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ABSTRACT. We study the information that a distribution function provides about the
finitely additive probability measure inducing it. We show that in general there is an infi-
nite number of finitely additive probabilities associated with the same distribution function.
Secondly, we investigate the relationship between a distribution function and its given se-
quence of moments. We provide formulae for the sets of distribution functions, and finitely
additive probabilities, associated with some moment sequence, and determine under which
conditions the moments determine the distribution function uniquely. We show that all
these problems can be addressed efficiently using the theory of coherent lower previsions.

1. INTRODUCTION

This paper consists of two parts, each devoted to one of two specific, but related, prob-
lems.

The first problem is: To what extent does a distribution function determine a probability
measure? This question has a well-known answer when we are talking about probability
measures that are o-additive. We believe the corresponding problem for probability mea-
sures that are only finitely additive has received much less attention. This paper tries to
remedy that situation somewhat by studying the particular case of finitely additive proba-
bility measures on the real unit interval [0, 1] (or equivalently, after an appropriate trans-
formation, on any compact real interval). For this study, it will be very convenient to use
the mathematical machinery behind Walley’s [27]] theory of coherent lower previsions, for
which we introduce the basics in Section

We shall see that, generally speaking, there is an infinite (closed and convex) set . (F)
of finitely additive probability measures that correspond to a given distribution function
F. However, by their very nature, and contrary to the sigma-additive case, finitely addi-
tive probabilities on an infinite set that extend ‘something’ are usually inconstructibles,
meaning that they cannot actually be constructed, but that their existence may be inferred
from the Hahn—Banach Theorem (or even stronger, the Axiom of Choice); see [25, Sec-
tions 12.31 and 6.6] for more details. It was one of Walley’s achievements to show that we
can efficiently and constructively deal with them not by looking at the members of .# (F)
individually, but by working with their lower envelope E -, which in his language is called
the natural extension of the distribution function F E] Not only can this lower envelope
always be constructed explicitly, but it is the closest we can get in a constructive manner to
the finitely additive probabilities themselves. It turns out to be a coherent lower prevision
with very special properties.

Key words and phrases. Coherent lower prevision, lower distribution function, lower Riemann—Stieltjes inte-
gral, complete monotonicity, moment sequence.

IThis natural extension is quite closely related to the Minkowski functional that appears in the more usual
formulations of the Hahn—Banach theorem. Not surprisingly, it also makes its appearance, although in a different
guise, as the lower bound in de Finetti’s Fundamental Theorem of Probability [[13} Sections 3.10-12].
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The set of finitely additive probabilities with a given distribution function has been
considered before by Bruno de Finetti [[13, Chapter 6], who seems to suggesﬂ that the value
Er(f) of this natural extension in a function f is actually given by the lower Riemann—
Stieltjes integral (RS) [ (1) f(x)dF (x) of f with respect to the distribution function F. We
study the relationship between E and lower Riemann—Stieltjes integrals in Section[3] and
we shall see in Theorem (1| that de Finetti’s suggestion needs some qualification, as it is
essentially only correct when F' is right-continuous.

In the second part, from Section E] onwards, we address the second question: Is a dis-
tribution function uniquely determined by the corresponding sequence of moments? In
a companion paper [21]], we have studied the set of finitely additive probabilities .# (m)
that produce a given moment sequence m. The fundamental step we take there is anal-
ogous to the one followed in the present paper for distribution functions. It consists of
not considering the finitely additive probabilities in .# (m) themselves, but to study their
lower envelope E,,, which is a coherent lower prevision with very special properties too.
In answering the second question, we build on those results, but by looking at distribution
functions we are also able to extend them.

We shall establish that a distribution function F' uniquely determines its moment se-
quence m. In Section]then, we investigate to what extent, conversely, a moment sequence
determines the distribution function. For distribution functions coming from c-additive
probability measures, the relation between moment sequences and distribution functions is
well-known to be one-to-one, but again, the answer is not so clear when we let go of the
assumption of o-additivity. We shall prove that in general there may be an infinite num-
ber of distribution functions with the same moment sequence, and investigate under which
conditions the distribution function is unique.

It will perhaps not come as too much of a surprise, at this point, that we can show that the
set of finitely additive probability measures .# (m) that corresponds to a moment sequence
is the union of the sets . (F') over all the distribution functions F that are compatible with
the moment sequence m. This is also done in Section [4] (see Theorem [6). In Section [3
we further exploit the connection between distribution functions and moment sequences
to come up with a number of quite interesting formulae expressing E,, (i) as a convex
mixture of a lower Riemann—Stieltjes integral and so-called lower oscillation functionals
associated with point probability masses (see Theorem[I4); and (ii) as a c-additive convex
mixture of completely monotone lower previsions associated with neighbourhood filters,
which express that all probability mass is concentrated in arbitrarily small neighbourhoods
of elements of the unit interval (see Theorem [I6). In passing, we give an alternative,
constructive proof of the F. Riesz Representation Theorem (see Theorem|[§]and Remark [4).

2. COHERENT AND COMPLETELY MONOTONE LOWER PREVISIONS

Let us give a short introduction to those concepts from the theory of coherent lower pre-
visions that we shall use in this paper. We refer to Walley’s book [27] for their behavioural
interpretation, and for a much more complete introduction and treatment.

2See [13] Section 6.4.11] where de Finetti states for the bounds on the prevision of a random quantity obtained
for a given distribution function from his Fundamental Theorem of Probability, that “we are, of course, dealing
with the upper and lower integrals in the Riemann sense”. Before, in [[13| Section 6.4.4] he refers to these same
bounds as “in the Riemann-Stieltjes sense”, so the omission of ‘Stieltjes’ in the first quote appears to be an
oversight.
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Consider a non-empty set Q. Then a gamble on Q is a bounded real-valued function on
Q. We denote the set of all gambles on Q by Z(Q). It is a linear space, and actually a
Banach space when provided with the topology of uniform convergence of gambles.

A lower prevision P is a real-valued map defined on some subset % of .Z(Q). If the
domain . of P only contains indicators I4 of events A, then P is also called a lower prob-
ability. We also write P(I4) as P(A), the lower probability of the event A. The conjugate
upper prevision P of P is defined on —% by P(f) := —P(—f) for every —f in ¢ If the
domain of P contains indicators only, then P is also called an upper probability.

A lower prevision P defined on the set £ (Q) of all gambles is called coherent if,
with f g in Z(Q), it is super-additive: P(f + g) > P(f)+ P(g), positively homoge-
neous: P(Af) = AP(f) for all A > 0, and positive: P(f) > inff. A lower prevision P
on an arbitrary domain %" is then called coherent if it can be extended to some coher-
ent lower prevision on all gambles. This is the case if and only if sup [Y1, fi —mfo] >
Y P(fi) —mP(fo) for any n,m > 0 and fo, fi, ..., fn in £ . For a coherent lower pre-
vision P, defined on a set %, it holds that P(f) < P(f) for all f € # N—2¢. Also,
a coherent lower prevision is monotone: f < g = P(f) < P(g), and uniformly continu-
ous: if a sequence of gambles f,,,n > 0 converges uniformly to another gamble f, then
P(f) = P(f).

A linear prevision P on .£(Q) is a self-conjugate coherent lower prevision: P(—f) =
—P(f). In other words, a linear prevision is a positive and normalised (P(1) = 1) linear
functional (we also use 1 as the constant function with value 1). A functional defined on
an arbitrary subset " of .Z(Q) is called a linear prevision if it can be extended to a linear
prevision on .Z’(Q). This is the case if and only if sup[}} ; fi — g gjl > X P(fi)—
ZT:I P(gj) forany n,m > 0and fi, ..., fu, &1, ..., &n in £ . We let P(Q) denote the set
of all linear previsions on .Z(Q).

The restriction Q of a linear prevision P on .Z () to the set of all events is a finitely
additive probability (probability charge). Linear previsions are completely determined by
the values they assume on events; they are simply expectations with respect to finitely
additive probabilities. This can be expressed using a Dunford integral (see, for instance,
[3]): for any gamble & in .£(Q) we have P(h) = (D) [hdQ.

The natural extension Ep to .Z(Q) of a coherent lower prevision P defined on ., is
the point-wise smallest coherent lower prevision that extends P to all gambles. It is equal
to the lower envelope of the set .# (P) of all linear previsions that point-wise dominate P
on its domain #": for any gamble f in £ (Q)

Ep(f) = min_ O(f)
Observe that the set .2 (P) is convex, and closed (compact) in the relativisation to P(Q)
of the weak* topology on the topological dual . (Q)* of the Banach space .Z(Q). More-
over, #(Ep) = # (P). Indeed, if P is a coherent lower prevision on .Z(Q) and P is its
conjugate upper prevision, then for any gamble f and for any a € [P(f),P(f)] there exists
a linear prevision P € .# (P) such that P(f) = a.

The procedure of natural extension is transitive: if we consider E; the point-wise small-
est coherent lower prevision on some domain J#] O % that dominates P on % (i.e., the
natural extension of P to J#7) and then the natural extension E, of E; to all gambles, then
E, is also the natural extension of P to .Z(Q). Moreover, .# (E,) = . #(E;) = .# (P). In
particular, if P is a linear prevision on a negation invariant .# that has a unique extension
Py to some larger negation invariant domain .}, then a linear prevision on all gambles will
dominate (agree with) P on /¢ if and only if it dominates (agrees with) P, on 7).
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Let us introduce next the notion of n-monotonicity. A thorough study of the properties
of n-monotone coherent lower previsions can be found in earlier papers [9,[10]. Here, we
only mention those properties that we shall need further on.

A lower prevision defined on a lattice % of gambles (a set of gambles closed under
point-wise minima A and maxima V) is called n-monotone if, for all 1 < p <n, and all f,
Sfis.o, fpin 2 it holds that

Y e <f/\/\ﬁ> >0.

r} i€l
A lower prevision is completely monotone when it is n-monotone for any n > 1. This
is for instance the case for linear previsions. Another example is given by the so-called
vacuous previsions. The vacuous prevision P, relative to an event A is given by P4(f) =
infyc4 f(x) for any gamble f. A convex combination or a Moore—Smith limit of completely
monotone and coherent lower previsions is again a completely monotone and coherent
lower prevision.

We can easily characterise the natural extension of a completely monotone coherent
lower prevision P. If P is defined on a lattice of events .7 that includes @ and Q, its
natural extension to all events is again completely monotone, and coincides with its inner
set function P, where

P.(A) = sup{P(B): B /,BC A}.

Moreover, given a completely monotone coherent lower prevision P defined on a linear
lattice of gambles %  that contains all constant gambles, its natural extension E to all
gambles coincides with its inner extension P,, where

P.(f) =sup{P(g): g€ X g < [},
and E is again completely monotone.

A completely monotone coherent lower prevision P on all gambles satisfies a number
of interesting properties. First, it is comonotone additive: we have P(f +g) = P(f) +P(g)
for any two gambles f and g that are comonotone, meaning that for all w and @ in Q if
f(o) < f(@) then also g(w) < g(@). Secondly, it is completely determined by the values
it assumes on events. Actually, it is equal to the Choquet functional associated with the set
function (a completely monotone coherent lower probability) that is the restriction of P to
events: for all gambles f on Q

sup f

P(f)=(C) [ fap=intf+(R) [ " P({h =1},

inf f
where the first integral is a Choquet and the second a Riemann integral. Thirdly, the class of
P-integrable gambles, that is, those gambles h satisfying P(h) = P(h), is a uniformly closed
linear lattice that contains all constant gambles. In particular, the class of P-integrable
events is a field. Interestingly, a gamble & is P-integrable if and only if its cut sets {f >
t}:={x€[0,1]: f(x) >t} are P-integrable for all but a countable number of 7.

3. THE NATURAL EXTENSION OF LOWER AND UPPER DISTRIBUTION FUNCTIONS

Since we shall be dealing with the unit interval and its subintervals throughout, it will
be well to establish a number of relevant conventions here. We consider the (Euclidean)
topology .7 of open sets on [0, 1] that is the relativisation to [0, 1] of the Euclidean topology
on the set of real numbers R. By an open interval we shall mean a subinterval of [0, 1] that
is open (belongs to 77), or in other words, that is the intersection of [0, 1] with some open
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interval of R. Thus for x and y in [0, 1], (x,y) is an open interval, but so are [0, 1], [0,x) and
(,1]. For any set A C [0, 1], we denote its topological interior by int(A) and its topological
closure by cl(A).

We are now ready to tackle the first problem, mentioned in the Introduction: To what
extent does a distribution function determine a finitely additive probability?

3.1. A precise distribution function. Since we are dealing in this paper with the unit
interval, this shall be the domain we consider for the notion of distribution function:

Definition 1. A distribution function on [0, 1] is a non-decreasing function F: [0,1] —
[0, 1] that satisfies the normalisation condition F (1) = 1.

The interpretation of such a distribution function is as follows: we consider a random
variable X : [0,1] — [0, 1] and assume that F provides information about the accumulated
probability of X. This means that we can define a functional Pr (the probability induced
by the random variable X) such that for any x € [0, 1], the (lower and upper) probability
Pr([0,x]) of [0,x] is equal to F(x). Consequently, the probability Pr((x,1]) of (x,1] is
equal to 1 — F(x). In other words, specifying a distribution function F is tantamount to
specifying a set function Pr on the set of events

A :={[0,x]: x€[0,1]}U{(x,1]: x € [0,1]}, (1)

and since F satisfies the properties of a distribution function, this Pr can be seen as a linear
prevision on (the set of indicator functions of) the elements of 77’ [26, Lemma 3.58]. This
linear prevision can be uniquely extended to a linear prevision on the lattice 2 of subsets
of [0,1] generated by .7 [’| where all elements of .2 have the form

[0,x1] U (x2,x3] U+ - U (X272, %20—1] U (x24, 1], o1
(x2,23) U+ - U (x20—2,%20—1] U (X2, 1],

where 0 < x; < <x3 < - <xpp_1 <X, < llﬂ If we also denote this unique linear
prevision on 2 by Pr, then we have that

Pr([0,x1] U (x2,x3) U+ - U (x20-2,X20—1) U (22, 1])
n—1

=F(x1)+ ) [Fxar) = F (o)) + 1= F(x2), ()
k=1
and similarly
n—1

Pr((x2,x3] U+ U (x2n—2,X001]U (x20,1]) = Y [F (x2k1) — F (xoi) ]+ 1 = F(x2,). (3)
k=1

The natural extension E of Pr is the smallest coherent lower prevision on all gambles
that extends Pr. It is the lower envelope of the set .# (F) := .# (Pr) of all linear previsions
Q with distribution function F, i.e., for which Q([0,x]) = F(x), x € [0, 1]. For any gamble
hon [0,1], [Ep(h),Er(h)] is the range of the value Q(h) for all such linear previsions Q.

Since the domain 2 of Pr is a lattice of events containing both @ and [0, 1], and since
any linear prevision on such a lattice of events is in particular completely monotone, we

3To see this, observe that (i) there is a unique extension as a linear (finitely additive) set function, and (ii)
there always is an extension to a linear prevision on all gambles by [27, Theorem 3.4.2], and in particular to 2,
because Pr is a linear prevision.

4As remarked by one of the referees, there is also a unique extension as a linear prevision to the algebra
generated by .7°. See (14| Proposition 2.10] and [5| Theorem 11.2.2]. For the purposes of this paper, it suffices
to use the expression of the unique extension to the lattice 2 given in Equations @) and (3).
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deduce from the discussion in Section [2|that (i) the natural extension E is a completely
monotone and comonotone additive coherent lower prevision; (ii) that the restriction of E
to events is the inner set function Pr . of Pr, given by

Pr.(A) =sup{Pr(B): B€ 2,BC A} 4)
for all A C [0, 1]; and (iii) that for all gambles /4 on [0, 1],

su

ph
Ep(h) = (C)/thF :infh+(R)/fh Pro({h>1})dr. )

m
We can also draw a number of conclusions about the gambles 4 to which the linear
prevision Pr can be extended uniquely:

Definition 2. A gamble 4 on [0, 1] is said to be F-integrable when E(h) = EF(h). The
set of F-integrable gambles is denoted by .ZF.

Then we also know that (iv) -ZF is a uniformly closed linear lattice containing all constant
gambles, and that (v) a gamble & is F-integrable if and only if its cut sets {4 > ¢}, or
equivalently its strict cut sets {h > ¢}, are F-integrable for all but a countable number of ¢
in R.

Remark 1 (The non-uniqueness of finitely additive probability measures with a given dis-
tribution function). If we consider the set QN [0, 1] of all rational numbers between zero
and one, then it is clear that {0} = [0, 0] is the only element of 2 that is included in this set,
and therefore E(QNJ[0,1]) = Pr.(QNJ[0,1]) = F(0). On the other hand, @ is the only ele-
ment of 2 that is included in its complement (Q N0, 1])¢, which is the set of all irrational
numbers between zero and one, so we see that EF(QN[0,1]) =1—Ex((QN[0,1])¢) = 1.
This shows that the natural extension of any distribution function F is not a linear previ-
sion (precise probability) unless all the probability mass is concentrated in 0. So, unless
F(0) = 1, there is an uncountable infinity of linear previsions (finitely additive probabil-
ities) Q with distribution function F, and for each a € [F(0),1], there is some such Q
for which Q(QN[0,1]) = a. To put it differently, a linear prevision on .Z([0, 1]) is not
completely determined by its distribution function unless it corresponds to the degenerate
distribution on 0. ¢

Example 1. Define the simple break function B(-;d,a): [0,1] — [0, 1] by

0 ifx<d
B(x;d,a):=¢a ifx=d
1 ifx>d

ford and a in [0,1]. If d < 1 then B(-;d,a) is a distribution function on [0, 1], which has
one ‘break’ (discontinuity) at d unless d = 0,a = 1. For d = 1, B(-;d,a) is a distribution
function if and only if @ = 1. In the language of de Finetti [13} Section 6.5], the distribution
function B(-;d,a) has adherent mass 1 at d: any open interval that contains d has probabil-
ity 1, but we do not know exactly (due to the lack of o-additivity) the probability of {d}:
it may be 1, but then it may also be 0, and all the mass may then be left- or right-adherent
to d. In general, the adherent mass at d will distribute between the left-adherent mass at d,
the right-adherent one, and P(d). See also Remark[6]

As we shall show in Section[5] in the case of the distribution function of the probabilities
with a sequence of moments m, we know the masses adherent to any of the discontinuity
points, but not exactly the mass allocated at the discontinuity point. De Finetti argues that
we should regard the distribution functions as indeterminate in those discontinuity points.
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Let us, as an example, determine the natural extension Ep when F = (-;d,a) where
0<d<1. Clearly F = (1—a)B(-;d,0) +ap(-;d,1), and using Lemma 9] further on, we
see that

Ep = (1-a)Eg(.40) +aEg(:a,1)
so it suffices to determine Eg..4 o) f':mc.i Eg(.a1)- Since B(-:d,0) gnd B(-;d,1) only assume
the values 0 and 1, so do the restrictions of their natural extensions to events; see Equa-
tions (2)—(@). For any event A, we have that Eg .4 )(A) = 1 if and only if (d,x) C A for
some d < x < 1, and it then follows from Equation @ that
Eg(.q0)(h) = sup inf h(z).

d<x<1z€(dx)

Similarly, Eg.4,1)(A) = 1 if and only if (x,d] C A for some 0 < x < d, and therefore

Eg(.q1y(h)= sup inf h(z):min{h(d)7 sup inf h(z)}

0<x<dz€(x.d] 0<x<dz€(x.d)
We shall come back to these break functions in Section[d] ¢

As we already stated in the Introduction, de Finetti [13| Section 6.4.4, p. 235] suggests
that what we call the lower natural extension E . of a distribution function F coincides with
the lower Riemann—Stieltjes integral with respect to that distribution function. We devote
some attention to (lower) Riemann—Stieltjes integrals in the next section.

3.2. Lower and upper Riemann-Stieltjes integrals. With a distribution function F, we
can also associate integrals of the Riemann—Stieltjes type. Let us recall briefly how this
is done. We refer to [19] for an excellent and more detailed exposition of this and other
types of integrals. Consider a subdivision of [0,1], i.e., a finite collection S of adjacent
closed intervals [0,x;], [x1,%x2], ..., [Xn—1,%n], [Xn, 1] that cover [0, 1], where 0 = xp < x1 <
Xy < -+- < Xy < Xpy1 = 1. Say that a subdivision S refines a subdivision Sy, which we
denote as S, = Sy, if every closed interval in S, is a subset of some closed interval in S;.
Then the refinement relation > is reflexive and transitive, and the set . of all subdivisions
is directed under the refinement relation, meaning that for any two subdivisions S| and
S, there is a third subdivision S3 that refines both: S3 > §; and S3 > S>. This implies
that we can consider Moore—Smith limits with respect to this directed set; see [22] for
more information. Consider, for a gamble % on [0, 1], the net {Is(h;F) : S € .} which
associates the real number

n

Is(/’l;F) = Z [F(xk—H) — F(xk)] inf h(Z), (6)
=0 2E g X 1]
with any subdivision S of [0,1]. This net is bounded above by sup’ and increasing: if
Sy = Sy then Is, (h; F) > Is, (h; F). This implies that it Moore—Smith-converges to some
real number (its Moore—Smith limit), and this real number is called the lower Riemann—
Stieltjes integral of h with respect to F, denoted by:

1
(RS) Z AP (3) = Jim (0 F) = sup 15 F). 7

The real functional that maps any gamble % in .£([0,1]) to its lower Riemann—Stieltjes
integral (RS) Ll)h(x) dF(x) can be interpreted as a lower prevision. It is not difficult to
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show, using Equations (6) and (7)), that it is super-additive and positively homogeneous,
and that moreover

[F(1)— F(0)]infh < (RS)/:)h(x) dF (x) < [F(1) — F(0)] suph,

SO (RS)f(l)-dF(x) will be a coherent lower prevision on -#([0,1]) if and only if F(1)—
F(0) = 1, or equivalently, F(0) = 0. We see from Equations (6) and (7) that in that
case (RS) Ll) dF(x) is a point-wise limit of convex mixtures of vacuous lower previsions.
Such vacuous lower previsions are completely monotone, and so is, therefore, the lower
Riemann-Stieltjes integral; see [9} 10} [11] for more details.

But when F(0) = 0, its coherence and complete monotonicity allows us to say much
more interesting things about the associated lower Riemann—Stieltjes integral. Indeed, as
we have already had occasion to mention before, it ensures that this lower integral is the
Choquet integral with respect to its restriction to events. Moreover, let ¢ be the lattice of
events generated by all closed intervals of [0, 1], i.e., the set consisting of @ and all finite
unions of closed intervals of [0, 1], and for any C = [x;,x2]U--- U [x24—1,X2,] in € with
x1 <xp <+ < xppin [0, 1], let

n

0r (C) := (RS) / 1e(x)9F () = YL [Fxa) — Floa) (8)

and let Qr(0) = 0. Then % is a lattice of events containing both @ and [0, 1], and the set
function Qp is the restriction of the lower Riemann—Stieltjes integral to %', and is therefore
a coherent and completely monotone lower probability. Moreover, we infer from Equa-
tions (6) and (7) that for any event A

(RS)/:)IA (x)dF (x) = sup {Qr (C): C € €,C C A} = Op.(A),

so the lower Riemann—Stieltjes integral coincides on events with the inner set function
(the natural extension) Qf . of Q. Finally, since the lower Riemann—Stieltjes integral is a
coherent and completely monotone lower prevision, it coincides with the Choquet integral
of its restriction to events, whence

RS/h )dF (x) /thF*_me( ) [ op({h =) de

for any gamble % on [0, 1].

-1 . o .
The upper Riemann—Stieltjes integral (RS) [yh(x)dF (x) is defined similarly, with the
infima in Equation (6) replaced by suprema. Alternatively, because

71 . 1
(RS) / h()dF(x) = ~(RS) / —h(x)dF (x),
20
it can be seen as a conjugate upper prevision. If the lower and the upper Riemann-Stieltjes
integrals coincide for some gamble /, we say that & is Riemann—Stieltjes integrable with
respect to F, and we call the common value the Riemann—Stieltjes integral of h with respect
to F. It follows from the complete monotonicity and coherence of F (when F(0) = 0) that
the set of all Riemann—Stieltjes integrable gambles constitutes a uniformly closed linear
lattice, and that a gamble is Riemann—Stieltjes integrable if and only if (the indicators of)
its cut sets {h >t} are Riemann—Stieltjes integrable for all but a countable number of real
numbers ?.
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We are now able to investigate de Finetti’s suggestion that the natural extension Ef of a
distribution function F' can be written as the lower Riemann—Stieltjes integral with respect
to F. The following theorem shows that this is not always the case! It was first proven by
Troffaes in his doctoral dissertation [26, Theorem 4.59]. We give an alternative proof here
that is much shorter than his, because we are able to harness the power of the mathematical
machinery behind completely monotone coherent lower previsions.

Theorem 1. For any distribution function F on [0,1], E(h) = (RS) /. (l)h(x) dF (x) for all
gambles h on [0, 1] if and only if F is right-continuous (i.e., it has no right adherent masses)
and F(0) =0.

Proof. We begin with the ‘necessity” part. Take any x € [0, 1]. It follows from the definition
of the lower Riemann-Stieltjes integral that (RS) /. (I)I(x"l] (t)dF(t) = 1 — F(x+) whereas
Er((x,1]) = Pr((x,1]) = 1 — F(x). This shows that F must be right-continuous on [0, 1].
Similarly, consider [0,x] for any x in [0,1], then (RS)LI)I[OJ] (t)dF(¢) = F(x) — F(0) and
Er([0,x]) = Pr([0,x]) = F(x), so we also must have that F(0) = 0.

We now turn to the ‘sufficiency’ part. Assume that F(0) = 0 and that F is right-
continuous. First check, using Equations (2), (3) and (8) that in this case Pr(B) = QF«(B)
for any B in £ and Qr(C) = Pr(C) for any C in €. Then for any A C [0, 1],

Pr.(A) =sup{Pr(B): B€ 2,BC A} =sup{Qr«(B): B€ 2,BC A}
= sup sup{Qr(C): Ce%,CCB}
BE2,BCA
<sup{Qr(C): C€€,C CA} =QFx(A),

and a completely symmetrical argument shows that Qr .. (A) < Pr.(A). Hence the coherent
lower probabilities Prx and QF  coincide on all events, and so do therefore their natural

extensions E and (RS) | :)-dF (x) on all gambles. O

3.3. Moments of a distribution function. Interestingly, any distribution function F pro-
duces precise moments, i.e., the polynomials p* defined by p*(x) :=x*, k > 0 and p°(x) :=
1 are always F-integrable. To see this, verify that for k > 0, {p* > ¢} is equal to (t% ] if
t >0andto [0,1] if 7 < 0, and that {p" >t} equals [0,1]ifr < 1 and @ if > 1, so all the
strict cut sets belong to .77, and are therefore F-integrable.

Using Equation (5), we find for the corresponding moments m that for k > 0, after an
appropriate change of variables in the Riemann integral, and integration by parts,

1 1
mi = Ep(p") =Er(p") = (R) [ (1= F(eh)ar
0
1 1 ®)
- lf(R)/ kxk—lF(x)dx:(RS)/ HdF(x),
0 0
since Pp,*((t%, 1)) = PF((t%, hH=1 —F(t%). For k = 0 on the other hand, we have that
mo = 1 and that

(RS)/leOdF(x) - (RS)/O1 1dF(x) = F(1) - F(0)

so we see that mp = (RS) fol x%dF (x) if and only if F(0) = 0.

Let us therefore assume that F(0) = 0. Then all polynomials p on [0, 1] are both F-
integrable and Riemann-Stieltjes integrable with respect to F. Since we have seen that
both Er and (RS) L1)~dF (x) are coherent and completely monotone lower previsions, it
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follows that both the F-integrable and the Riemann—Stieltjes integrable gambles constitute
a uniformly closed linear lattice. This implies that all continuous gambles are both F-
integrable and Riemann-Stieltjes integrable with respect to F. We conclude that for all
continuous gambles i € €([0, 1]),

. 1
Ep (W) =Er(h) = (RS) [ h(x)dF(2),

and we can use the Riemann—Stieltjes integral to calculate the natural extension of F to
continuous gambles. We might be tempted to extrapolate this result and surmise that more
generally, we can use the lower Riemann—Stieltjes integral to calculate E for all gam-
bles. Theorem [I] tells us however that we cannot expect this to be the case unless F is
right-continuous besides F(0) = 0. We shall have occasion to come back to the intrigu-
ing connection between (lower) Riemann—Stieltjes integrals and the natural extensions of
distribution functions (and moment sequences) in the following sections.

3.4. Lower and upper distribution functions. Let us now turn to a more general prob-
lem. Suppose we have two maps F,F: [0,1] — [0,1], which we interpret as a lower and
an upper distribution function, respectively. This means that F and F determine a lower
probability P 7 on the set 77" given by Equation (1) as follows:

Py 7([0,x]) = E(x) and Pp 7((x,1]) = 1 = F(x)
for all x € [0, 1]. Walley has mentioned [27, Section 4.6.6] and Troffaes [26, Theorem 3.59,
p- 93] has shown that P 7 is a coherent lower probability if and only if F* < F and both

F and F are distribution functions, i.e., non-decreasing and normalised. We shall assume
in what follows that these conditions are satisfied. Lower probabilities of this type are
sometimes called probability boxes, see for instance [16].

The natural extension E 7 of the coherent lower probability P  to all gambles is the
smallest coherent lower proTjability that coincides with BFF on J#, or in other words, that
has lower and upper distribution functions F and F. It is the lower envelope of the set
M(F,F) =M (Pp5) =M (EpF) of all linear previsions whose distribution function F
satisfies F < F < F. In fact, we have the following resultE] Denote by

®(F,F) = {F: F distribution functionand F < F <F} (10)

the set of all distribution functions (non-decreasing and normalised) on [0, 1] that lie be-
tween F and F.

Theorem 2. .Z (F,F) = Urca(r,F)# (F), and so Ep  is the lower envelope of all natu-
ral extensions E . of the distribution functions F in ®(F,F): for all gambles h on [0,1],

Epp(h)=inf{Ep(h): F € ®(F,F)}.

Proof. Recall that for any linear prevision Q on .£([0,1]), Q has distribution function F
if and only if Q € .#(F). Now Q € .# (F,F) if and only if the distribution function of Q
lies between F and F, so if and only if there is some F in ®(F, F) such that Q € . (F).
This means that indeed .# (F,F) = |J rea(r F) % (F). Taking lower envelopes yields the
desired expression involving the natural extensions, since E # is the lower envelope of
M (F,F) and Ey is the lower envelope of .Z (F). O

SThis result was mentioned by Walley [27, Section 4.6.6]; we give a (straightforward) proof here for the sake
of completeness.
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4. DISTRIBUTION FUNCTIONS DETERMINED BY A MOMENT SEQUENCE

We have seen that a distribution function F' always has precise moments, that is, if we
know the values that the prevision Pr takes in JZ, there is a unique extension to the class
of polynomials, and as a consequence also to the class of continuous gambles, in which
the set of polynomial gambles is uniformly dense. In this section, we are going to study
the converse problem: to what extent do the values of the moments of a finitely additive
probability determine its distribution function? This is related to the so-called moment
problem, which we now turn our attention to.

4.1. Basic results for the moment problem. Let P be a linear prevision on the set
7,([0,1]) == {pk: k> o}.

The value my, := P( pk) is called the (raw) moment of order k of the distribution P. Then,
using linearity, we can determine the value of P in the set ¥([0,1]) of all polynomial
gambles on [0, 1], and since any continuous gamble is the uniform limit of a sequence
of polynomials, these determine the values of P on all elements of the set €([0,1]) of
continuous gambles on [0, 1]. Since trivially a linear prevision on €’(]0, 1]) determines the
values of all the moments, we see that there is a one-to-one correspondence between linear
previsions on ¥#},([0,1]) and those on €'([0,1]).

In a companion paper [21], we have investigated to which extent a sequence of moments
determines a finitely additive probability measure. Let us give a short survey of the results
we found there, as they will be useful in addressing the problem at hand.

First, we recalled a number of necessary and sufficient conditions for a real sequence
m = (my x>0 in [0, 1] to be the sequence of moments of some finitely additive probability
measure on the subsets of [0, 1]. One such condition is the complete monotonicity of the
sequence 7:

Definition 3. A sequence m in [0, 1] is said to be completely monotone when mo = 1 and
(=1)"A"my > 0 for all k,n > 0, the A"my, are the n-th order differences defined recursively
by A"my := A" 'my g — A" Umy and A%y = my.

We shall also call a completely monotone sequence a Hausdorff moment sequence, re-
ferring to Hausdorff’s [17, [18]] original study of the moment problem for o-additive prob-
abilities. In these works, Hausdorff proved that the complete monotonicity of m is also
necessary and sufficient for the existence of a o-additive probability measure with this
sequence of moments, which is moreover unique.

Secondly, we also studied to which extent a Hausdorff moment sequence m determines
its inducing probability measure. Observe that such a sequence uniquely determines a lin-
ear prevision B, on the set %([0, 1]). This implies that the linear previsions on all gambles
with the given moment sequence m are precisely those linear previsions that extend B,,.
Let .# (m) denote the set of all these linear previsions. The lower and upper envelopes of
# (m) are given for any gamble 4 on [0, 1] by

Em(h) = sup {pm(g): 8 € %([07 1])ag S h}
E,(h)=inf{P,(g): g€ €([0,1]),h < g}.
Any linear prevision on .Z([0, 1]) induces the moment sequence m if and only if it dom-
inates E,,. Note that only one of the restrictions of these finitely additive probabilities in

 (m) to the Borel sets is also o-additive. We shall denote this probability by PS, and by
F? its (right-continuous) distribution function.

(1)



12 ENRIQUE MIRANDA, GERT DE COOMAN, AND ERIK QUAEGHEBEUR

Next, we list some properties of E,, and E,, (proven in [21]]). For this, let us define, for
any gamble 4 on [0, 1], the gambles

h'(x) = sup {g(x): g € €((0,1]),8 < h},
h(x) = inf {g(x): g € €((0,1]),h < g}.
Theorem 3. [2]|] Consider a Hausdor{f moment sequence m, and let E,, be the functional
given by Equation (1) The following statements hold.
1. For any gamble h on [0,1), E,,(h) = E,, (k) and E (k) = E(h'). In particular; for
any event A C [0,1], E,,(A) = E,,(int(A)) and E;,(A) = E(cl(A)).
2. For any set A,

12)

E,(A)=E,(int(A)) = ). E,(I), (13)
Ie.7(A)
where 7 (A) is a countable family of disjoint open intervals whose union is int(A).
3. E,, is a completely monotone and comonotone additive coherent lower prevision on
Z([0,1)), and for all gambles h on [0,1],

suph

E, (h) = (C)/hdgm ::infh—s—(R)/infh E, ({h>1))dr

suph

— infh+ (R)/ E,({h>1))dr,
infh

where the first integral is the Choquet integral associated with the restriction of E,, to

events, and the second and third integrals are Riemann integrals.

Definition 4. Let m be a Hausdorff moment sequence, and let E,, and E,, be the lower and
upper previsions defined in Equation (T1). The associated lower distribution function F,,
and upper distribution function F,, on [0, 1] are given by

F,(x):=E,(0,x]) and F(x):=Eu([0,x])
for all x € [0, 1].

As we said before, a linear prevision has moment sequence m if and only if it belongs
to .# (m); in that case, its distribution function belongs to the set ®(F,,,F,,) that we can
define using Equation (T0). We shall see in Theorem 6]later on that the converse also holds:
a linear prevision whose distribution function belongs to ®(F,,, F,,) will always produce
the moment sequence .

For any function f on [0,1] and any x € [0,1] let f(x—) := lim, .y, f(t) denote the
left limit of f in x (if it exists) when x > 0, and let f(0—) := £(0). Similarly, let f(x+) :=
limy_x s>y f(f) denote the right limit of f in x (if it exists) when x < 1, and let f(1+) :=
f(1). Let then Zp, = {x€[0,1]: F,(x—) # F,(x+)} denote the set of all points of
discontinuity of F,,, and Zr = {x €[0,1]: F,,(x—) # Fy(x+)} denote the set of points
where F,, is not continuous. Let &, := D, U %m denote their union. It follows from the
non-decreasing character of F,, and F,, that Zr  and Y, are countable subsets of [0, 1],
and as a consequence so is their union Z,,.

Proposition 4. [2]1|] Let m be a Hausdorff moment sequence, and let F,,, F,, be its associ-
ated lower and upper distribution functions. The following statements hold:
(1) Forany x € [0,1], F,,(x+) = Fp(x) = Fp(x+).
(2) Foranyx € (0,1), F,,(x—)
(3) Em(li) = Fm(li) < Em(
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We are now ready to find out what are the distribution functions that correspond to a
given Hausdorff moment sequence m. We shall see that the coherent lower prevision E,,
helps us solve this problem.

4.2. First results.

Definition 5. A gamble 4 on [0, 1] is called m-integrable when E,,(h) = E,,(h). We shall
denote by E,, the restriction of E,, (or E ;) to the class of m-integrable gambles.

The transitivity of the natural extension ensures that E,, is the natural extension of E,,.
Since it follows from Theorem 3| that E,,, is determined by its restriction to events and these
are in turn determined by the values in open intervals, we only need to be interested in the
values that E,, takes in the lattice &, generated by the open m-integrable intervals. Denote
by P, the restriction of E,, (and therefore also E,,)on 0. Itis easy to see that the elements
of this lattice take the form

0 =1[0,x1) U (x2,x3) U U (x27-2,%20—1) U (X2, 1] (14)
where 0 < x; <xp <x3 < -+ <xppp <Xpp—1 < X2 < 1, X3 & Dy, and that

n—1
Bu(0) = F(x1) + Y [Fn(x2rs1) — Fon(x2)] 4+ 1 = F i (x20). (15)
k=1

We now proceed to show that E,, is actually equal to the natural extension E; x = of

the lower and upper distribution functions F,, and F,,, or in other words, that these two
functions already capture, in a very specific way, all the information that is present in the
moments. We first cite the following lemma, which follows immediately from Proposi-

tion[4]

Lemma 5. Consider a Hausdorff moment sequence m, and let F € ®(F,,,F,). Then
1. F,,(x) =F(x) = Fu(x) for all x ¢ Dn;

2. F(x—)=F, (x—)=Eg(x—) forall x € (0,1];

3. F(x+) = Fpu(x) = EZ2(x) forall x € [0,1].

We see then that the distribution functions of the finitely additive probabilities with a
given sequence of moments m may only differ in the countable set &, of discontinuity
points of F, m,Fm. On such points d, the difference between the distribution functions will
come from the distribution of the mass jumps between the left-adherent and right-adherent
parts, and P(d). That ®(F,,,F,,) has such structureﬁ can be perhaps better understood
if we think of the moments produced by a distribution function by means of a Riemann-
Stieltjes integral, and the fact that this integral ‘flattens out’ adherent masses. We shall be
more precise about this in Proposition T3] further on.

Remark 2 (The uniqueness of the o-additive probability measure with a given moment
sequence). This lemma allows for a very simple proof of the fact that there is only one o-
additive probability with a given moment sequence m that satisfies the Hausdorff moment
condition, or in other words that there is only one o-additive probability measure that ex-
tends a linear prevision on the set of all continuous gambles on [0, 1] (which is, essentially,
the F. Riesz Representation Theorem in the form mentioned by Feller [[15, Section V.1]).
On the one hand, by the first statement in Proposition El, the distribution function F,, is
right-continuous, and the associated o-additive probability measure has moment sequence
m. On the other hand, let P° be any c-additive probability on the Borel sets of [0, 1]

OWe are grateful to one of the referees for drawing our attention to this.
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with moment sequence m. Then its distribution function F° is right-continuous (by o-
additivity), and it must belong to ®(F,,,F,,). By the third statement of Lemma we see
that F° =F,,, so F is uniquely determined, and therefore so is PGE] ¢

Theorem 6 Conszder a Hausdorff moment sequence m, and let ®(F,,,F,,) be given by
Equation (I0). Then the following statements hold.

1. Forall F in ®(F m,fm), the restriction of E. to the lattice of events O, generated by
the m-integrable open intervals is equal to B,,.

2. Forall F in ®(F,,,Fy), Ep dominates E,, and therefore all m-integrable gambles are
also F-integrable: £,, C ZF.

3. E,=inf{Ep: F € ®(F,,Fn)} =Ep F,-

Proof. We begin with the first statement. Consider any distribution function F in the set
®(F,,,F ) and any finite union O € O, of m-integrable open intervals. Such a union
has the form given by Equation (I4). If we now apply Equations () and (@), we find in
particular that for this union, if x; > 0,

Er(0)=Pp.(0) = ]; (x2k1—) — F (xk)] + 1 = F (x2n)

n—
=F,,(x1 +Z (x2k41) = Fn(x2)] + 1 = F i (x24),

where the last equality follows from LemmaE] and Propositiond] Similarly, if x; =0, we
get

n

Ep(0) = Pr.(0) = ) [F(xouy1—) — F(xar)] + 1= F(x24)

TT
Ll

[Em (x2k+1) - Fm (x2k)] +1- Fm (XZn)'

T
[N

If we compare these expressions with Equation (T3)), we see that E5(0) = B,,(0), so P,
(and therefore E,,) and E coincide on &,,. This proves the first statement.

Since E,, is the natural extension of B, and therefore the smallest coherent lower pre-
vision that extends P,,, we see that E; > E,.. So for any gamble 4 on [0,1], E,,(h) <
Ep(h) <Ep(h) <Ey(h). If h is m-integrable gamble, then E,, (h) = E,,(h), whence also
Ep(h) = Ep(h), so h is F-integrable as well. This completes the proof of the second
statement.

To prove the third statement, use Theoremto deduce from Ep > E,, that E FyFon >E,.
For the converse inequality, recall that since the coherent lower prevision E,, has lower
distribution function F,, and upper distribution function F,,, it must dominate the smallest
coherent lower prevision Ep 7 ~with these lower and upper distribution functions, so
E,>Ep F,. - O

We see from this Theorem that, given a distribution function F in ®(F,,,F,), and
a linear prevision P with distribution function F, the linear prevision P belongs to the

7An astute reader might worry at this point about the appearance of F,2 in Lemma which might lead him
to suspect that our reasoning here is circular. But there is no real cause for concern: in no essential part of
the development so far have we needed the existence nor uniqueness of a o-additive probability measure that
produces the moment sequence m. We could essentially have dropped every mention of P and F,J until now,
and used Lemmato prove their existence and uniqueness.
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class #(Er) C .#(E,,), and as a consequence the moment sequence of P is m. Hence,
®(F,,,F,,) is exactly the class of distribution functions whose moment sequence is m.

Next, we establish a number of necessary and sufficient conditions for the equality
F,, = Fy, or, equivalently, for the uniqueness of the distribution function with a given
sequence of moments. As it could be expected, it amounts to the m-integrability of all the
sets in .7Z°, which in turn means that the only distribution function inducing these moments
is (except for maybe at 1) continuous.

Corollary 7. Consider a Hausdorff moment sequence m. Then the following statements
are equivalent.

F,, = F, whence in particular F,,(0) = 0;
F,,, Fi and E are continuous on |0,
E,, = Ep for some F € ®(F,,,Fn);
E,=Epforall F € ®(F,, Fn);

E, = (RS)[,-dF (x) for all F € ®(F,,,F ).

D

SN

Proof. Tt is clear from Proposition [4| that the first two statements are equivalent.

We now give a circular proof of the equivalence of statements 1, 3 and 4. The fourth
statement implies the third. To show that the third statement implies the first, consider any
x € [0,1] and the distribution function F for which E,, = E. Then it follows from the
assumption that F,,(x) = E,,([0,x]) = Er([0,x]) = F(x). But it follows by conjugacy that
also E,; = EF, $0 Fy(x) = E;n([0,x]) = EF([0,x]) = F(x). This means that F,, = F,,. So
we are left to show that the first statement implies the fourth. It follows from F,, = F,, that
®(F,,,F,,) only contains one distribution function F,, = F,,, and Theorem E] then tells us
that indeed E,, = EEm = Efm'

To complete the proof, assume that any (and hence all) of the first four statements hold.
Then in particular E,, = Efm (statement 4). Now, since F,, is right-continuous and satisfies

Fu,(0) =0 (statement 1), we know from Theoremthat also Ex, = (RS) [ (1)' dF,(x). Since

F, is the only element of ®(F,,,F,,) (statement 1), we see that the fifth statement holds.
Conversely, it follows from the assumption that E,, = (RS) | (l)-dfm (x). In particular, 1 =

E,(1)= (RS)Ll)ldfm(x) =Fu(1) —F,(0), so F,(0) =0 = F,(0). Moreover, for all
0<x<1,F,kx) = (RS)iéI[U_’x] (1)dF (1) = F iy (x) — F 1 (0) = F (). 4

Remark 3 (Distribution functions are more informative than moment sequences). Let us
then argue that, for finitely additive probabilities, specifying a distribution function F is
generally speaking more informative than specifying a moment sequence (contrary to what
we are used to for o-additive probabilities). Indeed, let F' be a distribution function on
[0,1]. We have seen in Section that F produces a precise moment sequence m with
mgy =1 and my = (RS) fol xFdF (x), k > 0; and it is clear that this moment sequence satisfies
the Hausdorff moment condition. By Theorem@ Er >E, and %, C ZF, so Ef is indeed
generally more informative than E,,. And Corollary [7| makes us conclude that E,, = E
only if E is equal to the lower Riemann—Stieltjes integral associated with F, which (due
to Theorem|I) holds if and only if F is continuous on [0, 1) and F(0) = 0. ¢

In Section[3.1] we have studied the relationship between the natural extension of a dis-
tribution function F and the lower and upper Riemann-Stieltjes integrals. We now consider
the more general situation where our information is given by a moment sequence m. We
have already argued that in that case the linear previsions with that moment sequence are
those that lie between E,, and E,,, and that the corresponding distribution functions are
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those that lie between F,, and F,,. We may be tempted to think that E,, and E,, coincide
with the lower and upper Riemann—Stieltjes integrals with respect to F,, and F,,, respec-
tively. However, this is generally not the case. The relationship between them is given by
the following theorem.

Theorem 8. Consider a Hausdorff moment sequence m. For any F € ®(F,,,F,) such that
F(0) =0 and any gamble h on [0,1],
1 —1
En(h) < (RS) [ 1(x)dF () < (RS) [ W) 4P (x) < En(h).
20
Moreover, we have that

. 1
E,(h)=, inf  (RS) [ nwar

for all gambles h on [0, 1] if and only if F,,(0) = 0, or equivalently, 0 & D,

Proof. We begin with the first part. Consider any finite union O € &, of m-integrable open
intervals, which always has the form given by Equation (T4). Consider any F € ®(F,,,F ),
then it follows from the definition of the lower Riemann—Stieltjes integral that if x; > 0,
(RS) [ ylo(x) dF (x) is equal to

n—1
F(x;—) —F(0)+ Y [F(xokr1—) = F (xox+)] + 1 — F (x20+)
k=1
- Fm xl ni, x2k+1 Fm(x2k)] +1 _Fm(x2n)
= Pu(0)—F(0),

where the first equality follows from Lemma [5} and the fact that x; ¢ %, for all k, and
the second one from Equation (I5). A similar reasoning allows us to deduce that B,,(0) =
(RS) [ ylo(x) dF (x) if x; = 0. So if F(0) = 0, we see from Section [3.2] that (RS) /- dF ()
is a coherent lower prevision, and the above developments imply that it coincides with the
coherent lower probability B, on &,,, and therefore dominates the smallest coherent lower
prevision E,, that coincides with B, on &, (RS) (l)- dF (x) > E,,. The other inequalities
follow immediately from conjugacy.

We now turn to the equality involving lower Riemann—Stieltjes integrals. Consider 0 <
a < 1. Then, for any F € ®(F,,,Fp), (RS)LI)I[Q“) (x)dF(x) = F(a—)—F(0) = F,,(a) —
F(0) by Lemma[5]and the second statement of Proposition 4} so

1
inf (RS) [ lo.(0)4F () = F,u(@) ~ Fn(0)
FED(F,,,Fm) 20
and this is equal to E,,([0,a)) = F,,(a) [use Proposition | and the monotonicity of E,,]
only if F,,,(0) = 0. Hence, the condition is necessary. Let us prove now that it is also
sufficient. Assume therefore that F,,(0) = 0, or equivalently, 0 & %,,. Consider any F in
®(F,,,F ). Then by assumption F(0) = 0, so we know from Section [3.2 that the lower
Riemann—Stieltjes integral with respect to F is a completely monotone lower prevision on
all gambles, which is therefore the natural extension of its restriction Qr 4 to events. O«
is the natural (inner) extension to events of Qr, which is defined on the lattice % of events
generated by all closed intervals of [0, 1] by Equation (8). Now observe that for any event
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C = [x1,x]U---Ulxp—1,%,] in € we have, taking into account Equations and (3),
F(0)=0and F(1) = 1, that

n

0r(C) = Y [F (xax) = F (xax—1)] = Pr((x1,%2] U+ - U (x20—1,%20]) < P(C).
=1

Consequently, we find for any event A C [0, 1] that
Or+«(A) =sup{Qr(C): C€E,C CA} <sup{Pr.(C): C€C,CCA}

= sup sup{Pr(B):B€e 2,BCC}<sup{Pr(B): B 2,BCA}
Ce%,CCA

- PF,* (A)7

and therefore also (RS) [ (l)h(x) dF (x) < Ep(h) for all gambles & on [0, 1]. From Theorem@
we then deduce that

1
E, )= inf  Ee()= it (RS) [ hx)aF ()
Fe®(F,,.Fn) FE®(F,,,Fin) 20
for any gamble A. The converse inequality follows from the first part. (]

Remark 4 (On the F. Riesz Representation Theorem). It follows from Theorem 8| that if
a gamble h is m-integrable, then it is Riemann-Stieltjes integrable with respect to any
F € ®(F,,,F ) such that F(0) = 0, and moreover

E, (1) = i) = (RS) [ ) 4F () = E¢ (1) = B (8, (16)

This holds in particular for all continuous gambles on [0, 1], which strengthens the conclu-
sions in Section[3.3] We shall be able to further strengthen this statement in Corollary
below.

But Equation (T6) for continuous gambles is actually a statement of the original form
of the F. Riesz Representation Theorem ([23]], see also [24) Section 50]). Indeed, we al-
ready know that specifying a Hausdorff moment sequence m is equivalent to considering a
positive (normalised) linear functional B, on the set %’([0, 1]) of all continuous gambles on
[0,1]. And for such a functional, we now see that 2, = (RS) fol -dF (x) for all distribution
functions F in ®(F,,, F,,) such that F(0) = 0. Since it is clear that there are such distribu-
tion functions (for instance F,,), we have indeed proven that any positive linear functional
on € ([0,1]) can be written as the Riemann-Stieltjes integral with respect to some non-
decreasing functionﬂ Conversely, it is trivial that the Riemann—Stieltjes integral associated
with a distribution function F such that F(0) = 0 is the restriction of the lower Riemann—
Stieltjes integral (a coherent lower prevision) to the uniformly closed linear lattice of all
Riemann-Stieltjes integrable gambles. Hence, the Riemann—Stieltjes integral is a linear
prevision on this lattice, and therefore a positive linear functional.

Observe that this proof is, as far as we can see, constructive, because it is based on
the constructible natural extension E,, (and on the constructive version of the Stone—
Weierstrafl theorem using approximations of continuous gambles by Bernstein polynomi-
als). Contrary to Banach’s fairly well-known unconstructive proof [2] it does not rely
on the Hahn-Banach Theorem. Observe, by the way, that there is a small and easily
correctable mistake in Banach’s proof which involves, interestingly and tellingly, the as-
sumption F(0) = Oﬂ It is also of historical interest to note that in F. Riesz’s approach, as

8Normalisation is not an issue here.
9We owe this remark to Eric Schechter.
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reported in [24} Section 50], as well as in Daniell’s 6] more general treatment of the exten-
sion problem, the proof proceeds by analogy of Dedekind’s construction of the reals (see
for instance [[7, Chapter 2] for an interesting discussion of so-called Dedekind—MacNeille
completion of partially ordered sets to complete lattices) showing that the linear func-
tional on the continuous gambles can be extended uniquely to a linear functional satisfying
monotone convergence{ﬁ on the convex cone of lower semi-continuous gambles, and then
proceeding from there using the, by now familiar, inner and outer extensions. Since we
cannot generally assume monotone convergence for our finitely additive extensions, we
do not have uniqueness of the extending positive linear functionals on the cone of lower
semi-continuous functions, and we have to use inner extension earlier in the process to
get to E,,. But interestingly, we do still have that the natural extension E,, is completely
determined by the values it assumes on lower semi-continuous gambles; see Theorem [3]
In fact, we shall see further on in Theorem [I6] that E,, coincides on the convex cone of
lower semi-continuous gambles with the unique extension satisfying monotone conver-
gence constructed in the manner of F. Riesz and Daniell described above. Dual (conjugate)
statements can be made for E,,. ¢

5. INTERESTING EXPRESSIONS FOR E,

We are now going to combine all the previous results in order to derive a very elegant
expression for E,,. In order to get there, we only need to take a closer look at distribution
functions and their discontinuity points.

Consider any distribution function F in ®(F,,,F,). Then since F is non-decreasing
its set of discontinuities is a countable subset of [0, 1]. From Lemma [5] it is moreover a
subset of Z,. Let us introduce a new distribution function F~ by letting F~ (x) := F(x—)
if x€ (0,1] and F~(0) := OEFI Then we may infer from Lemma [5| that the sum of the
probability masses concentrated in the discontinuity points

Y [F(d+)=F~(d)]= Y, [Fu(d)~F,(d=)]=:tm (17)

de Dy, Ad€EDm

is the same for every F in ®(F,,,F,,), and completely determined by F,, and F,, (and
therefore by the moment sequence m). Since U, is the sum of the jumps of F at its discon-
tinuity points, we must have that 0 < i, < 1.

Then we can write F' as a convex mixture

F:“mFb+(1_,llm)Fc (18)

of a continuous distribution function F; and a ‘pure break function’ ¥}, which is a uniformly
and absolutely convergent sum (convex mixture) of simple break functionsE] Explicitly,

10ve say that a linear functional L satisfies monotone convergence on some set of gambles % if for any
monotone sequence of gambles f,, in %" that converges point-wise to some gamble f in ¢, it holds that L(f;,) —
L(f).

\e introduce this new notation because if d is a discontinuity point of F then the mass jump in d is
F(d+)—F(d—) if d > 0. But if d = 0, then this mass jump is F(0+), and we introduced the convention before
that F(0—) := F(0), which may be different from zero whereas F ~(0) is defined to be zero. So the new notation
allows us to write F(d+) — F~ (d) for the mass jump in every d.

2This idea is explained more extensively in [[13| Section 6.2] and [[19] Section I1.13].
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we have for all x € [0, 1]

HnFi () =} [F(d+)—F(d)][3< ,F(d)(d))

icz, F(d+) (d)
= Z [Fin(d) = F,,(d=)]B(x:d,5,(F,d))
d€EDm
=F(x)=F,x=)+ Y [Fu(d)—F,(d-)] (19)
de D, d<x
using Lemma 5} where we let
F(d)—F,(d-)

sm(F,d) = ; (20)

Fm (d) - Em (di)
and f is the simple break function defined in Example|l} On the other hand,

(1= tn)Fe(x) := F(x) = P Fp(x) = F,y(x=) =}, [Fu(d) = E, (d—)].
A€ Dy, d<x

We see that the continuous part F, is the same for all distributions F in ®(F,,,F,,), and
completely determined by the lower and upper distribution functions F,, and F,,. We shall
denote it by F,,. Observe that F;,(0) = 0. The pure break parts are identical in all the
continuity points of F,, and F,,, and differ only by the values F(d) they assume in the
countably many discontinuity points d € %,,. Indeed, we can get to all F in ®(F,,,F,,) by
for each such break point d assigning to F(d) any value in [F,,(d), F,,(d)] (independently
of all the other break points) if d < 1, or equivalently, assigning to s,,(F,d) any value in
[0,1]; if d = 1 is a break point, then there is of course only one possible choice F(1) =1,
or s, (F,1) =1.
We then find in particular for F = F,, and F = F, that, with obvious notations,

ummb+(1_um) m and fm:limfm,b‘i‘(l _.um)Fm (21)
where for all x € [O, 1)

UnFup(x)= Y  [Fu(d)—F,(d-)] (22)
A€ Dy, d<x
and
UnFp(x)= Y [Fu(d)—F,(d-)], (23)
d€ D d<x

and where we have also used the second statement in Proposition[d] In particular, for any
break point d < 1, we have that s,,(F,,,d) = 0 and s,,(F,,,d) = 1. It is not hard to see
(check also Proposition (13| further on) that F,, , and F,,, are exactly the lower and upper
distribution functions produced by the moment sequence 1, where

(mp)="Y, d*="Y [Fup(d)—F,,(d—)d"
dE Dy, M deDpy,

which corresponds to a discrete o-additive probability measure with probability mass
Fnp(d) —F,, ,(d—) concentrated in the elements d of .

Indeed, we shall see that we can decompose the moment sequence m into a ‘continuous’
part m. and a ‘discrete’ part my. This is due to the convexity property of the natural
extension established in the following two lemmas.
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Lemma 9. Let F| and F, be two distribution functions on [0,1], and let, for a € [0,1],
the distribution function F = aF; + (1 — @)F, be a convex mixture of F) and F>. Then
(RS) [+ dF (x) = a(RS) [+ dFi (x) + (1 — @)(RS) [ - dF3(x) and Ep = aEp, + (1 — a)Ep,.

Proof. For the lower Riemann-Stieltjes integral, observe that the subdivisions of [0, 1]
form a directed set under the refinement relation, and that consequently, such a lower
integral is a Moore—Smith limit. Since the limit of a convex mixture is the convex mixture
of the limits, the result follows.

For the natural extensions, the reasoning is similar, if somewhat more involved. First of
all, consider the natural extension to all events. Since the set 2 is a lattice of events, it is
closed under unions, and therefore constitutes a directed set under the inclusion relation.
This ensures that the supremum in Equation (@) is actually a Moore-Smith limit. Since
the limit of a convex mixture is the convex mixture of the limits, the result follows for
the natural extension to events. For the natural extension to gambles, the proof is now an
immediate consequence of Equation (3) and the linearity of the Riemann integral. t

Lemma 10. Let m’' and m" be two Hausdorff moment sequences, and consider, for any
o € [0,1], the moment sequence m := am' + (1 — o)m” (a convex mixture). Then m satisfies
the Hausdorff moment condition as well, and E,, = aE,, + (1 — ®)E, .

Proof. First of all, my = o1 + (1 — o)1 = 1 and moreover (—1)"A"my = a(—1)"A"m;) +
(1—ot)(—=1)"A"mj > 0 for any k,n > 0, so m satisfies the Hausdorff moment condition.
Observe (i) that B,, = aP,) + (1— a)f’mu, (ii) that Equation (TI) tells us that the natural
extension of a moment sequence is a Moore—Smith limit, and (iii) that the limit of a convex
mixture is the convex mixture of the limits. (Il

Applying these results, we deduce that
mie = (1= ) (me )i+ tm (mp )

= (= m)@S) [ A0+ T Foald) = -
d€EDy

for all k > 0O [for the first term, observe that F;,(0) = 0 and recall the results of Section
and that

Em = (l - .um>EmC +NmEmb = (1 - .um)EFm +.umEmb-

Remark 5. 1Tt is instructive to derive these results in an alternative manner. We may in-
fer from Theorem |8| that any distribution function F in ®(F,,,F,,) produces the moment
sequence m. But then Equation (9) leads to the conclusion that for k > 0,

my = (RS) /0 ' dF () = (RS) /0 ' HdE, (1) = (RS) /O ().

Now Equations (T8)—(23), together with a property of Riemann—Stieltjes integrals, which
gives a decomposition for the Riemann—Stieltjes integral as a convex mixture of a contin-
uous and a break part (see for instance [19, Theorem 13.8, p. 60]), allow us to rewrite any
of these Riemann—Stieltjes integrals as

(1 —,um)(RS)/ledem(x)+ Zg [Fp(d) —Emyb(d—)}dk. ¢
d€ D

Proposition[I3]below provides a ‘converse’ to these results. Before we can prove it, we
need to introduce some additional concepts.
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Definition 6. Define, for d € [0, 1], the functionals osc; and 65¢, on .Z ([0, 1]) by

h) = inf h d oscy(h):= inf h
sse1)i= 5 IHG) 00 () = i)

for all gambles 4 on [0, 1], where 7 is the topology of the open subsets of [0, 1].

The functional osc, is a completely monotone coherent lower prevision on .Z([0, 1])
and OsCy is its conjugate upper prevision. Indeed, for any open interval B C [0, 1], the
vacuous lower prevision Pgz(h) = inf,eph(z) is coherent and completely monotone, and
osc, is a Moore—Smith limit of such vacuous lower previsions, which is consequently also
completely monotone and coherent. It is easy to prove that for any gamble / on [0, 1],

oscy(h) —osc,(h) = inf sup |h(z) —h(Z)| :=oscy(h)
deBET ; icp
is the so-called oscillation of h in d (see for instance [25) Section 18.28]), and it is known
that & is continuous in d if and only if oscy(h) = 0, or in other words if osc;(h) = 0sc,(h).
Because of this, we shall call osc;(h) < h(d) the lower oscillation of h in d, and 65¢4(h) >
h(d) the upper oscillation. Also, if h has a left and right limit in d, we get osc,(h) =
min{i(d—),h(d),h(d+)}.

The following lemma tells us that the gamble osc(#) which maps any x in [0,1] to
osc,(h) is the point-wise greatest lower semi-continuous gamble that is dominated by 4,
and similarly that 0sc(/) is the point-wise smallest upper semi-continuous gamble that
dominates 4. They coincide moreover with the gambles 4!, ! defined in Equation (12).
Also, the gamble osc(#) that maps any x in [0, 1] to osc,(h) is upper semi-continuous as
the sum of two upper semi-continuous gambles 0sc(h) and — osc(h) = osc(—h).

Lemma 11. Consider any gamble h on [0,1]. Then h! = osc(h) is the point-wise greatest
lower semi-continuous gamble on [0,1] that is dominated by h. Similarly, h* = osc(h) is
the point-wise smallest upper semi-continuous gamble on [0, 1] that dominates h.

Proof. Tt follows from the definition of osc(h) that for any real 7, {osc(h) > ¢t} = int({h >
t}). This implies that {osc(h) > ¢} is open, so osc() is lower semi-continuous. Now let
g be a lower semi-continuous gamble on [0, 1] that is dominated by 4. Then for any real
t,{g >t} C{h>1t}, whence {g >t} =int({g > r}) Cint({h >t}) = {osc(h) > t}. This
implies that for any d € [0, 1],

g(d)=sup{t: d € {g>1}} <sup{r: d € {osc(h) >1}} = osc,(h),
so g < osc(h). This already tells us that osc(h) is the point-wise greatest lower semi-
continuous gamble on [0, 1] that is dominated by 4. We now prove that h! = osc(h). Ob-
serve that 4! is lower semi-continuous, as a point-wise supremum of continuous gambles.
Hence h! < osc(h). To prove the converse inequality, consider any d in (0, 1), and consider
a B € 7 that contains d. Then there is some B C B in .7 that also contains d and such
that inf B’ > inf B and sup B’ < sup B. Define the gamble g to be constant and equal to infh
outside B, constant and equal to inf,cp/(z) on B’ and linear on the intervals (inf B,inf B']
and [supB',supB). Then g < h and g is continuous, so it follows from the definition of h'
that h!(d) > g(d) = inf,cph(z). Hence h'(d) > sup,cpe o inficph(z) = osc,(h). The case
where d € {0, 1} is similar. O

Lemma 12. Let h be a gamble on [0,1]. Then for any d € [0,1],

suph .
(R) [ iz (@) dr = o5y () = inf
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Proof. 1t follows from the equality {osc,(h) >t} = int({h > t}), valid for all 7. O

Proposition 13. Consider a countable subset 9 of [0, 1], and (strictly) positive real 04, d €
P that sum to one. Let the moment sequence m be given by mo = 1 and my = ¥ 4 o 0gd¥,
k > 0. Then this moment sequence satisfies the Hausdorff moment condition. Moreover,
Un =1, Dy = D and for any x € [0, 1],

Fo(x=)=F,,x—)= Z s and F(x)=Fpp(x) = Z oy (24)
deP,d<x deP,d<x

Finally, for any gamble h on [0, 1],

E,(h) =) agosc,(h) (25)
deg
Proof. Let P° be the o-additive probability measure on the Borel sets of [0, 1] with proba-
bility mass P°({d}) = oy in d € 2. Then this probability measure has moment sequence
m, so m must satisfy the Hausdorff moment condition, and P° is the only ¢-additive proba-
bility measure with this moment sequence, i.e., P° = P2. We denote the (right-continuous)
distribution function of this P2 by F,¢. By o-additivity, we have for all x € [0, 1] that
Fp()=P7([0)= ) o
deD d<x

and Equation (24) now follows from Proposition E] and Lemma |5} The set Zf, of dis-
continuity points of F,, is therefore given by & and similarly ¥z = 2\ {0}. Hence
D = Dr,,JP5, = 9. For any d € 9 we also infer from Equation [29) that F,,(d) —
F,.(d=) =0y, s0 ly =Y 4cp 0y = 1 by Equation (I7). Then, because u, = 1, it also
holds that F,, = F,, , and F, = F .

We now prove Equation (23). Use Theorem [3]and Equation to show that for any
B€ 7, E,(B) = ¥yepng 0a. We can then use Theorem [3]to find that for any A C [0, 1],

E,(A)= Y og=) ol (d).
deZNint(A) dc9

(Recall that osc(Iy) = 11 = Iin(a)-) Now consider any gamble 4 on [0, 1], and label the
elements of 2 with natural numbers, so 2 = {dy: k > 0}. Define the gambles g, on R by
gn(t) = X4_o O Ling({n>1)) (di)- Then 0 < g, < 1, so this sequence is uniformly bounded.
Moreover, for eacht € R,
lim g,(t) = ), 0 Liinzy) (i) = Y, Cali(nziy) (d) = E({h > 1}).
k=0 de9

Since we know by Theorem [3|that E,,, is the Choquet functional associated with its restric-
tion to events, we can invoke a known convergence result for Riemann integrals (Osgood’s
Theorem, see for instance [19, Theorem 15.6, pp. 71-74]) to pull the limit through the
integral and deduce that

suph

Ey () =infh+(R) [ T ({h =)

) . n suph
= infh+ lim Z o4, (R)/ Lin({n>1}) (di) dt
n—e = infh

suph
=) a infh+(R)/ Iint({h>t})(d)dt] =Y ayosc,(h),
= infh de9

where the last equality follows from Lemma|[2] (]
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If we combine all the foregoing results in this section, we get the following central
result, which is one of the ‘interesting formula for E,,” we promised to derive.

Theorem 14. Consider a Hausdorff moment sequence m. Then for any gamble h on [0,1]
E,(h) = (1= n)Eg, () + Y [Fu(d) = E,(d—)]oscy(h), (26)
A€ Dm

where osc is the lower oscillation given by Definition[6] Moreover, it holds in general that
Ep, = (RS)[ é'dFm (x), but we have

E, - inf{(RS)/l-dF(x): Fe d)(Fm,Fm)} & F(0) =0.
20

Proof. The first statement follows from Lemmas[9)and [I0} and Proposition[I3} the second,
from Corollary [7] Finally, the equivalence is a consequence of Theorem [§] (]

Proposition 15. Consider a continuous distribution function F on [0, 1] such that F(0) =
0, and the associated moment sequence m given by m; = (RS) jol x*dF(x), k > 0. Then
Fo,=Fn=F,=FandE, =Ep = (RS)i&dF(x). Moreover, the following statements
are equivalent for any gamble h on [0,1]:

1. his m-integrable;

2. his F-integrable;

3. his Riemann—Stieltjes-integrable with respect to F.

Finally, for all gambles f on [0,1],

Ealf) = Er(1) = (85) [ 7()aF ()

1 1

= (&) [ ose,(£)dF () = (LS) | osc,()aF ().
20

Proof. From Lemma |5, we deduce that F,,(x) = F,,(x) for all x € (0,1]. Moreover, the

lemma also implies that F,,,(0) = F(0) = 0. The equivalence between the first three state-

ments follows then from Corollary

Finally, the first three equalities in the last chain follow from Theorem [3| and the first
part of this proposition. For the last equality, let us prove that E,, and the (LS) integral
coincide on lower semi-continuous gambles.

First, consider an open set A. Then, there is a countable family of pair-wise disjoint
open intervals I, such that A = J,I,. For any n, we know that (LS) _fol I, (x)dF (x) =
F(supl,) — F(infl,) = E,,(I,), where the last equality follows from the first part of this
corollary. Moreover,

1 1
(LS) /O L(x)dF (x) = (LS) / 1,1, (x)dF (x) = lim (LS) / Iy () dF(x)

n—>oo

—hmZLS/IIk )dF (x) = f E,(A),

where the second equality is a consequence of the monotone convergence of the Lebesgue—
Stieltjes functional and the last one follows from Equation (T3).

Now, let us consider a gamble f on [0, 1], and let osc(f) be its lower oscillation. Then,
the strict cut sets {osc(f) > ¢} of osc(f) are open for all real 7. Since both E,, and the
Lebesgue—Stieltjes integral operator are completely monotone and coherent functionals
(see [10D), they are equal to the Choquet integrals with respect to their restrictions to
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events. From this, we deduce that E,,(f) = (LS) fol osc,(f)dF (x), also taking into account
that osc(f) is Borel-measurable (its strict cut sets are), and therefore Lebesgue—Stieltjes
integrable. (]

Theorem 16. Consider a Hausdorff moment sequence m. Then for all gambles h on [0, 1],

£, (1) = (15) [ ose, (1) aFZ (). @n

Proof. 1t follows from Theorem [I4] and Proposition [I3] that, since F, is by construction
continuous and satisfies F;,(0) =0,

1 —
En(h) = (1= 1) (LS) [ o5 (1) aFu(x) + ¥ [Fuld) = Fp(d=)] o5y (1)
d€Dm
for any gamble 4 on [0, 1]. Now using Equations and (22)), and the fact that F,,, = F,g
[Lemma, we see that for all x € [0, 1)
Fy(x)=(1=ptm)Fu(x)+ ) [Fu(d)—F,(d-)].
d€ D d<x
Combining these two equalities leads to the desired result. U

Corollary 17. Consider a Hausdorff moment sequence m. Then the following statements

are equivalent for any gamble h on [0,1]:

1. his m-integrable;

2. h is continuous in all the discontinuity points d € 9y, as well as Riemann—Stieltjes-
integrable with respect to Fy, (or equivalently F,,-integrable) if U, < 1;

3. (LS) fol oscy(h)dE2 (x) =0, i.e., h is continuous almost everywhere with respect to the
unique o-additive probability measure induced by the moment sequence m.

4. Ep(osc(h)) =0.

Moreover, for any m-integrable gamble h we have

En(h) = RS/h )dE,, RS/h

— (1= pn)(RS) / h(x)dFn(¥)+ Y [Fuld) — F,(d—)]h(d).

d 6%11
Proof. We derive from Equations (26) and that

En(h) = E,(h) = (1= tw)[EF, () — Ef, ()] +42@ [Fin(d) = F,,(d=)]oscq(h)

— (LS) /0 ' ose(h) dEC (x),

also using that osc(h) is upper semi-continuous and therefore Borel-measurable. This
shows that the first three statements are equivalent. We now prove that the first state-
ment implies the fourth. Since E,, is coherent and therefore monotone and sub-additive,
we get

0 < Eyn(05¢(h)) = E(056(h) — 0sc(h)) < Eyn(05¢(h)) + Enn(— o5c(h)
= En(05c(h)) — E,y(0sc(h)) = Em(h) — E,, (h),
where the last equality follows from Theorem [3| and Lemma So if h is m-integrable,
then E,, (h) = E,(h) and therefore also E,,(osc(h)) = 0. Let us also prove that the fourth
statement implies the third; the rest of the proof is then obvious. Observe that the positive
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and normed linear continuous functional on the Borel-measurable gambles on [0, 1], given
by (LS) [, -dFg (x) has moment sequence m, and is therefore dominated by E,, on all
Borel-measurable gambles. Since osc(h) > 0,

1
Enfosc(h) > (LS) [ ose,(h) dFS(x) > 0.
0
for any gamble % on [0, 1]. O

Remark 6 (On discrete probability mass). If follows in particular from Proposition |13|that
for a given d € [0, 1], the natural extension of the moment sequence my; = d*, k > 0 is
given by E,, = osc,. Similarly, suppose we have a linear prevision P; on the set of all
continuous gambles ([0, 1]) given by P;(h) = h(d). Then the natural extension of this
linear prevision to the set of all gambles is again osc.

Intuitively, the situation above may be described by the phrase “all the mass of the
probability distribution is concentrated in d”’. The discussion in this remark aims at making
this interesting case more intelligible to the reader.

Let us consider a non-empty set .% of subsets of [0, 1], and define the lower probability
Py by

1 ifAe#

0 ifAgZF
Then P 4 is coherent if and only if .% is a proper filter, i.e., a proper subset of the powerset
of [0,1] that is increasing and closed under finite intersections Its natural extension to
the set of all gambles on [0, 1] will also be denoted by P, and is given b

Pz(f) =sup{t €eR: {f >1} € F} = sup inf f(x). (28)
Ac.F XeA

Py(A):=

If we consider the neighbourhood filter 4 of d, i.e., the filter of all neighbourhoods of d,
or in other words, of all subsets of [0, 1] that include some open interval containing d, then
it follows from Equation (28)) that

B/Vd = 08Cy,
so osc, is actually the smallest coherent lower prevision that assumes the value one on
any neighbourhood of d (and zero elsewhere). So “all probability mass concentrated in
d” should actually be formulated more exactly as “all probability mass located within any
neighbourhood of d”.
But there is more. A linear prevision Q coincides with P;, or in other words, satisfies
Q(h) = h(d) for all continuous gambles 4, if and only if it dominates P _,, = osc,, and it is

not so difficult to show tha
M (0scy) = M (Pa) =T {Py: U — d}. (29)

where ¢o denotes ‘convex closure’ in the weak* topology, the % denote ultrafilters, or
maximal proper filters, and % — d means that .4#; C %, or in the language of topology,

135ce Walley’s book [27, Section 2.9.8] for a proof. Walley also shows there that P & is a linear prevision if
and only if .# is actually an ultrafilter.

1476 see this, check that the coherent lower probability P4 is actually completely monotone, so its natural
extension is the Choquet integral associated with this lower probability, which is again completely monotone.
Evaluating this Choquet integral then yields Equation (28), if we also take into account that the lower probability
P 5 only assumes the values zero and one.

1575 see this, combine Theorems 3.6.2 and 3.6.4 in [27] Section 3.6]. The linear previsions Py, with .# C %
are the extreme points of the convex weak*-compact set .# (P ).
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that % converges to d. This means that the linear previsions Py with % — d constitute
the extreme points of the convex weak*-closed set of all linear previsions with moments
mj = dk.

Among the ultrafilters %/ converging to d, there is only one for which Py, is o-additive
on events, namely the fixed ultrafilter % = {A C [0,1]: d € A}. Any other ultrafilter %
converging to d is free, meaning that the intersection of all the sets in % is the empty
set. For those, the corresponding linear previsions Py are only finitely additive, because
o-additivity of Py is easily seen to imply that {d} € % .

If for a given ultrafilter 77 we define d := inf{x € [0,1]: [0,x) € Z }, then % — d, so
every ultrafilter converges to some element of [0, 1]. Moreover, for any ultrafilter  — d
one of the three mutually exclusive possibilities holds: (i) [0,d) € % (i) (d,1] € % ; or
(iil) {d} € % . Case (iii) singles out the unique fixed ultrafilter, with Py (A) =1 if and
only if d € A. The distribution function for this linear prevision is given by fB(-;d, 1),
where f is the simple break function defined in Example For case (i), we see that
Py ((d—¢,d)) =1 forall € >0 and Py ([d,1]) =0, and the distribution function for this
linear prevision is given by B(-;d,1). We say that % represents probability mass left-
adherent to d. In the language of non-standard analysis, we can say that all probability
mass is concentrated in some non-standard real number infinitesimally close to, and to the
left of, d. Similarly, case (ii) describes probability mass that is right-adherent to d, with
distribution function 3(-;d,0). It follows from these considerations and Equation (29) that
the distribution function of any linear prevision with moments my, = d* is B(-;d,a) with
acl0,1]. ¢

Remark 7 (On Choquet—-Maal3 representation). We can now extend the results mentioned
in the previous remark to general moment sequences m, and not just the ones associated
with ‘discrete probability mass’. Indeed, it is a consequence of results by Choquet [4}
Section 45] and MaaB [20, Section 2.4] that any coherent and completely monotone lower
prevision can be written as a ‘c-additive convex mixture’ of the extreme points of the set
of all coherent and completely monotone lower previsions. Now, it follows, again from
results by Choquet [4] Section 43.7], that the extreme coherent and completely monotone
lower previsions are precisely the lower previsions P & associated with proper filters .%. If
we rewrite Equation as follows

1
Ey() = (L) [ P (£)4ES (),

we see that for the completely monotone and coherent natural extension E,, of the moment
sequence m, we can actually identify the ‘c-additive convex mixture’ and the extreme
points that participate in it: the mixture is precisely the one associated with the unique
o-probability measure induced by the moment sequence m, and the extreme points are
the lower previsions associated with the neighbourhood filters .47, x € [0,1]. As we have
seen above, the latter express that all probability mass is located within any neighbourhood
of x. Note that the representation in terms of extreme points of the constructible E,, is
constructible as well.

We want to point out here that this result can be generalised quite easily. If P is a
linear prevision on the set of continuous gambles %'(K) on some metrisable compact space
K, then the lower envelope Ep of all linear previsions that extend P to £ (K) is given
by Ep(f) = (L) [P 4 du, where p is the unique o-additive ‘extension’ of P to all Borel-
measurable gambles on K, and .#; the neighbourhood filter of x € K. See [8] for more
details. ¢
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6. CONCLUSION

A o-additive probability measure is uniquely determined by its distribution function,
and also by its sequence of moments. In this paper, together with [21], we have investigated
if the same holds when we consider finitely additive probability measures.

Our results show that, in terms of the amount of information they provide, distribution
functions are located between probability measures and sequences of moments. On the
one hand, for any given distribution function there is an infinite number of finitely additive
probability measures inducing it. Only one of these, of course, is o-additive. On the other
hand, a distribution function uniquely determines a sequence of moments, but in general
there will be an infinite number of different distribution functions with the same moments.
Again, only one of these distribution functions corresponds to a ¢-additive probability
measure. Interestingly, that is also the greatest distribution function with those moments.
This is because of the assumption of right-continuity made in the (classical) definition of a
distribution function.

We have also investigated under which conditions the moments uniquely determine the
distribution function. We have proven that they do if and only if the distribution function
is continuous on [0,1). In that case, we can characterise the (infinite) set of probability
measures associated to the distribution by means of a Riemann-Stieltjes integral.

More generally, the complete monotonicity of the linear prevision we can associate with
a distribution function allows us to represent the corresponding set of linear previsions by
means of a Choquet integral, which in turn can be expressed in terms of a Riemann in-
tegral. The complete monotonicity also implies that we can characterise this set by the
corresponding restrictions to events. This then provides an alternative equivalent represen-
tation of the information given by a distribution function.
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