of each element, from which we could derive
a number of rankings.
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Nevertheless, we should mention that, in the context of
ranking of sets of objects, there will be interesting scenarios
where the order ⪰ is not monotone (we may for instance
have that {𝑥} ≻ {𝑥, 𝑦}) and then they could not be mod-
elled by means of comparative probability assessments.

6.2. Social choice theory

The previous comments are also related to social choice
theory, where a number of preference orderings over some
space X must be aggregated into a global order X . In this
sense, we could regard our order ⪰ as resulting from the
union of the partial preferences established by a number
of voters, and these partial preferences may be related
from comparative probability assessments. In that case,
it would first be useful to analyse the compatibility of all
these assessments, that is, to analyse whether there are
contradictory preferences among the voters, and for this
our results in Section 2.1 would be useful.

Moreover, for the connection to be clear, we should also
allow for the preferences to be very weak (for instance, a
voter may only say that 𝐴 is preferred to 𝐵, and establish no
further comparison between the subsets). In this respect,
it is useful to consider the works on the aggregation of
imprecise preferences, as in [15, 38]. As shown in [7], there
are interesting connections between belief aggregation [47]
and social choice that would be interesting to explore here.

6.3. Comparative imprecise probabilities

More generally, we could also tackle the problem of
comparing imprecise probability models. If we consider a
family 𝒞 of such models (for instance possibility measures,
belief functions, or probability intervals), this could be
done in two directions: (i) studying if the lower envelope
of the set of probability measures compatible with the
comparative assessments belongs to 𝒞; or (ii) perform the
comparison on the elements of 𝒞 instead of probability
measures, by considering for instance assessments of the
type ‘Π(𝐴) ≥ Π(𝐵)′ for a possibility measure Π.

While much work has to be done, a preliminary ana-
lysis leads us to conjecture that the result in (i) will only
be achieved by considering approximations of these lower
envelopes, considering that in [32] it was proven that for
elementary comparisons 2-monotonicity, which is the weak-
est requirement that may be added to the coherence that
holds from being the envelope of a convex set of probabil-
ity measures, is not satisfied. Nevertheless, the results on
outer approximating coherent lower probabilities by more
tractable models in [33, 35, 36] would be useful.

Concerning (ii), convexity may be an issue in some
cases, such as possibility measures, but not in others, such
as belief functions. When that is not an issue, we think
that the theoretical results may be extended in a sort
of straightforward manner, but that the computational
complexity would increase significantly. Thus, it would be

interesting to consider particular cases, such as probability
intervals [6] or 𝑝-boxes [13].

7. Conclusions

As we have seen, the study of the set of probability
measures associated with some compatible comparative
judgements becomes significantly more involved when the
comparisons involve non-elementary events. Our contribu-
tions in this respect have followed two different directions.
On the one hand, we have shown that coherent lower pre-
visions and sets of almost-desirable gambles can be used
to solve the fundamental problems of compatibility, re-
dundancy and saturation of the constraints. On the other
hand, we have shown that a graphical representation can be
used to (i) decompose the analysis of the set of compatible
probability measures into a set of simpler subproblems; (ii)
connect the strict and non-strict probability comparisons;
(iii) give a tighter bound on the number of extreme points of
the credal sets; and (iv) characterise these extreme points
in a number of cases. In addition, we have also shown that
these results cannot be extended to the general case.

Although we find the above results promising, there are
some open problems that call for additional research, which
should help towards making this model more operative for
practical purposes. First and foremost, we would like to
deepen the study of the acyclic case, and in particular to
determine the number and the shape of the extreme points
in other particular cases. In addition, a bound on the
number of linearly independent constraints, in the manner
hinted at in Section 3, should let us get a better bound
on the number of extreme points. Finally, we should also
look for graph decompositions that allow to work more
efficiently with comparative judgements.
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Appendix: Proofs

Proof of Proposition 2 (i). By the condition of the state-
ment, there are positive real numbers 𝜆1, . . . , 𝜆𝑘 > 0, judge-
ments (𝐴𝑗1 , 𝐵𝑗1), . . . , (𝐴𝑗𝑘 , 𝐵𝑗𝑘) ∈ C ∖ {(𝐴,𝐵)} and

ℎ ∈ ℒ+ such that I𝐴 − I𝐵 = ℎ +
∑︀𝑘

𝑖=1 𝜆𝑖(I𝐴𝑗𝑖
− I𝐵𝑗𝑖

).
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Then for any 𝑝 ∈ MC∖{(𝐴,𝐵)},∑︁
𝑥∈𝐴

𝑝(𝑥) −
∑︁
𝑥∈𝐵

𝑝(𝑥)

=
∑︁
𝑥∈X

ℎ(𝑥)𝑝(𝑥) +

𝑘∑︁
𝑖=1

𝜆𝑖

⎛⎝ ∑︁
𝑥∈𝐴𝑗𝑖

𝑝(𝑥) −
∑︁

𝑥∈𝐵𝑗𝑖

𝑝(𝑥)

⎞⎠
≥ 0,

and therefore 𝑝 ∈ MC . The converse inclusion is trivial.

Proof of Proposition 2 (ii). 𝑃C , the lower envelope of MC ,
is the natural extension [48, Section 3.1] of the lower previ-

sion 𝑃
′

C on 𝒦C given by 𝑃
′

C (I𝐴−I𝐵) = 0 for all (𝐴,𝐵) ∈ C .
If there is some (𝐴,𝐵) ∈ C such that 𝑃C (I𝐴−I𝐵) > 0, this

means that 𝑃
′

C is not coherent [48, Theorem 3.1.2], because
it does not coincide with its natural extension. Applying
[48, Theorem 3.1.1], this means that there are positive real
numbers 𝜇, 𝜆1, . . . , 𝜆𝑘 > 0 and judgements (𝐴𝑗1 , 𝐵𝑗1), . . . ,
(𝐴𝑗𝑘 , 𝐵𝑗𝑘) ∈ C ∖ {(𝐴,𝐵)} such that

I𝐴 − I𝐵 − 𝜇 ≥
𝑘∑︁

𝑖=1

𝜆𝑖(I𝐴𝑗𝑖
− I𝐵𝑗𝑖

).

However, this implies that I𝐴 − I𝐵 belongs to posi(ℒ+ ∪
𝒦C ∖ {I𝐴 − I𝐵}), a contradiction.

Proof of Proposition 3. The proof is analogous to that of
Wallner [50]. He bounds the number of extreme points of
the credal set corresponding to a coherent lower probab-
ility 𝐿. This credal set is bounded by 𝑛2 − 1 inequality
constraints of the form

∑︀
𝑥∈𝐴 𝑝(𝑥) ≥ 𝐿(𝐴), with 𝐴 a sub-

set of X , and the normalisation equality constraint. An
extreme point of the credal set is determined by 𝑛 of these
inequality constraints, and the corresponding vectors I𝐴1

,
. . . , I𝐴𝑛 then form a basis for R𝑛. Different extreme points
have incompatible bases—that is, the interior of their con-
vex hulls is disjoint—and he then bounds the number of
incompatible bases with {0, 1}-valued basis vectors through
the volume of their convex hull: the volume of the convex
hull of such a basis is at least 1/𝑛!, and the volume of the
union of the interiors of these bases is bounded above by
the volume of [0, 1]𝑛—so 1. In our case, we have incompat-
ible bases with {−1, 0, 1}-valued basis vectors—that is, one
of 𝑝(𝑥) ≥ 0,

∑︀
𝑥∈X 𝑝(𝑥) = 1 or

∑︀
𝑥∈𝐴 𝑝(𝑥) ≥

∑︀
𝑥∈𝐵 𝑝(𝑥)—

and the volume is bounded by the volume of [−1, 1]𝑛 instead
of that of [0, 1]𝑛, which is 2𝑛 instead of 1.

Alternatively, the result also follows from [12, The-
orem 4.4], considering that the polytope 𝑄𝐴 defined in that
proof satisfies 𝑄𝐴 ⊆ [−1, 1]𝑛 and so 𝒱(𝑄𝐴) ≤ 𝒱([−1, 1]𝑛) =
2𝑛.

Proof of Proposition 4. Note that the judgment (𝐴,𝐵) cor-
responds to partitioning the possibility space X in three
pairwise disjoint parts, namely 𝐴, 𝐵 and X ∖ (𝐴 ∪ 𝐵),
where only the third part can be empty. Clearly, this is

equivalent to labelling each atom 𝑥 of the possibility space
with one of the three parts, where we have to ensure that
the first two parts are non-empty. Labelling the atoms
with one of the three parts can be done in 3𝑛 ways. This
includes three cases that are invalid: (i) 1 instance of the
form (∅, ∅,X ), (ii) 2𝑛 − 1 instances of the form (∅, 𝐴,𝐴c)
with 𝐴 ̸= ∅, and (iii) 2𝑛 − 1 instances of the form (𝐴, ∅, 𝐴c)
with 𝐴 ̸= ∅. Therefore,

𝑚 ≤ 3𝑛 − 1 − 2𝑛 + 1 − 2𝑛 + 1 = 3𝑛 − 2𝑛+1 + 1.

Proof of Lemma 5. Let 𝑥 be a node without predecessors—
that is, without any incoming edges. By construction of the
digraph 𝒢C , this implies that 𝑥 is a non-auxiliary node—
that is, an atom of the possibility space X —and that
𝑥 /∈ 𝐵𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}. One can now immediately
verify that the probability mass function 𝑝 := I𝑥—that is,
the degenerate probability mass function on 𝑥—satisfies
all judgements, and therefore belongs to the comparative
credal set MC . Consequently, MC is non-empty.

Proof of Lemma 6. Assume first of all that 𝑥 is a node
without predecessors. From the proof of Lemma 5 that 𝑝
satisfies all comparisons, so it belongs to the comparative
credal set MC . To verify that 𝑝 is an extreme point, we
observe that (i) ⟨𝑝, IX ⟩ = 1 and, for all 𝑦 ∈ X ∖ {𝑥},
⟨𝑝, I𝑦⟩ = 𝑝(𝑦) = 0; and (ii) IX and I𝑦 with 𝑦 ∈ X ∖ {𝑥}
are 𝑛 linearly independent vectors because

I𝑥 = IX −
∑︁

𝑦∈X ∖{𝑥}

I𝑦.

Conversely, if 𝑥 has a predecessor 𝑦 in the graph, it follows
that 𝑝 satisfies 𝑝(𝑦) = 0 < 𝑝(𝑥) = 1, and therefore it
does not belong to the comparative credal set MC . As
a consequence, it cannot be an extreme point of this set,
either.

Proof of Proposition 7. If the digraph 𝒢C is connected—
that is, has a single connected component—then the stated
is trivially true. Therefore, we assume that the digraph 𝒢C

has at least two connected components. Our proof is one
by contradiction. Fix some extreme point 𝑝 of MC , and
assume ex absurdo that its support X𝑝 := {𝑥 ∈ X : 𝑝(𝑥) >
0} intersects with more than one of the respective sup-
ports X1, . . . ,X𝑘 of the connected components, 𝒢1, . . . ,𝒢𝑘

with 𝑘 ≥ 2. For any 𝑖 ∈ {1, . . . , 𝑘}, we construct a new
probability mass function 𝑝𝑖 from the extreme point 𝑝 by
setting the mass outside of X𝑖 to zero and renormalising:

𝑝𝑖 : X → [0, 1] : 𝑥 ↦→ 𝑝𝑖(𝑥) :=

⎧⎨⎩
𝑝(𝑥)

𝛼𝑖
if 𝑥 ∈ X𝑖,

0 otherwise

with 𝛼𝑖 :=
∑︀

𝑦∈X𝑖∩X 𝑝(𝑦). Observe that, by construc-
tion, 𝑝 is a convex combination of 𝑝1, . . . , 𝑝𝑘 with weights
𝛼1, . . . , 𝛼𝑘. Next, we observe that 𝑝1, . . . , 𝑝𝑘 all satisfy the
comparative assessments, so they belong to the comparat-
ive credal set MC . To verify this, it suffices to observe that
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for any comparative assessment (𝐴,𝐵) ∈ C , the events
𝐴 and 𝐵 are subsets of (the set of nodes of) the same
connected component by construction of the digraph 𝒢C .
Summarising, we have shown that 𝑝 is a convex combina-
tion of 𝑘 ≥ 2 elements of the comparative credal set MC ,
and as a consequence it cannot be an extreme point.

Proof of Proposition 8. Fix some 𝑝 ∈ MC . Observe that
𝐴1 ⪰ 𝐴2 ⪰ · · · ⪰ 𝐴𝑘 ⪰ 𝐴𝑘+1 = 𝐴1 implies that∑︁

𝑥∈𝐴1

𝑝(𝑥) ≥
∑︁
𝑥∈𝐴2

𝑝(𝑥) ≥ · · · ≥
∑︁
𝑥∈𝐴𝑘

𝑝(𝑥) ≥
∑︁
𝑥∈𝐴1

𝑝(𝑥),

so
∑︀

𝑥∈𝐴𝑖
𝑝(𝑥) =

∑︀
𝑥∈𝐴𝑗

𝑝(𝑥) for all 𝑖, 𝑗 in {1, . . . , 𝑘}. Thus,

if 𝑖 and 𝑗 are indices in {1, . . . , 𝑘} such that 𝐴𝑗 ⊂ 𝐴𝑖, then
clearly∑︁

𝑥∈𝐴𝑖

𝑝(𝑥) =
∑︁
𝑥∈𝐴𝑗

𝑝(𝑥) +
∑︁

𝑥∈𝐴𝑖∖𝐴𝑗

𝑝(𝑥) =
∑︁
𝑥∈𝐴𝑗

𝑝(𝑥).

Because the probability mass function 𝑝 is non-negative,
we infer from the second equality that 𝑝(𝑥) = 0 for all 𝑥 in
𝐴𝑖 ∖𝐴𝑗 .

Proof of Proposition 10. We first prove the necessity. As
the digraph 𝒢C is acyclic, it is well-known—see for in-
stance [21, Proposition 4.1]—that we can fix an order-
ing 𝜈1, . . . , 𝜈𝑛+𝑚 of its nodes such that the start of any
directed edge is ordered before the end of this directed edge.
Due to the way the digraph 𝒢C is constructed, this clearly
implies the existence of the ordering in the statement.

Next, we prove the sufficiency. Fix any directed path in
the digraph 𝒢C , and some atom 𝑥𝑖 that is along this path.
Due to the ordering and the condition on the comparisons,
it is clear that the next atom 𝑥𝑗 that is on the path has a
higher index according to the ordering: 𝑗 ≥ 𝑖. This prevents
the path from being a cycle; as the directed path was
arbitrary, we infer from this that the graph is acyclic.

Proof of Proposition 11. Since M>
C = MC , it follows that

M>
C ⊆ int(M>

C ) = int(MC ).

Conversely, let 𝑝 be a mass function in int(MC ). Then
there is some 𝜖 > 0 such that any 𝑞 ∈ ΣX at a distance 𝜖
from 𝑝 also belongs to MC . Assume ex absurdo that 𝑝 does
not belong to M>

C . There there must be some (𝐴,𝐵) ∈ C
such that

∑︀
𝑥∈𝐴 𝑝(𝑥) =

∑︀
𝑥∈𝐵 𝑝(𝑥). As a consequence,∑︀

𝑥∈𝐵 𝑝(𝑥) ≤ 1/2, meaning that we can find some 𝑞 ∈ ΣX

such that∑︁
𝑥∈𝐵

𝑞(𝑥) >
∑︁
𝑥∈𝐵

𝑝(𝑥),
∑︁
𝑥∈𝐴

𝑞(𝑥) ≤
∑︁
𝑥∈𝐴

𝑝(𝑥)

and
(∀𝑥 ∈ X ) |𝑝(𝑥) − 𝑞(𝑥)| < 𝜖

𝑛
.

For example, in case
∑︀

𝑥∈𝐴 𝑝(𝑥) > 0, we can take any
𝑥1 ∈ 𝐵 and 𝑥2 ∈ 𝐴 with 𝑝(𝑥2) > 0, and define 𝑞 as

𝑞(𝑥) =

⎧⎪⎨⎪⎩
𝑝(𝑥) + 𝜖

𝐾 if 𝑥 = 𝑥1

𝑝(𝑥) − 𝜖
𝐾 if 𝑥 = 𝑥2

𝑝(𝑥) otherwise

where 𝐾 > 𝑛 is large enough so that 𝑝(𝑥2) − 𝜖
𝐾 ≥ 0 and

𝑝(𝑥1) + 𝜖
𝐾 ≤ 1 (i.e., 𝐾 > max{𝑛, 𝜖

𝑝(𝑥2)
, 𝜖
1−𝑝(𝑥1)

}).

As a consequence, we obtain that∑︁
𝑥∈𝐴

𝑞(𝑥) <
∑︁
𝑥∈𝐵

𝑞(𝑥),

so 𝑞 /∈ MC . However, because the Euclidean distance
between 𝑝 and 𝑞 is less than 𝜖, 𝑞 belongs to MC , which is
a contradiction.

Proof of Proposition 12. That (i) and (ii) are equivalent
was already stated in [43, Theorem 1]; it can also be derived
using the Separation Theorem in [48, Appendix E1], taking
into account that our possibility space is finite and that we
are considering a finite set 𝒦.

To see that (i) implies (iii), note that any probability
mass function 𝑝 in M>

C is dominated by the upper prevision
𝑃 , in the sense that for all 𝑖 ∈ {1, . . . ,𝑚},

0 <
∑︁
𝑥∈𝐴𝑖

𝑝(𝑥) −
∑︁
𝑥∈𝐵𝑖

𝑝(𝑥) ≤ 𝑃 (I𝐴𝑖
− I𝐵𝑖

).

Conversely, if 𝑃 (I𝐴𝑖
−I𝐵𝑖

) > 0 for all 𝑖 ∈ {1, . . . ,𝑚}, then it
follows from coherence that for every 𝑖 ∈ {1, . . . ,𝑚}, there
is some 𝑝𝑖 ∈ MC such that

∑︀
𝑥∈𝐴𝑖

𝑝𝑖(𝑥)−
∑︀

𝑥∈𝐵𝑖
𝑝𝑖(𝑥) > 0

and∑︁
𝑥∈𝐴𝑖

𝑝𝑖(𝑥) −
∑︁
𝑥∈𝐵𝑖

𝑝(𝑥) ≥ 0 for all 𝑗 ∈ {1, . . . ,𝑚} ∖ {𝑖}.

If we define 𝑝 := (𝑝1 + · · ·+ 𝑝𝑚)/𝑚, then it is a probability
mass function that belongs to the convex set MC such that
for all 𝑖 in {1, . . . ,𝑚},∑︁

𝑥∈𝐴𝑖

𝑝(𝑥) −
∑︁
𝑥∈𝐵𝑖

𝑝(𝑥)

=

𝑚∑︁
𝑗=1

1

𝑚

(︁ ∑︁
𝑥∈𝐴𝑖

𝑝𝑗(𝑥) −
∑︁
𝑥∈𝐵𝑖

𝑝𝑗(𝑥)
)︁
> 0.

From this, we infer that 𝑝 ∈ M>
C ; consequently, M>

C is
non-empty.

Proof of Proposition 13. Because 𝒢C has no cycles, it fol-
lows from Proposition 10 that we can fix an ordering
𝑥1, . . . , 𝑥𝑛 of X such that for all 𝑖 ∈ {1, . . . ,𝑚}, there
is a 𝑗 ∈ {1, . . . , 𝑛 − 1} such that 𝐴𝑖 ⊆ {𝑥1, . . . , 𝑥𝑗} and
𝐵𝑖 ⊆ {𝑥𝑗+1, . . . , 𝑥𝑛}. Therefore, any probability mass func-
tion 𝑝 satisfying

𝑝(𝑥𝑖) >

𝑛∑︁
𝑗=𝑖+1

𝑝(𝑥𝑗) for all 𝑖 ∈ {1, . . . , 𝑛− 1}
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shall belong to M>
C . Thus, we are looking for a probability

mass function 𝑝 such that

𝑝(𝑥1) > 1 − 𝑝(𝑥1)

𝑝(𝑥2) > (1 − 𝑝(𝑥1)) − 𝑝(𝑥2)

𝑝(𝑥3) > (1 − 𝑝(𝑥1) − 𝑝(𝑥2)) − 𝑝(𝑥3)

...

𝑝(𝑥𝑛−1) > (1 − 𝑝(𝑥1) − · · · − 𝑝(𝑥𝑛−2)) − 𝑝(𝑥𝑛−1)

or equivalently,

2𝑝(𝑥1) > 1

2𝑝(𝑥2) + 𝑝(𝑥1) > 1

2𝑝(𝑥3) + 𝑝(𝑥2) + 𝑝(𝑥1) > 1

...

2𝑝(𝑥𝑛−1) + 𝑝(𝑥𝑛−2) + · · · + 𝑝(𝑥1) > 1

One probability mass function that satisfies these inequal-
ities is the one defined by 𝑝(𝑥𝑛) = 0 and, for all 𝑖 ∈
{1, . . . , 𝑛− 1}, by 𝑝(𝑥𝑖) = 1

2𝑖 + 1
(𝑛−1)2𝑛−1 .

Proof of Proposition 14. Any 𝑝 ∈ MC can be expressed as

𝑝 = comb(𝑞, 𝑞1, . . . , 𝑞𝑘),

where 𝑞 is a probability mass function on {𝐶1, . . . , 𝐶𝑘}
defined by 𝑞(𝐶𝑖) =

∑︀
𝑥∈𝐶𝑗

𝑝(𝑥) for all 𝑖 ∈ {1, . . . , 𝑘}, and

where for all 𝑖 ∈ {1, . . . , 𝑘}, 𝑞𝑖 is the probability mass
function on 𝐶𝑖 defined by

𝑞𝑖(𝑥) =

{︃
𝑝(𝑥)∑︀

𝑦∈𝐶𝑖
𝑝(𝑦) if

∑︀
𝑥∈𝐶𝑖

𝑝(𝑥) > 0

0 otherwise.

Moreover, it follows that in the construction above 𝑞 ∈ M ′
el

and 𝑞𝑖 ∈ Mel,𝑖 for each 𝑖 ∈ {1, . . . , 𝑘}.
Taking this into account, the result is now immediate,

since (i) 𝑝 cannot be an extreme point of MC if either 𝑞
can be expressed as a convex combination of other elements
of M ′

el or, for some 𝑖 such that 𝑞(𝐶𝑖) > 0, it holds that 𝑞𝑖
is not an extreme point of Mel,𝑖; and, conversely, (ii) any
combination of extreme points in the respective credal sets
will produce a probability mass function that cannot be
written as a convex combination of other elements of MC ,
and is therefore an element of ext(MC ).

Proof of Corollary 15. For all 𝑖 ∈ {1, . . . , 𝑘}, we let 𝑛𝑖

denote the cardinality of 𝐶𝑖. It follows from [32, The-
orem 4] that |ext(M ′

el)| ≤ 2𝑘−1 and, for all 𝑖 ∈ {1, . . . , 𝑘},
|ext(Mel,𝑖)| ≤ 2𝑛𝑖−1. Applying Proposition 14, we deduce

that

|ext(MC )| ≤ |ext(M ′
el)|

𝑘∏︁
𝑖=1

|ext(Mel,𝑖)|

≤ 2𝑘−1
𝑘∏︁

𝑖=1

2𝑛𝑖−1 = 2𝑛−1,

taking into account that 𝑛1 + · · · + 𝑛𝑘 = 𝑛.

Proof of Lemma 16. Let 𝑛𝑝 := |X𝑝|. We start our proof
by collecting all bounds on the credal set—i.e., convex
polytope—MC that are saturated by the extreme point 𝑝.
Let

ℬ𝑝 := {I𝑥 : 𝑥 ∈ X , ⟨𝑝, I𝑥⟩ = 0} = {I𝑥 : 𝑥 ∈ X c
𝑝 }

and

𝒞𝑝 := {I𝐴 − I𝐵 : (𝐴,𝐵) ∈ C , ⟨𝑝, I𝐴 − I𝐵⟩ = 0};

these are the vectors associated with the constraints 𝑝(𝑥) =
0 for 𝑥 ∈ X and

∑︀
𝑥∈𝐴 𝑝(𝑥) =

∑︀
𝑥∈𝐵 𝑝(𝑥) for (𝐴,𝐵) ∈ C

that are satisfied by 𝑝.
Recall that, as 𝑝 is an extreme point, there are 𝑛 − 1

vectors 𝑣1, . . . , 𝑣𝑛−1 in ℬ𝑝 ∪ 𝒞𝑝 such that 𝑣1, . . . , 𝑣𝑛−1, IX
are linearly independent.

To determine which vectors these are, we partition 𝒞𝑝
in two parts:

𝒞1 := {I𝐴 − I𝐵 ∈ 𝒞𝑝 : 𝐴 ∩ X𝑝 = ∅ = 𝐵 ∩ X𝑝}

and

𝒞2 := {I𝐴 − I𝐵 ∈ 𝒞𝑝 : 𝐴 ∩ X𝑝 ̸= ∅ ≠ 𝐵 ∩ X𝑝},

considering that if
∑︀

𝑥∈𝐴 𝑝(𝑥) =
∑︀

𝑥∈𝐵 𝑝(𝑥), then either
both have strictly positive probability or both have zero
probability. The first one represents those constraints that
are trivially saturated because both 𝐴,𝐵 have probability
zero, while the second is given by those (𝐴,𝐵) ∈ C with
strictly positive probability in 𝑝.

Note that the support of all of the vectors in ℬ𝑝 and
𝒞1 is a subset of X c

𝑝 , so there are at most |X c
𝑝 | = 𝑛− 𝑛𝑝

linearly independent vectors in ℬ𝑝 ∪ 𝒞1. Therefore, at
least 𝑛− 1 − (𝑛− 𝑛𝑝) = 𝑛𝑝 − 1 of the vectors 𝑣1, . . . , 𝑣𝑛−1

should belong to 𝒞2. However, 𝒞2 can contain at most
𝑛𝑝 − 1 vectors because (i) the digraph 𝒢C is acyclic; and
(ii) the assessment C is singular, meaning that for every
atom 𝑥 in the support X𝑝, there is at most one (𝐴,𝐵) in
C such that 𝑥 ∈ 𝐵. In conclusion, 𝒞2 consists of precisely
𝑛𝑝 − 1 vectors, and all of these are in the set of 𝑛 linearly
independent vectors determining the extreme point 𝑝.

Every vector in 𝒞2 corresponds to a unique judgement,
and the auxiliary node that corresponds to this judgement
clearly has at least one direct predecessor in the support
and at least on direct successor in the support. Observe
furthermore that for any atom 𝑥 in the support X𝑝 that has
a direct predecessor, this direct predecessor is an auxiliary

16



node that must also have a direct predecessor that is an
atom in the support X𝑝. Because (a) there are 𝑛𝑝 − 1
vectors in 𝒞2, (b) there are 𝑛𝑝 atoms in the support X𝑝,
(c) every atom has at most one predecessor because the
assessment C is singular, and (d) the digraph 𝒢C is acyclic,
we infer from this that there is precisely one atom 𝑥⋆ in
the support X𝑝 that has no predecessors, as required. This
proves the first part of the statement.

Next, we prove the second part of the statement. Con-
sider the subdigraph 𝒢′ of 𝒢C that consists of (the nodes
corresponding to the) atoms in the support X𝑝 and, for
each of the 𝑛𝑝 − 1 vectors in 𝒞2, the corresponding auxili-
ary node and the two directed edges that connect it to its
unique immediate successor and predecessor in the support.
Then by construction, this subdigraph 𝒢′ is an extreme
arborescence with root 𝑥⋆ and atoms X𝑝. This proves the
second part of the statement.

Proof of Lemma 17. If 𝐶 is a singleton, then this follows
from Lemma 6. Hence, from here on we assume that
𝑛𝐶 := |𝐶| > 1. Let 𝑥1, . . . , 𝑥𝑛 be the order of the atoms
that follows from Proposition 10; without loss of gener-
ality, we may assume that the root 𝑥⋆ of the extreme
arborescence with atoms 𝐶 has index 1. Furthermore, we
let 𝜎 : {1, . . . , 𝑛𝐶} → {1, . . . , 𝑛} be the increasing function
such that

𝐶 = {𝑥𝜎(1), . . . , 𝑥𝜎(𝑛𝐶)}.
Because C is singular and the atoms in 𝐶 are the atoms
of an extreme arborescence, it is clear that for all 𝑖 ∈
{2, . . . , 𝑛𝐶} there is a unique 𝜇(𝑖) in {1, . . . ,𝑚} such that
𝑥𝜎(𝑖) ∈ 𝐵𝜇(𝑖), and 𝐵𝜇(𝑖) ∩ 𝐶 = {𝑥𝜎(𝑖)}. Because 𝜎 is
increasing, we have also ensured that

(∀𝑖 ∈ {2, . . . , 𝑛𝐶}) 𝐴𝜇(𝑖) ∩ 𝐶 ⊆ {𝑥𝜎(1), . . . , 𝑥𝜎(𝑖−1)}. (5)

We first explicitly construct a probability mass func-
tion 𝑝 that has 𝐶 as support and saturates the comparative
assessments associated with the pairs (𝐴𝜇(2), 𝐵𝜇(2)), . . . ,
(𝐴𝜇(𝑛𝐶), 𝐵𝜇(𝑛𝐶)). To that end, we define 𝑞 : X → Z≥0 as
𝑞(𝑥) := 0 for all 𝑥 ∈ 𝐶c. Furthermore, we let 𝑞(𝑥𝜎(1)) = 1
and

𝑞(𝑥𝜎(𝑖)) :=
∑︁

𝑦∈𝐴𝜇(𝑖)

𝑞(𝑦) for all 𝑖 ∈ {2, . . . , 𝑛𝐶},

such that for all 𝑖 ∈ {2, . . . , 𝑛𝐶},∑︁
𝑥∈𝐴𝜇(𝑖)

𝑞(𝑥) =
∑︁

𝑦∈𝐵𝜇(𝑖)

𝑞(𝑦) = 𝑞(𝑥𝜎(𝑖)),

because 𝐵𝜇(𝑖) ∩ 𝐶 = {𝑥𝜎(𝑖)}. Finally, we let

𝑝 : X → [0, 1] : 𝑥 ↦→ 𝑝(𝑥) :=
𝑞(𝑥)∑︀

𝑦∈X 𝑞(𝑦)
.

It is easily verified that 𝑝 is a probability mass function
with the desired properties.

Next, we verify that 𝑝 is an extreme point. Recall
from before that this is the case if there are 𝑛 linearly

independent vectors among the constraint vectors that are
saturated. It is clear that by construction 𝑝 saturates the
constraints with vectors IX , I𝑥 with 𝑥 ∈ 𝐶c and I𝐴𝜇(𝑖)

−
I𝐵𝜇(𝑖)

with 𝑖 ∈ {1, . . . , 𝑛𝐶}. These vectors are linearly
independent if and only if for all real numbers 𝜆1, . . . , 𝜆𝑛

with at least one non-zero number,

𝜆1IX +

𝑛𝐶∑︁
𝑖=2

𝜆𝑖(I𝐴𝜇(𝑖)
− I𝐵𝜇(𝑖)

) +

𝑛∑︁
𝑖=𝑛𝐶+1

𝜆𝑖I𝑥𝜎′(𝑖) ̸= 0,

where we let 𝜎′ be any function from {𝑛𝐶 + 1, . . . , 𝑛} to
{1, . . . , 𝑛} such that X ∖ 𝐶 = {𝑥𝜎′(𝑛𝐶+1), . . . , 𝑥𝜎′(𝑛)}. In
other words, the above sum is not constant on zero, meaning
that there is some 𝑥 ∈ X such that

𝜆1 +

𝑛𝐶∑︁
𝑖=2

𝜆𝑖(I𝐴𝜇(𝑖)
(𝑥) − I𝐵𝜇(𝑖)

(𝑥)) +

𝑛∑︁
𝑖=𝑛𝐶+1

𝜆𝑖I𝑥𝜎′(𝑖)(𝑥) ̸= 0.

Assume ex absurdo that there are real numbers 𝜆1, . . . ,
𝜆𝑛 with at least one non-zero number such that the sum
above is equal to zero on all elements of X . Because
𝐵𝜇(𝑖) ∩ 𝐶 = {𝑥𝜎(𝑖)}, this implies in particular that

𝜆1I𝐶 +

𝑛𝐶∑︁
𝑖=2

𝜆𝑖(I𝐴𝜇(𝑖)∩𝐶 − I𝑥𝜎(𝑖)
) = 0. (6)

Evaluating the indicators of Eqn. (6) in 𝑥𝜎(𝑛𝐶) and using
Eqn. (5), we find that 𝜆𝑛𝐶

= 𝜆1. Similarly, evaluating the
indicators of Eqn. (6) in 𝑥𝜎(𝑛𝐶−1) and using Eqn. (5), we
find that

𝜆𝑛𝐶−1 = 𝜆1 + 𝜆𝑛𝐶
I𝐴𝜇(𝑛𝐶 )∩𝐶(𝑥𝜎(𝑛𝐶−1))

= 𝜆1 + 𝜆1I𝐴𝜇(𝑛𝐶 )∩𝐶(𝑥𝜎(𝑛𝐶−1)) = 𝑘𝑛𝐶−1𝜆1,

where 𝑘𝑛𝐶−1 is a strictly positive integer. Continuing
the same reasoning, it is easy to show that for all 𝑖 ∈
{2, . . . , 𝑛𝐶}, 𝜆𝑖 = 𝑘𝑖𝜆1 with 𝑘𝑖 a strictly positive integer.
Hence, we have that

𝜆1

(︃
I𝐶 +

𝑛𝐶∑︁
𝑖=2

𝑘𝑖(I𝐴𝜇(𝑖)∩𝐶 − I𝑥𝜎(𝑖)
)

)︃
+

𝑛∑︁
𝑖=𝑛𝐶+1

𝜆𝑖I𝑥
𝜎
′
(𝑖)

= 0.

We evaluate this expression in 𝑥(𝜎(1)), to yield

𝜆1

(︃
1 +

𝑛𝐶∑︁
𝑖=2

𝑘𝑖I𝐴𝜇(𝑖)∩𝐶(𝑥𝜎(1))

)︃
= 0.

From this, it follows immediately that 𝜆1 = 0. Because
𝑘2, . . . , 𝑘𝑛𝐶

are all strictly positive, this implies that 𝜆2 =
· · · = 𝜆𝑛𝐶

= 0. Consequently,

𝜆1IX +

𝑛𝐶∑︁
𝑖=2

𝜆𝑖(I𝐴𝜇(𝑖)
− I𝐵𝜇(𝑖)

) +

𝑛∑︁
𝑖=𝑛𝐶+1

𝜆𝑖I𝑥𝜎′(𝑖)

=

𝑛∑︁
𝑖=𝑛𝐶+1

𝜆𝑖I𝑥𝜎′(𝑖) = 0,

which can only hold if 𝜆𝑛𝐶+1 = · · · = 𝜆𝑛 = 0. Hence, we
find that all 𝜆𝑖’s have to be zero, which is the contradiction
that we are looking for.
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Proof of Theorem 18. Sufficiency follows from Lemma 16,
necessity holds due to Lemma 17.

Proof of Theorem 19. Recall from Theorem 18 that the
extreme points of the comparative credal set are in one to
one correspondence with extreme arborescences. Therefore,
any bound on the number of extreme arborescences is a
bound on the number of extreme points as well. In the
remainder, we will obtain a lower and upper bound on the
number of extreme arborescences.

To this end, we recall from Proposition 10 that there
is an ordering 𝑥1, . . . , 𝑥𝑛 of the atoms of the possibility
space X such that

(∀(𝐴,𝐵) ∈ C )(∃𝑖 ∈ {1, . . . , 𝑛− 1})

𝐴 ⊆ {𝑥1, . . . , 𝑥𝑖} and 𝐵 ⊆ {𝑥𝑖+1, . . . , 𝑥𝑛}.

For every 𝑘 in {1, . . . , 𝑛}, we let 𝑒𝑘 denote the number of
extreme arborescences such that the non-auxiliary nodes
are a subset of {𝑥1, . . . , 𝑥𝑘}. Because 𝑥1 is a node without
predecessors, it is clear that there is precisely one extreme
arborescence such that its non-auxiliary nodes is {𝑥1};
thus, 𝑒1 = 1. Next, we fix some 𝑘 in {2, . . . , 𝑛}. Clearly,
𝑒𝑘 is equal to the sum of 𝑒𝑘−1 and 𝑒′𝑘, where 𝑒′𝑘 denotes
the number of extreme arborescences such that the non-
auxiliary nodes are a subset of {𝑥1, . . . , 𝑥𝑘} and contain 𝑥𝑘.
If 𝑥𝑘 has no predecessors, then clearly 𝑒′𝑘 = 1. Thus, we
focus on the case that 𝑥𝑘 does have predecessors. Consider
any extreme arborescence whose non-auxiliary nodes are
a subset of {𝑥1, . . . , 𝑥𝑛} and contain 𝑥𝑘. Then removing
𝑥𝑘 (and the auxiliary node that precedes it), we obtain an
extreme arborescence such that its non-auxiliary nodes are
included in {𝑥1, . . . , 𝑥𝑘−1}. Thus, it is clear that in this
case 1 ≤ 𝑒′𝑘 ≤ 𝑒𝑘−1. Because in both cases 1 ≤ 𝑒′𝑘 ≤ 𝑒𝑘−1,
we conclude that 𝑘 ≤ 𝑒𝑘 ≤ 2𝑒𝑘−1.

Because 𝑒𝑘 = 1 and 𝑘 ≤ 𝑒𝑘 ≤ 2𝑒𝑘−1 for every 𝑘 ∈
{2, . . . , 𝑛}, it is clear that 𝑛 ≤ 𝑒𝑛 ≤ 2𝑛−1, as claimed.

Proof of Lemma 20. Because the graph 𝒢C is an arbores-
cence, it is acyclic and the assessment C is singular. Hence,
it follows from Lemma 16 that (i) the support X𝑝 con-
tains the root 𝑥⋆ of the arborescence; and (ii) there is
an extreme arborescence 𝒢′ with root 𝑥⋆ and atoms X𝑝.
Because 𝒢C is furthermore an arborescence itself, we infer
that X𝑝 = 𝐻 ′(X𝑝) and that the closest common prede-
cessor of any two 𝑥 and 𝑦 in X𝑝 is a non-auxiliary node.

Proof of Lemma 21. The proof is a straightforward modi-
fication of that of Lemma 17. The fact that it is uniform
follows from Eqn. (4), as now 𝐴𝜇(𝑖) is a singleton.

Proof of Theorem 22. Necessity follows from Lemma 20,
sufficiency from Lemma 21.
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