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Abstract. In this paper, we investigate consonant random sets from
the point of view of lattice theory. We introduce a new definition of
consonancy and study its relationship with possibility measures as upper
probabilities. This allows us to improve a number of results from the
literature. Finally, we study the suitability of consonant random sets as
models of the imprecise observation of random variables.
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1 Introduction

Random sets, or measurable multi-valued mappings, have gained a lot of atten-
tion in the past decades. They have been studied for instance within stochastic
geometry ([16]), economy ([13]), or from the measure-theoretic point of view
([12]). Within random sets, those which are consonant constitute a subclass of
particular interest, as the works in [4, 10, 17, 19] testify. In spite of all this work,
there is not a unique definition of consonant random set; on the contrary, the
term ‘consonancy’ has been used whenever there is some relationship of nest-
edness between the images of the multi-valued mapping. The different levels of
this relationship, as well as other hypotheses that can be imposed on the random
set, such as the initial and final spaces, or the topological characteristics of the
images, have made of the term consonant random set a rather vague one.

In this paper, we try to get to the core of the notion of consonancy: we study
this property not from the point of view of the order that we can consider in
the images of the random set, but from the one we can induce on the elements
of the initial space. We study the properties of this order within lattice theory,
and use them to investigate a number of features of consonant random sets. Our
main subject of interest is the relationship between consonant random sets and
possibility measures. This relationship has been thoroughly studied in the litera-
ture, but the point of view we adopt in this paper allows us to easily characterise
this property, generalising along the way some results from the literature. This
is detailed in Sections 2 and 3. In Section 4 we investigate whether a consonant
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random set can be used to model the imprecise observation of a random variable,
and which would be the best tool in that case. Finally, Section 5 contains some
conclusions and open problems on the matter at hand.

2 Consonant random sets and lattice theory

Let us introduce some basic concepts from random set theory.

Definition 1. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
and let Γ : Ω → P(X) be a multi-valued mapping. Given A ∈ A′, its upper

inverse by Γ is Γ ∗(A) = {ω ∈ Ω : Γ (ω) ∩ A 6= ∅}. Γ is said to be strongly

measurable (or a random set) when Γ ∗(A) belongs to A for all A ∈ A′.

There are other conditions of measurability that can be considered on multi-
valued mappings (see a review in [14]). We have chosen the strong measurability
([22]), also called sometimes B-measurability, because it allows us to define the
upper probability of the random set, which will be one of the main points of
interest in this paper.

Definition 2. [5] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and consider a random set Γ : Ω → P(X). Given A ∈ A′, its upper

probability is given by P ∗
Γ (A) = P (Γ∗(A))

P (Γ∗(X)) .

When there is no ambiguity about the random set we are working with,
we shall denote P ∗ = P ∗

Γ . The upper probability induced by a random set is
∞-alternating and lower continuous ([22]).

Let us introduce next some notions of consonancy that can be considered on
a random set. The idea underlying consonant random sets is the existence of
some order in the set of images, normally by means of the inclusion operator.
This order provides a common background to the images of the different ele-
ments of the initial space, so there is not contradiction between them (hence the
term consonant). Although there are other conditions (see for instance [17, 19]),
the ones we recall here are the strongest and the most interesting ones for the
purposes of this paper.

Definition 3. A random set Γ : Ω → P(X) is said to be

– antitone if (Ω,A, P ) = ([0, 1], β[0,1], λ[0,1]), where β[0,1] and λ[0,1] denote
respectively the Borel σ-field and the Lebesgue measure on [0, 1], and x ≤
y ∈ [0, 1] ⇒ Γ (x) ⊇ Γ (y).

– C1, if for any ω1, ω2 ∈ Ω, it is Γ (ω1) ⊆ Γ (ω2) or Γ (ω2) ⊆ Γ (ω1).
– C2, if the previous relation holds for any ω1, ω2 on Ω \N , where N is a null

subset of Ω.

An isotone random set is one defined on [0, 1] such that the natural order is
the same as we have in the images, that is, such that x ≤ y ⇒ Γ (x) ⊆ Γ (y). The
dual notion of antitone random set allows us to relate consonant random sets



to the α-cuts of a fuzzy number [6] (but see also [21]). On the other hand, the
more general condition C1 only requires the set of images to be totally ordered
by the inclusion relationship, but it does not make any assumption on the initial
space. The introduction of C2 random sets is due to the fact that the behaviour
of a random set on a null subset of the initial space does not affect its upper
probability (this will become clearer in Section 3). By Definition 3, it is clear
that an antitone random set is in particular C1, and that a C1 random set is
C2. Next, we are going to introduce an intermediate notion of consonancy that
comes between C1 and antitone random sets. We shall denote this condition C0.
It involves not only the existence of a total order on the initial space, but also
some kind of ‘continuity’ in the way the images of the random set are nested.

Definition 4. A random set Γ : Ω → P(X) is said to be C0 if it satisfies the
following two hypotheses:

– For any ω1, ω2 ∈ Ω, either Γ (ω1) ⊆ Γ (ω2) or Γ (ω2) ⊆ Γ (ω1).
– For any A ⊆ Ω there exists B ⊆ A countable s.t. ∩ω∈AΓ (ω) = ∩ω∈BΓ (ω).

The remainder of this paper is devoted to the study of the properties of
C0 random sets, and the results we obtain will serve as a justification of their
introduction. We shall see in particular that, even though a C0 random set is in
particular C1, the converse is not true.

First, we are going to study the representation of consonant random sets in
terms of lattices. We refer to [2, 9] for the definitions of the different concepts in
lattice theory we shall use. Let Γ be a C1 random set, and let us define, for any
ω ∈ Ω, the class [ω] := {ω′ ∈ Ω|Γ (ω′) = Γ (ω)}, and denote Ω∗ := {[ω]|ω ∈ Ω}.
Let us define the relation �Γ on Ω∗ by

[ω1] �Γ [ω2] ⇔ Γ (ω1) ⊆ Γ (ω2)

Then, it is easy to see that (Ω∗,�Γ ) is totally ordered (i.e., a chain). In fact,
there is a one-to-one correspondence between chains and lattices induced by C1
random sets: given a chain (Ω,�), it suffices to consider the multi-valued map-
ping Γ : Ω → P(Ω) given by Γ (ω) = {ω′ ∈ Ω : ω′ � ω}1. Then, the chain
(Ω∗,�Γ ) induced by Γ coincides with (Ω,�). We deduce from this correspon-
dence that the lattice induced by a C1 random set is not complete in general.
Nevertheless, when it is complete, it is a continuous lattice.

Definition 5. [9] Given a lattice (Ω,�), ω1, ω2 ∈ Ω, we say that ω1 is way

below ω2 and denote ω1 ≪ ω2 when ∀D ⊆ Ω s.t. ω2 � supD,∃d ∈ D s.t.
ω1 � d. (Ω,�) is continuous if it is complete and ω = sup{ω′ ≪ ω} for any
ω ∈ Ω.

Proposition 1. If (Ω∗,�Γ ) is a complete lattice, then it is continuous.

1 We can easily make Γ a random set by considering A = A
′ = P(Ω) and P a

degenerate probability distribution on some ω0 ∈ Ω.



Proof. Consider ω ∈ Ω∗. If ω ≪ ω, the condition holds trivially. Otherwise,
given ω′ ≺Γ ω, it follows from the definition that ω′ ≪ ω. We deduce that
{ω′ ≺Γ ω} = {ω′ ≪ ω}, and then it is clear that ω = sup{ω′ ≪ ω}. �

The random set Γ induces a multi-valued mapping Γ ′ : Ω∗ → P(X) by
Γ ′([ω]) = Γ (ω). If we consider on P(X) the partial order given by the inclusion,
then Γ ′ is an homomorphism, and it is an isomorphism if we restrict the final
space to Im(Γ ) = Im(Γ ′). Moreover, the class of the upper inverses of the
elements of A′ can be characterised in terms of filters of Ω∗. Let us consider
H = {[ω] ∈ Ω∗ : Γ (ω) = ∪[ω′]≺Γ [ω]Γ (ω′)} and let us define the sets of filters

H1 := {{[ω′] �Γ [ω]} : [ω] ∈ H}, H2 := {B ⊆ Ω∗ : B is a filter , B /∈ H1}

Proposition 2. For any A ∈ A′, Γ
′∗(A) ∈ H2. If moreover A′ = P(X), then

{Γ
′∗(A) : A ⊆ X} = H2.

Proof. Consider A ∈ A′. Given [ω] ∈ Γ
′∗(A), [ω′] ≻Γ [ω], it is ∅ 6= Γ (ω) ∩ A ⊆

Γ (ω′) ∩ A, whence [ω′] ∈ Γ
′∗(A). Since (Ω∗,�Γ ) is totally ordered, we deduce

that Γ
′∗(A) is a filter. Assume ex-absurdo that Γ

′∗(A) = {[ω] �Γ [ω0]} for some
[ω0] ∈ H. Then, there exists x ∈ Γ (ω0)∩A = (∪[ω]≺Γ [ω0]Γ (ω))∩A, whence there

exists [ω1] ≺Γ [ω0] s.t. x ∈ Γ (ω1). This means that {[ω] �Γ [ω1]} ⊆ Γ
′∗({x}) ⊆

Γ
′∗(A) = {[ω] �Γ [ω0]} ( {[ω] �Γ [ω1]}, a contradiction.

Assume now A′ = P(X), and consider B ∈ H2. Let A = (∪[ω]/∈BΓ (ω))c.

Given [ω] /∈ B, Γ ′([ω]) ∩ A = Γ (ω) ∩ (∪[ω′]/∈BΓ (ω′))c = ∅, whence Γ
′∗(A) ⊆ B.

Now, if there exists [ω0] ∈ B \ Γ
′∗(A),

A ⊆ Γ (ω0)
c ⊆ ∩[ω]/∈BΓ (ω)c = A ⇒ Γ (ω0) = ∪[ω]/∈BΓ (ω)

⇒ Γ (ω0) = ∪[ω]≺Γ [ω0]Γ (ω) ⇒ [ω0] ∈ H.

Hence, B = {[ω] �Γ [ω0]} ∈ H1, a contradiction. Consequently, Γ
′∗(A) = B,

and we deduce the desired equality. �

This proposition will be useful in the next section.

3 Consonant random sets and possibility measures

One of the main features of consonant random sets is their connection with
supremum-preserving set functions. These set functions have appeared in the
literature under a number of different names (see [23, 26, 27]), although since
Zadeh’s paper [28] they have been mostly referred to with the term possibil-
ity measure. This designation is due to their usefulness for modelling linguistic
uncertainty ([7, 28]).

Definition 6. Let (X,A) be a measurable space. A monotone and normalised
set function Π : A → [0, 1] is called maxitive if for any A1, . . . , An ∈ A,
Π(∪n

i=1Ai) = maxi=1,...,n Π(Ai), and it is said to be a possibility measure

when for any family (Ai)i∈I of elements of A such that ∪i∈IAi ∈ A, it is
Π(∪i∈IAi) = supi∈I Π(Ai).



When all the singletons belong to the σ-field A, a possibility measure Π is
characterised by its possibility distribution π : X → [0, 1], which is given by
π(x) = Π({x}). Then, it is Π(A) = supx∈A π(x) for any A ∈ A.

The relationship between possibility measures and consonant random sets
is rather intuitive if we restrict ourselves to finite spaces: a monotone and nor-
malized set function on a finite space is a possibility measure if and only if its
focal elements are nested ([24]); on the other hand, the focal elements of the
upper probability of a random set are those subsets of the final space whose
inverses have probability non-zero. Taking this into account, it is easy to prove
the following:

Proposition 3. [8, 17] Let (Ω,A, P ) be a probability space, (X,P(X)) a finite
space and let Γ : Ω → P(X) be a random set. Then, P ∗ is a possibility measure
if and only if Γ is C2.

There are many works in the literature devoted to the investigation of this
equality in the infinite case; that is, whether the upper probability of a conso-
nant random set is always a possibility measure and whether when the upper
probability is a possibility measure the random set is necessarily consonant. In
[17], we showed that a C1 random set does not induce in general a possibility
measure, and that a random set inducing a possibility measure need not be C2.
Nevertheless, there exist a number of sufficient conditions for these implications.
We summarise the most important ones in the following theorem:

Theorem 1. 1. ([4]) If Γ is antitone, then P ∗ is a possibility measure.

2. ([19]) If Γ is C2, P ∗ is maxitive.

3. ([19]) If Γ is compact on a Polish space, or closed on a σ-compact metric
space, then P ∗ is a possibility measure ⇐⇒ Γ is C2.

In this paper, we are going to study this problem for the new condition
of consonancy we have introduced, and we are going to take advantage of the
representation of consonant random sets in terms of lattices made in the previous
section. Let us define A′

1 = {A ∈ A′ : Γ
′∗(A) 6= {[ω′] �Γ [ω]}∀[ω] ∈ Ω∗}. The

following fairly straightforward result reduces the problem of studying if the
upper probability is a possibility measure to arbitrary unions in A′

1.

Proposition 4. P ∗ is a possibility measure if and only if for any (Ai)i∈I s.t.
∪i∈IAi ∈ A′

1, P
∗(∪i∈IAi) = supi∈I P ∗(Ai).

Proof. Consider (Ai)i∈I in A′ s.t. A := ∪i∈IAi belongs to A′ \ A′
1. Then, there

exists [ω0] s.t. Γ
′∗(A) = {[ω] �Γ [ω0]}. Now, Γ (ω0) ∩ A 6= ∅ ⇒ ∃i0 ∈ I s.t.

Γ (ω0) ∩ Ai0 6= ∅, whence Γ
′∗(A) = Γ

′∗(Ai0) and P ∗(A) = supi∈I P ∗(Ai). We
conclude that P ∗ is a possibility measure if and only if it is supremum-preserving
for arbitrary collections of elements of A′ whose union belongs to A′

1. �

Taking this proposition into account, we can establish the following theorem:



Theorem 2. Let (Ω,A, P ) be a probability space, (X,P(X)) a measurable space
and Γ : Ω → P(X) a C1 random set s.t. (Ω∗,�Γ ) is a complete chain. Then,
P ∗ is a possibility measure if and only if ∀A ∈ A′

1 s.t. ∩[ω]∈Γ ′
∗(A)Γ (ω) ∩A = ∅,

there exists some countable {[ωn]}n ⊆ Γ
′∗(A) s.t. P ∗(A) = P (∪n{[ω] �Γ [ωn]}).

Proof. Since (Ω∗,�Γ ) is complete, given A ∈ A′
1, there exists some [ωA] ∈ Ω∗

s.t. Γ
′∗(A) = {[ω] ≻Γ [ωA]}. Now, if there is some x ∈ ∩[ω]≻Γ [ωA]Γ (ω) ∩ A,

then trivially Γ
′∗({x}) = Γ

′∗(A) and P ∗(A) = P ∗({x}). Hence, P ∗ will be a
possibility measure if and only if P ∗(A) = supx∈A P ∗({x}) when A ∈ A′

1 and
∩[ω]≻Γ [ωA]Γ (ω) ∩ A = ∅.

(⇒) If there exists x ∈ A s.t. P ∗({x}) = supy∈A P ∗({y}) = P ∗(A) then, since

(Ω∗,�Γ ) is complete and Γ
′∗({x}) is a filter, there exists [ωx] �Γ [ωA] s.t.

{[ω′] ≻Γ [ωx]} ⊆ Γ
′∗({x}) ⊆ {[ω′] �Γ [ωx]}. There are three possibilities: if

[ωx] ∈ Γ
′∗({x}), the result holds. If [ωx] /∈ Γ ∗({x}) but [ωx] ≻Γ [ωA], then

we have P ∗(A) = P ({[ω′] ≻Γ [ωA]}) = P ({[ω′] �Γ [ωx]}), and the result
holds. And finally, if [ωx] = [ωA], then x ∈ Γ (ω) for any [ω] ≻Γ [ωA], a
contradiction with ∩[ω]≻Γ [ωA]Γ (ω) = ∅.
Assume now that P ∗({x}) < P ∗(A) ∀x ∈ A; then there exists a sequence
{xn}n s.t. P ∗({xn})n converges to supy∈A P ∗({y}) = P ∗(A), and such that
P ∗({xn}) < P ∗({xn+1})∀n. For any n, there exists some [ωn] ≻Γ [ωA] s.t.
{[ω′] ≻Γ [ωn]} ⊆ Γ

′∗({xn}) ⊆ {[ω′] �Γ [ωn]}, and then P ∗(A) = P ({[ω] ≻Γ

[ωA]) = P ∗({xn}n) = P (∪n{[ω] �Γ [ωn]}.
(⇐) Consider A ∈ A′

1, and let {[ωn]}n ⊆ Γ
′∗(A) s.t. P ∗(A) = P (∪n{[ω] �Γ

[ωn]}). For any natural number n, take xn ∈ Γ (ωn)∩A. Then, P ∗({xn}n) ≥
P (∪n{[ω] �Γ [ωn]}) = P ∗(A), and since Theorem 1 implies that P ∗ is
maxitive, P ∗(A) = supn P ∗({xn}). �

Next, we use the ideas in this theorem to establish the main result of this pa-
per. It establishes some relationships between different conditions of consonancy
and possibility measures as upper probabilities, under more general conditions
than the ones in Theorem 2: note that we do not require here neither the chain
on the initial space to be complete nor the final σ-field to agree with P(X).

Theorem 3. Let Γ be a C1 random set. Then, each of the following hypotheses
implies the next:

1. Γ is antitone.
2. Γ is C0.
3. For any A ∈ A′

1 there exists some {[ωn]}n ⊆ Γ
′∗(A) such that Γ

′∗(A) =
∪n{[ω] �Γ [ωn]}.

4. P ∗ is a possibility measure.

Proof. We start showing that (1 ⇒ 2). Let Γ be antitone, and consider A ⊆ [0, 1].
If inf A belongs to A, then ∩ω∈AΓ (ω) = Γ (inf A). If inf A /∈ A, let {ωn}n be a
sequence of elements of A that converges to inf A. Then, ∩ω∈AΓ (ω) = ∩nΓ (ωn).
Since any antitone random set is C1, we conclude that Γ is C0.



Let us show next that (2 ⇒ 3). Consider A ∈ A′
1. Then, there exists

{[ωn]}n ⊆ Γ
′∗(A) s.t. ∩[ω]∈Γ ′

∗(A)Γ (ω) = ∩nΓ (ωn). It is clear that ∪n{[ω] �Γ

[ωn]} ⊆ Γ
′∗(A), because this is a filter from Proposition 2. Assume ex-absurdo

that there exists [ω0] ∈ Γ
′∗(A) s.t. [ω0] ≺Γ [ωn] ∀n. Then, ∩[ω]∈Γ ′

∗(A)Γ (ω) ⊆

Γ (ω0) ⊆ ∩nΓ (ωn) = ∩[ω]∈Γ ′
∗(A)Γ (ω), whence ∩[ω]∈Γ ′

∗(A)Γ (ω) = Γ (ω0). This

means that Γ
′∗(A) = {[ω′] �Γ [ω0]}, which contradicts A ∈ A′

1. Hence, Γ
′∗(A) =

∪n{[ω
′] �Γ [ωn]}.

Finally, we prove (3 ⇒ 4). Consider (Ai)i∈I ∈ A′ s.t. ∪i∈IAi = A ∈ A′
1.

Then, condition (3) implies the existence of {[ωn]}n ⊆ Γ
′∗(A) s.t. Γ

′∗(A) =
∪n{[ω] �Γ [ωn]}. For every n, there exists some An ∈ (Ai)i∈I s.t. Γ (ωn)∩An 6= ∅,
whence Γ

′∗(A) = ∪n{[ω] �Γ [ωn]} = ∪nΓ
′∗(An). As a consequence, we also have

Γ ∗(A) = ∪nΓ ∗(An). Since P ∗ is maxitive from Theorem 1 and lower continuous,
we conclude that P ∗(A) = supn P ∗(An) = supi∈I P ∗(Ai). Applying Proposition
4, P ∗ is a possibility measure. �

Example 1. It is easy to construct examples showing that the converses of these
implications are not true in general: for the first, consider Γ : [1, 2] → P([1, 2])
given by Γ (ω) = [ω, 2]; the second and third counterexamples can be obtained
by suitably modifying the C1 random set Γ in [17, Example 5] s.t. P ∗ is not
a possibility measure: for the first, consider A′ = {∅,P(X)}, and Γ1 : [0, 1] →
P([0, 1]) given by Γ1(ω) = Γ (ω) ∪ {0} ∀ω 6= 0, Γ1(0) = {0}; for the second, take
Γ2 = Γ but with a degenerate probability measure on the initial space. �

We deduce that an antitone random set is not necessarily C0, and conse-
quently Theorem 3 generalises the first point of Theorem 1. On the other hand,
since a C1 random set does not induce a possibility measure ([17]), we deduce
that this condition of consonancy is weaker than that of C0.

As we said before, a random set inducing a possibility measure is not nec-
essarily C2 [17], and, consequently, it is not C0 either. Nevertheless, it may be
useful to study the representability of a possibility measure in terms of a conso-
nant random set. Goodman proved in [10] that for any possibility measure Π on
a measurable space (X,P(X)) there exists an antitone random set whose upper
probability is Π. In [19], we considered the problem of the representability when
we fix also the initial space. We proved that for any random set Γ inducing a
possibility measure there is a C1 random set Γ1 defined between the same spaces
and with the same upper probability. We show next that we may even require
Γ1 to be C0:

Proposition 5. Let (Ω,A, P ) be a probability space, (X,P(X)) a measurable
space and Γ : Ω → P(X) a random set such that P ∗

Γ is a possibility measure.
Then, there exists a C0 random set Γ1 : Ω → P(X) such that P ∗

Γ1
= P ∗

Γ .

Proof. Let us define Cx := {y|P ∗({y}) ≥ P ∗({x})} for any x ∈ X, and Γ1 : Ω →
P(X) by Γ1(ω) = ∪x∈Γ (ω)Cx. We check in [19, Theorem 4.7] that Γ1 is strongly
measurable, C1 and that P ∗

Γ1
= P ∗

Γ . It remains then to verify that it is also
C0. Let us consider A ⊆ Ω, and let us denote zA = supω∈A infx∈Γ (ω) P ∗({x}).



From the definition of Γ1 we deduce that there are only two alternatives: either
∩ω∈AΓ1(ω) = {y : P ∗({y}) ≥ zA}, and then given a sequence {ωn}n of elements
of A such that zn = infx∈Γ (ωn) P ∗({x}) converges to zA, it is ∩nΓ1(ωn) ⊆
∩n{y|P

∗({y}) ≥ zn} = {y|P ∗({y}) ≥ zA} = ∩ω∈AΓ1(ω); or ∩ω∈AΓ1(ω) = {y :
P ∗({y}) > zA} ( {y : P ∗({y}) ≥ zA}. In that case, given y0 s.t. P ∗({y0}) = zA,
there exists ω0 ∈ A s.t. y0 /∈ Γ1(ω0), whence Γ1(ω0) = {y|P ∗({y}) > zA} =
∩ω∈AΓ1(ω). We conclude in both cases that Γ1 is C0. �

To conclude this section, we represent in Figure 1 the relationships between
the different conditions of consonancy we have considered and possibility and
maxitive measures as upper probabilities. It follows from Example 1 and the
examples in [17, 19] that none of the converses of these implications holds in
general.

Fig. 1. Relationships between consonancy, P
∗ possibility and P

∗ maxitive.

4 Consonant random sets as imprecise random variables

Among the different interpretations given to random sets, one of the most impor-
tant in the framework of uncertainty modelling is that of imprecise observations
of random variables. This goes back to Kruse and Meyer [15]: we assume the
existence of a measurable mapping U0 : Ω → X which is observed with some
imprecision, so that for any ω in the initial space all we know about U0(ω) is
that it belongs to some subset Γ (ω) of the final space 2. We obtain then a multi-
valued mapping Γ : Ω → P(X), which, in case it satisfies the condition of strong
measurability, is a random set.

Under such interpretation, our interest lies in the information we can recover
about the ‘original’ random variable, U0. All we know is that it belongs to the

2 Hence, we will assume in this section that Γ (ω) is non-empty for all ω ∈ Ω.



class
S(Γ ) := {U : Ω → X measurable, U(ω) ∈ Γ (ω) ∀ω}

of measurable selections of Γ , and consequently its distribution belongs to

P (Γ ) := {PU : U ∈ S(Γ )}.

In this section, we are going to study whether this interpretation is compatible
with the one we have given to consonant random sets. For this, we must de-
termine first if a consonant random set possesses measurable selections. This is
what we prove in the following theorem:

Proposition 6. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
s.t. A′ contains the singletons and let Γ : Ω → P(X) be a C0 random set. Then,
S(Γ ) 6= ∅.

Proof. If there is some x ∈ ∩ω∈ΩΓ (ω), then the constant mapping on x is
trivially a measurable selection of Γ . Assume then that ∩ω∈ΩΓ (ω) = ∅. Since
Γ is C0, there exists a countable set {ωn}n such that ∩nΓ (ωn) = ∩ω∈ΩΓ (ω),
and we may assume without loss of generality that Γ (ωn) ( Γ (ωn−1) for all
n ≥ 2. Let us consider xn ∈ Γ (ωn) \ Γ (ωn+1) for every n ≥ 1, and define
U :=

∑
n xnIΓ∗({xn})\Γ∗({xn+1}). It can be checked that this random variable is

well defined (that is, U(ω) 6= ∅ ∀ω), and this implies that U is a measurable
selection of Γ .�

As far as we know, a similar result for C1 random sets hasn’t been established.
On the other hand, it is easy to check that a random set inducing a possibility
measure has an almost sure measurable selection (i.e., there exists U : Ω →
X measurable such that U(ω) ∈ Γ (ω) for all but a null subset of Ω). These
selections are sometimes used instead of everywhere selections (see for instance
[12]); however, when we interpret a random set as a model of the imprecise
observation of a random variable, we need to consider measurable mappings
which are selections on all the elements of the initial space, and not just on a
subset of probability one.

As we said before, if a random set Γ models the imprecise observation of U0,
our information about PU0

is given by the class P (Γ ); although this is the most
precise class we can consider, it may be more useful for practical purposes to
work with the class

M(P ∗) = {Q : A′ → [0, 1] probability s.t. Q(A) ≤ P ∗(A) ∀A ∈ A′}

of probability distributions dominated by the upper probability P ∗: this class
is convex and is uniquely determined by P ∗, and in some cases, it is even de-
termined by the values of P ∗ on some classes of sets (see the discussion on this
subject in [20]). It becomes then interesting to investigate the relationship be-
tween these two classes, so that we can decide if the use of P ∗ for modelling the
information about PU0

causes an important loss of precision.
The relationship between P (Γ ) and M(P ∗) has been studied by a number

of authors ([1, 3, 11, 12, 20]), under different hypotheses on the images of the



random set and on its initial of final spaces. We are going to study here the
situation for consonant random sets. First, we investigate whether the bound
given by P ∗(A) is tightest we can give for the value PU0

(A) for some arbitrary
set A in the final σ-field. We will use the condition of condensability, whose
definition can be found in [25].

Proposition 7. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
s.t. A′ includes the singletons and Γ : Ω → P(X) a random set. If S(Γ ) 6= ∅
and P ∗ is condensable, then P ∗(A) = maxQ∈P (Γ ) Q(A) ∀A ∈ A′.

Proof. Let A ∈ A′. Then, the condensability of P ∗ implies the existence of a
countable set {xn}n ⊆ A s.t. P ∗({xn}n) = P ∗(A). Take U ∈ S(Γ ), and let
us define V :=

∑
n xnIΓ∗({xn})\Γ∗({x1,...,xn−1}) + UI(Γ∗({xn}n]))c . Then, V is a

measurable selection of Γ and moreover P ∗(A) = P ∗({xn}n) = PV ({xn}n) ≤
maxQ∈P (Γ ) Q({xn}n) ≤ maxQ∈P (Γ ) Q(A) ≤ P ∗(A). Consequently P ∗(A) =
maxQ∈P (Γ ) Q(A). �

Note that the result holds in particular for those random sets Γ inducing a
possibility measure and such that S(Γ ) is non-empty. Using this proposition, we
deduce the following:

Corollary 1. Let (Ω,A, P ) be a probability space, (X, d) be a separable metric
space and let Γ : Ω → P(X) be a C0 random set. Then, under the weak topology,
we have

1. cl(M(P ∗)) = cl(Conv(P (Γ ))).
2. If moreover (Ω,A, P ) is non-atomic, then cl(P (Γ )) = cl(M(P ∗)).

Proof. From Proposition 6, Γ possesses measurable selections, and from Theo-
rem 3, P ∗ is a possibility measure. Applying [19, Theorem 2.4], P ∗ is condens-
able, and Proposition 7 implies then that P ∗(A) = maxQ∈P (Γ ) Q(A) for any A
in the final σ-field. The result follows now from [20, Theorems 4.4 and 4.7 ]. �

This shows that, in the case of C0 random sets, the upper probability can be
used to model the information about PU0

without causing a big loss of precision.
Note that the hypothesis of non-atomicity of (Ω,A, P ) is not too restrictive: it
holds for instance in the particular case of antitone random sets, or when we
know that the probability distribution of U0 is continuous. We must warn the
reader, however, that the sets P (Γ ) and M(P ∗) do not necessarily agree for C0
random sets, as the following example shows:

Example 2. [21, Example 3.3] Let us consider the antitone random set Γ :
[0, 1] → P([0, 1]) given by Γ (ω) = [−ω, ω]. Then, the uniform probability distri-
bution on [−1, 1] belongs to M(P ∗) \ P (Γ ). �

Therefore, the use of the upper probability in a C0 random set may cause
some loss of information respect to the class of the probability distributions
of the measurable selections. We would like to know if under some additional



conditions we can guarantee the equality P (Γ ) = M(P ∗). In [21], we give a
number of sufficient conditions for this equality when Γ is a random interval.
Although one of those conditions (namely, that Γ = [0, B] for some non-negative
random variable B) is compatible with C0 random sets, the most important one
(that Γ = [A,B] with A,B strictly comonotone) will only be compatible with the
C0 condition when A and B are constant. More specifically, in the particular
case where X is a finite space, we have that P (Γ ) = M(P ∗) whenever the
initial probability space is non-atomic, regardless of the characteristics of the
images of Γ ([18]). We conclude from this that C0 random sets are not specially
suited, when compared to other types of random sets, for modelling the imprecise
observation of a random variable.

5 Conclusions

The approximation to consonant random sets we have considered in this paper
has allowed us to prove a number of results in a fairly straightforward manner. It
allows us moreover to consider consonant random sets defined between arbitrary
spaces, and not necessarily antitone, because in our opinion the core of the notion
of consonancy is the order we can establish in the initial space. In this respect,
it would be interesting to make a deeper study of the properties of this order.
We would like in particular to see if the completeness of the chain induced by a
consonant random set is related to some additional condition on its images.

Concerning the different definitions of consonancy considered in this paper,
we think that C0 random sets are sufficiently general and have moreover a num-
ber of interesting properties that other weaker notions, such as C1 and C2 ran-
dom sets, do not possess in general. As an open problem from this paper, we
propose to study the relationship between C0 and C1 random sets, and if a C1
random set inducing a possibility measure is always C0.

Finally, regarding the use of consonant random sets as a model for the im-
precise observation of random variables, we still have to determine whether C1
random sets or random sets inducing a possibility measure possess measurable
selections; this existence would allow us to derive a number of relationships
between the class of probability distributions of these selections and those dom-
inated by the upper probability, in the vein of Corollary 1. We wonder if in this
case the study of the chain induced on the initial space will also be helpful.
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