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Different authors have observed some relationships between consonant random sets and
possibility measures, specially for finite universes. In this paper, we go deeply into this
matter and propose several possible definitions for the concept of consonant random set.
Three of these conditions are equivalent for finite universes. In that case, the random set
considered is associated to a possibility measure if and only if any of them is satisfied.
However, in a general context, none of the six definitions here proposed is sufficient for
a random set to induce a possibility measure. Moreover, only one of them seems to be
necessary.
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1. Introduction

Since they were defined by Zadeh 27 in 1978, possibility measures have been studied
in a variety of contexts. On the one hand, they are very related to fuzzy set
theory, as we observe in 81915 and 27, In fact, possibility measures provide us a
mathematical tool to handle natural language (see for instance +2325:27). On the
other hand, they also constitute a special class of upper probabilities in the theory
of imprecise probabilities ?2, as it is argued in %2324 and 26,

In this paper, we do not deal with the discussion about the interpretation of
possibility measures, but we treat some mathematical aspects concerning random
set theory '%!® and Dempster-Shafer’s theory of evidence "?'. When a finite ref-
erential set is considered, a possibility measure is equivalent, in some sense, to a
class of nested random sets (see 16-20:21) 2:3,6,11)
relationships between possibility measures and a particular class of nested random

. In some recent works, (see some

sets are shown for arbitrary referential sets, not necessarily finite. We ask ourselves
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if the equivalence relation between possibility measures and nested random sets that
is fulfilled on finite referential sets also stands in the more general case of arbitrary
final spaces, and without any assumption on the images of the random set. To our
surprise, the answer to the previous question is negative: we will give examples in
this paper where the upper probability induced by a nested random set is not nec-
essarily a possibility measure. Conversely, we are also going to show that a random
set associated to a possibility measure does not need to be nested; neither it must
satisfy other weaker “nesting” conditions here considered.

The paper is organized as follows. In section 2 we give a brief introduction to
random set theory, Dempster-Shafer’s theory of evidence and possibility measures,
which is necessary for understanding the rest of the paper. The concept of “conso-
nant random set” is studied in detail in section 3, where some different definitions
are proposed. Then we deal with the relationships between this concept and pos-
sibility measures, firstly for finite referential sets (section 4) and secondly for the
general case (section 5). Finally, a few comments and concluding remarks on the
studies in this paper are given.

2. Preliminary concepts and notation

Given a probabilistic space (2, A, P) and some referential ', a random set is a
mapping defined on Q with values on P(?), T : Q@ — P(Q'), which is measurable
for some o-algebra defined on some subset of P(€'). In this paper, we consider the
o-algebra generated by the class C(A") = {Cp | B € A'}, where A’ is some o-algebra
defined on Q' and Cp = {C C Q' | C N B # 0}, for all B € A’". For any measurable
subset of ', B € A’, the set I'"1(Cp) will be called the upper inverse 1 of B. From
now on we will use the simpler notation B* = I'"}(Cg) and B, = [["!(Cg-)]°.
Under this measurability condition, the induced upper and lower probabilities " of
any measurable set B are well defined by the formulae:

Pri(B) =P({we Q| T(w)NB #0})/P({w e Q| T(w) #0}) =
P(T(Cp) T (Ca)) = P(B* | Q7), VB e A (1)

Pr.(B)=P({w € Q|T'(w) C B, T'(w) #0})/P{w € Q| T(w) # 0}) =
P([T™'(Cg:)]¢ | (Ca)) = P(B. | V"), VB A" (2)

In 2!, Shafer offers a reinterpretation of Dempster’s work on upper and lower
probabilities for the particular case of a finite referential space. He defines a basic
probability assignment as a function m : P(Q') — [0,1] satisfying the properties
m(f) =0and Y 4 m(A) = 1. The (finite) class of sets F = {A C Q' | m(A4) > 0}
is called the class of focal elements of m. Any function Bel: P(Q’) — [0, 1] obtained
from a basic probability assignment by the formula:

Bel(A) = > m(B),YACQ
BCA
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is called a belief function. The author also defines the dual plausibility measure,
PLP(©Y) — [0, 1], of a belief function Bel by

PI(A) =1 —Bel(4%), VACQ'.
It is related to the corresponding basic probability assignment by the formula

Pl(4)= > m(B), VAeP().
BNA#0D

A Dbelief function Bel and a plausibility Pl are said to be dual when they are
obtained from the same basic probability assignment m. In that case, it can be
shown that this assignment is unique and satisfies

m(A) = > (-1)*~PIBel(B), vA C "
BCA

The reader can find in 2! further explanation about the semantic interpretation of
these three concepts.

When a random set takes values on a finite space, Dempster’s lower and upper
probabilities constitute a pair of dual belief and plausibility functions. Furthermore,
the basic probability assignment associated to them coincides with the probability
mass of the particular random set considered.

When the focal elements of Bel, Pl are nested, i.e., they can be arranged in an
order such that each one is contained in the following one, the associated pair of
belief and plausibility functions are called consonant. In that case, they satisfy the
following equations 2! :

1. Bel(AN B) = min{Bel(A4),Bel(B)},VA, B € P(')
2. PI(AU B) = max{P1(4),Pl(B)},V A, B € P(Q')
3. P1(A) = max,ca Pl({z}),V A € P(Q).

Since Bel and Pl are dual set functions, these three conditions are equivalent.
The converse of the above result above mentioned is also true. That is, when a pair
of dual belief and plausibility functions satisfies any of these three equations, then
the focal elements must be nested.

Our previous remark about the relation between belief/plausibility functions
and lower /upper probabilities induced by a random set allows us to think of con-
sonant random sets in terms of the consonance of their induced upper and lower
probabilities. This concept will be detailed in the following sections.

Consonant belief and plausibility measures are usually referred to as necessity
and possibility measures, respectively. The definition of possibility measure can be
extended to the case of arbitrary referential sets as follows.
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Definition 1 7 Given a measurable space (', A'), a possibility measure is a
function I : A" — [0, 1] satisfying:

P1 II(0) =0
P2 TI(QY) =1, and

P3 The grade of possibility of an arbitrary union of sets coincides with the supre-
mum of their possibility grades, i.e., for any family {A; | j € J} of measurable
subsets of ',

H( U Aj) = supII(4;).

jeJ JjEJ

A possibility measure is usually defined on P(Q') (see '°, for instance). Never-
theless, the possibility measures here considered will be induced by an A-a(C(A"))
measurable set-valued function, and hence we need this more general definition.
Some authors (see ®, for instance) do not require IT to fulfill property P2 and
they call normal to any possibility measure satisfying it. This consideration is not
relevant to the results in this paper.

The existence of random sets with nested images associated with any possibility

6,11 and '2. The following result can be found in !!:

measure is shown in
Theorem 1 Let IT : P(Q') — [0,1] be a possibility measure. Consider the multi-
valued mapping ' : [0,1] — P(Q') given by ['(a) = {w € Q@ | I(w) > a}. Then, I is
a random set (it is measurable) and P} coincides with II.

This theorem establishes that, for an arbitrary possibility measure, there exists at
least one random set with the same upper probability. The author calls it the
random level set associated with II. We also observe that the images of the random
level set I' are nested, since a; < ay implies that I'(a;) D I'(az). We can also find
in ® this other result:

Theorem 2 Consider the the Borel measurable space ([0, 1], Bjo,17) and an arbitrary
probability measure defined on it, P. Let us also consider another referential Q'. If
the multi-valued mapping T : [0,1] — P(QY') is antitone, i.e., it satisfies the following
condition:

¥ (2,9) € [0,1F] [z > y = T(x) C T(w), 3)

then it is Po,11-0(C(P(Q'))) measurable and it induces a possibility measure on
P().

We wonder if this relationship between antitone random sets and possibility
measures is simply a coincidence or, on the contrary, the concept of possibility
measure is somehow related to some nesting property on random sets. To answer
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this question, we need first to specify what we will mean by “nested” or“consonant”
random set. We will propose some different definitions.

3. Consonant random sets

In this section, we introduce several possible definitions for the concept of “con-
sonant random set”. Three of them are equivalent in the case of a finite referential
set, as we show in section 4. However, this is not true for an arbitrary referential.
The interest of the three remaining definitions is justified in sections 4 and 5. From
now on, we will assume that the singletons in the final space, ', are measurable
subsets.

Definition 2 Let (2, A, P) be a probability space, and (', A") a measurable space.
We say that the random set T : Q@ — P(Q') is consonant C1 when the family of
sets {T'(w) | w € O} is totally ordered for the inclusion relation, i.e., if for arbitrary
wi,ws € Q, we have either T'(wy) C [(w2) or T'(ws) C T'(wr).

Condition C1 is equivalent to the following one.

Lemma 3 Given a probability space (2, A, P), and (', A") a measurable space,
the random set T' : Q — P(Q') is consonant C1 if and only if the class of sets
{{w'}* | W' € Q'} is totally ordered for the inclusion relation, in other words, when
for arbitrary x1,x2 € V', at least one of these conditions is satisfied: {xz1}* C {x2}*
or {x2}* C {z1}*.

Proof Taking into account the equivalence relation
rel(w) <= we{r}", Vwe, ze,
the result is immediately derived.0

Remark 1 Note that the ezistence of a possibility measure associated to the random
set I' will not guarantee in general the nesting property for its images on every
point of Q: the behaviour of T' on a null subset of 0 does not affect its upper
probability. Hence, condition C1 seems to be too restrictive, and we must consider
weaker conditions.

Definition 3 Under the general hypotheses of the last definition, we say that the
random set I' is consonant C2 if there exists a null set of N € Np, such that
Ywy,wy € Q\ N, at least one of these two conditions is fulfilled: T'(wy) C I'(w2) or
[(we) CT(wy), i.e., when condition C1 is satisfied except on a null subset of (2.

The following is a slight variation of definition 2.
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Definition 4 Under the preceding general hypothesis, we say that T’ is consonant
C3 when Ywi,ws € Q,T(w1)\I'(w2) or T'(wae)\I'(w1) is null, for the upper probability
Pt

Remark 2 We show in 2 how the concepts of null set and completed o-algebra
can be successfully extended to the case of non-additive measures, when they are
monotone, sub-additive and lower continuous. The upper probability associated to
an arbitrary random set satisfies all these properties.

The final space is “probabilized” by the set function P} associated to I'. Con-
dition C3 means that the set difference between the images of two elements is not
necessarily the empty set as in condition C1, but it is included in a set of null upper
probability.

Definition 5 Under the hypotheses of previous definitions, we will say that T is
consonant C4 if Vwi,ws € Q\ N, ['(w1) \ T'(w2) or T'(w2) \ T'(w1) is PE-null for
some null set N € Np. In other words, when condition C3 is satisfied on a subset
with probability 1, but not necessarily on the whole space (1.

The following condition is weaker than all the previous ones.

Definition 6 Under the general hypotheses above considered, we say that I is con-
sonant C5 if one of the two following conditions is satisfied:

e The initial set ) has only one element.

o There exists N € Np a null subset of Q such that Vw; € Q\ N, 3wy # wy
s.t. PE(D(w1) \T'(w2)) =0 or P(T'(w2) \ I'(w1)) = 0.

The interest of condition C5 comes from its weakness. When it is not fulfilled,
the set of elements whose images are not nested with the images of any other is not
null. This is incompatible with the intuitive notion of consonance. We will show
in section 5 that a random set associated to a possibility measure does not need to
satisfy condition C5. Now we will introduce the last definition of this section.

Definition 7 Under the general hypotheses above considered, we say that I is con-
sonant C6 if Vi, x5 € Q it is P({z1}* \ {z2}*) =0 or P({z2}* \ {z1}*) = 0.

We observe that, when this condition is satisfied, each pair of elements in
cannot be “separated” by images of I, since for any z1,2z5 € Q' it is not possible
to find two measurable sets A, B € A with positive probabilities such that z; €
[Nw),z2 ¢ Nw), Vw € A and 71 ¢ I'w), 22 € T'(w), Vw € B.
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There exist some implication relationships among the conditions we have intro-
duced in this section.

Theorem 4 Consider (Q, A, P) a probability space, (', A") a measurable space
and T : Q@ — P(Q')a random set.

1. If T is consonant C1, then it satisfies conditions C2 and C3.
2. If T is consonant C2, then it satisfies condition CJ.
3. If T is consonant C3, then it satisfies condition C4.

4. If T is consonant C4, then it satisfies conditions C5 and C6.

Proof

e We deduce 1, 2 and 3 immediately.

e To prove the first implication of 4, assume that T satisfies condition C4 for
some null set N, but for some {w1} ¢ N there does not exist wy # wy such that
Pr(T(w1)\T'(w2)) =0 or PE(T'(w2) \I'(wy1)) = 0. In that case, the complement
Q\ N must be the singleton {w;}. Hence, if Q had at least two elements,
Pr(T(w2) \T'(w1)) should be zero, for all wa # wy, since, in that case, (I'(w2) \
T(wy))* C{w1}° = N. Thus, Q has to be a singleton, and condition C5 holds.

Let us now prove by contradiction that condition C4 implies C6. Suppose that
we can find two elements in the final space x1 x2 € Q' satisfying P({z1}* \
{z2}*) > 0 and P({z2}*\{z1}*) > 0. Then, for an arbitrary null set N € Np,
we know that there exist at least two elements wi € ({x1}*\{z2}*)N(Q\N) and
wa € ({2} \{z1}*)N(Q\N). We can say, equivalently, that z1 € T'(wy)\I'(w2)
and x5 € I'(wz) \ ['(w1). Hence, we obtain:

= Pr(C(wi) \T(w2)) > Fr({z1}) = P({z1}"\ {z2}")/P(27) > 0
= Br(C(w2) \T(wn)) = Br({z2}) = P({z2}" \ {z1}7)/P(2%) > 0.

This contradicts condition C4, and the proof is completed.(d

Condition C2 does not imply C3, as we will show in the following section. Con-
versely, C3 does not imply C2 in general (it suffices to consider I : [0,1] — P([0, 1])
given by I'(z) = {z}). Neither C5 implies C6, as we show in the following example:

Example 1 Consider the initial probability space ([0, 1], Bjo.1], A[0,1]), where Bjo1] is
the Borel o-algebra induced on [0,1] by the usual metric and X 1) is the restriction
of Lebesgue measure to the unit interval [0,1]. Let T' : [0,1] — P({1,2}) be defined
as T(w) = {1} if w € [0,0.5], T(w) = {2} if w € (0.5,1]. This random set
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satisfies condition C5, since Yw € Q, Jw' € Q such that T'(w)
Pr(C(w) \T'(w")) = 0. However, P({1}*\ {2}*) >0, P({2}*\ {1}*
not satisfied.

[(w'") whence
>0,

) and C6 is

Condition C6 does not imply any other previous nesting condition, as we will
justify later in section 5.

Now we will investigate the relationships between the concepts introduced in
this section and the properties of the upper probability associated to a random set.
First we will limit our attention to the case where the final space €)' is finite and
secondly we will deal with the general case.

4. The finite case

In this section we will find necessary and sufficient conditions for a random set to
be associated with a possibility measure in the particular case where the referential
V' is finite. Recall from section 2 that P} is a possibility measure if and only if its
focal elements are nested sets. On the other hand, we can easily prove the following
lemma:

Lemma 5 Consider (Q, A, P) a probability space and (Q',P(Y)) a measurable
space, with Q' finite. Let T : Q — P() be a random set and consider the in-
duced belief measure given by the lower probability, Bel:P(Y') — [0,1]. Then we
have:

1. T71({A}) = {w e Q| (w) = A} C Q is A-measurable, VA C Q.

2. Bel has focal elements F = {A1,...,An} with mass m(A;) = my, Vi =
1,...,m if and only if P({w € Q| T'(w) = A;}) =m;, Vi=1,...,m. Under
these conditions, P({w € Q| I'(w) & F}) = 0.

First we will look for necessary conditions for I" to induce on ' a possibility measure.

Proposition 6 Let us consider a probability space (Q, A, P) and the measurable
space (U, P(Q)), where Q' is finite. Consider a random set ' : Q — P(Q'). IfT is
consonant C6 then its upper probability is a possibility measure.

Proof Since Q' is finite, it suffices to check the maximization property of possi-
bility measures for pairs of elements of €. Let us make a proof by contradic-
tion. Suppose there exist two elements x1, x2 € Q' such that PE({z1,z2}) >
max{Pr({z1}), PE({x=2})}. Then, since {x1}* U {z2}* = {z1,22}*, we obtain
P({z1}* \ {z2}*) > 0 and P({z2}* \ {z1}*) > 0. Hence, condition C6 is not
satisfied. This completes the proofd

Remark 3 A similar proof could be used to show that the converse of this last
implication is also true.
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It is derived that conditions C1 to C4 are sufficient for P to be a possibility
measure. As we could expect, condition C5 does not imply that P} satisfies the
maximization property of possibility measures:

Example 2 Let us consider the same random set as in example 1, T : [0,1] —
P({1,2}) given by T'(w) = {1} if w € [0,0.5], and T'(w) = {2} if w € (0.5,1]. Then,
Yw € Q, there exists w' € Q such that I'(w) =T (W) = PE(T(w) \ (")) =0, and
C5 holds. However, Pf({1,2}) =1 > max{Pr({1}), P£({2})} = 0.5 and thus P} is
not a possibility measure.

Now we will examine the converse problem. We will investigate whether a
random set associated to a possibility measure needs to be consonant or not. We
obtain the following result:

Proposition 7 Let consider a probability space (Q, A, P) and another measurable
space (U, P(Q)), where Q' = {xy1,...,x,} is finite. Let also consider a random set
[':Q— P(Q) inducing a possibility measure Pt on P(Q). Then T is consonant
C2.

Proof Suppose that Py is a possibility measure. Then, as we have noted in remark
3, for every pair z;, x; € ', at least one of the difference sets {x;}* \ {z;}* or
{z;}* \ {zi}* must be null for the probability measure P. Hence, we can order the
indices so that {x;}* \ {z;—_1}* is P-null, for all i € 2,...,n. Thus, the finite union
N =U o {x; }*\ {x;—1}" is also null. Then, for everyw € Q\ N andi € {2,...,n},
z; € Nw) = 21 € T'(w). Thus, Vwy, wy € Q\ N, we have either I'(w;) C I'(w2)
or [(we) CT(wy)O

We deduce from theorem 4 that any random set associated to a possibility
measure must satisfy conditions C4 and C5. Of course, conditions C1 and C3 do
not need to be fulfilled, since the behaviour of I' on a null subset of Q does not
affect its upper probability, as we observed in lemma 5. Let us see the following
counterexample.

Example 3 Consider the initial probability space ([0, 1], Bj0,1], Ajo,1]), as in exam-
ple 1. Let T : [0,1] — P({1,2}) be defined by T'(0) = {1}, (1) = {2}, and
INw) = {1,2} Yw & {0,1}. Clearly T induces a possibility measure on P({1,2}).
On the other hand, we have PE(I'(0) \['(1)) = PA({1}) =1, and PE(I'(1) \[(0)) =
Pr({2}) =1, and hence conditions C1 and C3 are not fulfilled.

The main results in this section may be summarized in the following theorem:
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Theorem 8 Let us consider a probability space (Q, A, P) and another measurable
space (', P(Q)), where Q' is finite. Consider also a random set T' : Q — P(Q)
with upper probability Pi. Then the following conditions are equivalent:

1. PF is a possibility measure
2. T is consonant C2
3. T is consonant CJ

4. T is consonant C6

5. The general case

In the previous section, we have shown that, for a finite referential, the upper
probability induced by a random set is a possibility measure if and only if its im-
ages are nested except on a null set. Now we will study the relationship between
consonant random sets and possibility measures for the more general case of arbi-
trary referential sets. First we will investigate which conditions of those introduced
in section 3 guarantee that the induced upper probability is a possibility measure.
Assuming the truth of Zermelo theorem, we will conclude that condition C1 (which
is the strongest nesting condition we have introduced) does not suffice for I" to be
associated to a possibility measure.

We have shown in lemma 3 that a random set fulfills condition C1 if and only
if the class of sets {{z}* | z € Q'} is totally ordered for the inclusion relation. Now
we wonder if this last condition implies the equality Pp(A) = sup,c4 Pf({z}) for
all A in A’. To answer this query, we will make use of the following auxiliary result.

Lemma 9 Let us consider a probability space (Q, A, P) and another measurable
space (', A"). Consider also a random set T : Q — P(Q). Suppose that the class
of sets {{z}* | = € Q'} is totally ordered for the inclusion relation. Then, for an
arbitrary measurable set A € A', the two following conditions are equivalent:

1. P(A) = sup,c Pt ({a})

2. There exists a countable set B C A such that Pr(B) = P (A).

Proof Consider an arbitrary measurable set A € A'. First, assume that the
equality Pit(A) = sup,c 4 PF({z}) holds; then, there exists a sequence (T,)nen C A
such that lim,_, o Pf({zn}) = sup,c4 Pr({z}) = Pr(A). Hence, by monotonicity
of Pf, the measurable set B = US> {x,} satisfies the requirement Pf(B) = Pr(A).

Conversely, suppose that there exists a countable set B = U2 {z,} such that
Pt(B) = Pt(A). Under the hypotheses of total-ordering this lemma, Pr(B) =
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lim, PE({z1,...,2n}) coincides with sup,cy Pi({zn}). Furthermore, by mono-
tonicity of Pt we know that the inequality sup,c 5 Pi({z}) < Pr(A) holds. This
implies the equality Pr(A) = sup,c4 PE({z}). O

In other words, if we assume that I' satisfies condition C1, then it will induce
a possibility measure on A’ if and only if, for all A € A’ there exists a countable
subset B C A with the same upper probability. To solve our problem, we will first
examine if there exists, for an arbitrary chain of sets a countable sub-chain with
the same union. The result is false, as we show in the following counterexample.

Example 4 Let us consider a non-countable set. Let it be, for instance, the set
of real numbers, R. By Zermelo theorem '3, there exists a well-ordering “<” on it,
i.e., a total-ordering such that any subset of R has a first element. Let us use the
notation P, = {y € R |y < z}. We are going to prove the existence an element xg
with an uncountable number of predecessors, but such that every preceding element
has a countable number of predecessors.

Let = be an element such that P, is non countable. If P, is countable for all
y € P., then x is the element we are looking for, xog. Let us consider the set
H = {y € P, | P, non countable} in the opposite case. Since “<” is a well-
ordering, H has a first element, which is the element we wanted to find. Once the
element o is determined, we can observe that the equality P,y = Uy<a, Py holds.
In fact, for any y € P,,, there exists z € Py, such that y € P,; if this was not the
case, the equality P,, = P, U {y} should hold, and P,, should be countable. The
total-ordering “<” allows us to establish a total-ordering on {P, |y € Py, } for the
inclusion relation. Hence, we have obtained a chain with no countable sub-chains
with the same union, since all the elements of the chain are countable.

Next we will make use of these considerations to find a consonant C1 random
set whose induced upper probability is not a possibility measure. First we will
construct a suitable probability space:

Let C denote the class {P, | x € R}. First we will describe the algebra generated
by C. To this purpose, we will consider the classes:

C :={R,0,P,, P’ | x € R}

Cy = {H?ZIBJ- | Bj S Cl} = {R,Q,Pw,Py,Px \Py | T,y € ]R}

Q= {D1U...UD1 |Dj ECz,DiﬂDj :@Vi#j,ZEN}.

It can be proven ( see ) that Q coincides with the algebra generated by C. Note
also that the singletons belong to this algebra (as we are requiring in this paper),
for given z € R we can determine z' the following element through <, and then it
is {z} = P, \ P,.

To construct a suitable counterexample for our general problem, we look for a
o-additive set function P’ defined on Q@ whose restriction to C is given by:

/ _J 0 ifz<a
P1C(P“)_{ 1 ifz>x
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The set function P’ : Q — [0, 1] given by:
, [ 1 if3z<zpst. Popy \P,CA
P(4) = { 0 otherwise

satisfies the conditions required: we can easily check that it is finitely additive,
P'(R) =1 and P'(P) = 0. The construction made above makes lim,, P'(4,) = 0
when (Ag), | 0.

Hence, by Carathéodory theorem, it can be uniquely o-additively extended to
0(Q). Let us denote this extension by P. Once we have found a particular prob-
ability space satisfying the properties we were looking for, we construct the coun-
terexample.

Example 5 Consider the probability space (R,o(Q),P) described above. Define
the multi-valued mapping T' : R — P(R) by I'(z) = {y € R | y > z} for the well-
ordering previously described. For an arbitrary A € Br, the set A* = {z e R|Jy €
A, y > x} = Pypa belongs to 0(Q), and hence, T is 0(Q)-0(C(Sr)) measurable
(remark that the supremum is taken in the well-ordering we are considering). Let
o be the element with the properties described in the previous example. Then we
observe that (Py,)* = Ppy = Pt (Py,) = P(Py,)- This does not coincide with Pf:(B)
for any countable subset of P,,, B, since we have B* = Uyep{x}* = UyepPr and
P(UgzerPy) =0, by definition of P. Thus, Pf is not a possibility measure. However
the random set I is consonant C1 because of the properties of total ordering of “<”.

Note that this counterexample does not contradict theorem 2, because the o-
albegra considered here does not coincide with the Borel o-algebra on R.

It is obvious that none of the nesting conditions introduced in section 3 is suffi-
cient for I' to be associated to a possibility measure, since C1 is the strongest one.
In relation with the converse problem, we deduce from our results in section 4 that
C1 and C3 are not necessarily satisfied. In fact, in this more general case, conditions
C2 and C4 do not necessarily hold, and neither does C5. Let us show an example.

Example 6 Consider ((0.5,0.75),6(0,5,0.75),4)\13(0_5‘0_75)) a probability space, with
Bo.5,0.75) the restriction to (0.5,0.75) of the Borel o-algebra induced by the usual
distance in R and )\ the Lebesgue measure. Let us define the random set T' :
(0.5,0.75) — P([0,1]) by T'(w) = [0,w] \ {2w — 1}, Yw € (0.5,0.75).

Let us now consider two arbitrary elements, wy,ws € (0.5,0.75) and suppose that
wy < wa. Then we have we € T(w2) \T'(w1), PE({w2}) =4 A([w=,0.75)) > 0; on the
other hand, Pt (T (w1)\I'(w2)) = PE({2ws—1}) > 0. Hence, for any pair of elements
wi,ws2 € (0.5,0.75) we see that PE(T(w2) \ T'(wi)) > 0, and PE(T(w1) \ T'(w2)) > 0,
whence I' does not fulfill condition P5. However, we can verify that P is a pos-
sibility measure: for an arbitrary A € P 1), Pr(A) = 4A(A*) = 4 A\(Ugealr}?) =
4N Ugealr,0.75) \ {ZH}) = 3(0.75 — infrea z) = sup, 4 P ({z}).
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Thus, the equivalence we have found in section 2 for the finite case cannot be
extended for the general case. We can only say that I' must necessarily satisfy
condition C6 in order to induce a possibility measure. But this nesting condition is
not sufficient, since it is weaker than C4, and this last condition does not suffice, as
we have explained above.

Remark 4 Some authors have paid attention to maxitive set functions, that is,
functions II satisfying II(A U B) = max{II(A),II(B)} VA, B, but not necessarily
supremum-preserving. It is clear that these functions are equivalent to possibility
measures in the finite case, but not in general. We can deduce from example 6
that if the upper probability induced by the random set is mazitive, it does not
necessarily hold that T is consonant C5. Moreover, we can see that condition C6
is necessary in order for Py to be mazitive. Conversely, it can be checked that
conditions C1 and C2 are sufficient for the maxitivity of Pt (in contradistinction
with possibility measures!), but conditions C3 to C6 are not sufficient (take for
instance T : [0,1] — P([0,1]) given by ['(x) = {x}).

6. Concluding remarks

We have examined the problem of finding sufficient and necessary conditions that
the images of a random set should satisfy in order to induce a possibility measure.
To this purpose, we have proposed six different possible definitions of the concept
of “consonant random set”. For the particular case of finite universes, we have
obtained an equivalence relation between three of these definitions and possibility
measures, which is easily derived from a well-known result in Shafer’s theory of
evidence. As the main contribution in the paper, we have constructed suitable
examples to show that this equivalence relation does not extend to arbitrary non
finite universes.

Nevertheless, the initial probability space and the images of the random set
considered in example 5 have very particular properties. We think that perhaps
some additional topological requirements would produce interesting results about
the relationship between consonant random sets and possibility measures. The
most interesting case would be the one where Q' = R”, and T" being closed-valued,
because some authors consider mainly this type of random sets (see for instance
18). We intend to work on this particular case in the future. On the other hand,
in counterexample 6, we observe that none of the first five nesting conditions here
studied is fulfilled. However, the images of different elements in the initial space
are somehow related. Hence, we do not reject the possibility of finding successful
results for some other nesting condition not considered here.
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