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Abstract. Coherent lower probabilities are one of the most general tools
within Imprecise Probability Theory, and can be used to model the available
information about an unknown or partially known precise probability. In spite
of their generality, coherent lower probabilities are sometimes di�cult to deal
with. For this reason, in previous papers we studied the problem of outer
approximating a given coherent lower probability by a more tractable model,
such as a 2- or completely monotone lower probability. Unfortunately, such an
outer approximation is not unique in general, even if we restrict our attention
to those that are undominated by other models from the same family. In this
paper, we investigate whether a number of approaches may help in selecting
a unique undominated outer approximation. These are based on minimising
a distance with respect to the initial model, maximising the speci�city, or
preserving the same preferences as the original model. We apply them to 2-
and completely monotone approximating lower probabilities, and also to the
particular cases of possibility measures and p-boxes.

Keywords: Coherent lower probabilities, 2-monotonicity, belief functions,
possibility measures, p-boxes, speci�city.

1. Introduction

Probability measures are the standard mathematical tools used to model un-
certainty in an experiment. However, due to a number of factors such as lack of
information, unreliable sources or con�icting or noisy data, there are situations
where it is arguably unreasonable to model uncertainty by means of a (precise)
probability measure. In such cases, we can turn towards the Theory of Imprecise
Probabilities [48], that encompasses di�erent models that may be used as an alter-
native to probability theory in situations of imprecise or ambiguous information.
Among them, we can �nd credal sets [22], coherent lower previsions [48], belief
functions [40], possibility measures [50] or p-boxes [18].

One of the most general models within this theory is that of coherent lower
and upper previsions [48], or their restriction to events: coherent lower and upper
probabilities. These have been applied in di�erent �elds such as decision making
[12, 21, 32, 43], �nance [38], queuing theory [24], probabilistic graphical models
[2, 7, 36], reliability [46] or game theory [27], among many others. However, their
generality and �exibility to capture the available information in the experiment are
counterbalanced by the di�culties that arise at times when using them in practice.
For example, there is no simple procedure for computing the extreme points of the
associated credal set and there is no unique coherent extension to gambles. On the
other hand, these two issues are solved when the coherent lower probability satis�es
the additional property of 2-monotonicity [9, 41], or that of complete monotonicity.
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This led us [33, 34] to investigate the problem of replacing a coherent lower
probability by a 2 or completely monotone one satisfying two reasonable properties:
(i) it should not add information to the model; and (ii) it should be as close as
possible to the initial coherent lower probability. This gave rise to the notion
of undominated outer approximation, formerly introduced in [6]. In particular,
in [33] we studied the properties of 2-monotone outer approximations as well as
some approaches to compute them. Also, we considered the outer approximations
in terms of particular 2-monotone models such as probability intervals [10] or the
distortion models [30, 31] induced by the pari mutuel [29, 39] and linear-vacuous [48]
models. In [34], we complemented the study considering completely monotone outer
approximations and the particular cases of necessity measures [50] and p-boxes [18].

These outer approximation results can also be viewed as rules and properties
for transformations of coherent imprecise probabilities into a less general formal-
ism. As such, they are relevant to the operational problem of automated exchange
of information among agents adopting di�erent uncertainty representations, when
information in terms of coherent imprecise probabilities has to be transformed into
a more particular formalism [5].

One of the issues we encountered in [33, 34] is that, in general, there is no
unique undominated outer approximation in terms of 2- or completely monotone
lower probabilities; in fact their number could be in�nite, and in addition their
computation may be quite involved. The problem becomes somewhat simpler for
necessity measures and p-boxes, where there are a �nite number of undominated
outer approximations and we have a procedure for determining them all, and it
becomes trivial for probability intervals and distortion models, where the undomi-
nated outer approximation is unique and can be easily computed.

Since in general there is no unique undominated outer approximation in terms of
2- or completely monotone lower probabilities or even in terms of necessity measures
and p-boxes, in this paper we explore a number of possibilities that may help single
out a unique undominated outer approximation, that may be considered as optimal
according to some criterion. Our approaches can be classi�ed into two groups: those
where we compare the outer approximation with the initial model, in terms of the
distance between them [5, 23] or the preference relation they encompass; and those
where we analyse some imprecision index of the new model, such as speci�city [49].
Both approaches can be solved using common tools of operations research, such as
linear or quadratic programming, and tools from graph theory.

The paper is organised as follows: after introducing some preliminary notions
in Section 2, formalising the idea of outer approximation and summarising the
main properties from [33, 34], in Sections 3, 4 and 5 we introduce and compare
a number of di�erent procedures to select an undominated outer approximation
in terms of 2- and completely monotone lower probabilities, p-boxes and necessity
measures, respectively. We conclude the paper in Section 6 summarising the main
contributions of the paper and pointing out some future lines of research. In order
to streamline the reading, a technical discussion has been relegated to an Appendix.

2. Preliminaries

Let us introduce the main concepts that we shall use in this paper. Throughout,
we consider a �nite possibility space X = {x1, . . . , xn}, and denote by P(X ) the set
of all the probability measures de�ned on the power set P(X ).
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2.1. Imprecise probability models. Imprecise probability models can be given
a variety of interpretations, such as the behavioural [26, 48] or the epistemic [20].
Under the latter, it is assumed that the uncertainty in a given experiment can be
modelled by means of a probability measure P0, but due to a number of reasons
(con�icting or missing data, lack of resources, imprecise measurements, etc.) it is
only possible to determine a setM of probability measures that is sure to include
P0.

2.1.1. Coherent lower probabilities. In those cases, we may also model the available
information by means of a lower probability, which is a function P : P(X ) →
[0, 1] that is monotone (A ⊆ B ⇒ P (A) ≤ P (B)) and satis�es the normalisation
properties P (∅) = 0, P (X ) = 1. For every event A ⊆ X , P (A) is understood as a
lower bound for the true (but unknown) value of P0(A). Using this interpretation,
any lower probability determines the set of probability measures that are compatible
with it:

M(P ) = {P ∈ P(X ) | P (A) ≥ P (A) ∀A ⊆ X}.

We refer to this as the credal set associated with P . It is then said that P avoids
sure loss whenM(P ) is non-empty, and that it is coherent when it can be computed
as:

P (A) = min
P∈M(P )

P (A) ∀A ⊆ X ,

meaning that the bounds determined by P are tight. From now on, all the lower
probabilities we shall consider in this paper will be coherent.

It is sometimes of interest to consider the conjugate function of a lower proba-
bility, de�ned as P (A) = 1 − P (Ac) for every A ⊆ X , and usually referred to as
upper probability. The value P (A) may be interpreted as an upper bound for the
unknown value P0(A), and for a given probability measure P ∈ P(X ) it follows that

P (A) ≥ P (A) ∀A ⊆ X ⇐⇒ P (A) ≤ P (A) ∀A ⊆ X .

This means that the probabilistic information of the lower probability and that of
its conjugate upper probability are equivalent, and so it su�ces to work with one
of them. It also means that, for any coherent lower probability P , its conjugate
upper probability P satis�es

P (A) = max
P≤P

P (A) ∀A ⊆ X .

2.1.2. k-monotone lower probabilities. A coherent lower probability P is said to be
k-monotone when it satis�es

P
(
∪pi=1 Ai

)
≥

p∑
i=1

P (Ai)−
∑
i 6=j

P (Ai ∩Aj) + · · ·+ (−1)pP
(
∩pi=1 Ai

)
=

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P
(
∩i∈I Ai

)
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for every 1 ≤ p ≤ k and every A1, . . . , Ap ⊆ X . In a similar manner, a coherent

upper probability P is k-alternating if for every 1 ≤ p ≤ k and A1, . . . , Ap ⊆ X :

P
(
∩pi=1 Ai

)
≤

p∑
i=1

P (Ai)−
∑
i 6=j

P (Ai ∪Aj) + · · ·+ (−1)pP
(
∪pi=1 Ai

)
=

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P
(
∪i∈I Ai

)
,

meaning that a coherent lower probability P is k-monotone if and only if its con-
jugate P is k-alternating.

There are two particular cases of k-monotonicity of special interest. The �rst is
2-monotonicity, which corresponds to those coherent lower probabilities satisfying
the inequality P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) for every A,B ⊆ X ; and the
second is complete monotonicity, that refers to those coherent lower probabilities
that are k-monotone for every k. Note also that any k-monotone lower probability
is also k′-monotone for every k′ ≤ k.

Any lower probability can be represented in terms of a function called Möbius
inverse of P , which is denoted by mP : P(X )→ R, and de�ned by:

mP (A) =
∑
B⊆A

(−1)|A\B|P (B), ∀A ⊆ X . (1)

Reciprocally, given mP , we can retrieve the initial lower probability using the fol-
lowing expression:

P (A) =
∑
B⊆A

mP (B).

Moreover, mP is the Möbius inverse associated with a:

• 2-monotone lower probability P if and only if [8] mP satis�es:∑
A⊆X

mP (A) = 1, mP (∅) = 0. (2monot.1)

∑
{xi,xj}⊆B⊆A

mP (B) ≥ 0, ∀A ⊆ X , ∀xi, xj ∈ A, xi 6= xj . (2monot.2)

mP ({xi}) ≥ 0, ∀xi ∈ X . (2monot.3)

• Completely monotone lower probability P if and only if [40] mP satis�es:∑
A⊆X

mP (A) = 1, mP (∅) = 0. (Cmonot.1)

mP (A) ≥ 0 ∀A ⊆ X . (Cmonot.2)

Note that conditions (2monot.1) and (Cmonot.1) correspond to the assessments
P (X ) = 1, P (∅) = 0, that are satis�ed by any lower probability by de�nition.

Completely monotone lower probabilities are also connected with Dempster-
Shafer Theory of Evidence [40], where they receive the name belief functions. In
that case, the Möbius inverse is usually called basic probability assignment, and the
events with strictly positive mass are called focal events.
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2.1.3. P -boxes and possibility measures. P -boxes and necessity measures are two
particular cases of completely monotone lower probabilities.

For any random variable X with values in X ⊂ R, its lower and upper dis-
tribution functions F , F : R → [0, 1] are de�ned by F (x) = P ({X ≤ x}) and
F (x) = P ({X ≤ x}). When X is �nite, F , F are piece-wise constant, and may only
be discontinuous at the points x1, . . . , xn of X . If we assume that x1 < . . . < xn,
then we can shorten the notation and let F , F be de�ned in X , so that F (xi) =
P ({X ≤ xi}), F (xi) = P ({X ≤ xi}). Then (F , F ) constitutes a p-box in the
sense of [18]. It holds moreover that F (xn) = F (xn) = 1, F (xi) ≤ F (xi+1) and
F (xi) ≤ F (xi+1) for every i = 1, . . . , n − 1. Similarly to our comments about
the epistemic interpretation of a lower probability, a p-box may be used to model
the imprecise information about a cumulative distribution function FP0

. A p-box
de�nes a credal set by:

M(F , F ) = {P ∈ P(X ) | F (x) ≤ FP (x) ≤ F (x) ∀x ∈ X}. (2)

Associated with this credal set, we can de�ne a lower (and upper) probability as
its lower (and upper) envelope:

P (F,F )(A) = inf
P∈M(F,F )

P (A) = inf{P (A) | F (x) ≤ FP (x) ≤ F (x) ∀x ∈ X}. (3)

This lower probability is not only coherent, but also completely monotone [44,
Sec. 5.1]. The procedure for computing its focal events was determined in [13,
Sec. 3.3].

Conversely, given the lower probability P (F,F ), we can retrieve the p-box because:

F (xi) = P (F,F )({x1, . . . , xi}), F (xi) = 1−P (F,F )({xi+1, . . . , xn}) ∀i = 1, . . . , n−1.

This means that the probabilistic information gathered by (F , F ) and P (F,F ) is the

same. Hence we will use the term p-box interchangeably to speak about a p-box
(F , F ) or its associated lower probability P (F,F ).

When the possibility space X is not endowed with a total order, we can consider
the notion of generalised p-box. A generalised p-box (F , F ) is a pair of comonotone1

mappings such that there exists x ∈ X with F (x) = F (x) = 1 and F ≤ F .
From [13], a generalised p-box (F , F ) de�nes an order ≤(F,F ) and a permutation

σ of {1, . . . , n} such that:

F (xσ(1)) ≤(F,F ) . . . ≤(F,F ) F (xσ(n)) = 1.

F (xσ(1)) ≤(F,F ) . . . ≤(F,F ) F (xσ(n)) = 1.

Clearly, any generalised p-box de�nes a credal set using Equation (2) and a coherent
lower probability using Equation (3). In those cases, we only need to consider the
total order ≤(F,F ) in the possibility space induced by the generalised p-box.

On the other hand, a possibility measure [16, 50], usually denoted by Π, is a
supremum-preserving function:

Π(∪i∈IAi) = sup
i∈I

Π(Ai), ∀Ai ⊆ X , i ∈ I.

In our �nite framework, the above condition can be equivalently expressed as

Π(A ∪B) = max{Π(A),Π(B)} ∀A,B ⊆ X , (4)

1Two functions f, g are comonotone if for every x, x′ ∈ X , f(x) < f(x′) implies g(x) ≤ g(x′).
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or also as Π(A) = maxx∈A Π({x}) for every A ⊆ X . It is thus clear that the values
of Π can be determined using the values in the singletons; the restriction of Π to
these, usually denoted by π : X → [0, 1] and de�ned by π(x) = Π({x}) for every
x ∈ X , is referred to as the possibility distribution of Π.

Every possibility measure is a coherent upper probability, and its conjugate
lower probability, usually denoted by N , is called necessity measure. A necessity
measure is a completely monotone lower probability whose focal events are nested.
Moreover, any necessity measure can be obtained as the lower probability of a
generalised p-box [45].

2.2. Outer approximations of coherent lower probabilities. Even if coherent
lower probabilities are more general than 2-monotone lower probabilities, the latter
have some practical advantages. Among them, we recall for instance the simplicity
of the computation of the extreme points of the associated credal set [41], the fact
that they can be extended to gambles using the Choquet integral [9] and that their
Shapley value belongs to the credal set and can be obtained easily using the extreme
points of M(P ) [27, 41, 42]. Motivated by this, in [33] we proposed to replace a
given coherent lower probability by a 2-monotone one satisfying two properties:
(i) that it does not add information to the model; and (ii) that it is as close as
possible to the initial coherent lower probability. The �rst of these conditions gives
rise to the notion of outer approximation, and the second leads to the notion of
undominated outer approximation. These two concepts were �rst formalised by
Bronevich and Augustin:

De�nition 1. [6] Given a coherent lower probability P and a family C of coherent
lower probabilities, Q ∈ C is an outer approximation of P if Q(A) ≤ P (A) for

every A ⊆ X . Moreover, Q is undominated in C if there is no Q′ ∈ C such that

Q � Q′ ≤ P .

In terms of credal sets, Q ∈ C is an outer approximation ifM(P ) ⊆M(Q), and

it is undominated in C if there is no Q′ ∈ C such thatM(P ) ⊆M(Q′) (M(Q).

Similarly, if we consider a coherent upper probability P and a set C of coherent
upper probabilities, we say that Q ∈ C is an outer approximation of P if Q(A) ≥
P (A) for every A ⊆ X . Moreover, Q is non-dominating in C if there is no Q

′ ∈ C
such that Q  Q

′ ≥ P . It follows that Q is an outer approximation of P if and
only if its conjugate Q is an outer approximation of the coherent lower probability

P that is conjugate of P , and also Q is non-dominating if and only if its conjugate
Q is undominated.

Throughout the paper, and for the sake of simplicity, we denote by C2, C∞, CΠ
and C(F,F ) the families of 2-monotone lower probabilities, completely monotone

lower probabilities, possibility measures2 and generalised p-boxes.
In our previous papers [33, 34], we investigated several properties of the un-

dominated (non-dominating for CΠ) outer approximations in these families. In
particular, we showed that it is not immediate to determine the set of all the un-
dominated outer approximations in C2 and C∞, and that these sets are in�nite in

2Since possibility measures are particular cases of coherent upper probabilities, we shall say
that Π is an outer approximation of a coherent upper probability P when its conjugate necessity
measure N is an outer approximation of the conjugate lower probability P .
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general. The problem is somewhat simpler when the outer approximations are as-
sumed to belong to either CΠ or C(F,F ). However, even in these cases there is no

unique non-dominating outer approximation (in CΠ) or undominated (in C(F,F )),

and the problem of choosing among them arises. In this paper, we discuss di�er-
ent procedures to select an outer approximation. We �rst consider in Section 3
the problem of selecting an undominated outer approximation in C2 and C∞, and
later in Sections 4 and 5 we study the same problem in the classes C(F,F ) and CΠ,
respectively.

3. Selection of an outer approximation in C2 and C∞
In this section, we investigate several approaches to select an undominated outer

approximation in C2 and C∞. As we showed in [33, Ex. 1] and [34, Ex. 1], the
number of undominated outer approximations in C2 and C∞ is not �nite in general.
In [33, 34] we focused on those undominated outer approximations in C2 and C∞
that minimise the distance proposed in [5] with respect to the original coherent
lower probability P , given by:

dBV (P ,Q) =
∑
A⊆X

|P (A)−Q(A)|. (5)

This distance measures the amount of imprecision added to the model when replac-
ing the initial P by the outer approximation Q. Hence, it seems reasonable to select
those outer approximations that minimise the imprecision added to the model. To
see that this allows to remove some undominated outer approximations in C2 and
C∞, we refer to [33, Ex. 3] and [34, Ex. 2].

The distance given in Equation (5) can also be regarded as a measure of the
imprecision inherent to an outer approximation. Indeed, if we consider a coher-
ent lower probability P and an outer approximation Q ≤ P with conjugate Q,

minimising the imprecision of (Q,Q)∑
A⊆X

(
Q(A)−Q(A)

)
(6)

is equivalent to minimising∑
A⊆X

(
Q(A)− P (A) + P (A)−Q(A)

)
=
∑
A⊆X

(Q(A)− P (A)) +
∑
A⊆X

(P (A)−Q(A))

=
∑
A⊆X

(P (A)−Q(A)) +
∑
A⊆X

(P (A)−Q(A)) = 2dBV (P ,Q), (7)

applying conjugacy and taking into account that
∑
A⊆X (−P (A) + P (A)) acts as a

constant. Hence, if we consider a set of outer approximations, the closest one to
the original model in the sense of Equation (5) will also be the one that minimises
the imprecision of the approximation, when the latter is measured by means of
Equation (6).

Let CBV2 (P ) and CBV∞ (P ) denote the set of undominated outer approximations
of P in C2 and C∞, respectively, that minimise the BV-distance with respect to P .
One extra advantage of restricting our selection to the sets CBV2 (P ) and CBV∞ (P ) is
that they can be more easily determined than the general set of undominated outer
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approximations. To see this, note that dBV can be equivalently expressed by:

dBV (P ,Q) =
∑
A⊆X

P (A)−
∑
B⊆A

mQ(B)

 ,

where mQ denotes the Möbius inverse associated with Q by means of Equation (1).
Using this alternative expression, we can set up the linear programming problem

of minimising dBV (P ,Q) subject to (2monot.1)÷(2monot.3), and also to:∑
B⊆A

mQ(B) ≤ P (A) ∀A 6= ∅,X . (OA)

As we have already argued in Section 2.1.2, from [8] we know that conditions
(2monot.1)÷(2monot.3) characterise the 2-monotonicity of Q, while condition (OA)
assures that Q is an outer approximation of P . It directly follows (see [33, Prop. 1])
that the set of optimal solutions of this linear programming problem coincides with
CBV2 (P ).

In a similar manner, the set CBV∞ (P ) can also be obtained solving a linear pro-
gramming problem that minimises dBV (P ,Q) subject to (Cmonot.1)÷(Cmonot.2)
and also to (OA). Again, the set of optimal solutions of this minimisation problem
coincides with the set CBV∞ (P ) [34, Prop. 3].

From the fact that the sets CBV2 (P ) and CBV∞ (P ) can be obtained solving a linear
programming problem we deduce that: (i) both sets are non-empty and convex; (ii)
the optimal solutions are in�nitely many in general. In the rest of the section we
discuss di�erent approaches to select an undominated outer approximation within
CBV2 (P ) and CBV∞ (P ).

3.1. Approach based on the quadratic distance. One possibility for obtaining
a unique solution to our problem could be to use the quadratic distance. As we
discussed in [33], this leads to consider the outer approximation minimising

dq(P ,Q) =
∑
A⊆X

(
P (A)−Q(A)

)2
. (8)

If we set up the quadratic program based on minimising the quadratic distance in
Equation (8) subject to conditions (2monot.1)÷(2monot.3) and (OA), it returns a
unique undominated outer approximation in C2 (see [33, Sec. 5.1]). However, in
spite of this advantage, the interpretation of this distance is in our opinion less
intuitive than that of the BV-distance in Equation (5).

Our proposal is then to put together both approaches: within the sets CBV2 (P ) or
CBV∞ (P ) we choose the outer approximation that minimises the quadratic distance.
This can be formalised as follows. Consider the following notation:

δBV2 = min
Q∈C2,Q≤P

dBV (P ,Q), δBV∞ = min
Q∈C∞,Q≤P

dBV (P ,Q).

Then, we set up the quadratic problem of minimising the quadratic distance in
Equation (8) subject to (2monot.1)÷(2monot.3), (OA) and:

∑
A⊆X

P (A)−
∑
B⊆A

mQ(B)

 = δBV2 . (2monot-δ)
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Analogously, we can minimise the quadratic distance in Equation (8) subject to
(Cmonot.1)÷(Cmonot.2), (OA) and:

∑
A⊆X

P (A)−
∑
B⊆A

mQ(B)

 = δBV∞ . (Cmonot-δ)

Proposition 1. Let P be a coherent lower probability, and consider the quadratic
program of minimising Equation (8). The following properties hold:

(1) The minimisation problem subject to (2monot.1)÷(2monot.3), (OA) and
(2monot-δ) has a unique solution, which is an undominated outer approxi-
mation of P in C2.

(2) The minimisation problem subject to (Cmonot.1)÷(Cmonot.2), (OA) and
(Cmonot-δ) has a unique solution, which is an undominated outer approx-
imation of P in C∞.

Proof. Let us consider the �rst case. Conditions (2monot.1)÷(2monot.3) assure
that Q is a 2-monotone lower probability, while condition (OA) assures that Q is
an outer approximation of P in C2. Finally, condition (2monot-δ) assures that Q
minimises the BV-distance dBV (P ,Q). Hence, the feasible region of the minimi-

sation problem coincides with CBV2 (P ). From [33, Prop. 1], this set is non-empty
and convex. Since the associated matrix is semide�nite and positive [33, Sec. 5.1],
there is an optimal solution to the quadratic problem, which is unique.

The same reasoning, using [34, Prop. 3] instead of [33, Prop. 1], proves the second
item. �

The following example illustrates this result.

Example 1. Consider the coherent lower probability given on X = {x1, x2, x3, x4}
[33, Ex. 1] by:

P (A) =


0 if |A| = 1 or A = {x1, x2}, {x3, x4}.
1 if A = X .
0.5 otherwise.

For this coherent lower probability, δBV2 = δBV∞ = 1, and the outer approximations
in CBV2 (P ) and CBV∞ (P ) coincide and are given by:

CBV2 (P ) = CBV∞ (P ) =
{
Q
α

: α ∈ [0, 0.5]
}
,

where:

Q
α

(A) =



0 if |A| = 1 or A = {x1, x2}, {x3, x4}.
α if A = {x1, x4}, {x2, x3}.
0.5− α if A = {x1, x3}, {x2, x4}.
0.5 if |A| = 3.

1 if A = X .
For a given Q

α
, its Möbius inverse is:

mQ
α

({x1, x4}) = mQ
α

({x2, x3}) = α, mQ
α

({x1, x3}) = mQ
α

({x2, x4}) = 0.5−α,

and zero elsewhere. Therefore, if among these Q
α
we minimise the quadratic dis-

tance with respect to P , we obtain that the optimal solution is Q
0.25

, both in C2 and

C∞. �
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The use of the quadratic distance has the advantage that usually algorithms
solving a linear programming problem only return one of the possible solutions, so it
may not be immediate to determine if this solution is unique or not. By considering
its distance with the original model and solving the associated quadratic problem,
we end up with a unique outer approximation, and if it di�ers from the previous
one, we are able to tell that the linear programming problem has an in�nite number
of solutions.

It is also interesting to stress that the solution we are obtaining here is not
the outer approximation that minimises the quadratic distance, but the one that
minimises this distance between the solutions to the linear programming problem;
for a counterexample, we refer to [33, Ex. 3].

From our point of view, this is the preferable approach to select an undominated
outer approximation in C2 and C∞. In the rest of the section we explore other
approaches to the problem.

3.2. Approach based on the total variation distance. Instead of selecting
the outer approximation that minimises the quadratic distance, we may consider
any other distance between lower probabilities. One interesting possibility is to
use extensions of the total variation distance [23, Ch. 4.1]: given two probability
measures P1, P2 ∈ P(X ), their total variation distance is given by

dTV (P1, P2) = max
A⊆X

|P1(A)− P2(A)| = 1

2

∑
x∈X
|P1({x})− P2({x})|.

This distance may be extended in several non-equivalent ways to imprecise proba-
bilities. Here we consider the extensions proposed in [33]:

d1(P 1, P 2) = max
A⊆X

|P 1(A)− P 2(A)|, (9)

d2(P 1, P 2) =
1

2

∑
x∈X
|P 1({x})− P 2({x})| , (10)

d3(P 1, P 2) = sup
P1≥P 1,P2≥P 2

(
max
A⊆X

|P1(A)− P2(A)|
)
. (11)

The second one is somewhat related to the distance of Baroni and Vicig given by
Equation (5), but aggregating only the imprecision added on the singletons. On the
other hand, the last one is the most compatible with the epistemic interpretation
of lower probabilities mentioned at the beginning of the paper, as it considers the
maximum distance between the probability measures that are compatible with P 1

and P 2, respectively.
In [33], we established that d3(P 1, P 2) ≥ d1(P 1, P 2) for every pair of coherent

lower probabilities P 1 and P 2 [33, Prop. 9] and that no other dominance relationship
between d1, d2 and d3 holds in general [33, Ex. 4].

An alternative to the procedure in the previous section may be to consider the
outer approximations in CBV2 (P ) or CBV∞ (P ) that minimise one of di(P ,Q), for

i = 1, 2, 3.3

3Note that if we consider instead the outer approximations in C2 or C∞ that minimise one
of the distances d1, d2 or d3, we may end up with outer approximations that are dominated, as
shown in [33]. This is why in this section we apply these distances to the outer approximations
minimising the BV-distance, that are necessarily undominated.
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Since by [33, Prop. 2] any undominated outer approximation Q in C2 satis�es
Q({x}) = P ({x}) for every x ∈ X , we always have d2(P ,Q) = 0 and therefore
d2 is not useful in this respect. Let us see in the following example that none of
these extensions of the total variation allows to select a single undominated outer
approximation in CBV2 (P ) and CBV∞ (P ).

Example 2. Consider now the coherent lower probability P that is the lower en-
velope of the following probability mass functions:

(0, 0.3, 0.3, 0.4), (0.3, 0, 0.3, 0.4), (0.3, 0.3, 0.4, 0), (0.4, 0.2, 0.2, 0.2)

(0.3, 0.3, 0.1, 0.3), (0.1, 0.4, 0.35, 0.15), (1/6, 1/6, 1/6, 0.5).

It is given by:

A P (A) Q
0
(A) Q

1
(A)

{x1} 0 0 0
{x2} 0 0 0
{x3} 0.1 0.1 0.1
{x4} 0 0 0
{x1, x2} 0.3 0.2 0.2
{x1, x3} 0.3 0.3 0.3
{x1, x4} 0.25 0.25 0.25

A P (A) Q
0
(A) Q

1
(A)

{x2, x3} 0.3 0.3 0.3
{x2, x4} 0.3 0.25 0.3
{x3, x4} 0.4 0.35 0.3
{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.6 0.6 0.6
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1

The undominated outer approximations of P in C2 minimising the BV-distance are
Q

0
, Q

1
and their convex combinations: Q

α
= αQ

0
+(1−α)Q

1
for every α ∈ (0, 1).

We obtain that:

d1

(
P ,Q

0

)
= d1

(
P ,Q

1

)
= d1

(
P ,Q

α

)
= 0.1

and

d3(P ,Q
0
) = d3(P ,Q

1
) = d3(P ,Q

α
) = 0.5 = max

A⊆X
|P (A)−Q

α
(A)| ∀α ∈ [0, 1].

Thus, neither d1 nor d3 determines a unique undominated outer approximation
among those in CBV2 (P ).

With respect to the outer approximations in C∞, it can be seen that δBV∞ = 0.85,
and two belief functions Bel1 and Bel2 attaining this value are de�ned using the
following Möbius inverses:

A {x3} {x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3, x4}

mB1
0.1 0.2 0.1 0.25− 0.35

3 0.1 0.3− 0.35
3 0.3− 0.35

3

mB2
0.1 0.19 0.1 0.25− 0.35

3 0.11 0.3− 0.35
3 0.3− 0.35

3

It can be checked that both Bel1, Bel2 ∈ CBV∞ (P ) and that

d1(Bel1, P ) = d1(Bel2, P ) =
0.35

3
= min
Bel∈CBV∞ (P )

d1(Bel, P ).

d2(Bel1, P ) = d2(Bel2, P ) = 0 = min
Bel∈CBV∞ (P )

d2(Bel, P ).

d3(Bel1, P ) = d3(Bel2, P ) = 0.5 = min
Bel∈CBV∞ (P )

d3(Bel, P ).

Therefore, none of d1, d2, d3 determines a unique approximation in CBV∞ either. �
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While in the previous examples there is not a unique undominated outer ap-
proximation minimizing the extensions of the total variation distance, this is not
always the case, as we show in our next example. It also tells us that d1, d2, d3 may
produce di�erent optimal outer approximations:

Example 3. Consider X = {x1, x2, x3, x4} and the lower probability P that is the
lower envelope of

(0, 0.2, 0.6, 0.2), (0, 0.6, 0.3, 0.1), (0.8, 0, 0.1, 0.1),

(0.35, 0.65, 0, 0), (0.2, 0.2, 0.2, 0.4).

It is given by:
A P (A)

{x1} 0
{x2} 0
{x3} 0
{x4} 0
{x1, x2} 0.2
{x1, x3} 0.3
{x1, x4} 0.1

A P (A)

{x2, x3} 0.1
{x2, x4} 0.1
{x3, x4} 0
{x1, x2, x3} 0.6
{x1, x2, x4} 0.4
{x1, x3, x4} 0.35
{x2, x3, x4} 0.2

X 1

Since P ({x1, x3, x4}) + P ({x1}) = 0.35 < 0.4 = P ({x1, x3}) + P ({x1, x4}), we de-
duce that P is not 2-monotone, and as a consequence it is not completely monotone
either. It can be checked that CBV2 (P ) = CBV∞ (P ) = {Q

α
| α ∈ [0, 0.05]}, where

Q
α

(A) =


0.3− α if A = {x1, x3}
0.05 + α if A = {x1, x4}
P (A) otherwise.

From here it follows that

d1(P ,Q
α

) = max{α, 0.05− α},
whence the optimal outer approximation if we use d1 is Q

0.025
. On the other hand,

d3(P ,Q
α

) = max{0.8, 0.85− α} = 0.85− α,
whence the optimal outer approximation if we use d3 is Q

0.05
. Thus, in this case

both d1 and d3 determine a unique outer approximation, but they do not coincide.
Note also that d2 does not rule out any element from CBV2 (P ) because all of them
satisfy Q

α
({xi}) = P ({xi}) for i = 1, 2, 3, 4. �

3.3. Approach based on preference preservation. An interesting procedure to
select an undominated outer approximation in CBV2 (P ) or CBV∞ (P ) is to require some
kind of preservation of the preferences given by P . If Q denotes an undominated

outer approximation in CBV2 (P ) or CBV∞ (P ), we consider the following conditions4on
preference preservation (on P(X ) the �rst four, on X the last two):

C1: P (A) < P (B)⇒ Q(A) < Q(B).
C2: P (A) ≤ P (B)⇒ Q(A) ≤ Q(B).

4We may consider other possibilities based on notions such as interval dominance, meaning
that P (A) < P (B)⇒ Q(A) < Q(B). However, we think that this condition will be in general too

strong, as can be veri�ed with the example in Remark 1.
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C3: P (A) = P (B)⇒ Q(A) = Q(B).
C4: P (A) < P (B)⇒ Q(A) ≤ Q(B).
C5: P ({x}) < P ({x′})⇒ Q({x}) ≤ Q({x′}).
C6: P ({x}) = P ({x′})⇒ Q({x}) = Q({x′}).
Figure 1 summarises the relationships between these conditions:

C2 C1

C3 C4

C6 C5

Figure 1. Relationship between the conditions.

The idea here is that the lower probability P induces a strict preference (A ≺
B ⇔ P (A) < P (B)), a weak preference (A � B ⇔ P (A) ≤ P (B)) and an indif-
ference relation (A ∼ B ⇔ P (A) = P (B)). When comparing P and Q we may
consider a strong preservation, in the sense that if an event A is strictly preferred
(resp. weakly preferred, indi�erent) to B in P , then it is also strictly preferred
(resp. weakly preferred, indi�erent) in Q; this is the idea behind conditions C1�
C3. Or we may consider a weak preservation, in the sense that the strict preference
between two events in P implies the weak preference in Q (conditionC4). Finally, if
we focus our attention on the preferences on singletons, this leads to conditions C5
and C6. For earlier works using these or similar conditions, we refer to [5, 17, 47].

We may thus consider the possibility of choosing, among those outer approx-
imations that minimise the BV-distance, the one that satis�es Ci, for some i ∈
{1, . . . , 6}; in this respect, we may argue that it does not make much sense to con-
sider an outer approximation that satis�es C3 only, but this condition may be of
interest if it is required together with C4 or C1.

However, this criterion is not valid because, as the next example shows, it could
happen that either none of them satis�es Ci or more than one satis�es it.

Example 4. Consider again the coherent lower probability in Example 1. There,

we have seen that CBV2 (P ) = CBV∞ (P ) =
{
Q
α
| α ∈ [0, 0.5]

}
. Let us see which Q

α

satisfy each of the conditions Ci:

C1: Neither Q0 nor Q0.5 satis�es C1, since

P ({x1, x2}) < P ({x1, x3}) = P ({x1, x4})

but

Q
0
({x1, x4}) = Q

0
({x1, x2}) = Q

0.5
({x1, x2}) = Q

0.5
({x1, x3}) = 0.

However, every Q
α
, for α ∈ (0, 0.5), does satisfy C1.
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C2,C3: None of the Q
α
satis�es C3, because:

P ({x1, x3}) = P ({x1, x4}) = P ({x1, x2, x3}),

but there is no α ∈ [0, 0.5] satisfying

Q
α

({x1, x3}) = Q
α

({x1, x4}) = Q
α

({x1, x2, x3}).

Since C2 implies C3, we conclude that no Q
α
satis�es C2.

C4,C5,C6: All the outer approximations Q
α
satisfy C4, C5 and C6.

We conclude from this example that none of the Ci helps us selecting a unique
undominated outer approximation in CBV2 (P ) or CBV∞ (P ). �

Remark 1. One alternative to the approach considered in this paper would be to
select the preference preservation as the primary criterion for selecting an outer
approximation, and, if needed, compare the possible solutions in terms of the BV
distance.

While interesting, we believe that the �rst criterion to compare the outer approx-
imation to the initial model should be a measure of their distance, since we consider
that: (a) if we want to compare the inferences made by the initial and the trans-
formed model, it is useful to have a measure of their distance; (b) the preference
preservation conditions are in our view more suited in a qualitative context.

Another issue is that it may be impossible, in general, to require that an outer
approximation is both undominated and preference preserving. To see an exam-
ple, let X = {x1, x2, x3, x4}, and consider the lower probability P that is the lower
envelope of the following probability measures:

(0, 0.05, 0.05, 0.9), (0.03, 0.02, 0.02, 0.93), (0.95, 0, 0, 0.05),

(0.06, 0, 0.94, 0), (0.09, 0.875, 0, 0.035), (0.04, 0.02, 0.94, 0).

It is given by:

A P (A) Q
α

{x1} 0 0
{x2} 0 0
{x3} 0 0
{x4} 0 0
{x1, x2} 0.05 0.05− α
{x1, x3} 0.05 0.02 + α
{x1, x4} 0.04 0.01 + α

A P (A) Q
α

{x2, x3} 0 0
{x2, x4} 0 0
{x3, x4} 0.035 0.035
{x1, x2, x3} 0.07 0.07
{x1, x2, x4} 0.06 0.06
{x1, x3, x4} 0.125 0.125
{x2, x3, x4} 0.05 0.05

X 1 1

P is not 2-monotone because the condition is not satis�ed in the following two
instances:

0.07 = P ({x1, x2, x3}) + P ({x1}) 6≥ P ({x1, x2}) + P ({x1, x3}) = 0.10,

0.06 = P ({x1, x2, x4}) + P ({x1}) 6≥ P ({x1, x2}) + P ({x1, x4}) = 0.09.

We know from our results in [33] that any undominated outer approximation in
C2 coincides with P in the singletons and in the events of cardinality n − 1 = 3.
In fact, it can be seen that the set of undominated outer approximations in C2 is{
Q
α
| α ∈ [0, 0.03]

}
, and among them, the only one minimising the BV-distance is
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Q
0.03

. It holds that none of the Q
α
satis�es Ci for i = 1, 2, 4:

P ({x1, x2}) ≥ P ({x1, x4})⇒ Q({x1, x2}) ≥ Q({x1, x4})
⇒ 0.05− α ≥ 0.01 + α⇒ α ≤ 0.02.

P ({x1, x4}) ≥ P ({x3, x4})⇒ Q({x1, x4}) ≥ Q({x3, x4})
⇒ 0.01 + α ≥ 0.035⇒ α ≥ 0.025.

These two conditions are incompatible, whence no undominated outer approxima-
tion in C2 satis�es C1, C2 or C4.
In addition, C3 is not satis�ed by any Q

α
either. The reason is that if Q satis�es

C3, then:

0.05 = P ({x2, x3, x4}) = Q({x2, x3, x4}) = Q({x1, x2}) = Q({x1, x3}),
a contradiction. We therefore conclude that the outer approximations in C2 preserv-
ing preferences are not undominated. Since all the Q

α
above are belief functions, a

similar comment applies to the outer approximations in C∞.
Note also that if we keep the condition of being undominated in order for an outer

approximation to be considered acceptable, imposing some preference preservation
condition is in general computationally heavier than minimising some distance. In
fact, this can be done operationally by means of a linear programming problem,
where the objective function min dBV (P ,Q) is replaced by some trivial condition of
the type min 0, and where, in addition to the constraints that guarantee that Q is
undominated, we have additional constraints derived from the preference relations
on the events. As our example above shows, the resulting problem may have no
feasible solution even in a low dimension space, while this is not the case with the
approach based on minimising the distance to the original model. �

3.4. Approach based on speci�city measures. In our last approach we con-
sider a popular procedure for comparing two completely monotone lower probabil-
ities: their speci�city. A speci�city measure is used to determine how imprecise
a belief function is, in the sense that the greater the speci�city, the smaller the
imprecision. Among the many di�erent proposals of speci�city measure in the lit-
erature (see for example [11, 15]), we follow here the suggestion of Moral and de
Campos [37] and consider the speci�city measure de�ned by Yager [49]:

De�nition 2. Let Q be a completely monotone lower probability on P(X ) with
Möbius inverse mQ. Its speci�city is given by

S(Q) =
∑
∅6=A⊆X

mQ(A)

|A|
. (12)

This function splits the mass of any focal event among its elements. Equa-
tion (12) can also be computed as follows:

S(Q) =

n∑
i=1

1

i

∑
A:|A|=i

mQ(A). (13)

Yager established that for any belief function Q its speci�city S(Q) belongs to

[ 1
n , 1], and that the speci�city measure is monotone: Q ≤ Q′ implies S(Q) ≤ S(Q′).
Although Yager applied Equation (12) to belief functions only, we next show that
similar properties hold when applying it on coherent lower probabilities.
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Proposition 2. Let Q be a coherent lower probability with Möbius inverse mQ,

and let S(Q) be given by Equation (12). Then:

(1) S is monotone: Q ≤ Q′ implies S(Q) ≤ S(Q′).

(2) S(Q) ∈ [ 1
n , 1].

Proof. First of all, note that S(Q) can be expressed in terms of Q instead of mQ:

S(Q) =
∑
∅6=A⊆X

mQ(A)

|A|
=

∑
∅6=A⊆X

∑
B⊆A

(−1)|A\B|
Q(B)

|A|

=
∑
B⊆X

Q(B)
∑
∅6=A⊇B

(−1)|A\B|
1

|A|
=
∑
B⊆X

Q(B)

n∑
k=|B|

(−1)k−|B|

k

(
n− |B|
k − |B|

)
.

For every j = 1, . . . , n, let us denote

f(j) =

n∑
k=j

(−1)k−j

k

(
n− j
k − j

)
.

f(j) can be rewritten as:

f(j) =

n−j∑
l=0

(−1)l

l + j

(
n− j
l

)
=

1

j
(
n−j+j
n−j

) =
1

j
(
n
n−j
) ≥ 0,

where the second equality follows from Melzak's formula (see, for instance, [25]).
Let us proceed to establish the two statements.

(1) Given Q ≤ Q′, the non-negativity of f(j) implies that:

S(Q) =
∑
B⊆X

Q(B)f(|B|) ≤
∑
B⊆X

Q′(B)f(|B|) = S(Q′),

hence S is monotone.
(2) If Q is a precise probability measure, mQ(A) > 0 only if |A| = 1, whence

S(Q) =
∑
|A|=1

mQ(A) = 1.

Since any coherent lower probability is dominated by a precise probability
measure, we deduce from the �rst item that S(Q) ≤ 1. Consider now the
lower probability Q

v
given by Q

v
(X ) = 1 and Q(A) = 0 for any A 6= X . It

is a belief function whose only focal event X has mass 1, and it is dominated
by any coherent lower probability on P(X ). It satis�es:

S(Q
v
) =

mQ
v
(X )

|X |
=

1

n
.

Applying the �rst statement, we conclude that S(Q) ∈ [ 1
n , 1] for any coher-

ent lower probability Q. �

Therefore, we can choose an undominated outer approximation in CBV2 (P ) or
CBV∞ (P ) with the greatest speci�city. Our next example shows that, as was the
case with preference preservation, this criterion does not give rise to a unique un-
dominated outer approximation.
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Example 5. Consider again Example 1. We have seen that the undominated outer

approximations in C2 and C∞ are
{
Q
α
| α ∈ [0, 0.5]

}
in both cases, and that the

Möbius inverse of each Q
α
is given by:

mQ
α

({x1, x4}) = mQ
α

({x2, x3}) = α, mQ
α

({x1, x3}) = mQ
α

({x2, x4}) = 0.5−α,

and zero elsewhere. Hence, the speci�city of Q
α
is given by:

S(Q
α

) =
1

2
(α+ α+ 0.5− α+ 0.5− α) = 0.5,

regardless of the value of α ∈ [0, 0.5]. We conclude that all the undominated outer
approximations in C2 and C∞ minimising the BV-distance have the same speci�city.
Thus, this criterion is not helpful in the selection process. �

While in this section we have considered the speci�city measure given by Equa-
tion (12), it is not the only possibility. We may for instance consider the notion of
non-speci�city proposed by Dubois and Prade in [15], given by∑

∅6=A⊆X

m(A) log(|A|),

that was shown in [3] to be also applicable to 2-monotone lower probabilities. It can
be veri�ed using Example 5 above that this other de�nition does not help either to
choose one among the undominated outer approximations.

3.5. Discussion. We have seen in this section several approaches for selecting one
undominated outer approximation in C2 and C∞. We have focused on the undom-
inated outer approximations minimising the BV-distance, i.e., on the sets CBV2 (P )
and CBV∞ (P ). In these two sets, we have proposed to minimise the quadratic dis-
tance, a total variation distance, to preserve the preferences encompassed by the
initial model and an approach based on maximising the speci�city. Among all
these approaches, we have seen that the only approach that selects one single
undominated outer approximation is the one based on minimising the quadratic
distance among the outer approximations minimising the BV-distance. The other
approaches, albeit interesting, are not useful in general for the purposes of this
paper, since either they produce more than one or no optimal solutions.

4. Selection of an outer approximation in C(F,F )

We consider now the case of undominated outer approximations in the set of
generalised p-boxes, C(F,F ). As we shall see, the number of undominated outer

approximations in C(F,F ) is �nite, and there is a simple procedure for determining

them.
In order to see this, let us remark that the lower probability in Equation (3) can

be computed using the values of the lower and upper distribution functions F and
F [44, Prop. 4]. To see how this comes about, note that any A ⊆ {x1, . . . , xn} can
be expressed as a �nite union of events of consecutive elements, where these events
are as large as possible: for instance if n = 4 the event A = {x1, x2, x4} would be
expressed as A = {x1, x2} ∪ {x4}.

Since without loss of generality we can add an element y∗0 to X to denote the
impossible event, with F (y∗0) = 0 and y∗0 < x1, we can express A = (y∗0 , y

∗
1 ] ∪
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(y∗2 , y
∗
3 ] ∪ · · · ∪ (y∗2m, y

∗
2m+1] for some m ≥ 0, with y∗0 ≤ y∗1 < y∗2 < . . . < y∗2m <

y∗2m+1 ∈ X . For instance, under this notation, and again when n = 4,

{x2, x3} = (x1, x3] and {x1, x3, x4} = (y∗0 , x1] ∪ (x2, x4].

It then holds that [44, Prop. 4] that:

P (F,F )(A) =

m∑
l=0

max
{

0, F (y∗2l+1)− F (y∗2l)
}
. (14)

Let us denote by Sn the set of permutations of {1, . . . , n}. For each σ ∈ Sn, consider
the total order ≤σ given by xσ(1) ≤σ xσ(2) ≤σ . . . ≤σ xσ(n), and de�ne the p-box

(Fσ, Fσ) by:

Fσ(xσ(i)) = P ({xσ(1), . . . , xσ(i)}), Fσ(xσ(i)) = P ({xσ(1), . . . , xσ(i)}) (15)

for every i = 1, . . . , n. From [34, Thm. 17], C(F,F ) = ((Fσ, Fσ))σ∈Sn . This means

that the number of undominated outer approximations is bounded above by n!. Our
next result lowers this bound and shows that the number of di�erent undominated
outer approximations is at most n!

2 . For this aim, given a permutation σ ∈ Sn, we
denote by σ the permutation given by σ(i) = σ(n− i+ 1) for every i = 1, . . . , n.

Proposition 3. Let P be a coherent lower probability with conjugate upper proba-
bility P , and let ((Fσ, Fσ))σ∈Sn be the family of undominated outer approximations
in C(F,F ). If we denote by P (Fσ,Fσ) the coherent lower probability associated with

(Fσ, Fσ), then P (Fσ,Fσ) = P (F σ̄,F σ̄).

Proof. Given xσ(i) and applying Equation (14):

P (Fσ,Fσ)({xσ(i)}) = max
{

0, Fσ(xσ(i))− Fσ(xσ(i−1))
}

= max
{

0, P ({xσ(1), . . . , xσ(i)})− P ({xσ(1), . . . , xσ(i−1)})
}
.

On the other hand:

P (F σ̄,F σ̄)({xσ(i)}) = max
{

0, F σ̄(xσ(i))− F σ̄(xσ(i+1))
}

= max
{

0, P ({xσ(i), . . . , xσ(n)})− P ({xσ(i+1), . . . , xσ(n)})
}

= max
{

0, 1− P ({xσ(1), . . . , xσ(i−1)})− 1 + P ({xσ(1), . . . , xσ(i)})
}

= max
{

0, P ({xσ(1), . . . , xσ(i)})− P ({xσ(1), . . . , xσ(i−1)})
}

= max
{

0, Fσ(xσ(i))− Fσ(xσ(i−1))
}

= P (Fσ,Fσ)({xσ(i)}).

Next, if we consider a set of consecutive elements A = {xσ(i), . . . , xσ(i+l)}, for some
l ≥ 1 and some i = 1, . . . , n− 1, we deduce from Equation (14) that

P (Fσ,Fσ)(A) = max{0, Fσ(xσ(i+l))− Fσ(xσ(i−1))}

= max{0, P ({xσ(1), . . . , xσ(i+l)})− P ({xσ(1), . . . , xσ(i−1)})}
= max{0, 1− P ({xσ(i+l+1), . . . , xσ(n)})− 1 + P ({xσ(i), . . . , xσ(n)})}
= max{0, P ({xσ(i), . . . , xσ(n)})− P ({xσ(i+l+1), . . . , xσ(n)})}
= max{0, P ({xσ̄(n−i+1), . . . , xσ̄(1)})− P ({xσ̄(n−i−l), . . . , xσ̄(1)})}
= max{0, F σ̄(xσ̄(n−i+1))− F σ̄(xσ̄(n−i−l))}
= P (F σ̄,F σ̄)({xσ̄(n−i−l+1), . . . , xσ̄(n−i+1)}) = P (F σ̄,F σ̄)(A).
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If we now apply Equation (14) we conclude that P (Fσ,Fσ) = P (F σ̄,F σ̄). �

Thus, each permutation and its opposite induce a p-box with the same associ-
ated coherent lower probability. As a consequence, there are at most n!

2 di�erent
undominated outer approximations in C(F,F ). In the remainder of this section we

explore di�erent approaches for selecting one of them.

4.1. Approach based on minimising imprecision. In the case of p-boxes, we
can propose a di�erent approach than the ones considered so far, based on minimis-
ing the associated imprecision. Since any p-box is an ordered pair of distribution
functions that are determined by their values on X , we may measure their inherent
imprecision by computing the distance between the lower and the upper distribution
functions on X . This produces the following measure of imprecision Imp:

Imp(Fσ, Fσ) =
∑
x∈X

(
Fσ(x)− Fσ(x)

)
. (16)

Thus, our goal will be to determine the p-box minimising the imprecision in this
equation.

Taking into account the de�nition of the p-box (Fσ, Fσ) once the permutation
σ has been �xed (Equation (15)), we can also express Equation (16) in terms of
the lower and upper probabilities P , P . Indeed, given a permutation σ inducing
the order xσ(1) ≤σ . . . ≤σ xσ(n) and its associated p-box (Fσ, Fσ), Equation (16)
becomes:∑

x∈X
(Fσ(x)− Fσ(x)) =

n∑
i=1

(
P ({xσ(1), . . . , xσ(i)})− P ({xσ(1), . . . , xσ(i)})

)
In other words, we consider a chain of events from a singleton to X and compute
the di�erences between P and P for those events5. Note however that, because of
Equation (15), this chain of events will vary with the p-box considered, because it
depends on the order associated with the permutation σ; in other words, the key
events taken into account when measuring the imprecision of the p-box (Fσ, Fσ)
are not always the same.

The above correspondence means that we can �nd the p-box(es) minimising
Equation (16) by solving a shortest path problem. For this aim, consider the
Hasse diagram of P(X ), and we assign the following weights: for every A 6= X
and xi /∈ A, we assign the weight P (A ∪ {xi}) − P (A ∪ {xi}) to the edge A →
A ∪ {xi}. In this way for every permutation σ, the sum of absolute di�erences
between Fσ and Fσ corresponds to the sum of the values of the arcs that move
from the event {xσ(1), . . . , xσ(i)} to the event {xσ(1), . . . , xσ(i), xσ(i+1)}, for every
i = 0, . . . , n−1. Therefore, minimising the total distance corresponds to calculating
the shortest path from ∅ to X . Proposition 3 assures that the optimal solution to
this shortest path problem will never be unique, because if the optimal solution is
attained in the permutation σ, it will also be attained in the reverse permutation
σ. Nevertheless, if the only optimal solutions to the shortest path problem are
determined by a permutation σ and its reverse σ, then the undominated outer
approximation minimising the imprecision is unique.

5The idea of comparing two non-additive measures in terms of their distance on some class of
events that may be strictly included in P(X ) is already present in the paper by Baroni and Vicig
in [5].
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We illustrate this procedure in the following example:

Example 6. Consider the coherent conjugate lower and upper probabilities given
by:

A P (A) P (A)
{x1} 0.25 0.4
{x2} 0.2 0.5
{x3} 0.2 0.5
{x1, x2} 0.5 0.8
{x1, x3} 0.5 0.8
{x2, x3} 0.6 0.75
X 1 1

These lower and upper probabilities are coherent because they are the lower and
upper envelope of the following probability mass functions:

(0.4, 0.4, 0.2), (0.25, 0.5, 0.25), (0.3, 0.2, 0.5)

The Hasse diagram with the weights de�ned above is represented in Figure 2.

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

X

0.15 0.3 0.3

0.3

0.3 0.3 0.15 0.3

0.15

0 0 0

Figure 2. Hasse diagram with the weights in Example 6.

Solving the shortest path problem, we obtain four di�erent optimal solutions,
those associated with the paths:

∅ → {x1} → {x1, x2} → X , ∅ → {x1} → {x1, x3} → X ,
∅ → {x2} → {x2, x3} → X , ∅ → {x3} → {x2, x3} → X .

They correspond to the permutations (1, 2, 3), (1, 3, 2), (2, 3, 1) and (3, 2, 1), and
have an imprecision of 0.45. From Proposition 3 we know that the permutations
(1, 2, 3) and (3, 2, 1) give rise to the same p-box, and the same applies to (1, 3, 2)
and (2, 3, 1), so we have two di�erent optimal solutions. Although this allows to
discard the other two permutations, which have an imprecision of 0.6, it does not
single out a unique p-box. �
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4.2. Approach based on speci�city measures. As we have already said, p-
boxes are connected with completely monotone lower probabilities ([44, Sec. 5.1]).
Indeed, a p-box is equivalent to a completely monotone lower probability whose
focal events are ordered intervals (see [13, Sec. 3.3]). Hence, we could also use the
approach based on maximising the speci�city. For each p-box (Fσ, Fσ) we can con-
sider its associated completely monotone lower probability, given by Equation (14),
and compute its speci�city, as we did in Section 3.4. However, the same drawback
as in Section 3.4 appears: this procedure does not produce a unique solution, as we
show in the next example.

Example 7. Consider again Example 6. From Proposition 3 we know that the
six di�erent permutations give rise to only three di�erent p-boxes. Hence, we can
restrict ourselves to the permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2) and σ3 = (2, 1, 3).
In the next table, we show the values of the completely monotone lower probabilities
induced by those p-boxes, computed using Equation (14).6

σ1 = (1, 2, 3) σ2 = (1, 3, 2) σ3 = (2, 1, 3)

A P (A) P (A) Pσ1
(A) mσ1(A) Pσ2

(A) mσ2(A) Pσ3
(A) mσ3(A)

{x1} 0.25 0.4 0.25 0.25 0.25 0.25 0 0
{x2} 0.2 0.5 0.1 0.1 0.2 0.2 0.2 0.2
{x3} 0.2 0.5 0.2 0.2 0.1 0.1 0.2 0.2

{x1, x2} 0.5 0.8 0.5 0.15 0.45 0 0.5 0.3
{x1, x3} 0.5 0.8 0.45 0 0.5 0.15 0.5 0.3
{x2, x3} 0.6 0.75 0.6 0.3 0.6 0.3 0.4 0

X 1 1 1 0 1 0 1 0

Using Equation (13) we obtain the following speci�cities:

S(Pσ1
) = S(Pσ2

) = 0.775, S(Pσ3
) = 0.7.

From these values, we can discard the p-box induced by the permutation σ3, but we
are not able to choose between σ1 and σ2. Note that this is the same result as in
Example 6, where we minimised the imprecision. �

This example may lead us to think that the approach based on minimising the
imprecision and the one based on maximising the speci�city always give rise to the
same solutions. However, we shall see in Example 8 later on that this is not the
case.

4.3. Approach based on the BV-distance. Since the lower probability associ-
ated with a p-box is completely monotone, we could also apply the criterion based
on minimising the BV-distance between each of the coherent lower probabilities
associated with the p-boxes ((Fσ, Fσ))σ∈Sn and P .

Our next example shows that this criterion does not give rise to a unique solution,
and in fact that it does not produce the same solution as the criteria based on
minimising the imprecision or maximising the speci�city.

Example 8. Let P , P be the lower and upper envelope of the following probability
mass functions:

(ε, 0.45− ε, 0.55), (0.4, 0.1, 0.5), (0.3, 0.5, 0.2),

6In the examples of this section, and for the sake of simplicity, we use the short notation Pσi
for P (Fσi

,Fσi )
and mσi for its associated Möbius inverse.
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for some �xed ε ∈ (0, 0.03). Their values, as well as the values of the completely
monotone lower probabilities associated with the p-boxes ((Fσ, Fσ))σ∈Sn are given
by:

σ1 = (1, 2, 3) σ2 = (1, 3, 2) σ3 = (2, 1, 3)
A P (A) P (A) Pσ1

(A) Pσ2
(A) Pσ3

(A)

{x1} ε 0.4 ε ε 0
{x2} 0.1 0.5 0.05 0.1 0.1
{x3} 0.2 0.55 0.2 0.1 0.2
{x1, x2} 0.45 0.8 0.45 0.1 + ε 0.45
{x1, x3} 0.5 0.9 0.2 + ε 0.5 0.5
{x2, x3} 0.6 1− ε 0.6 0.6 0.3
X 1 1 1 1 1

It can be easily seen that:

Imp S(Pσi) dBV (P , Pσi)

Pσ1
0.75− ε 0.625 + ε/2 0.35− ε

Pσ2
0.8− ε 0.6 + ε/2 0.45− ε

Pσ3
0.75 0.6416̄ 0.3 + ε

We see �rst of all that for ε = 0.025 the criterion based on minimising the BV-
distance does not give a unique solution, because both σ1 and σ3 minimise the dis-
tance. Moreover the three approaches do not agree, because the criterion based on
minimising the imprecision chooses the p-box induced by the permutation (1, 2, 3),
the criterion based on maximising the speci�city selects the p-box induced by the
permutation (2, 1, 3), while the criterion based on minimising the BV-distance se-
lects the p-box induced by the permutation (2, 1, 3), if ε ∈ (0, 0.025), and the p-box
induced by the permutation (1, 2, 3), if ε ∈ (0.025, 0.03). �

4.4. Approach based on the quadratic distance. We consider again the ap-
proach based on minimising the quadratic distance. Unfortunately, in the case of
p-boxes this approach is not very useful for several reasons: �rst of all, the set of
undominated outer approximations in C(F,F ) is not convex, hence we cannot use

the good properties of the quadratic programming problems; secondly, the inter-
pretation of the quadratic distance is not clear; and thirdly, the solution in this
case is not unique, as we show in the next example.

Example 9. Let us continue with Example 7. There, we have seen that there are
three di�erent outer approximations in C(F,F ), those associated with the permuta-

tions σ1 = (1, 2, 3), σ2 = (1, 3, 2) and σ3 = (2, 1, 3). If we compute their quadratic
distance with respect to P , we obtain the following values:

Pσ1
Pσ2

Pσ3

dq(P , Pσi) 0.0125 0.0125 0.1025

We see that both Pσ1
and Pσ2

minimise the quadratic distance, and as a consequence
the optimal solution is not unique. �

4.5. Approach based on preference preservation. In Section 3.3 we consid-
ered several properties about preference preservation. For selecting a p-box among
those in ((Fσ, Fσ))σ∈Sn , we may choose the p-box satisfying one of those condi-
tions. However, as we show in the following example, for each condition it may be
that none of the p-boxes or more than one satis�es it.
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Example 10. Let P , P be the coherent lower and upper probability obtained as the
lower and upper envelopes of

(0.2, 0.3, 0.5), (0.5, 0.2, 0.3), (0.3, 0.5, 0.2).

Their values, as well as those of the completely monotone lower probabilities asso-
ciated with the p-boxes ((Fσ, Fσ))σ∈Sn , are given by:

σ1 = (1, 2, 3) σ2 = (1, 3, 2) σ3 = (2, 1, 3)
A P (A) P (A) Pσ1

(A) Pσ2
(A) Pσ3

(A)

{x1} 0.2 0.5 0.2 0.2 0
{x2} 0.2 0.5 0 0.2 0.2
{x3} 0.2 0.5 0.2 0 0.2
{x1, x2} 0.5 0.8 0.5 0.4 0.5
{x1, x3} 0.5 0.8 0.4 0.5 0.5
{x2, x3} 0.5 0.8 0.5 0.5 0.4
X 1 1 1 1 1

Next table shows which conditions Ci are satis�ed by these p-boxes:

Pσ1
Pσ2

Pσ3

C1 Yes Yes Yes

C2 No No No

C3 No No No

C4 Yes Yes Yes

C5 Yes Yes Yes

C6 No No No

Therefore, none of the conditions allows us to distinguish between these p-boxes. �

4.6. Approach based on the total variation distance. As we did in Sec-
tion 3.2, one possibility to choose among the p-boxes in ((Fσ, Fσ))σ∈Sn is to con-
sider those p-boxes minimising one of the extensions of the total variation distance
in Equations (9)÷(11). Unfortunately, none of d1, d2 and d3 allows to select a single
p-box, as we show in the following example.

Example 11. Let us continue with Example 6. Example 7 gives the completely
monotone lower probabilities associated with the p-boxes in ((Fσ, Fσ))σ∈Sn . For
them, it holds that:

σ1 = (1, 2, 3) σ2 = (1, 3, 2) σ3 = (2, 1, 3)

Pσ1
Pσ2

Pσ3

d1(P , Pσi) 0.1 0.1 0.25

d2(P , Pσi) 0.05 0.05 0.125

d3(P , Pσi) 0.4 0.4 0.4

We see that none of the extensions of the total variation distance allows to select a
single p-box. �
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4.7. Discussion. There are at most n!
2 undominated outer approximations in the

class C(F,F ). There exist several procedures we can use to discard some of them,

being the most reasonable, in our view (i) minimising imprecision; (ii) minimising
the BV-distance; and (iii) maximising speci�city. Two important drawbacks of
these three approaches are that in general they do not select a unique p-box, and
that when they do so, there does not seem to be a relationship between the options
selected by each of them. Hence, we cannot use all three approaches simultaneously.
Using the approach based on minimising the imprecision has the advantage of
having a simple procedure for �nding the optimal p-box(es), while for the other
two approaches we would need to compute the lower probability associated with
the p-box by means of Equation (14).

Taking these comments into account, it seems reasonable to (i) consider the
p-box(es) minimising the imprecision, albeit with the reservations mentioned in
Section 4.1 about Equation (16); if there is more than one, we could (ii) select
among them the ones minimising the BV-distance; if there are still more than one
p-box, we (iii) select the one maximising the speci�city; if necessary, we could (iv)
compute their quadratic distance, and if all these methods do not select a single
p-box, all of the remaining ones would be equally preferred.

5. Selection of an outer approximation in CΠ
In Section 3 we explained that the sets of undominated outer approximations

in C2 and C∞ are not �nite in general, and indeed we do not have a procedure for
determining all of them. In contrast, the set of non-dominating outer approxima-
tions in CΠ is �nite and can be easily determined (see [34, Sec. 6]), as in the case
of p-boxes.

Throughout this section, we shall assume that all non-impossible events have
strictly positive upper probability, so that P ({x}) > 0 for every x ∈ X . This
assumption shall be useful in some of the proofs later on. Moreover, as we shall
detail in Appendix A, in the general case we can always restrict our attention to
X ∗ = {x ∈ X | P ({x}) > 0}, determine the outer approximations Π∗ ∈ CΠ of the
restriction of P to P(X ∗), and then extend these to P(X ) by Π(A) = Π∗(A∩X ∗),
or equivalently taking π(x) = 0 for every x satisfying P ({x}) = 0. We refer to
Appendix A for detailed explanations and proofs.

Given the conjugate coherent lower and upper probabilities P and P , each per-
mutation σ ∈ Sn de�nes the following possibility measure7:

Πσ({xσ(1)}) = P ({xσ(1)}), and (17)

Πσ({xσ(i)}) = max
A∈Aσ(i)

P (A ∪ {xσ(i)}), where for every i > 1 : (18)

Aσ(i) =

{
A ⊆ {xσ(1), . . . , xσ(i−1)}

∣∣ P (A ∪ {xσ(i)}) > max
x∈A

Πσ({x})
}
, (19)

and Πσ(B) = maxx∈B Πσ({x}) for every B ⊆ X . Then, the family of non-
dominating outer approximations of P is (Πσ)σ∈Sn (see [34, Prop. 11, Cor. 13]).

Note that the procedure above is well-de�ned because, as we have mentioned
before, we are assuming that P ({x}) > 0 for every x ∈ X . Hence ∅ ∈ Aσ(i), which
guarantees that Aσ(i) is non-empty.

7Here we are assuming that maxx∈∅ Πσ({x}) := 0.
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In this section we propose a number of approaches to select a unique outer ap-
proximation of P among those determined by Equations (17)÷(19). The procedure
above may determine the same possibility measure more than once, using di�erent
permutations σ ∈ Sn. The next result is concerned with such cases, and will be
helpful later on for reducing the candidate possibilities.

Proposition 4. Let (Πσ)σ∈Sn be the family of non-dominating outer approxima-
tions of P in CΠ. Consider a permutation σ ∈ Sn and its associated possibility
measure Πσ. Assume that there exists i ∈ {2, . . . , n} such that Πσ({xσ(i)}) 6=
P ({xσ(1), . . . , xσ(i)}). Then, there exists σ′ ∈ Sn such that

Πσ(A) = Πσ′(A) ∀A ∈ P(X ) and Πσ′({xσ′(j)}) = P ({xσ′(1), . . . , xσ′(j)}) ∀j.

Proof. In order to ease the notation, assume that σ = (1, 2, . . . , n), and denote its
associated possibility measure by Π.

Take the smallest i such that Π({xi}) 6= P ({x1, . . . , xi}). This means that
Π({x1}) = P ({x1}) and, for any k = 2, . . . , i− 1:

Π({xk}) = max

{
P (A ∪ {xk}) | P (A ∪ {xk}) > max

xj∈A
Π({xj}), A ⊆ {x1, . . . , xk−1}

}
= P ({x1, . . . , xk}).

Moreover, applying monotonicity we deduce that Π({xk}) = P ({x1, . . . , xk}) ≥
P ({x1, . . . , xk−1}) = Π({xk−1}) for k = 2, . . . , i− 1.

Equations (17)÷(19) also imply that Π({xj}) ≤ P ({x1, . . . , xj}) for every j =
1, . . . , n. Thus, if

Π({xi}) = max

{
P (A ∪ {xi}) | P (A ∪ {xi}) > max

x∈A
Π({x}), A ⊆ {x1, . . . , xi−1}

}
6= P ({x1, . . . , xi}),

then it must be Π({xi}) < P ({x1, . . . , xi}). We deduce that {x1, . . . , xi−1} /∈ Ai,
and as a consequence

P ({x1, . . . , xi}) ≤ max
j=1,...,i−1

Π({xj}) = Π({xi−1}) = P ({x1, . . . , xi−1}), (20)

so by monotonicity the inequality in (20) becomes an equality. For every A ⊆
{x1, . . . , xi−1} such that xi−1 ∈ A, it holds that:

P (A ∪ {xi}) ≤ P ({x1, . . . , xi}) = P ({x1, . . . , xi−1}) = Π({xi−1}) = max
x∈A

Π({x}),

where the �rst equality follows from Equation (20). Thus, such an A does not
belong to Ai, and as a consequence it is not valid for de�ning Π({xi}). If we denote
Aj = {x1, . . . , xj} for j = 1, . . . , n, this means that Ai−1 /∈ Ai. Consider now
Ai−2 = {x1, . . . , xi−2}:

P (Ai−2 ∪ {xi}) ≥ P ({x1, . . . , xi−2}) = Π({xi−2}) = max
x∈Ai−2

Π({x}).

Here, we have two options, either P (Ai−2 ∪{xi}) = P ({x1, . . . , xi−2}) or P (Ai−2 ∪
{xi}) > P ({x1, . . . , xi−2}). If the former condition holds, we iterate the procedure.
At the end we have two cases:
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(1) For every j ∈ {1, . . . , i − 1}, P (Aj ∪ {xi}) = P (Aj) = Π({xj}). In that
case, the maximum in Equation (18) is attained for A = ∅ because it
is the only event in Ai, whence Π({xi}) = P ({xi}) and also Π({xi}) ≤
Π({x1}) ≤ . . . ≤ Π({xi−1}). In this case we consider the permutation
σ′ = (i, 1, . . . , i− 1, i + 1, . . . , n), i.e., the permutation that moves i to the
�rst position. It holds that:

Πσ′({xi}) = P ({xi}) = Π({xi}).

Πσ′({x1}) = max

{
P (A ∪ {x1}) | P (A ∪ {x1}) > max

x∈A
Πσ′({x}), A ⊆ {xi}

}
= P ({x1}) = Π({x1});

to see the second equality note that eitherAσ′(i) = {∅} orAσ′(i) = {∅, {xi}}.
By assumption, P ({x1, xi}) = P ({x1}). Hence, applying the procedure in
Equations (17)÷(19) with A = {xi} or A = ∅ we obtain the same value
P ({x1}) as candidate assignment for Π({x1}).

Suppose now that Πσ′({xk}) = Π({xk}) for every k ≤ j − 1 < j <
i, and let us prove that also Πσ′({xj}) = Π({xj}). Since Π({xj}) =

P ({x1, . . . , xj}), there exists some event B ∈ Aj such that Π({xj}) =

P (B ∪ {xj}) = P ({x1, . . . , xj}). By Equation (19), B ⊆ {x1, . . . , xj−1}
and P (B ∪{xj}) > maxx∈B Π({x}) = maxx∈B Πσ′({x}). This implies that
B ∈ Aσ′(j) and as a consequence that

Πσ′({xj}) ≥ P (B ∪ {xj}) = P ({x1, . . . , xj}).

On the other hand, for every A ∈ Aσ′(j), it holds that

P (A ∪ {xj}) ≤ P (Aj ∪ {xi}) = P ({x1, . . . , xj}),

whence

Πσ′({xj}) = max
A∈Aσ′(j)

P (A ∪ {xj}) ≤ P ({x1, . . . , xj}),

and therefore that

Πσ′({xj}) = P ({x1, . . . , xj}) = Π({xj}).

Finally, for every j > i, Aσ′(j) = Aj , which implies that Πσ′({xj}) =
Π({xj}) for j = i+ 1, . . . , n.

(2) There exists j ∈ {1, . . . , i− 1} such that

P (Aj ∪ {xi}) > P ({x1, . . . , xj}) = Π({xj}).

In that case, we consider:

k = max
{
j ∈ {1, . . . , i− 1} | Π({xj}) < P (Aj ∪ {xi}) ≤ Π({xi})

}
. (21)

In this case, the maximum in Equation (18) is attained in the event Ak =
{x1, . . . , xk}, which belongs to Ai by de�nition of k. Then, it holds that

Π({xi}) = P (Ak ∪ {xi}) = P ({x1, . . . , xk, xi}).
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Now, consider the permutation σ′ = (1, . . . , k, i, k+1, . . . , i−1, i+1, . . . , n),
i.e., the permutation that moves i just after element k. It holds that:

Πσ′({x1}) = P ({x1}) = Π({x1}).
. . .

Πσ′({xk}) = P ({x1, . . . , xk}) = Π({xk}).

Πσ′({xi}) = max

{
P (A ∪ {xi}) | P (A ∪ {xi}) > max

x∈A
Πσ′({x}), A ⊆ {x1, . . . , xk}

}
= max

{
P (A ∪ {xi}) | P (A ∪ {xi}) > max

x∈A
Π({x}), A ⊆ {x1, . . . , xk}

}
= P ({x1, . . . , xk, xi}) = Π({xi}),

where the last two equalities hold taking A = Ak = {x1, . . . , xk}, because
from Equation (21) we have that

Π({xi}) = P (Ak ∪ {xi}) > P (Ak) = Π({xk}).

For the element xk+1, it holds that:
• Πσ′({xk+1}) ≥ Π({xk+1}), as a consequence of the inclusion Ak+1 ⊆
Aσ′(k+1);
• Conversely,

Πσ′({xk+1})
= max{P (A ∪ {xk+1}) | P (A ∪ {xk+1}) > max

xj∈A
Πσ′({xj}), A ⊆ {x1, . . . , xk, xi}}

≤ P ({x1, . . . , xk+1, xi}) = Π({xk+1}),

where the equality follows from Equation (21).
Therefore, Πσ′({xk+1}) = Π({xk+1}).

With an analogous reasoning, we obtain that:

Πσ′({xk+2}) = Π({xk+2}), . . . , Πσ′({xi−1}) = Π({xi−1}).

Finally, it trivially holds that for any j = i+1, . . . , n, Πσ′({xj}) = Π({xk}),
so we conclude that Πσ′ = Π.

In both cases, Πσ′ satis�es:

Πσ′({xσ′(j)}) = P ({xσ′(1), . . . , xσ′(j)}) ∀j = 1, . . . , i.

Now, if for Πσ′ there exists j > i such that Πσ′({xσ′(j)}) 6= P ({xσ′(1), . . . , xσ′(j)}),
we just need to iterate the procedure. �

5.1. Approach based on the BV-distance. Our �rst approach consists in look-
ing for a possibility measure, among (Πσ)σ∈Sn , that minimises the BV-distance
with respect to the original model. If we denote by Nσ the conjugate necessity
measure of Πσ, the BV-distance can be expressed by:

dBV (P ,Nσ) =
∑
A⊆X

(P (A)−Nσ(A))

=
∑
A⊆X

(Πσ(A)− P (A)) =
∑
A⊆X

Πσ(A)−
∑
A⊆X

P (A).
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To ease the notation, from now on for each permutation σ ∈ Sn, we denote by
~βσ the ordered vector determined by the values Πσ({xσ(i)}), i = 1, . . . , n, so that
βσ,1 ≤ . . . ≤ βσ,n = 1. Using this notation:∑

A⊆X

Πσ(A) = βσ,1 + 2βσ,2 + . . .+ 2n−1βσ,n =

n∑
i=1

2i−1βσ,i. (22)

This means that, in order to minimise dBV (P ,Nσ), we must minimise Equa-

tion (22), or, equivalently, given that the last term is 2n−1 for any ~βσ,

n−1∑
i=1

2i−1βσ,i. (23)

It is easy to show that if a dominance relation exists between ~βσ and ~βσ′ , this
induces an order between the values in Equation (22).

Lemma 5. Let ~βσ and ~βσ′ be the vectors associated with the possibility measures
Πσ and Πσ′ . If βσ,i ≤ βσ′,i for every i = 1, . . . , n, then dBV (P ,Nσ) ≤ dBV (P ,Nσ′).
Furthermore, if βσ,j < βσ′,j for some j = 1, . . . , n, then dBV (P ,Nσ) < dBV (P ,Nσ′).

Proof. The proof follows easily from Equation (22):∑
A⊆X

Πσ(A) = βσ,1 + 2βσ,2 + . . .+ 2n−1βσ,n

≤ βσ′,1 + 2βσ′,2 + . . .+ 2n−1βσ′,n =
∑
A⊆X

Πσ′(A). (24)

Then, we conclude that dBV (P ,Nσ) ≤ dBV (P ,Nσ′). If in addition βσ,j < βσ′,j for
some j = 1, . . . , n, the inequality in Equation (24) is strict. �

This result may contribute to rule out some of the permutations in Sn, as illus-
trated in the next example.

Example 12. Consider the coherent conjugate lower and upper probabilities from

Example 6. The possibility measures Πσ and their associated vectors ~βσ for every
σ ∈ Sn are given in Table 1.

σ Πσ({x1}) Πσ({x2}) Πσ({x3}) ~βσ

σ1 = (1, 2, 3) 0.4 0.8 1 (0.4, 0.8, 1)

σ2 = (1, 3, 2) 0.4 1 0.8 (0.4, 0.8, 1)

σ3 = (2, 1, 3) 0.8 0.5 1 (0.5, 0.8, 1)

σ4 = (2, 3, 1) 1 0.5 0.75 (0.5, 0.75, 1)

σ5 = (3, 1, 2) 0.8 1 0.5 (0.5, 0.8, 1)

σ6 = (3, 2, 1) 1 0.75 0.5 (0.5, 0.75, 1)

Table 1. Possibility measures (Πσ)σ∈Sn for the coherent lower
and upper probabilities in Example 12, as well as their associated

vectors (~βσ)σ∈Sn .
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Taking σ1 = (1, 2, 3) and σ3 = (2, 1, 3), we can see that

~βσ1 = (0.4, 0.8, 1), ~βσ3 = (0.5, 0.8, 1).

Since βσ1
� βσ3

, Lemma 5 implies dBV (P ,Nσ1
) < dBV (P ,Nσ3

). Hence, we can

discard Πσ3
. The same happens with the vectors ~βσ1

and ~βσ5
, so we deduce that

dBV (P ,Nσ1
) < dBV (P ,Nσ5

). �

In the general case, the family (~βσ)σ∈Sn is not totally ordered. Then, the problem
of minimising the BV-distance is solved by casting it into a shortest path problem,
similarly as we did in Section 4.1, as we shall now illustrate.

As we said before, the possibility measure(s) in (Πσ)σ∈Sn that minimise the BV-
distance to the original model will be the one(s) for which the sum

∑
A⊆X Πσ(A)

is minimised. In turn, this sum can be computed by means of Equation (22), once
we order the values Πσ({xσ(i)}), for i = 1, . . . , n. As a consequence, if Πσ satis�es

Πσ({xσ(i)}) = P ({xσ(1), . . . , xσ(i)}) ∀i = 1, . . . , n, (25)

then the monotonicity of P will imply that Πσ({xσ(1)}) ≤ Πσ({xσ(2)}) ≤ · · · ≤
Πσ({xσ(n)}), and then by Equation (22), that

∑
A⊆X

Πσ(A) =

n∑
i=1

2i−1P ({xσ(1), . . . , xσ(i)}).

On the other hand, if Πσ does not satisfy Equation (25), then by construction (see
Equations (17)÷(19)) we have that Πσ({xσ(i)}) ≤ P ({xσ(1), . . . , xσ(i)}) for every
i = 1, . . . , n, with strict inequality on some i. This means that∑

A⊆X

Πσ(A) <

n∑
i=1

2i−1P ({xσ(1), . . . , xσ(i)}).

Further, from Proposition 4 we know that if Πσ does not satisfy Equation (25) then
it is possible to �nd another permutation σ′ that does so and such that Πσ(A) =
Πσ′(A) for every A ⊆ X .

This means that we can �nd a Πσ minimising the BV-distance by solving a
shortest path problem. For this aim, we consider the Hasse diagram of P(X ), and
we assign the following weights: if xi /∈ A, we assign the weight 2|A|P (A ∪ {xi})
to the edge A → A ∪ {xi}, and the �ctitious weight 0 to X \ {xi} → X . Since
these weights are non-negative, we can �nd the shortest path e�ciently by means
of Dijkstra's algorithm [14, 19].

In this diagram, there are two types of paths:

(a) Paths whose associated possibility measure Πσ satis�es Equation (25); then
the value of Equation (23) for Πσ coincides with the value of the path, with
the weights established above.

(b) Paths whose associated possibility measure Πσ does not satisfy the equality
in Equation (25); then the value of Equation (23) for Πσ shall be strictly
smaller than the value of the path, and shall moreover coincide with the
value of the path determined by some other permutation σ′, as established
in Proposition 4. This means that the shortest path can never be found
among these ones.
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As a consequence, if we �nd the shortest path we shall determine a permutation
σ whose associated possibility measure Πσ satis�es Equation (25), i.e., it coincides
with the upper probability that we are outer approximating in the chain of events
determined by the path. Moreover, this possibility measure shall minimise the BV-
distance with respect to the original model among all the non-dominating outer
approximations in C∞. In this manner we shall obtain all such possibility measures;
although we may not be able to identify the set of all permutations that generate
them, this allows us to skip the procedure in Equations (17)÷(19).

Example 13. Consider the coherent conjugate lower and upper probabilities from
Example 12. Figure 3 pictures the Hasse diagram with the weights on the edges we
discussed before.

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

X

0.4 0.5 0.5

1.6

1.6 1.6 1.5 1.6

1.5

0 0 0

Figure 3. Hasse diagram with the associated weights for Exam-
ple 13.

Solving the shortest path problem from ∅ to X using Dijkstra's algorithm, we
obtain an optimal value of 2 that is attained with the following paths:

∅ → {x1} → {x1, x2} → X , ∅ → {x1} → {x1, x3} → X .
∅ → {x2} → {x2, x3} → X , ∅ → {x3} → {x2, x3} → X .

These four paths correspond to the permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ4 =
(2, 3, 1) and σ6 = (3, 2, 1). Even if they induce four di�erent possibility measures,
all of them are at the same distance (with respect to dBV ) from P . The other two
possibility measures are those that were discarded in Example 12 using Lemma 5.
�

This example shows that with this approach we obtain the possibility measure
Πσ at a minimum BV-distance. It also shows that the solution is not unique, and

that the vectors ~βσ and ~βσ′ that are not pointwisely ordered may be associated with
two di�erent possibility measures Πσ and Πσ′ minimising the BV-distance (such as
σ1 and σ6 in the example). Nevertheless, we can determine situations in which the
BV-distance selects one single Πσ, using the following result.
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Proposition 6. Let P and P be coherent conjugate lower and upper probabilities.
If there is a permutation σ ∈ Sn satisfying

P
({
xσ(1), . . . , xσ(j)

})
= min
|A|=j

P (A) ∀j = 1, . . . , n, (26)

then Πσ minimises the BV-distance.

Proof. A possibility measure Πσ minimises the BV-distance with respect to P when
it minimises Equation (22). Moreover, naming σ ∈ Sn a permutation satisfying

Equation (26), we obtain its associated vector ~βσ given by:

~βσ =

(
min
|A|=1

P (A), min
|A|=2

P (A), . . . , min
|A|=n−1

P (A), 1

)
.

Since any permutation σ′ that is not discarded in Proposition 4 will satisfy

Πσ′({xσ′(1), . . . , xσ′(i)}) ≥ min
|A|=i

P (A) = Πσ({xσ(1), . . . , xσ(i)}),

we deduce that ~βσ is pointwisely dominated by any other ~βσ′ , hence using Lemma 5
we obtain that dBV (P ,Nσ) ≤ dBV (P ,Nσ′). �

As a consequence of this result, if there is only one permutation satisfying Equa-
tion (26), this approach allows to select a unique undominated outer approximation.
The next example illustrates this:

Example 14. Consider again the conjugate coherent lower and upper probabilities
P and P in Example 3. It holds that:

P ({x4}) = 0.4 = min
|A|=1

P (A).

P ({x2, x4}) = 0.7 = min
|A|=2

P (A).

P ({x1, x2, x3}) = 1 = P ({x1, x2, x4}) = P ({x1, x3, x4}) = P ({x2, x3, x4}).
There are two chains of events satisfying Equation (26), namely {x4} ⊆ {x2, x4} ⊆
{x1, x2, x4} ⊆ X and {x4} ⊆ {x2, x4} ⊆ {x2, x3, x4} ⊆ X . They are associated
with the permutations σ = (4, 2, 1, 3) and σ′ = (4, 2, 3, 1). From Proposition 6,
the possibility measure Πσ = Πσ′ they determine, that is given by the possibility
distribution π = (1, 0.7, 1, 0.4), is the unique undominated outer approximation in
CΠ minimising the BV-distance. �

The veri�cation of Equation (26) can be done quite simply using tools from
graph theory. For any k ∈ {0, . . . , n}, let Ak = {A ⊆ X such that |A| = k, P (A) =
min|B|=k P (B)}. We obtain in particular that A0 = {∅} and An = {X}. Consider
now a graph where the nodes are the sets in Ak for k = 0, . . . , n, and where we
add an arrow from A ∈ Ak to B ∈ Ak+1 if and only if A ⊂ B. It follows that
Equation (26) holds if and only if in the resulting graph there exists a path from ∅
to X .

Applying this on Example 14, we obtain the following graph:

∅ {x4} {x2, x4}
{x1, x2, x4}

{x1, x2, x3}

{x2, x3, x4}

{x1, x3, x4}

X
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Trivially, there is a path from ∅ to X . This path determines a chain of events
satisfying Equation (26).

Nevertheless, the condition in Proposition 6 is only su�cient, but not necessary.
See for instance Examples 12 and 13: there, neither σ1 = (1, 2, 3) nor σ2 = (1, 3, 2)
satisfy Equation (26) because the sequence of events with minimal upper probability
does not form a chain, but both Πσ1

and Πσ2
minimise the BV-distance. To see

that in those examples Equation (26) does not hold, note that

min
|A|=1

P (A) = 0.4 = P ({x1}), min
|A|=2

P (A) = 0.75 = P ({x2, x3}).

We obtain thus a graph with only two arrows: ∅ → {x1} and {x2, x3} → X , and
where it is therefore impossible to build a path from ∅ to X .

5.2. Approach based on the quadratic distance. We consider now the ap-
proach based on minimising the quadratic distance dq considered in Equation (8).
In this case, since we are dealing with possibility measures instead of their conjugate
necessity measures, we can rewrite the quadratic distance as:

dq(P ,Π) =
∑
A⊆X

(
Π(A)− P (A)

)2
. (27)

Unfortunately, selecting the possibility measures among those in (Πσ)σ∈Sn by this
approach fails for several reasons. Firstly, as we have already mentioned, the in-
terpretation of this distance is not clear; secondly, the main advantage of using
the quadratic distance in Section 3.1 is that the feasible region of the minimisation
problem is convex, but this is not the case with our family (Πσ)σ∈Sn ; and thirdly,
since the feasible region is not convex, we cannot guarantee the uniqueness of a
solution, as we show in the next example.

Example 15. Consider the same conjugate coherent lower and upper probabilities
of Example 12. In Table 1 we have speci�ed the possibility measures (Πσ)σ∈Sn ;
their quadratic distance with respect to P are given by next table:

Πσ1
Πσ2

Πσ3
Πσ4

Πσ5
Πσ6

dq
(
P ,Πσi

)
0.4425 0.4425 0.5125 0.5025 0.5125 0.5025

We can see that there are two possibility measures minimising the quadratic dis-
tance, those associated with the permutations σ1 = (1, 2, 3) and σ2 = (1, 3, 2). �

5.3. Approach based on measuring speci�city. Since any possibility measure
is in particular a plausibility measure (that is, the conjugate of a belief function),
it makes sense to compare them by means of speci�city measures. In this section,
we investigate which possibility measure(s) among (Πσ)σ∈Sn are the most speci�c.

With each possibility measure in (Πσ)σ∈Sn , we consider again its associated

vector ~βσ. In the case of possibility measures, we know that the focal events are
nested: they are given by Ai := {xσ(n−i+1), . . . , xσ(n)}, with m(Ai) = βσ,n−i+1 −
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βσ,n−i. Hence the speci�city measure in Equation (13) simpli�es to:

S(Πσ) =
βσ,n − βσ,n−1

1
+
βσ,n−1 − βσ,n−2

2
+ . . .+

βσ,2 − βσ,1
n− 1

+
βσ,1
n

= βσ,n − βσ,n−1

(
1− 1

2

)
− βσ,n−2

(
1

2
− 1

3

)
− . . .− βσ,1

(
1

n− 1
− 1

n

)
= 1− βσ,n−1

2
− βσ,n−2

2 · 3
− . . .− βσ,1

n(n− 1)
.

Thus, a most speci�c possibility measure will minimise

βσ,1
n(n− 1)

+
βσ,2

(n− 1)(n− 2)
+ . . .+

βσ,n−1

2
. (28)

Our �rst result is similar to Lemma 5, and allows to discard some of the possibility

measures Πσ. For this aim we use again the vectors ~βσ.

Lemma 7. Let ~βσ and ~βσ′ be the vectors associated with the possibility measures Πσ

and Πσ′ . If βσ,i ≤ βσ′,i for every i = 1, . . . , n, then S(Πσ) ≥ S(Πσ′). Furthermore,
if βσ,j < βσ′,j for some j = 1, . . . , n, then S(Πσ) > S(Πσ′).

Proof. For the permutations σ and σ′, the speci�cities of Πσ and Πσ′ are related
as follows:

S(Πσ) = 1− βσ,n−1

2
− βσ,n−2

2 · 3
− . . .− βσ,1

n(n− 1)

≥ 1− βσ′,n−1

2
− βσ′,n−2

2 · 3
− . . .− βσ′,1

n(n− 1)
= S(Πσ′). (29)

Then, S(Πσ) ≥ S(Πσ). If in addition βσ,j < βσ,j for some j = 1, . . . , n, the
inequality in Equation (29) is strict. �

Example 16. Consider again Examples 12 and 13. In Table 1 we can see the

possibility measures (Πσ)σ∈Sn and their associated vectors (~βσ)σ∈Sn . As we argued

in Example 12, ~βσ1
� ~βσ3

, where σ1 = (1, 2, 3) and σ3 = (2, 1, 3). Hence according
to Lemma 7, S(Πσ1

) > S(Πσ3
). This means that we can discard Πσ3

. A similar
reasoning allows us to discard Πσ5 . �

If we want to �nd those possibility measures maximising the speci�city, we have
to minimise Equation (28). Here we can make the same considerations as in the
previous section: if the possibility measure Πσ associated with a permutation σ
satis�es Equation (25) then the monotonicity of P implies that Πσ({xσ(1)}) ≤
Πσ({xσ(2)}) ≤ · · · ≤ Πσ({xσ(n)}), and then Equation (28) becomes

n−1∑
i=1

P ({xσ(1), . . . , xσ(i)})
(n− i)(n− i+ 1)

.

On the other hand, if Πσ does not satisfy Equation (25), then by construction
Πσ({xσ(i)}) ≤ P ({xσ(1), . . . , xσ(i)}) for every i = 1, . . . , n, with strict inequality on
some i. This means that

S(Πσ) > 1−
n−1∑
i=1

P ({xσ(1), . . . , xσ(i)})
(n− i)(n− i+ 1)

,
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or, equivalently, that the value of Equation (28) for Πσ is strictly smaller than

n−1∑
i=1

P ({xσ(1), . . . , xσ(i)})
(n− i)(n− i+ 1)

.

Moreover, from Proposition 4 we know that if Πσ does not satisfy Equation (25)
then it is possible to �nd another permutation σ′ that does so and such that Πσ =
Πσ′ .

This means that we can �nd a Πσ maximising the speci�city by solving a shortest
path problem, similarly to what we did in the case of the BV-distance. For this
aim, we consider the Hasse diagram of P(X ), and for every A 6= X and xi /∈ A we
assign the weight

P ({A ∪ {xi}})
(n− |A| − 1)(n− |A|)

(30)

to the edge A→ A ∪ {xi}, and we give the weight 0 to X \ {xi} → X .
In this diagram, there are two types of paths:

(a) Paths whose associated possibility measure Πσ satis�es Equation (25); then
the value of Equation (28) for Πσ coincides with the value of the path.

(b) Paths whose associated possibility measure Πσ does not satisfy the equality
in Equation (25); then the value of Equation (28) for Πσ shall be strictly
smaller than the value of the path, and shall moreover coincide with the
value of the path determined by some other permutation σ′, as established
in Proposition 4. This means that the shortest path can never be found
among these ones.

As a consequence, if we �nd the shortest path we shall determine a permutation
σ whose associated possibility measure Πσ satis�es Equation (25), and therefore
that maximises the speci�city. In this manner we shall obtain all such possibility
measures; although we may not be able to identify the set of all permutations that
generate them, this allows us to skip the computations in Equations (17)÷(19).

Example 17. Consider again the running Examples 12, 13 and 16. In the next
�gure we can see the Hasse diagram of P(X ) with the weights from Equation (30).

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

X

0.06̄ 0.083̄ 0.083̄

0.4

0.4 0.4 0.375 0.4

0.375

0 0 0
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Solving the shortest path problem from ∅ to X , we obtain two optimal solutions:

∅ → {x2} → {x2, x3} → X , ∅ → {x3} → {x2, x3} → X .

They correspond to the permutations σ4 = (2, 3, 1) and σ6 = (3, 2, 1). �

These examples also illustrate that the approach based on minimising the BV-
distance and the approach based on maximising the speci�city are not equivalent:
in Example 12 we have seen that the possibility measures minimising the BV-
distance are the ones associated with the permutations (3, 1, 2) and (3, 2, 1), while
those maximising the speci�city are the ones associated with (2, 3, 1) and (3, 2, 1).
Then, the possibility measure associated with the permutation (2, 3, 1) maximises
the speci�city but does not minimise the BV-distance with respect to P , while
the possibility measure associated with the permutation (3, 1, 2) minimises the BV-
distance but does not maximise the speci�city. Hence, it seems that the best
solution in this case is the possibility measure associated with the permutation
(3, 2, 1), which is the only one minimising the BV-distance and maximising the
speci�city at the same time.

To conclude this subsection, we prove that in the same conditions of Proposi-
tion 6, the speci�city measure may allow to select a unique possibility measure
Πσ.

Proposition 8. Let P and P be coherent conjugate lower and upper probabilities.
If there is a permutation σ ∈ Sn satisfying Equation (26), then Πσ maximises the
speci�city.

Proof. For maximising the speci�city, a possibility measure must minimise Equa-
tion (13). If σ ∈ Sn is a permutation satisfying Equation (26), its associated vector
~βσ is given by:

~βσ =

(
min
|A|=1

P (A), min
|A|=2

P (A), . . . , min
|A|=n−1

P (A), 1

)
.

By de�nition, ~βσ is pointwisely dominated by any other ~βσ′ , hence using Lemma 7
we obtain that S(Πσ) ≥ S(Πσ′) for every σ

′ ∈ Sn. �

We arrive at the same conclusion of Proposition 6: if there is a unique permuta-
tion satisfying Equation (26), then there is a unique possibility measure maximising
the speci�city; and in that case the chosen possibility measure maximises the speci-
�city and at the same time minimises the BV-distance.

5.4. Approach based on preference preservation. In order to choose among
the possibility measures (Πσ)σ∈Sn , we could try again the approach in Section 3.3
based on di�erent conditions about preference preservation. In this case we shall
consider the versions of C1�C6 in terms of upper probabilities: for instance, C1
now becomes

P (A) < P (B)⇒ Q(A) < Q(B).

Note that this is no loss of generality with respect to conditions C1�C4: for in-
stance, it can easily be shown using conjugacy that

P (A) < P (B)⇒ Q(A) < Q(B) ∀A,B ⊆ X
⇔ P (A) < P (B)⇒ Q(A) < Q(B) ∀A,B ⊆ X ,
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meaning that it does not matter if we formulate condition C1 in terms of lower or
in terms of upper probabilities. A similar reasoning can be made for C2, C3 and
C4. It does make a di�erence, however, in the case of conditions C5 and C6. For
instance, in the case of C6 the conditions

P ({x}) = P ({x′})⇒ Q({x}) = Q({x′}) ∀x, x′ ∈ X
and

P ({x}) = P ({x′})⇒ Q({x}) = Q({x′}) ∀x, x′ ∈ X
will not be equivalent in general. Since in this section our uncertainty is expressed in
terms of coherent upper probabilities and possibility measures, we shall consider the
versions of C5 and C6 in terms of upper probabilities. To avoid misunderstandings,
we will denote the conditions in terms of upper probabilities as Ci instead of Ci.

Nevertheless, the properties of preference preservation are not really helpful in
the selection problem, as we show in the next example.

Example 18. Let P be the upper envelope of the probability mass functions:

(0.1, 0.2, 0.7), (0.1, 0.6, 0.3), (0.5, 0.5, 0), (0.4, 0.1, 0.5).

This upper probability, as well as the possibility measures in (Πσ)σ∈Sn , are given
by:

σ (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
A P Πσ1

Πσ2
Πσ3

Πσ4
Πσ5

Πσ6

{x1} 0.5 0.5 0.5 1 1 0.9 1
{x2} 0.6 1 1 0.6 0.6 1 0.9
{x3} 0.7 0.9 0.9 0.9 0.9 0.7 0.7
{x1, x2} 1 1 1 1 1 1 1
{x1, x3} 0.9 0.9 0.9 1 1 0.9 1
{x2, x3} 0.9 1 1 0.9 0.9 1 0.9
X 1 1 1 1 1 1 1

It can be easily seen that none of the Πσi , for i = 1, . . . , n, satis�es C5, and as

a consequence they do not satisfy the stronger conditions C1, C2 and C4. Also,
property C3 is neither satis�ed by the Πσi , for i = 1, . . . , n. Finally, condition

C6 holds trivially in this example because all the values of P in the singletons are
di�erent.

This means that the none of the conditions Ci is useful in this example. �

5.5. Approach based on the total variation distance. Our last approach is
based on selecting the possibility measure among (Πσ)σ∈Sn by minimising one of
the extensions of the total variation distance with respect to P . In that case, the
distances d1, d2 and d3 given in Equations (9)÷(11) must be rewritten in terms of
the upper probabilities, giving rise to the distances d1, d2 and d3 given by:

d1(P 1, P 2) = max
A⊆X

|P 1(A)− P 2(A)|,

d2(P 1, P 2) =
1

2

∑
x∈X
|P 1({x})− P 2({x})|,

d3(P 1, P 2) = sup
P1≤P 1,P2≤P 2

(
max
A⊆X

|P1(A)− P2(A)|
)
.

As in the case of C2 and C∞, this approach is not fruitful:
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Example 19. Consider again Example 12. If we compute di(P ,Πj), for i = 1, 2, 3
and j = 1, . . . , 6, we obtain the following values:

Πσ1
Πσ2

Πσ3
Πσ4

Πσ5
Πσ6

d1(P ,Πσi) 0.5 0.5 0.5 0.6 0.5 0.6

d2(P ,Πσi) 0.4 0.4 0.45 0.425 0.45 0.425

d3(P ,Πσi) 0.8 0.8 0.8 0.75 0.8 0.75

Thus, none of d1, d2 or d3 allows to select a single possibility measure. On the
other hand, the intersection of the sets of optimal outer approximations with respect
to d1, d2 and d3 is empty: in other words, there is no possibility measure among
(Πσ)σ∈Sn minimising the three distances simultaneously. �

5.6. Discussion. In this section we have explored �ve di�erent approaches for
selecting a non-dominating outer approximation in CΠ, i.e., among the possibility
measures (Πσ)σ∈Sn , where Πσ is de�ned following Equations (17)÷(19). These
approaches are based on minimising the quadratic or the BV-distance, maximising
the speci�city, some preference preservation and minimising the total variation
distance.

With respect to the idea of minimising the quadratic distance, it has the draw-
back in this case of not producing a unique solution, while being also less intuitive
than the other approaches, in our opinion.

Concerning the BV-distance and speci�city measures, we have seen a simple
procedure for �nding the possibility measures minimising the BV-distance or max-
imising the speci�city; we have also showed that these two approaches yield the
same solution in the cases depicted in Propositions 6 and 8. The procedure is
based on solving a shortest path problem. The drawback in both cases is again
that there could be more than one optimal solution. In that situation, and using
the same ideas as in Section 3, we propose: (i) to look for the possibility measures
minimising the BV-distance; if this procedure does not give a unique solution, (ii)
choose among them the possibility measure(s) with greatest speci�city; if again
there is no unique possibility measure, (iii) compute their quadratic distance (see
Equation (27)) with respect to the initial model and select the one minimising it;
if again there is no single solution, (iv) all of them are equally preferred, hence we
can select any of them.

6. Conclusions

In our previous work [33, 34], we have considered the problem of approximating
a coherent lower probability by a more tractable model that satis�es some interest-
ing additional property, such as 2-monotonicity. In determining an optimal outer
approximation, we considered two criteria in [33, 34]: �rst of all, that the outer ap-
proximation is undominated, meaning that it is not possible to �nd another outer
approximation of the original model that is more precise; since the set of such outer
approximations is di�cult to determine, and nonetheless in�nite, we have reduced it
by focusing on those that are closest to the original model, in terms of the distance
between imprecise probability models proposed by Baroni and Vicig. This has the
advantage that the set can be determined by means of linear programming, and
that the distance has a clear interpretation as a measure of imprecision. However,
in most cases the set of solutions to this problem will have more than one element



38 ENRIQUE MIRANDA, IGNACIO MONTES, AND PAOLO VICIG

and for this reason we have considered in this paper a number of comparison criteria
between its elements.

The criteria we have considered can be grouped into two categories: on the one
hand, we can analyse how similar are the initial model and its outer approximation.
Here, we have considered other distances, such as the quadratic one or generalisa-
tions of the total variation distance, and we have also compared the two models
in terms of the preferences they encompass. In the �rst line of work, we should
remark that the quadratic distance allows us to single out a unique outer approx-
imation, while this is not the case for the total variation distance. With respect
to the second criterion, we have explored a number of possibilities, but all of them
can be shown to be too weak or too restrictive for our purposes. In this respect,
it may be interesting to consider the preference modelling in terms of the sets of
desirable gambles associated with the coherent lower probabilities [48, 51], and to
de�ne comparison measures between them.

Our second approach has been to consider how tight is the outer approximation.
Here, we have measured this in terms of the speci�city measure, but this is not the
only possible approach; we may instead consider other measures of imprecision or
non-speci�city, such as those proposed in [3, 4]. Note also that our two approaches
are somewhat related, as we have discussed in Section 3 (see Equations (6) and (7)).

As future work, we would like to point out (i) the study of the selection of outer
approximations within some distortion models, complementing the work in [33]
and extending it to the imprecise case; (ii) a deeper study on the preservation of
preferences from the point of view of optimality criteria in decision making with
imprecise probabilities [43], or by characterising the set of outer approximations
that encompass the same preferences as the original model; (iii) to see if some
additional properties can be established when the original model is 2-monotone and
we want its outer approximation to satisfy a stronger condition, such as complete
monotonicity; (iv) to deepen the analysis of the computational complexity of the
di�erent approaches, to see the extent to which they can be employed in large
possibility spaces; and (v) �nally, while we believe that minimising the BV-distance
is the best approach for obtaining undominated outer approximations, it would
be interesting to compare our outer approximations with those that minimise the
Kullback-Leibler divergence, considering that the latter is a widespread tool within
probability theory and that it has already been used in the framework of imprecise
probabilities (see for example [1, 35]).
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Appendix A. On the strict positivity assumption for upper

probabilities

Throughout Section 5, we have assumed that all (non-impossible) events have
strictly positive upper probability. To see that we can assume this without loss of
generality, we establish �rst a property of coherent upper probabilities.
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Lemma 9. Let P : P(X ) → [0, 1] be a coherent upper probability. If P (A0) = 0
for a given A0 ⊂ X , then P (A ∪A0) = P (A) for every A ⊆ X .

Proof. Since any coherent upper probability is subadditive [48, Sec. 2.7.4(d)], we
have that

P (A ∪A0) ≤ P (A) + P (A0) = P (A) ≤ P (A ∪A0),

where last inequality follows by monotonicity [48, Sec. 2.7.4(c)]. Thus, P (A∪A0) =
P (A). �

This property allows us to establish the following:

Proposition 10. Let P ,Q : P(X )→ [0, 1] be two coherent upper probabilities such
that P ≤ Q. Assume that P (A0) = 0 < Q(A0) for a given A0 ⊂ X , and let us

de�ne Q
′

: P(X )→ [0, 1] by

Q
′
(A) = Q(A \A0) ∀A ⊆ X . (31)

Then,

(1) P ≤ Q′ � Q.

(2) If Q is k-alternating, so is Q
′
.

(3) If Q is a possibility measure, so is Q
′
.

Proof. To see that Q
′
is normalised, i.e., that Q

′
(X ) = 1, note that

Q
′
(X ) = Q(X \A0) ≥ P (X \A0) = P (X ) = 1,

where the one-but last equality follows from Lemma 9.

(1) By de�nition and coherence of Q, it holds that Q
′ ≤ Q. The inequality is

strict because Q
′
(A0) = Q(∅) = 0 < Q(A0).

To see that P ≤ Q
′
, note that for any event A it holds that Q

′
(A) =

Q(A \ A0) ≥ P (A \ A0) = P (A), where last equality follows applying
Lemma 9.

(2) Consider events A1, . . . , Ap, with p ≤ k and let us establish that

Q
′( ∩pi=1 Ai

)
≤

∑
∅6=I⊆{1,...,p}

(−1)|I|+1Q
′( ∪i∈I Ai). (32)

Since Q
′
(A) = Q(A \A0) for every A ⊆ X , it follows that∑

∅6=I⊆{1,...,p}

(−1)|I|+1Q
′( ∪i∈I Ai) =

∑
∅6=I⊆{1,...,p}

(−1)|I|+1Q
(
(∪i∈IAi) \A0

)
=

∑
∅6=I⊆{1,...,p}

(−1)|I|+1Q
(
∪i∈I (Ai \A0)

)
≥ Q

(
∩pi=1 (Ai \A0)

)
= Q

(
(∩pi=1Ai) \A0

)
= Q

′( ∩pi=1 Ai
)
,

where the inequality holds because Q is k-alternating. Thus, Equation (32)
follows.
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(3) Let us prove that Q
′
satis�es Equation (4). Consider two events A,B.

Q
′
(A ∪B) = Q

(
(A ∪B) \A0

)
= Q

(
(A \A0) ∪ (B \A0)

)
= max

{
Q(A \A0), Q(B \A0)

}
= max

{
Q
′
(A), Q

′
(B)

}
.

As a consequence Q
′
is a possibility measure. �

Note that the coherence of Q does not imply in general that of Q
′
:

Example 20. Let X = {x1, x2, x3, x4}, P ∈ P(X ) the probability measure associ-
ated with the mass function (0.5, 0.5, 0, 0) and Q the upper envelope of the probability
mass functions (0.5, 0.5, 0, 0) and (0.25, 0.25, 0.25, 0.25). Then, taking into account
that a probability measure is in particular a coherent upper probability, P ≤ Q and

P ({x4}) = 0 < 0.25 = Q({x4}). If we consider the upper probability Q
′
determined

by Q and A0 = {x4} in Equation (31), we obtain

Q
′
({x1, x3}) = Q

′
({x2, x3}) = 0.5, Q

′
({x3}) = 0.25, Q

′
({x4}) = 0.

This implies that Q
′
is not coherent, since any probability Q ∈ P(X ) satisfying Q ≤

Q
′
and Q({x3}) = 0.25 should satisfy Q({x1}) ≤ 0.25, Q({x2}) ≤ 0.25, Q({x4}) =

0, and as a consequence it would not be normalised. �

Proposition 10 allows us to deduce the following:

Corollary 11. Let P : P(X ) → [0, 1] be a coherent upper probability and let Q be
a non-dominating outer approximation of P in C2, C∞ or CΠ. If P ({x}) = 0, then
also Q({x}) = 0.

Proof. Ex-absurdo, if Q({x}) > 0 then we can de�ne the coherent upper probability

Q
′
from Equation (31) and it will be an outer approximation of P that is dominated

by Q, a contradiction. �

As a consequence, we may assume without loss of generality that P ({x}) > 0 for
every x ∈ X ; otherwise, we consider the event X0 := {x ∈ X | P ({x}) = 0}. Note
that by subadditivity of the coherent P , also P (X0) = 0. Thus, we work with the
restriction of P to P(X \ X0) and its outer approximations, and then extend each

Q
∗
of these to P(X ) simply by making Q(A) = Q

∗
(A \ X0) for every A ⊆ X . In

the particular case of possibility measures, taking Π(A) = Π∗(A \ X0) is equivalent
to assign the value π(x) = 0 to any element x in X0.

If we restrict to the non-dominating outer approximations of P in P(X \X0) and
apply the extension above to each of them, we obtain that Q is non-dominating
also on P(X ). In fact, for any other outer approximation Q1 on P(X ) there must

be some A such that Q1(A) ≥ Q1(A \ X0)  Q
∗
(A \ X0) = Q(A) by monotonicity.
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