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Abstract

We discuss how lower previsions induced by multi-valued mappings fit into
the framework of the behavioural theory of imprecise probabilities, and show how
the notions of coherence and natural extension from that theory can be used to
prove and generalise existing results in an elegant and straightforward manner.
This provides a clear example for their explanatory and unifying power.
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1 Introduction

The term ‘imprecise probabilities’ covers different mathematical models such as up-
per and lower probabilities induced by multi-valued mappings ([10], [24]), upper and
lower expectations ([4], [11], [26]), sets of probability measures ([3], [5], [12], [19]),
upper and lower previsions, sets of desirable gambles, and preference orderings [28].
These models arise as an alternative to, or as an extension of, the classical or precise
probability theory ([7], [17]), which in a number of situations makes assumptions that
are arguably too strict in order to model the available information. Several such un-
certainty models give different interpretations to lower and upper probabilities. Two
prominent types of interpretation are the evidential ([24]) and the behavioural ([28]).
The former regards the imprecise probability of an event as a link between the event and
the available evidence, while the latter interprets the probability in terms of behaviour.
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Random sets, and multi-valued mappings in general, have been used successfully
to model imprecision and uncertainty in the relation between the elements of two dif-
ferent spaces. This is for instance made evident in [18] and [20]. The upper and
lower probabilities induced by a multi-valued mapping ([9], [10]) were given an evi-
dential interpretation by Shafer ([24]). However, as far as we are aware, they have not
been connected with the behavioural interpretation of imprecise probabilities in any
thorough or detailed manner, nor have the mathematical consequences of such a con-
nection been systematically explored. The problem that we are treating in this paper
can be summarised through the following types of questions: (i) what does it mean, in
terms of the behaviour of a subject, that his lower probability for an event, induced by
a random set, is 0.4; and (ii) can we use the information represented by a random set
to deduce not only lower and upper probabilities of events, but also lower and upper
previsions for random variables?

To answer these questions, we intend to establish a link between random sets and
the behavioural theory of imprecise probabilities ([28]). To our knowledge, the only
previous work in this direction was done by Walley ([28, Section 4.3.5]), and De
Cooman ([6]). Though we derive a basic formula (see Eq. (8) further on) that is es-
sentially the same as Walley’s, our course of reasoning is different, and our analysis is
more detailed.

The paper is organised as follows: in Section 2, we give a brief review of the main
ideas behind the behavioural interpretation of imprecise probabilities that we shall need
in the rest of the paper. In Section 3, we recall the definition of lower and upper prob-
abilities induced by a random set, and we give a first and immediate generalisation.
Section 4 gives a fairly general treatment of how to use the information conveyed by
a multi-valued mapping in the context of the behavioural theory of imprecise proba-
bilities. This discussion allows us to give a satisfactory answer to the two types of
questions mentioned above. It also allows us to prove generalisations of a number of
classical results on random sets in the subsequent Section 5.

2 Basic notions from the behavioural theory of impre-
cise probabilities

For a proper understanding of the course of reasoning in this paper, more than a ca-
sual acquaintance is required with the basic ideas underlying the behavioural theory of
imprecise probabilities. We refer to Walley’s book ([28]) for extensive discussion and
motivation, and for many of the results and formulae that we shall use below. Our aim
in this section is to familiarise the reader with a number of these ideas, in the hope that
this will make the main message of the paper understandable to a wider audience. We
also introduce some basic notation.

2.1 Basic notation and behavioural interpretation

Consider a subject who is uncertain about something, say, the outcome of an experi-
ment. LetΩ be the space of all possible outcomes, then a bounded real-valued function
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on Ω is called agambleon Ω. The set of all gambles onΩ is denoted byL (Ω). A
gamble is an uncertain reward: if the outcome of the experiment turns out to beω ∈Ω,
then the corresponding reward will beX(ω) (positive or negative), expressed in units
of some (predetermined) linear utility.

The subject’slower previsionP(X) for a gambleX is defined as his supremum
acceptable price for buyingX, i.e., it is the highest priceµ such that the subject will
accept to buyX for all prices strictly smaller thanµ (buyingX for a pricex is the same
thing as accepting the uncertain rewardX− x). Similarly, a subject’supper prevision
P(X) for X is his infimum acceptable selling price forX. Clearly,P(X) = −P(−X)
since sellingX for a pricex is the same thing as buying−X for the price−x. This
conjugacy relationimplies that we can limit our attention to lower previsions.

A subsetA of Ω is called anevent, and it can be identified with its indicator (func-
tion) IA, which is a gamble onΩ. The lower probabilityof A is nothing but the lower
previsionP(IA) of its indicator. We shall often identify an event with its indicator, and
write P(A) instead ofP(IA). We prefer to work with gambles, rather than to restrict
ourselves to events: as Walley has pointed out ([28]), the language of gambles is much
more powerful than that of events when working with imprecise probabilities.

2.2 Rationality requirements

Assume that the subject has given lower prevision assessmentsP(X) for all gambles
X in some set of gamblesK ⊆ L (Ω), which need not have any predefined struc-
ture. Since these assessments represent commitments of the subject to act in certain
ways, they are subject to a number of rationality requirements. The strongest such re-
quirement is thatP should becoherent. Coherence means first of all that the subject’s
assessmentsavoid sure loss: for anyn in the set of positive natural numbersN and for
anyX1, . . . ,Xn in K we require that

sup
ω∈Ω

[
n

∑
k=1

[Xk(ω)−P(Xk)]

]
≥ 0.

Otherwise, there would be someε > 0 such that for allω in Ω:

n

∑
k=1

[Xk(ω)−P(Xk)+ ε]≤−ε,

i.e., the net reward of buying the gamblesXk for the acceptable pricesP(Xk)−ε is sure
to lead to a loss of at leastε, whatever the outcome of the experiment!

But coherence also means that if we consider anyX ∈ K , we cannot force the
subject to acceptX for a price strictly higher than his specified supremum buying price
P(X), by exploiting buying transactions implicit in his lower previsionsP(Xk) for a
finite number of gamblesXk in K , which he is committed to accept. More explicitly,
we require that for anyn andm in N, andX0, . . . ,Xn in K :

sup
ω∈Ω

[
n

∑
k=1

[Xk(ω)−P(Xk)]−m[X0(ω)−P(X0)]

]
≥ 0.
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Otherwise, there would be someε > 0 such thatm[X0− [P(X0)+ ε]] pointwise dom-
inates the acceptable combination of buying transactions∑n

k=1[Xk−P(Xk) + ε], and
is therefore acceptable as well. This would mean that by combining these acceptable
transactions derived from his assessments, the subject can be effectively forced to buy
X0 at the priceP(X0)+ε, which is strictly higher than the supremum acceptable buying
priceP(X0) that he has specified for it. This is an inconsistency that is to be avoided.

2.3 Natural extension

We can always extend a coherent lower previsionP to a coherent lower previsionE on
the set of all gamblesL (Ω), through a procedure callednatural extension. The natural
extensionE of P is the smallest coherent lower prevision onL (Ω) that coincides on
K with P. It is given for allX ∈L (Ω) by

E(X) = sup
n≥0

X1,...,Xn∈K
µ1,...,µn≥0

sup

{
α : X−α ≥

n

∑
k=1

µk[Xk−P(Xk)]

}

= sup
n≥0

X1,...,Xn∈K
µ1,...,µn≥0

inf
ω∈Ω

[
X(ω)−

n

∑
k=1

µk[Xk(ω)−P(Xk)]

]
, (1)

where theµ1, . . . , µn in the suprema are non-negative real numbers. The natural ex-
tension summarises the behavioural implications ofP: E(X) is the supremum buying
price forX that can be derived from the lower previsionP by arguments of coherence
alone: we see from its definition above that it is the supremum of all prices that the
subject can be effectively forced to buy the gambleX for, by combining finite numbers
of buying transactions implicit in his lower prevision assessmentsP.

2.4 Relation to precise probability theory

WhenP(X) = P(X), the subject’s supremum buying price coincides with his infimum
selling price, and this common value is a(linear) previsionor fair price for the gamble
X, in the sense of de Finetti ([7]). For fair prices, the notion of coherence essentially
coincides with de Finetti’s definition. This means that the theory of imprecise prob-
abilities includes de Finetti’s approach (precise previsions and/or probabilities) as a
special case. But it is also much more flexible than the latter, because it doesn’t require
a subject’s supremum buying price and his infimum selling price to coincide. More
specifically, it allows that there are pricesx such thatP(X) < x < P(X), i.e., for which
the subject refrains from committing himself to buy or sell the gambleX for pricex:
he is allowed to be undecided! Indecision seems a natural thing to allow, especially if
the subject has very little information about the outcomeω.

A linear previsionP on the setL (Ω) can also be characterised as a linear functional
that is positive (ifX ≥ 0 thenP(X)≥ 0) and has unit norm (P(IΩ) = 1). Its restriction
to events is a finitely additive probability. Let us denote byP(Ω) the set of all linear
previsions onL (Ω).
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The notions of avoiding sure loss, coherence, and natural extension can be charac-
terised in terms of sets of linear previsions. Consider a lower previsionP defined on a
set of gamblesK . Its set of dominating linear previsions is given by

M (P) = {P∈ P(Ω) : (∀X ∈K )(P(X)≥ P(X))} .

Then P avoids sure loss iffM (P) 6= /0, i.e., if it has a dominating linear prevision.
P is coherent iffP(X) = min{P(X) : P∈M (P)} for all X in K , i.e., if it is the
lower envelopeof M (P). And the natural extensionE of P is given byE(X) =
min{P(X) : P∈M (P)} for all X in L (Ω). Moreover, the lower envelope of any set
of linear previsions is always a coherent lower prevision.

2.5 Vacuous previsions

We now give an important example of a lower prevision that is in general not a linear
prevision. Assume that we want to model the piece of information that the eventA⊆Ω
occurs, or in other words that the outcome of the experiment we consider assumes a
value inA. This can be represented by the so-calledvacuous lower prevision relative
to A, which will be denoted byPA, and is given by

PA(X) = inf
ω∈A

X(ω),

for all gamblesX on Ω. PA is a coherent lower prevision onL (Ω) and its conjugate
upper prevision is given by

PA(X) = sup
ω∈A

X(ω).

There are several lines of reasoning to motivate that this lower prevision indeed is the
appropriate model for the given information. First of all, if our subject knows that
A occurs,and nothing more, he should be willing to buy a gambleX for any prices
strictly lower thaninfω∈AX(ω) because doing so results in a sure gain; but he should
not be willing to pay a pricet strictly higher than that, because then there is someω ∈A
such thatt > X(ω), andfor all our subject knows, ω might be the actual outcome of
the experiment!

A second justification forPA is that it is the natural extension of the single precise
probability assessmentP(A) = 1, which is equivalent toP(A) = 1. Using Eq. (1), we
find indeed that the natural extension of this assessment is given by

sup
λ≥0

inf
ω∈Ω

[X(ω)−λ [IA(ω)−P(A)]]

= sup
λ≥0

min

{
inf

ω∈A
X(ω), inf

ω∈Ac
[X(ω)+λ ]

}
= inf

ω∈A
X(ω) = PA(X)

for all gamblesX on Ω. This shows that the vacuous lower prevision relative toA
follows uniquelyfrom the subject’s single assessment that the probability of eventA is
equal to1, or equivalently, that the subject is practically certain thatA occurs (since he
is prepared to bet at all odds on the occurrence ofA).
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We find a third justification forPA if we consider the setM (PA) of those linear
previsions that dominatePA. It is easy to show that

M (PA) = {P∈ P(Ω) : P(A) = 1} ,

soPA is again seen to be equivalent to the statement thatP(A) = 1.
All of this tells us thatPA is the smallest, and therefore most conservative, coherent

lower previsionP on L (Ω) that satisfiesP(A) = 1 (and thereforeP(A) = P(A) = 1).
Thus, in the context of the theory of lower previsions,PA is the appropriate model for
the piece of information thatA occursand nothing more: any other coherent lower
previsionP that satisfiesP(A) = 1 dominatesPA, and therefore represents stronger
commitments than those required by coherence and this piece of information alone.

2.6 Conditioning

If B is a partition ofΩ, then we can define for everyB∈B our subject’sconditional
lower previsionP(X|B) of X, givenB as the supremum price he would currently be
willing to pay for X, if he came to know at some later time that the outcome of the
experiment took a value inB (and nothing else). Alternatively, it could be defined as
the subject’s supremum buying price for the so-calledcontingentgambleIBX.1. If we
assume that the conditional lower previsionsP(·|B) are defined on the same domainH
for all B∈B,2 then we can summarise all these conditional lower previsions through
P(·|B), where for allX ∈H

P(X|B) = ∑
B∈B

IBP(X|B).

We shall also call the objectP(·|B) a conditional lower prevision. It is a function
of two things: gambles and elements of the partition. On the one hand, if we fix the
gambleX, then its partial functionP(X|B) is a gamble onΩ that takes the constant
valueP(X|B) on the elementB of B. On the other hand, if we fix the elementB of the
partitionB, then its partial functionP(·|B) is a lower prevision defined on the set of
gamblesH .

Conditional lower previsionsP(·|B) are also subject to rationality criteria. First of
all, there is the requirement ofseparate coherence: for eachB∈B, P(·|B) should be
a coherent lower prevision onH in the sense defined above, and moreover we should
obviously also require thatP(B|B) = 1: a subject should be willing to bet at all odds
on the occurrence of the eventB after observing it. But, if besidesP(·|B) a coherent
unconditional lower previsionP onK is also specified, we should require, besides the
separate coherence, that the assessments inP(·|B) should be consistent with those in

1Some authors (see for instance [13]) prefer to work explicitly with conditional objects, and would define
P(X|B) as a supremum buying price for a conditional objectX|B. To avoid possible confusion, we emphasise
that this isnot the approach we follow here: on our behavioural interpretation,X|B does not have any
meaningper se, and it is only the valueP(X|B) that expresses our behavioural dispositions, in the manner
described above.

2This is no essential restriction; for more details see [28, Section 6.2.4].
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P. This leads to the requirement of the(joint) coherenceof P andP(·|B), which is
studied in much detail in [28, Chapter 6].3

Let us remark in passing that, when the conditional and unconditional lower pre-
visions are actually fair prices, then joint coherence reduces, under some additional
technical conditions on the domainsK andH , to Bayes’ rule plus the so-calledB-
conglomerability ofP ([28, Section 6.8]).

If P andP(·|B) are (jointly) coherent—we then also say thatP is coherent with
P(·|B)—a procedure of natural extension allows us to extend them to a pairP′ and
P′(·|B) which is the smallest jointly coherent pair that extends the pairP andP(·|B)
to all gambles onΩ. Note thatP′ is not necessarily equal to the (unconditional) natural
extension ofP alone, as it also has to take into account the behavioural consequences
of the assessments that are present inP(·|B)! As is the case for unconditional natural
extension, the natural extensionsP′ andP′(·|B) summarise the behavioural implica-
tions of P andP(·|B), only taking into account the consequences of (separate and)
joint coherence.

3 A first step toward generalising random sets

Let us also briefly recall the basic concepts in the theory of random sets. Consider a
so-called multi-valued mappingΓ taking elements of aninitial spaceΛ to subsets of a
final spaceΩ, i.e.,Γ : Λ→℘(Ω). We assume throughout thatΓ(λ ) 6= /0 for all λ ∈ Λ
(but see Technical Remarks 1 and 2 below).

This kind of mapping has been given many different uses and interpretations. It has
for instance been employed as a model for the available information about a random
variable ([18]), when there is uncertainty due to missing data, measurement errors, or
simply imprecision in the observations. More generally, it has been used to model
relations between two spaces, in such diverse fields as economy ([8]) and stochastic
geometry ([16, 20]). In particular, as Walley has pointed out in [28], the refinement or
coarsening of a space can be modelled by means of a multi-valued mapping.

Dempster ([10], see also [15]) and, some years before him, Strassen ([25]) have
argued that the multi-valued mappingΓ turns a probability measure on the initial space
into a conjugate pair of lower and upper probabilities on the final space, in the following
manner.

Consider aσ -field AΛ on Λ, a σ -field AΩ on Ω, and a probability measureP
defined on the measurable space(Λ,AΛ). We say that the multi-valued mappingΓ is
strongly measurable4 whenA∗ (and therefore alsoA∗) belong toAΛ for all A ∈ AΩ,
where

A∗ = {λ ∈ Λ : Γ(λ )⊆ A}
is the so-calledlower inverseand

A∗ = {λ ∈ Λ : Γ(λ )∩A 6= /0}
3A detailed discussion of this notion is beyond the scope of this paper. We refer to [28, Chapter 6] for

an explicit formulation of the requirement of joint coherence, and for some of the more technical results that
we shall need in a number of the proofs that follow.

4Some authors impose different measurability conditions; for an overview see [15].
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the upper inverseof A underΓ. In that case, we shall also callΓ a random set. The
lower probabilityP∗ and theupper probabilityP∗ induced byΓ onAΩ are defined by

P∗(A) = P(A∗) andP∗(A) = P(A∗), A∈AΩ.

We shall concentrate below on the lower inverse, which is used to induce the lower
probabilityP∗. It should be clear that working with the upper inverse leads to an anal-
ogous, and completely equivalent, course of reasoning.

Now let us consider the slightly more general case, whereP is replaced by a lower
probability P on theσ -field AΛ of subsets ofΛ. We shall give detailed reasons for
wanting to do so in Section 4; see also related work by Augustin ([1, 2]) for earlier
explorations of this idea.Γ will now induce a lower probabilityP∗ on theσ -field of
subsetsAΩ of Ω through the formula

P∗(A) = P(A∗), A∈AΩ, (2)

provided thatΓ is again strongly measurable. There is an interesting connection be-
tween potential properties ofP andP∗. Consider a set functionµ defined on a fieldA
of sets such thatµ( /0) = 0 andµ(A)≥ 0 for all A∈A . Recall thatµ is calledmonotone
if for all A1 andA2 in A :

A1 ⊆ A2 ⇒ µ(A1)≤ µ(A2);

µ is calledk-monotone(wherek≥ 2) if for all A1, . . . ,Ak in A :

µ(A1∪·· ·∪Ak)≥ ∑
/06=I⊆{1,...,k}

(−1)|I |+1µ(∩i∈I Ai),

where |I | denotes the cardinality of the setI . Observe thatk-monotonicity implies
monotonicity. Finally,µ is called anecessity measureif for any family (Ai)i∈I of
elements ofA such that∩i∈I Ai ∈A :

µ(∩i∈I Ai) = inf
i∈I

µ(Ai).

Theorem 1. Let the lower probabilityP be defined on aσ -field AΛ of subsets ofΛ,
consider aσ -field AΩ of subsets ofΩ and assume thatΓ : Λ →℘(Ω) is strongly
measurable with respect toAΛ andAΩ.5 If P∗ is the lower probability induced byΓ
through Eq.(2), then: (i) if P avoids sure loss, so doesP∗; (ii) if P is coherent, so is
P∗; (iii) if P is monotone, so isP∗; (iv) if P is k-monotone, so isP∗ (wherek≥ 2); and
(v) if P is a necessity measure, so isP∗.6

5Notice that nothing essential is changed if we consider fields rather thanσ -fields as domains.
6An alternative proof of this fifth point could be given using the fact that for any necessity measureP,

there is a so-called antitone random setΓP and a probabilityP inducingP as a lower probability ([6], [21]);
indeed, any antitone random set and probability induce a necessity measure. Then, the lower probability
induced byΓ would coincide with the one induced by the composition ofΓ andΓP. This composition is also
antitone and thus still induces a necessity measure.
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Proof. To prove (i), assume thatP avoids sure loss. Considern in N andA1, . . . ,An in
AΩ. We first show that for allλ ∈ Λ:

sup
ω∈Ω

[
n

∑
i=1

IAi (ω)

]
≥

n

∑
i=1

IAi∗(λ ).

Fix λ in Λ and considerω in Γ(λ ). If λ /∈ Ai∗, then clearlyIAi (ω) ≥ 0 = IAi∗(λ ).
On the other hand, ifλ ∈ Ai∗, then Γ(λ ) ⊆ Ai , whenceω ∈ Ai . This implies that
∑n

i=1 IAi (ω) ≥ ∑n
i=1 IAi∗(λ ) for all ω in Γ(λ ), which leads immediately to the desired

inequality. Using this result, we find that

sup
ω∈Ω

[
n

∑
i=1

[IAi (ω)−P∗(Ai)]

]
= sup

ω∈Ω

[
n

∑
i=1

IAi (ω)

]
−

n

∑
i=1

P∗(Ai)

≥ sup
λ∈Λ

[
n

∑
i=1

IAi∗(λ )

]
−

n

∑
i=1

P∗(Ai) = sup
λ∈Λ

[
n

∑
i=1

[IAi∗(λ )−P(Ai∗)]

]
≥ 0,

where the last inequality holds becauseP avoids sure loss. We conclude thatP∗ avoids
sure loss as well.

To prove (ii), assume thatP is coherent. Then sinceP in particular avoids sure loss,
we deduce from (i) thatP∗ avoids sure loss as well. Moreover, considern andm in N
andA0, A1, . . . ,An in AΩ. Let us first show that for allλ in Λ:

sup
ω∈Ω

[
n

∑
i=1

IAi (ω)−mIA0(ω)

]
≥

n

∑
i=1

IAi∗(λ )−mIA0∗(λ ).

Fix λ in Λ. There are two possibilities. Ifλ /∈ A0∗, then there is someω1 in Γ(λ ) such
thatω1 /∈ A0. For thisω1 we find using a similar course of reasoning as before that

n

∑
i=1

IAi (ω1)−mIA0(ω1) =
n

∑
i=1

IAi (ω1)≥
n

∑
i=1

IAi∗(λ ) =
n

∑
i=1

IAi∗(λ )−mIA0∗(λ ).

If on the other handλ ∈ A0∗, then for anyω in Γ(λ )

n

∑
i=1

IAi (ω)−mIA0(ω) =
n

∑
i=1

IAi (ω)−m≥
n

∑
i=1

IAi∗(λ )−m=
n

∑
i=1

IAi∗(λ )−mIA0∗(λ ).
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This proves the desired inequality. Using this result, we find that

sup
ω∈Ω

[
n

∑
i=1

[IAi (ω)−P∗(Ai)]−m[IA0(ω)−P∗(A0)]

]

= sup
ω∈Ω

[
n

∑
i=1

IAi (ω)−mIA0(ω)

]
−

n

∑
i=1

P∗(Ai)+mP∗(A0)

≥ sup
λ∈Λ

[
n

∑
i=1

IAi∗(λ )−mIA0∗(λ )

]
−

n

∑
i=1

P∗(Ai)+mP∗(A0)

= sup
λ∈Λ

[
n

∑
i=1

[IAi∗(λ )−P(Ai∗)]−m[IA0∗(λ )−P(A0∗)]

]

≥ 0,

where the last inequality holds becauseP is coherent. We conclude thatP∗ is coherent
as well.

The proof of (iii) is immediate taking into account that ifA1⊆A2 thenA1∗ ⊆A2∗ as
well. To prove the last two statements, consider an arbitrary family(Ai)i∈I of elements
of AΩ. If ∩i∈I Ai ∈AΩ then

(∩i∈I Ai)∗ = {λ ∈ Λ : Γ(λ )⊆ ∩i∈I Ai}= ∩i∈I {λ ∈ Λ : Γ(λ )⊆ Ai}= ∩i∈I Ai∗ (3)

and if∪i∈I Ai ∈AΩ then

(∪i∈I Ai)∗ = {λ ∈ Λ : Γ(λ )⊆ ∪i∈I Ai} ⊇ ∪i∈I {λ ∈ Λ : Γ(λ )⊆ Ai}= ∪i∈I Ai∗. (4)

Assume thatP is k-monotone, and considerA1, . . . ,Ak in AΩ. It then follows from the
expressions (3)–(4) and the monotonicity ofP that

P∗(A1∪·· ·∪Ak)− ∑
/06=I⊆{1,...,k}

(−1)|I |+1P∗(∩i∈I Ai)

≥ P(A1∗∪·· ·∪Ak∗)− ∑
/06=I⊆{1,...,k}

(−1)|I |+1P(∩i∈I Ai∗)≥ 0,

where the last inequality follows from thek-monotonicity ofP. It follows thatP∗ is
k-monotone.

Let us finally assume thatP is a necessity measure. Consider any family(Ai)i∈I of
elements ofAΩ such that∩i∈I Ai ∈AΩ as well. Then it follows from Eq. (3) that

P∗(∩i∈I Ai) = P((∩i∈I Ai)∗) = P(∩i∈I Ai∗) = inf
i∈I

P(Ai∗) = inf
i∈I

P∗(Ai)

soP∗ is a necessity measure as well.

The fourth point of this theorem generalises a result from [23], where it is shown
that the lower probability induced by a probability measure and a strongly measurable
multi-valued mapping is always completely monotone, i.e.,k-monotone for all natu-
ral k ≥ 2. Theorem 1 tells us in particular that this result still holds if instead of a
probability we have a completely monotone lower probability on the initial space.
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4 A more general approach

Although the generalisation of random sets studied in the previous section is fairly in-
tuitive and straightforward, it has a number of shortcomings. First of all, there is the
emphasis on lower probabilities and events, rather than lower previsions and gambles.
Although the languages of gambles and events are equally powerful when working with
precise probabilities, Walley ([28]) has shown that gambles are much more expressive
than events in the context of imprecise probabilities. Secondly, the domainsAΛ and
AΩ of the respective lower probabilitiesP andP∗ were assumed to beσ -fields, andΓ
is assumed to be strongly measurable with respect to theseσ -fields. This is something
the theory of random sets has inherited from the Kolmogorov approach to precise prob-
ability theory, where probability measures can only be defined onσ -fields. We have
already mentioned above (see Section 2) that in Walley’s theory of lower previsions,
and in de Finetti’s approach to precise probability theory ([7]), coherent lower previ-
sions as well as linear previsions can be defined onarbitrary sets of gambles that need
not have any predefined structure at all, and they can be extended by natural extension
to lower previsions defined on all gambles. We would therefore like to be able to find
a method to use anarbitrary multi-valued mappingΓ : Λ→℘(Ω) to turn anarbitrary
coherent lower previsionP on anarbitrary setK of gambles onΛ into a coherent
lower previsiondefined on all gambleson Ω, or even onΛ×Ω. Moreover, we would
like this method to have a clear behavioural interpretation and motivation.

4.1 A behavioural interpretation of the basic model

First of all, let us shed some light on the meaning of the multi-valued mappingΓ. We
consider two random variablesL andO taking values inΛ andΩ respectively. These
random variables are linked in the following way:if L assumes the valueλ ∈ Λ, then
we know thatO assumes a value inΓ(λ )⊆Ω, and nothing else.7

The problem we are faced with can then be analysed as follows. We consider a
subject who has two sources of information. First, there is information about which
value the random variableL will assume inΛ, and he models this through acoherent
lower previsionP on some setK of gambles onΛ.8

The second source of information is the given interpretation of the multi-valued
mappingΓ: if the subject knows that the random variableL assumes the valueλ in Λ,
then he also knows that the random variableO assumes a value inΓ(λ ), and nothing
else. We shall now argue that this type of information can be modelled by a special
type ofconditional lower prevision.

Consider the partitionB = {{λ}×Ω : λ ∈ Λ} of the setΛ×Ω. For anyλ in
Λ, the occurrence of the event{λ}×Ω corresponds to our subject knowing that the
random variableL assumes the valueλ , and the conditional conditional lower previ-
sionP(·|{λ}×Ω) models the available information about the value of(L,O) when he
knows thatL = λ . Taking into account the interpretation forΓ outlined above, this
means thatP(·|{λ}×Ω) should reflect that the subject knows that(L,O) assumes a

7This interpretation of the multi-valued mapΓ essentially goes back to Strassen [25].
8In Section 5, we shall pay attention to the particular case where the set of gamblesK is a σ -field of

events, and relate the results from the present section with those of Section 3.
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value in the set{λ}×Γ(λ ), and nothing more! We have seen in Section 2.5 that this
information should be modelled by the vacuous lower prevision relative to{λ}×Γ(λ ):
for any gambleX on Λ×Ω

P(X|{λ}×Ω) = P{λ}×Γ(λ )(X) = inf
ω∈Γ(λ )

X(λ ,ω). (5)

We shall also use the short notationP(X|λ ) for P(X|{λ}×Ω). P(X|λ ) is the supre-
mum price that our subject should be prepared to pay for the gambleX if he knew that
L assumed the valueλ and nothing else.

Eq. (5) gives us the value of the conditional lower previsionP(X|λ ) for all λ ∈ Λ.
As we explained in Section 2.6, we can summarise all this information through

P(X|B) = ∑
B∈B

IBP(X|B) = ∑
λ∈Λ

I{λ}×ΩP(X|λ ),

which we also denote asP(X|Λ). Observe thatP(X|Λ) can also be interpreted as a
gamble onΛ×Ω, whose value in(λ ,ω) is given byP(X|λ ).

In summary, the information in the multi-valued mapΓ can be represented by the
conditional lower previsionP(·|Λ). This conditional lower prevision is a function of
two things: the gamblesX and the elementsλ of Λ.

Important Remark 1. We shall frequently identify the spaceL (Λ) with the space
of those gambles onΛ×Ω that areconstanton Ω, that is, those gambles satisfying
Z(λ ,ω) = Z(λ ,ω ′) for all λ ∈ Λ and allω, ω ′ in Ω. Similarly, it is clear that we can
identify the spaceL (Ω) with the gambles onΛ×Ω that are constant onΛ. Let us give
two examples of this. First of all, given a gambleX onΛ×Ω andλ ∈Λ, we can define
the gambleXλ on Λ×Ω by Xλ (ν ,ω) = X(λ ,ω) for all (ν ,ω) ∈ Λ×Ω. Observe that
Xλ is constant onΛ, so we can identify it with a gamble onΩ. Moreover,9

P(X|λ ) = inf
ω∈Γ(λ )

X(λ ,ω) = inf
ω∈Γ(λ )

Xλ (λ ,ω) = P(Xλ |λ ).

Secondly, we have just introduced the notation

P(X|Λ) = ∑
λ∈Λ

I{λ}×ΩP(X|λ )

for the gamble onΛ×Ω that assumes the valueP(X|λ ) in the element(λ ,ω) of Λ×Ω.
Note that this gamble is constant onΩ, so we can identify it with a gamble onΛ. ¨

If A is a subset ofΛ×Ω, and we letX = IA in Eq. (5), then we find that for allλ in
Λ:

P(A|λ ) = inf
ω∈Γ(λ )

IA(λ ,ω) = IA◦(λ ),

9This property does not only hold for the special choice of the conditional lower prevision we made in
Eq. (5). One can show (see [28, Lemma 6.2.4]) that it is a necessary consequence of theseparate coherenceof
any conditional lower previsionP(·|Λ). Hence, on our approach, it is this consequence of separate coherence
thata posterioriallows us to treat a conditional lower previsionP(Y|B) as if it were a lower prevision of some
conditional objectY|B; see also footnote 1.
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whereA◦ is the subset ofΛ defined by

A◦ = {λ ∈ Λ : {λ}×Γ(λ )⊆ A} . (6)

If in particularA is a subset ofΩ, then it follows immediately that(Λ×A)◦ = A∗, i.e.,
P(Λ×A|Λ) is the indicator function of the lower inverseA∗ = {λ ∈ Λ : Γ(λ )⊆ A} of
A, defined in the previous section. This means that the conditional lower prevision
P(·|Λ) extends the notion of a lower inverse.

Definition 1. Given a multi-valued mappingΓ : Λ→℘(Ω), we can associate with any
gambleX onΛ×Ω its lower inverseX◦ = P(X|Λ), which is a gamble onΛ defined by
X◦(λ ) = P(X|λ ) = infω∈Γ(λ ) X(λ ,ω) for all λ in Λ.

Since for anyλ in Λ, P(·|λ ) has been defined as the vacuous lower prevision on
L (Λ×Ω) relative to the set{λ}×Γ(λ ), it is a coherent lower prevision. Since more-
overP({λ}×Ω|λ ) = 1 sinceΓ(λ ) 6= /0, we may conclude that the conditional lower
previsionP(·|Λ) is separately coherent.

Technical Remark1. We assume in this paper that the setΛ /0 = {λ ∈ Λ : Γ(λ ) = /0} is
empty. But, for technical mathematical reasons (see for instance [6]) it is sometimes
necessary to consider multi-valued mappingsΓ : Λ→℘(Ω) for which there areλ such
that Γ(λ ) = /0, i.e., for whichΛ /0 is non-empty. This would only be compatible with
the given information that ‘O assumes a value inΓ(λ ) if L = λ ’, and could thus only
then be incorporated in the present model if our subject were absolutely certain thatL
could never assume any value inΛ /0, or in other words if

Λc
/0 ∈K andP(Λc

/0) = 1, (7)

whereΛc
/0 = {λ ∈ Λ : Γ(λ ) 6= /0} is the set-theoretic complement of the setΛ /0. This

means that the subject is prepared to bet at all odds against the event thatL assumes
a value inΛ /0. For λ ∈ Λ /0 andX ∈L (Λ×Ω) we could then letP(X|λ ) = Pλ (Xλ ),
wherePλ is any coherent lower prevision defined onL (Ω) and Xλ is the gamble
derived fromX in Important Remark 1. It turns out that, under this proviso, the course
of reasoning followed below would still be valid, and that the final result would not
be influenced by the choice of thePλ (see Technical Remark 2 further on for more
details).¨

In summary, the available information has been represented by means of the coher-
ent lower previsionP on K and the separately coherent conditional lower prevision
P(·|Λ) onL (Λ×Ω). These represent our subject’s commitments to buy certain gam-
bles, based on this information.

4.2 Making inferences based on the basic model

We are, however, interested in what can be inferred from these commitments, and
in particular, what they imply about whether or not the subject should buy a gamble
X ∈ L (Λ×Ω) for a given price. As we have seen in Section 2, there is in the be-
havioural theory of lower previsions a general reasoning technique based on the notion
of coherence, callednatural extension, which can be used to make inferences from
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assessments of lower previsions. In the special case considered here, it follows from
Theorem 2 below that there is a smallest (and therefore most conservative or least com-
mittal) unconditional lower previsionP◦, defined onL (Λ×Ω) by Eq. (8), that extends
the unconditional lower previsionP from K to L (Λ×Ω) and that is coherent with the
conditional lower previsionP(·|Λ). It is called thenatural extensionof P andP(·|Λ)
to an unconditional lower prevision onL (Λ×Ω). Its behavioural meaning is clear:
for any gambleX on Λ×Ω, P◦(X) is the supremum price for which the subject can
be forced to buy the gambleX by constructing a finite combination of buying transac-
tions that are implicit in hisP andP(·|Λ) and that he is therefore committed to accept.
In this sense,P◦(X) is the supremum buying price forX that we can infer from the
assessmentsP andP(·|Λ).

Theorem 2. Let P be a coherent unconditional lower prevision defined onK ⊆
L (Λ), and letP(·|Λ) be the separately coherent conditional lower prevision defined
on L (Λ×Ω) by Eq.(5). ThenP andP(·|Λ) are (jointly) coherent. The smallest co-
herent lower prevision onL (Λ×Ω) that extendsP fromK to L (Λ×Ω) and that is
coherent withP(·|Λ) is given by

P◦(X) = E(P(X|Λ)) (8)

for all X ∈L (Λ×Ω), whereE is the (unconditional) natural extension of the lower
previsionP fromK to L (Λ), i.e., for all gamblesY on Λ,

E(Y) = sup
n≥0

Z1,...,Zn∈K
µ1,...,µn≥0

inf
λ∈Λ

[
Y(λ )−

n

∑
k=1

µk[Zk(λ )−P(Zk)]

]
.

This theorem is an immediate consequence of Walley’s Marginal Extension The-
orem ([28, Theorem 6.7.2]). Note also that for any gambleZ on Λ (or any gamble
Z constant onΩ) we have indeed (by separate coherence) thatZ = P(Z|Λ) whence
P◦(Z) = E(Z). In particular, this tells us thatP◦(Z) = P(Z) for all Z ∈K , or in other
words thatP◦ is a coherent extension ofP, i.e. a coherent lower prevision that coincides
with P onK .

If we recall Definition 1, we see thatP◦(X) = E(X◦) for all X in L (Λ×Ω), and
therefore the concept of natural extension allows us to (i) give a behavioural motiva-
tion for the notion of a lower probability induced by a multi-valued mapping, defined
in Section 3; and (ii) extend it from lower probabilities to lower previsions (or from
events to gambles). We have thus proven in a general context what Walley showed in a
different way and in a finitary setting in [28, Section 4.3]. We shall discuss these issues
in more detail in Section 5.

Technical Remark2. If we allow thatΓ may assume empty values, i.e.,Λ /0 6= /0, then
Theorem 2 will still hold, provided that the lower previsionsPλ , defined onL (Ω) for
all λ ∈ Λ /0 and mentioned in Technical Remark 1, are coherent, so that the conditional
lower previsionP(·|Λ) is still separately coherent. For any gambleX on Λ×Ω, its
lower inverseX◦ will now assume the valuePλ (Xλ ) in any elementλ of Λ such that
Γ(λ ) = /0, soX◦ will depend on the (arbitrary) choice of thePλ . But if we make the
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assumptions summarised in Eq. (7), which are necessary for our behavioural interpre-
tation of Γ to make any sense, then it turns out thatthe natural extensionP◦ is not
influenced in any way by the choice of thePλ ! Indeed, it follows from the coherence
of the lower previsionP◦ andP◦(Λ /0×Ω) = 1−P◦(Λc

/0×Ω) = 1−P(Λc
/0) = 0, that

P◦(X) = P◦(XIΛc
/0×Ω) andP◦(X) = P◦(XIΛc

/0×Ω). ¨
The natural extensionP◦ can also be seen as a lower envelope of induced lower

previsions. This is an immediate consequence of a more general result on conditioning,
proven by Walley ([28, Section 6.7 and in particular 6.7.5]).

Theorem 3. LetP be a coherent lower prevision defined on a subsetK of L (Λ), and
let P(·|Λ) be the separately coherent conditional lower prevision defined onL (Λ×Ω)
by Eq.(5). LetM (P) be the set of linear previsions onL (Λ) that dominateP:

M (P) = {P∈ P(Λ) : (∀X ∈K )(P(X)≥ P(X))} .

Then the natural extensionP◦ of P and P(·|Λ) is the lower envelope of the natural
extensionsP◦ of P andP(·|Λ) whereP∈M (P): for all X in L (Λ×Ω)

P◦(X) = min
P∈M (P)

P◦(X) = min
P∈M (P)

P(X◦).

4.3 What is the essential information?

We see in Theorem 2 thatP◦ is calculated using the natural extensionE of the lower
previsionP. One reason for this is of course that, although we have seen that the lower
inverseX◦ = P(X|Λ) of a gambleX ∈ L (Λ×Ω) can be considered as a gamble on
Λ, we have no guarantee thatX◦ should belong to the domainK of P. We should
therefore extendP to the coherent lower previsionE on the larger domainL (Λ).

But this brings us to an interesting problem. If we restrict the gamblesX that we
consider to the set

◦K = {X ∈L (Λ×Ω) : X◦ ∈K }
of those gambles whose lower inverse belongs toK , we can calculateP◦(X) usingP
rather than its natural extensionE, asP◦(X) = E(X◦) = P(X◦)! In other words, using
P alone, we can define the lower previsionP1 on the set of gambles◦K ⊆L (Λ×Ω)
by

P1(X) = P(X◦) = P(P(X|Λ)), X ∈ ◦K . (9)

Note that if we identify gambles onΛ with gambles onΛ×Ω that are constant onΩ,
we may write thatK ⊆ ◦K , or in other words,P1 actually extendsP.

Of course, sinceP is assumed to be coherent and therefore coincides with its natural
extensionE on its domainK , P1 is nothing but the restriction of the coherent lower
previsionP◦ to ◦K , and is therefore coherent as well.

Proposition 4. If the lower previsionP onK is coherent, thenP1 is a coherent lower
prevision on◦K .
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The question that now arises, is the following: doesP1 essentially contain all the
information inP◦, or in other words, isP◦ equal to the (unconditional) natural extension
E1 of P1 to a lower prevision onL (Λ×Ω), given by

E1(X) = sup
n≥0

Z1,...,Zn∈◦K
µ1,...,µn≥0

inf
(λ ,ω)∈Λ×Ω

[
X(λ ,ω)−

n

∑
k=1

µk[Zk(λ ,ω)−P1(Zk)]

]
(10)

for all X ∈L (Λ×Ω)? Or, to formulate it in yet another manner, does the following
diagram commute?

P
composition withP(·|Λ)−−−−−−−−−−−−−→ P1

nat. ext.

y
ynat. ext.

E
composition withP(·|Λ)−−−−−−−−−−−−−→ P◦

We now show that this is indeed the case. The following lemma allows us to put the
question of whetherE1 andP◦ coincide in a different perspective.

Lemma 5. The natural extensionE1 of P1 to L (Λ×Ω) coincides with the natural
extensionP◦ of P andP(·|Λ) if and only if the lower previsionE1 is coherent with the
conditional lower previsionP(·|Λ).

Proof. It is clear that ifE1 = P◦ thenE1 is coherent withP(·|Λ), because we know
from Theorem 2 thatP◦ is. Conversely, ifE1 is coherent withP(·|Λ), thenE1 will
dominate on its domainL (Λ×Ω) the smallest coherent extensionP◦ of P andP(·|Λ)
to an unconditional lower prevision onL (Λ×Ω). But, sinceP◦ is a coherent extension
of P1, it always dominates the smallest coherent extensionE1 of P1 onL (Λ×Ω). This
proves thatE1 andP◦ are equal.

We now proceed to prove thatE1 andP(·|Λ) are indeed guaranteed to be coherent.

Lemma 6. Consider two gamblesX1 and X2 on Λ×Ω. If P(X1|Λ) = P(X2|Λ), then
E1(X1) = E1(X2). Consequently, ifP(X1|Λ) = 0 thenE1(X1) = 0.

Proof. First of all, we show that for any gambleX in ◦K , E1(X) is the supremumSof
all α ∈ R such that there are integern≥ 0, realµ1, . . . , µn ≥ 0 andZ1, . . . ,Zn in ◦K
such that for allλ ∈ Λ andω ∈ Γ(λ ),

X(λ ,ω)−α ≥
n

∑
k=1

µk[Zk(λ ,ω)−P(P(Zk|Λ))].

It is clear from Eq. (10) thatS≥ E1(X). Conversely, considern≥ 0, real µ1, . . . ,
µn ≥ 0 and Z1, . . . , Zn in ◦K satisfying the above inequality. We can modify the
gamblesZ1, . . . , Zn on the sets{(λ ,ω) : ω /∈ Γ(λ )}, λ ∈ Λ, in such a way that the
above inequality is extended to all elements ofΛ×Ω. It is important to note that this
change will not affect theP(Zk|Λ), so the modified gambles will still belong to◦K .
So indeedS≤ E1(X).
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Next, assume thatP(X1|Λ) = P(X2|Λ) and letα < E1(X1). Then we have just
proven that there are integern≥ 0, realµ1, . . .µn ≥ 0 andZ1, . . . ,Zn in ◦K such that

X1(λ ,ω)−α ≥
n

∑
k=1

µk[Zk(λ ,ω)−P(P(Zk|Λ))],

for all λ ∈Λ andω ∈ Γ(λ ). Define the gamblesYk onΛ×Ω byYk(λ ,ω) = P(Zk|λ ) for
all (λ ,ω) ∈ Λ×Ω. TheseYk are constant onΩ andP(Yk|Λ) = P(Zk|Λ), soYk ∈ ◦K ,
andYk(λ ) = Yk(λ ,ω) = infν∈Γ(λ ) Zk(λ ,ν) ≤ Zk(λ ,ω) for all λ ∈ Λ andω ∈ Γ(λ ).
Consequently,

X1(λ ,ω)−α ≥
n

∑
k=1

µk[Yk(λ )−P(P(Yk|Λ))],

for all λ ∈ Λ andω ∈ Γ(λ ). This is equivalent to

P(X1|λ )−α = inf
ω∈Γ(λ )

X1(λ ,ω)−α ≥
n

∑
k=1

µk[Yk(λ )−P(P(Yk|Λ))],

for all λ ∈ Λ, and since we can replaceP(X1|λ ) with P(X2|λ ) in this inequality, this
eventually leads back to

X2(λ ,ω)−α ≥
n

∑
k=1

µk[Yk(λ )−P(P(Yk|Λ))],

for all λ ∈ Λ andω ∈ Γ(λ ). This implies thatE1(X2)≥ α, whenceE1(X2)≥ E1(X1).
The same argument withX1 andX2 interchanged leads toE1(X2) = E1(X1). To prove
the last statement, assume thatP(X1|Λ) = 0 and letX2 = 0. Then clearlyP(X2|Λ) =
0 = P(X1|Λ), whenceE1(X1) = E1(X2) = E1(0) = 0, where the last equality follows
from the coherence ofE1.

Theorem 7. LetP be a coherent lower prevision defined on a subsetK of L (Λ), and
let P(·|Λ) be the separately coherent conditional lower prevision defined onL (Λ×Ω)
by Eq.(5). Let P1 be the coherent lower prevision defined on◦K by Eq.(9), and let
E1 be its (unconditional) natural extension toL (Λ×Ω). ThenE1 coincides with the
natural extensionP◦ of P and P(·|Λ) to an unconditional lower prevision onL (Λ×
Ω).

Proof. Since bothE1 andP(·|Λ) are defined on the linear spaceL (Λ×Ω), we can de-
duce from Walley’s Theorem 6.5.3 in [28] thatE1 is coherent withP(·|Λ), and therefore
by Lemma 5 coincides withP◦, if and only if the following conditions are verified for
all X in L (Λ×Ω) andλ in Λ:

C1. E1(X−P(X|Λ))≥ 0;

C2. E1

(
I{λ}×Ω[X−P(X|λ )]

)
= 0.

We now show that this is indeed the case. First, we check that C1 holds. For anyX in
L (Λ×Ω),

X−P(X|Λ) = ∑
ν∈Λ

I{ν}×Ω[X−P(X|ν)],
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and so we find for allλ in Λ that

[X−P(X|Λ)]◦(λ ) = P(X−P(X|Λ)|λ )

= inf
ω∈Γ(λ )

∑
ν∈Λ

I{ν}×Ω(λ ,ω)[X(λ ,ω)−P(X|ν)]

= inf
ω∈Γ(λ )

[X(λ ,ω)−P(X|λ )] = 0.

¿From Lemma 6, we deduce thatE1(X−P(X|Λ)) = 0, so C1 holds. To check that C2
holds, observe that forX in L (Λ×Ω) andλ andν in Λ:

P
(
I{λ}×Ω[X−P(X|λ )]|ν)

= inf
ω∈Γ(ν)

I{λ}×Ω(ν ,ω)[X(ν ,ω)−P(X|λ )]

= I{λ}(ν) inf
ω∈Γ(ν)

[X(ν ,ω)−P(X|ν)] = 0.

This tells us that
[
I{λ}×Ω[X−P(X|λ )]

]
◦ = 0, and from Lemma 6 we may then infer

that alsoE1

(
I{λ}×Ω[X−P(X|λ )]

)
= 0, so C2 holds and thereforeE1 andP(·|Λ) are

coherent.

5 Application to random sets

Let us now apply what we have learnt in the previous section to the problem we studied
in Section 3. We again consider a coherent lower probabilityP defined on aσ -field AΛ
of subsets ofΛ, as well as aσ -field AΩ of subsets ofΩ, and a multi-valued mapping
Γ : Λ→℘(Ω) that is strongly measurable with respect to theseσ -fields.

Then we can extendP to a lower previsionP◦ = E(P(·|Λ)) on L (Λ×Ω) that is
the natural extension ofP andP(·|Λ). HereE is the (unconditional) natural extension
of the lower probabilityP to a lower prevision onL (Λ). In particular, we conclude
from Eq. (6) that for any eventA in AΩ, P(Λ×A|Λ) is the indicator function of the
setA∗ = {λ ∈ Λ : Γ(λ )⊆ A}, which belongs toAΛ sinceΓ is strongly measurable.
Consequently,

P◦(Λ×A) = P({λ ∈ Λ : Γ(λ )⊆ A}) = P∗(A).

In other words, the natural extension ofP andP(·|Λ) to the set of eventsAΩ is nothing
but the induced lower probabilityP∗ defined in Section 3! This gives a behavioural
interpretation to this induced lower probability, but at the same time, it provides us
with a natural way to extend it to a lower prevision onL (Ω), i.e., to associate a kind
of ‘integral’ with the induced lower probability, by restrictingP◦ to gambles onΩ (or
constant onΛ): for all X in L (Ω), P◦(X) = E(infω∈Γ(·) X(ω)).

To give an example, ifP is a finitely additive probabilityP onAΛ, and therefore in
particular completely monotone, the induced lower probabilityP∗ onAΩ is completely
monotone as well by Theorem 1 (it is a so-called belief function ([24]) ifΛ is finite).
This lower probability was given an evidential interpretation in [24], and it can now
be given a clear behavioural interpretation:P∗(A) is the supremum acceptable buying
price for the gambleIA—or equivalently, the supremum rate for betting on the event
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A—taking into account the behavioural dispositions expressed both byP and by the
conditional lower previsionP(·|Λ) associated with the multi-valued mappingΓ.

This leads us to another interesting question. As before, let us denote byP∗ the
restriction ofP◦ to AΩ, i.e.,P∗ is the induced lower probability mentioned in Section 3,
and letE∗ be its (unconditional) natural extension to all gambles onΩ. Then we can ask
ourselves ifP∗ contains enough information in order to calculateP◦ onAΩ-measurable
gambles. In other words, doE∗ andP◦ coincide onAΩ-measurable gambles?

To illustrate this question, let us again consider the case thatP is a finitely additive
probability P, so P∗ = P∗ is completely monotone. Since the natural extension of a
2-monotone lower probability is given by Choquet integration ([27], see also [11]), we
find thatE(X◦) = (C)

∫
Λ X◦dP. We would like to know if this coincides with the natural

extensionE∗ of P∗ to L (Ω), which is given byE∗(X) = (C)
∫

X dP∗. In this particular
case, the equality forAΩ-measurableX indeed follows from a result by Wasserman
(which we can find in [14]). But we would like to find out whether such an equality
can be proven for more general types of lower probabilitiesP.

We shall see below that this is only guaranteed to succeed if the lower probability
P is 2-monotone. But, as a first step, let us motivate by means of a counter-example
why we only seek to prove the equality forAΩ-measurable gambles.

Example1. Consider an arbitrary non-empty setΛ that contains at least two elements,
and letΩ = Λ. Let AΛ = ℘(Λ), AΩ = { /0,Ω} and letΓ : Λ →℘(Ω) be defined by
Γ(λ ) = {λ} for all λ ∈ Λ. ThisΓ is strongly measurable with respect toAΛ andAΩ.
Consider a coherent lower probabilityP defined onAΛ, and such that there is some
proper subsetA of Λ with 0 < P(A) < 1. Clearly,A 6∈AΩ. We know that(Λ×A)◦ =
{λ ∈ Λ : {λ}×Γ(λ )⊆ Λ×A} = A, whenceP◦(Λ×A) = P(A) > 0. On the other
hand, the lower probabilityP∗ induced onAΩ is completely specified byP∗( /0) = 0
andP∗(Ω) = 1. It is easy to show using the definition (1) of natural extension that
E∗(A) = 0 sinceA 6= Ω.10 This shows that generally speakingP◦ andE∗ need not
coincide on events (and gambles) that are notAΩ-measurable.̈

Let us now first assume that the lower probabilityP onAΛ is 2-monotone. We have
seen in Theorem 1 that the induced lower probabilityP∗ onAΩ is 2-monotone as well.
We then have the following theorem.

Theorem 8. LetP be a 2-monotone lower probability defined on theσ -fieldAΛ onΛ,
and letP∗ be the 2-monotone lower probability defined on theσ -fieldAΩ by

P∗(A) = P({λ ∈ Λ : Γ(λ )⊆ A}), A∈AΩ,

whereΓ : Λ →℘(Ω) is strongly measurable with respect toAΛ and AΩ. Then the
natural extensionE∗ of P∗ coincides onAΩ-measurable gambles with the natural
extensionP◦ of P and P(·|Λ). In particular, we have for anyAΩ-measurable gamble
X on Ω that

P∗(X) = (C)
∫

Ω
X dP∗ = (C)

∫

Λ
X◦dP = P◦(X),

where the integrals are Choquet integrals [11].

10Alternatively, observe thatP∗ is vacuous, so its natural extension is vacuous as well.
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Proof. Let X be a gamble onΩ that isAΩ-measurable. Then there is a sequence(Xn)
of AΩ-measurable simple gambles converging uniformly toX. Since, by Walley’s
Theorem 2.6.1(l) in [28],Q(Xn)→Q(X) for any coherent lower previsionQ defined on
theAΩ-measurable gambles, we see that it suffices to prove the equality of the coherent
E∗ andP◦ for simpleAΩ-measurable gambles. Assume therefore thatX is simple.
Then we can writeX = ∑n

k=1xkIFk, whereFk ∈ AΛ, Fk ⊆ Fk+1 for k = 1, . . . ,n− 1,
Fn = Ω, andxk ≥ 0 for k = 1, . . . ,n−1. Since the natural extension of a 2-monotone
lower prevision is given by Choquet integration, we find that

E∗(X) = (C)
∫

Ω
X dP∗ =

n

∑
k=1

xkP∗(Fk) =
n

∑
k=1

xkP(Fk∗).

It is not difficult to prove thatX◦ is a simple gamble onΛ with representationX◦ =
∑n

k=1xkIFk∗ , where alsoFk∗ ∈AΛ, Fk∗ ⊆ Fk+1∗, for k = 1, . . . ,n−1 andFn∗ = Λ; hence,
we see that

n

∑
k=1

xkP(Fk∗) = (C)
∫

Λ
X◦dP = E(X◦) = P◦(X),

where the one but last equality follows from the fact that the natural extension of the
2-monotone lower probabilityP is also given by Choquet integration.

As stated before, this theorem generalises results given by Wasserman; it also
proves what was essentially hinted at in [6, Remark 2]. It seems easy to generalise
it to not necessarily bounded gambles, using limit arguments. It could also fairly eas-
ily be generalised to lower probabilitiesP defined on a field, rather than aσ -field of
events.

The following counterexample shows thatP∗ andP◦ need not coincide for allAΩ-
measurable gambles whenP is not 2-monotone. It is based on an idea expressed in
Theorem 6.2 in [27], and it uses the central result (Theorem 7) of the previous section.

Example2. ConsiderΛ = {a,b,c,d} and letΩ = Λ. LetAΛ =℘(Λ), and letAΩ be the
(σ -)field generated by the partition{{a},{b},{c,d}}. Let Γ : Λ →℘(Ω) be defined
by Γ(λ ) = {λ} for all λ ∈ Λ. ThenΓ is strongly measurable with respect toAΛ and
AΩ.

Consider the lower probabilityP on AΛ given by the lower envelope of the prob-
ability measures with mass functions(0.25,0.25,0.25,0.25), (0.5,0.5,0,0). It is clear
thatP is coherent, since any lower envelope is. However,P is not 2-monotone:

P({a,c})+P({a,d}) = 1 >
3
4

= P({a,c,d})+P({a}).

On the other hand, the lower probabilityP∗ induced byΓ onAΩ is nothing but the
restriction ofP toAΩ, which is 2-monotone, sinceAΩ is generated by only three atoms,
and it is easy to show that any coherent lower probability defined a field generated by
at most three atoms is necessarily 2-monotone. Consider the simpleAΩ-measurable
gamble

Z = I{a,c}+ I{a,d} = I{a}+ I{a,c,d}.
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Then, since the natural extensionE∗ of the 2-monotoneP∗ is given by Choquet-
integration forAΩ-measurable gambles, we see that

E∗(Z) = (C)
∫

Ω
ZdP∗ = P∗({a})+P∗({a,c,d}) = P({a})+P({a,c,d}) =

3
4
.

On the other hand, if we use the notation established in the previous section, the set

◦AΛ = {X ∈L (Λ×Ω) : X◦ ∈AΛ}

contains the set{Λ×A: A⊆Ω}, or, with some abuse of notation, contains℘(Ω). Note
that the restriction ofP1 to℘(Ω) is nothing but the original lower probabilityP, so the
natural extensionE of P will be dominated on its domainL (Ω) – recall thatΩ = Λ –
by the natural extensionP◦ of P1 (see Theorem 7 for more details). In particular, this
means that, sinceE is coherent and therefore superadditive, and since it coincides with
P on events (becauseP is coherent):

P◦(Z)≥ E(Z) = E(I{a,c}+ I{a,d})≥ E(I{a,c})+E(I{a,d})

= P({a,c})+P({a,d}) = 1.

This means thatP◦(Z) > E∗(Z), and therefore the natural extensionE∗ of P∗ does not
coincide with the natural extensionP◦ of P andP(·|Λ) for all AΩ-measurable gambles.
¨

6 Conclusions

In this paper, we have started a study of lower probabilities and lower previsions in-
duced by multi-valued mappings, from the behavioural point of view, following the
suggestions in [28] and [6]. We have given a behavioural interpretation and justifica-
tion for the definitions of induced lower (and upper) probabilities that are commonly
used in the literature. This justification is based on the notions of coherence and natural
extension, which play a central part in the behavioural theory of imprecise probabili-
ties. It leads in a very natural way to the generalisation of the notions of induced lower
(and upper) probabilities that we have studied above, and which allows us to associate
a kind of integral with them. We have seen that (only) under some conditions this
integral is a Choquet integral.

It is moreover clear from the results we proved in the previous section that our
approach also allows us to study existing problems in the theory of random sets from a
new, different point of view. It turns out that it is once again the notions of coherence
and natural extension that lead to alternative proofs for, and generalisations of, existing
theorems. This provides evidence for their unifying and explanatory power.

There is a simple idea underlying the arguments of this paper, namely thata multi-
valued map represents conditional information, and that this information can be rep-
resented by a (specific) conditional lower prevision.To put this idea in its proper
perspective, let us first consider the simpler case of asingle-valued mapγ between the
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initial spaceΛ and the final spaceΩ. Given a precise probabilityP on the initial space
Λ, such a map induces a precise probabilityPγ on the final spaceΩ by

Pγ(A) = P(γ−1(A)) = P({λ ∈ Λ : γ(λ ) ∈ A})
for subsetsAof Ω.11 For gamblesX onΩ, we have the well-known ‘change of variables
result’ for previsions or expectations (i.e., for the Lebesgue integrals associated with
the probabilities):

EPγ (X) =
∫

Ω
X dPγ =

∫

Λ
X ◦ γ dP = EP(X ◦ γ). (11)

The interpretation ofEPγ becomes immediate if we interpret the mapγ as conditional
information: if the random variableL assumes the valueλ in Λ, then we know thatO
assumes the valueγ(λ ) in Ω. This information can be represented by the following
conditional linear previsionP(·|Λ): for all gamblesX on Ω and allλ ∈ Λ,

P(X|λ ) = X(γ(λ )) = (X ◦ γ)(λ ),

i.e.,P(·|λ ) is the precise probability onΩ all of whose probability mass lies in the point
γ(λ ). We can now find the prevision (or expectation) of the gambleX by combining the
marginal previsionEP on the spaceΛ, and the conditional previsionP(·|Λ): using an
appropriate version of the law of total probability, or equivalently, the precise version
of Walley’s Marginal Extension Theorem ([28, Theorem 6.7.2]), or in other words,
natural extension, we find for the previsionP(X) of the gambleX that

P(X) = EP(P(X|Λ)) = EP(X ◦ γ) = EPγ (X), (12)

where the last equality follows from Eq. (11). This tells us thatPγ (or equivalently,EPγ )
is the probabilistic information onΩ that can be deduced form the marginal modelP
on Λ and the conditional modelP(·|Λ) that represents the information present in the
mapγ.

When we want to generalise this course of reasoning from single-valued mapsγ
to multi-valued mapsΓ, we face the following problem: the information present in the
multi-valued mappingΓ can no longer be represented by a conditionallinear prevision.
In other words, if we want to remain within the framework of precise probability theory,
we must abandon the simple and powerful device of interpretingΓ as conditional in-
formation. But if we work with the theory of imprecise probabilities, it is still perfectly
possible to interpretΓ as conditional information that can be represented by a special
conditionallower prevision (see Eq. (5)). And so, the whole argument outlined above
can be extended from single-to multi-valued mappings, which is essentially what we
have done in this paper. Observe, in this respect, that Theorem 2 generalises Eq. (12),
and that Eq. (11) is a special case of Theorem 8.

As a topic for future research, we intend to investigate whether these notions also
allow us to shed new light on other existing problems in the theory of multi-valued
mappings, such as how to define independence, and how to provide a behavioural in-
terpretation to existing definitions of independence.

11Let us dispense with technical aspects of measurability here.
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