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Abstract

We discuss how lower previsions induced by multi-valued mappings fit into
the framework of the behavioural theory of imprecise probabilities, and show how
the notions of coherence and natural extension from that theory can be used to
prove and generalise existing results in an elegant and straightforward manner.
This provides a clear example for their explanatory and unifying power.
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1 Introduction

The term ‘imprecise probabilities’ covers different mathematical models such as up-
per and lower probabilities induced by multi-valued mappings ([10], [24]), upper and
lower expectations ([4], [11], [26]), sets of probability measures ([3], [5], [12], [19]),
upper and lower previsions, sets of desirable gambles, and preference orderings [28].
These models arise as an alternative to, or as an extension of, the classical or precise
probability theory ([7], [17]), which in a number of situations makes assumptions that
are arguably too strict in order to model the available information. Several such un-
certainty models give different interpretations to lower and upper probabilities. Two
prominent types of interpretation are the evidential ([24]) and the behavioural ([28]).
The former regards the imprecise probability of an event as a link between the event and
the available evidence, while the latter interprets the probability in terms of behaviour.
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Random sets, and multi-valued mappings in general, have been used successfully
to model imprecision and uncertainty in the relation between the elements of two dif-
ferent spaces. This is for instance made evident in [18] and [20]. The upper and
lower probabilities induced by a multi-valued mapping ([9], [10]) were given an evi-
dential interpretation by Shafer ([24]). However, as far as we are aware, they have not
been connected with the behavioural interpretation of imprecise probabilities in any
thorough or detailed manner, nor have the mathematical consequences of such a con-
nection been systematically explored. The problem that we are treating in this paper
can be summarised through the following types of questions: (i) what does it mean, in
terms of the behaviour of a subject, that his lower probability for an event, induced by
a random set, is 0.4; and (ii) can we use the information represented by a random set
to deduce not only lower and upper probabilities of events, but also lower and upper
previsions for random variables?

To answer these questions, we intend to establish a link between random sets and
the behavioural theory of imprecise probabilities ([28]). To our knowledge, the only
previous work in this direction was done by Walley ([28, Section 4.3.5]), and De
Cooman ([6]). Though we derive a basic formula (see Eq. (8) further on) that is es-
sentially the same as Walley’s, our course of reasoning is different, and our analysis is
more detailed.

The paper is organised as follows: in Section 2, we give a brief review of the main
ideas behind the behavioural interpretation of imprecise probabilities that we shall need
in the rest of the paper. In Section 3, we recall the definition of lower and upper prob-
abilities induced by a random set, and we give a first and immediate generalisation.
Section 4 gives a fairly general treatment of how to use the information conveyed by
a multi-valued mapping in the context of the behavioural theory of imprecise proba-
bilities. This discussion allows us to give a satisfactory answer to the two types of
guestions mentioned above. It also allows us to prove generalisations of a number of
classical results on random sets in the subsequent Section 5.

2 Basic notions from the behavioural theory of impre-
cise probabilities

For a proper understanding of the course of reasoning in this paper, more than a ca-
sual acquaintance is required with the basic ideas underlying the behavioural theory of
imprecise probabilities. We refer to Walley’s book ([28]) for extensive discussion and
motivation, and for many of the results and formulae that we shall use below. Our aim
in this section is to familiarise the reader with a number of these ideas, in the hope that
this will make the main message of the paper understandable to a wider audience. We
also introduce some basic notation.

2.1 Basic notation and behavioural interpretation

Consider a subject who is uncertain about something, say, the outcome of an experi-
ment. LetQ be the space of all possible outcomes, then a bounded real-valued function



on Q is called agambleon Q. The set of all gambles of is denoted byZ (Q). A
gamble is an uncertain reward: if the outcome of the experiment turns outbch®,
then the corresponding reward will b€ w) (positive or negative), expressed in units
of some (predetermined) linear utility.

The subject'dower previsionP(X) for a gambleX is defined as his supremum
acceptable price for buyiny, i.e., it is the highest pricgt such that the subject will
accept to buy for all prices strictly smaller thap (buying X for a pricex is the same
thing as accepting the uncertain rewad¢d- x). Similarly, a subject'sipper prevision
P(X) for X is his infimum acceptable selling price fr Clearly,P(X) = —P(—X)
since sellingX for a pricex is the same thing as buyingX for the price—x. This
conjugacy relationmplies that we can limit our attention to lower previsions.

A subsetA of Q is called arevent and it can be identified with its indicator (func-
tion) I, which is a gamble o®. Thelower probabilityof A is nothing but the lower
previsionP(l4) of its indicator. We shall often identify an event with its indicator, and
write P(A) instead ofP(la). We prefer to work with gambles, rather than to restrict
ourselves to events: as Walley has pointed out ([28]), the language of gambles is much
more powerful than that of events when working with imprecise probabilities.

2.2 Rationality requirements

Assume that the subject has given lower prevision assesstexidor all gambles

X in some set of gamblesr” C £ (Q), which need not have any predefined struc-
ture. Since these assessments represent commitments of the subject to act in certain
ways, they are subject to a number of rationality requirements. The strongest such re-
quirement is thaP should becoherent Coherence means first of all that the subject’s
assessmentsvoid sure lossfor anyn in the set of positive natural numbe¥sand for

anyX, ..., Xy in 2 we require that

weQ | k=1

n
sup [ 3 Xe(w) —P(X@]} >0,
Otherwise, there would be somae> 0 such that for alkw in Q:
n
> Xd(w) —P(X) + €] < —¢,
K=1

i.e., the net reward of buying the gambbgsfor the acceptable pricd¥Xy) — € is sure
to lead to a loss of at least whatever the outcome of the experiment!

But coherence also means that if we consider ¥ny 7", we cannot force the
subject to accepX for a price strictly higher than his specified supremum buying price
P(X), by exploiting buying transactions implicit in his lower previsidR&xy) for a
finite number of gambleX in JZ", which he is committed to accept. More explicitly,
we require that for anp andmin N, andXo, ..., X, in JZ":

n

sup | 3 [X(@) —P(X)] —mXo(w) —P(X0)]| > 0.

weQ | k=1



Otherwise, there would be songe> 0 such thatm[Xo — [P(Xo) + €]] pointwise dom-

inates the acceptable combination of buying transactgls [X« — P(X) + €], and

is therefore acceptable as well. This would mean that by combining these acceptable
transactions derived from his assessments, the subject can be effectively forced to buy
Xo at the priceP(Xp) + €, which is strictly higher than the supremum acceptable buying
price P(Xp) that he has specified for it. This is an inconsistency that is to be avoided.

2.3 Natural extension

We can always extend a coherent lower previ§ido a coherent lower previsida on
the set of all gamble&’(Q), through a procedure calledtural extensionThe natural
extensiorE of P is the smallest coherent lower prevision 84Q) that coincides on
22 with P. Itis given for allX € .Z(Q) by

E(XX)= sup sup{a: X—a> i uk[Xk—P(Xk)]}
&

n>0
Xyee s €L
M1, in>0
n
= sup inf IX(w) = 3 m[X(w) —P(X)]| . (1)
n>0 weQ ]
X1, Xn€HX
Hiye-Hn>0
where thep, ..., Un in the suprema are non-negative real numbers. The natural ex-

tension summarises the behavioural implication®:0E(X) is the supremum buying
price for X that can be derived from the lower previsiBrby arguments of coherence
alone: we see from its definition above that it is the supremum of all prices that the
subject can be effectively forced to buy the gam¥ir, by combining finite numbers

of buying transactions implicit in his lower prevision assessm@nts

2.4 Relation to precise probability theory

WhenP(X) = P(X), the subject’s supremum buying price coincides with his infimum
selling price, and this common value iglimear) previsionor fair price for the gamble
X, in the sense of de Finetti ([7]). For fair prices, the notion of coherence essentially
coincides with de Finetti’'s definition. This means that the theory of imprecise prob-
abilities includes de Finetti's approach (precise previsions and/or probabilities) as a
special case. But it is also much more flexible than the latter, because it doesn’t require
a subject’s supremum buying price and his infimum selling price to coincide. More
specifically, it allows that there are pricesuch thaP(X) < x < P(X), i.e., for which
the subject refrains from committing himself to buy or sell the gambfer price x:
he is allowed to be undecided! Indecision seems a natural thing to allow, especially if
the subject has very little information about the outcame

Alinear previsiorP on the setZ(Q) can also be characterised as a linear functional
that is positive (ifX > 0 thenP(X) > 0) and has unit normR(lg) = 1). Its restriction
to events is a finitely additive probability. Let us denotelt{{2) the set of all linear
previsions onZ' (Q).



The notions of avoiding sure loss, coherence, and natural extension can be charac-
terised in terms of sets of linear previsions. Consider a lower previduefined on a
set of gambles? . Its set of dominating linear previsions is given by

A (P) ={PeP(Q): (VX € A)(P(X) = P(X))}.

ThenP avoids sure loss iff# (P) # 0, i.e., if it has a dominating linear prevision.
P is coherent iffP(X) = min{P(X): Pe .Z(P)} for all X in ¢, i.e., if it is the
lower envelopeof .#(P). And the natural extensiok of P is given byE(X) =
min{P(X): Pe.#(P)} for all X in .#(Q). Moreover, the lower envelope of any set
of linear previsions is always a coherent lower prevision.

2.5 Vacuous previsions

We now give an important example of a lower prevision that is in general not a linear
prevision. Assume that we want to model the piece of information that the Ave@

occurs, or in other words that the outcome of the experiment we consider assumes a
value inA. This can be represented by the so-calladuous lower prevision relative

to A, which will be denoted by,, and is given by

PA(X) = inf X(w),
weA
for all gamblesX on Q. P, is a coherent lower prevision off (Q) and its conjugate
upper prevision is given by
Pa(X) = supX(w).
weA
There are several lines of reasoning to motivate that this lower prevision indeed is the
appropriate model for the given information. First of all, if our subject knows that
A occurs,and nothing morghe should be willing to buy a gamb)¢ for any prices
strictly lower thaninf,ca X(w) because doing so results in a sure gain; but he should
not be willing to pay a pricestrictly higher than that, because then there is sargeA
such that > X(w), andfor all our subject knowsw might be the actual outcome of
the experiment!
A second justification foP, is that it is the natural extension of the single precise
probability assessmef(A) = 1, which is equivalent t¢?(A) = 1. Using Eq. (1), we
find indeed that the natural extension of this assessment is given by

sup inf [X(w)—Alla(w) —P(A)]]
)‘zoweQ

= supmin{ inf X(w), inf
A>0 wWeA weA°®

[X(w)+/\]} = inf X(w) = PA(X)

weA
for all gamblesX on Q. This shows that the vacuous lower prevision relativé\to
follows uniquelyfrom the subject’s single assessment that the probability of évent
equal tol, or equivalently, that the subject is practically certain thatcurs (since he
is prepared to bet at all odds on the occurrenca)of



We find a third justification folP, if we consider the set# (P,) of those linear
previsions that dominat@,. It is easy to show that

A (Pp) = {PEP(Q): P(A) =1},

soP, is again seen to be equivalent to the statementRbat = 1.

All of this tells us thatP, is the smallest, and therefore most conservative, coherent
lower previsionP on .#(Q) that satisfie$(A) = 1 (and thereford®(A) = P(A) = 1).
Thus, in the context of the theory of lower previsioRg,is the appropriate model for
the piece of information thad occursand nothing more any other coherent lower
previsionP that satisfied?(A) = 1 dominatesP,, and therefore represents stronger
commitments than those required by coherence and this piece of information alone.

2.6 Conditioning

If £ is a partition ofQ, then we can define for eveB/e % our subject'sconditional
lower previsionP(X|B) of X, givenB as the supremum price he would currently be
willing to pay for X, if he came to know at some later time that the outcome of the
experiment took a value iB (and nothing else). Alternatively, it could be defined as
the subject’s supremum buying price for the so-catledtingentgamblelgX.t. If we
assume that the conditional lower previsidtigB) are defined on the same domaifi

for all B € #,2 then we can summarise all these conditional lower previsions through
P(-|%), where for allX € 57

P(X%)= T 1P(X[B).
Be#

We shall also call the objed®(:|%) a conditional lower prevision It is a function
of two things: gambles and elements of the partition. On the one hand, if we fix the
gambleX, then its partial functiofP(X|%) is a gamble orQ that takes the constant
valueP(X|B) on the elemenB of 2. On the other hand, if we fix the elemedbf the
partition %, then its partial functioP(:|B) is a lower prevision defined on the set of
gambless”.

Conditional lower previsionB(-|%) are also subject to rationality criteria. First of
all, there is the requirement g&parate coherencéor eachB € %4, P(:|B) should be
a coherent lower prevision o#f” in the sense defined above, and moreover we should
obviously also require th&(B|B) = 1. a subject should be willing to bet at all odds
on the occurrence of the eveBtafter observing it. But, if beside®(-|.%) a coherent
unconditional lower previsioR on ¢ is also specified, we should require, besides the
separate coherence, that the assessmeRs|i#) should be consistent with those in

1some authors (see for instance [13]) prefer to work explicitly with conditional objects, and would define
P(X|B) as a supremum buying price for a conditional obj¢/@. To avoid possible confusion, we emphasise
that this isnot the approach we follow here: on our behavioural interpretatiiB, does not have any
meaningper se and it is only the valu@®(X|B) that expresses our behavioural dispositions, in the manner
described above.

2This is no essential restriction; for more details see [28, Section 6.2.4].



P. This leads to the requirement of tljeint) coherenceof P andP(:|#), which is
studied in much detail in [28, Chapter §].

Let us remark in passing that, when the conditional and unconditional lower pre-
visions are actually fair prices, then joint coherence reduces, under some additional
technical conditions on the domaing and.Z, to Bayes’ rule plus the so-called-
conglomerability ofP ([28, Section 6.8]).

If P andP(-|%) are (jointly) coherent—we then also say tlRats coherent with
P(-|%)—a procedure of natural extension allows us to extend them to épaind
P'(:| %) which is the smallest jointly coherent pair that extends the PandP(-| %)
to all gambles of2. Note thatP’ is not necessarily equal to the (unconditional) natural
extension ofP alone, as it also has to take into account the behavioural consequences
of the assessments that are presef(ih)! As is the case for unconditional natural
extension, the natural extensioRsandP'(-|%) summarise the behavioural implica-
tions of P andP(:| %), only taking into account the consequences of (separate and)
joint coherence.

3 Afirst step toward generalising random sets

Let us also briefly recall the basic concepts in the theory of random sets. Consider a
so-called multi-valued mappirigtaking elements of aimitial spaceA to subsets of a

final spaceQ, i.e.,l': A — [J(Q). We assume throughout thatA) # 0 for all A € A

(but see Technical Remarks 1 and 2 below).

This kind of mapping has been given many different uses and interpretations. It has
for instance been employed as a model for the available information about a random
variable ([18]), when there is uncertainty due to missing data, measurement errors, or
simply imprecision in the observations. More generally, it has been used to model
relations between two spaces, in such diverse fields as economy ([8]) and stochastic
geometry ([16, 20]). In particular, as Walley has pointed out in [28], the refinement or
coarsening of a space can be modelled by means of a multi-valued mapping.

Dempster ([10], see also [15]) and, some years before him, Strassen ([25]) have
argued that the multi-valued mappihgurns a probability measure on the initial space
into a conjugate pair of lower and upper probabilities on the final space, in the following
manner.

Consider ag-field @7a on A, a o-field @7 on Q, and a probability measure
defined on the measurable spéddfe.c/y). We say that the multi-valued mappings
strongly measurabfewhenA, (and therefore alsé*) belong to«7, for all A € o/,
where

A.={AeN:T(A)CA}

is the so-calledower inverseand

A ={A eN:T(A)NA#0D}

3A detailed discussion of this notion is beyond the scope of this paper. We refer to [28, Chapter 6] for
an explicit formulation of the requirement of joint coherence, and for some of the more technical results that
we shall need in a number of the proofs that follow.

4Some authors impose different measurability conditions; for an overview see [15].



the upper inverseof A underl". In that case, we shall also céllarandom set The
lower probabilityP, and theupper probabilityP* induced byl” on .o are defined by

P.(A) =P(A,) andP*(A) = P(A"), A€ .

We shall concentrate below on the lower inverse, which is used to induce the lower
probability P,. It should be clear that working with the upper inverse leads to an anal-
ogous, and completely equivalent, course of reasoning.

Now let us consider the slightly more general case, wRasereplaced by a lower
probability P on the o-field <75 of subsets of\. We shall give detailed reasons for
wanting to do so in Section 4; see also related work by Augustin ([1, 2]) for earlier
explorations of this ideal” will now induce a lower probability, on theo-field of
subsetsg of Q through the formula

E* (A) = E(A*)7 Ac %97 (2)

provided that” is again strongly measurable. There is an interesting connection be-
tween potential properties & andP,. Consider a set functioag defined on a field»

of sets such that (0) = 0andu(A) > Ofor all A€ «7. Recall thaiu is calledmonotone

if for all Ay andAs in &7

AL C A= U(A) < u(Ag);
U is calledk-monotongwherek > 2) if for all Aq, ..., A in &

HALUA)Z Y () (A,
1.k

where|l| denotes the cardinality of the skt Observe thak-monotonicity implies
monotonicity. Finally,u is called anecessity measurié for any family (A;)ici of
elements of such thahic A € &

H(PiaA) = inf p(A).

Theorem 1. Let the lower probabilityP be defined on @-field <5 of subsets of\,
consider ao-field </, of subsets 0ofQ and assume thaft: A — [J(Q) is strongly
measurable with respect tey and .«%q.% If P, is the lower probability induced by
through Eq.(2), then: (i) if P avoids sure loss, so do&s; (ii) if P is coherent, so is
P.; (i) if Pis monotone, so iB,; (iv) if Pisk-monotone, so iR, (wherek > 2); and
(v) if Pis a necessity measure, sadAs®

SNotice that nothing essential is changed if we consider fields ratheitHimids as domains.

6An alternative proof of this fifth point could be given using the fact that for any necessity me@sure
there is a so-called antitone randomBgtand a probability? inducingP as a lower probability ([6], [21]);
indeed, any antitone random set and probability induce a necessity measure. Then, the lower probability
induced byl” would coincide with the one induced by the compositioit @indl"p. This composition is also
antitone and thus still induces a necessity measure.



Proof. To prove (i), assume th&t avoids sure loss. Consideiin N andAg, ...,Ayin
o. We first show that for alh € A:

ach lg'““’)] > _imm

Fix A in A and considew in ['(A). If A ¢ A, then clearlyla (w) > 0=1a,(A).
On the other hand, iA € A, thenT(A) C A;, whencew € A;. This implies that
Siila(w) > S 1a,(A) for all win [(A), which leads immediately to the desired
inequality. Using this result, we find that

325 Li[le) P.( ] 7321;2) LZIA ] ZP
Z/\SS/E)L;IA” ] ZLP —)?;JEL;[IAH(A)—P(A&*)]] >0,

where the last inequality holds becaulsavoids sure loss. We conclude tiatavoids
sure loss as well.

To prove (ii), assume th&is coherent. Then sind&in particular avoids sure loss,
we deduce from (i) tha, avoids sure loss as well. Moreover, considemdmin N
andAg, Aq, ..., Anin . Let us first show that for all in A:

Sggliw( — Miag (@ ] Z'A —Miag, (A).

Fix A in A. There are two possibilities. K ¢ Aq., then there is somey in I'(A) such
thatwy ¢ Ag. For thisw; we find using a similar course of reasoning as before that

5 ()=o) = 314 (00) > 31, (1) = 5 Ia, (1) ~miag A)

If on the other hand € Ag,, then for anywin '(A)

leA. — Ml (W) = lem(w)—mzlilm( -m= leAw —Miag, (A).



This proves the desired inequality. Using this result, we find that

sup [i[lm (@) =P, (A)] — Ml (w) — P, (Ao)]]

weQ |i=
:sug[im( —Mia, (@ ] le A)+mP,(Ao)

E?E/ELZJA'.*(A)”“AO ] Zip +mP )

= sup li['m*(/\) —P(AL)] —mlla,, (A) P(AO*)J

AEN |i=
>0,
where the last inequality holds becalsis coherent. We conclude th@f is coherent
as well.

The proof of (iii) is immediate taking into account thatf C A, thenAy, C A, as
well. To prove the last two statements, consider an arbitrary fafijly-, of elements
of an. If Nig Al € @/ then
and ifUig| Al € /g then

(VietAi), ={A e NiT(A) CUiaAi} 2 Ui {A e A T(A) CAL =UiclAi. (4)

Assume thaP is k-monotone, and considéy, ..., Ay in &4. It then follows from the
expressions (3)—(4) and the monotonicityRathat

P (AtU---UAY) — ; (—)"*P, (Nia A)
0AC{T,..., K}

>P(AL U UA) — S ()P AL) >0,

where the last inequality follows from tHemonotonicity ofP. It follows thatP, is
k-monotone.

Let us finally assume th& is a necessity measure. Consider any farfilyic| of
elements ofa/n such thahic A € @7 as well. Then it follows from Eqg. (3) that

P.(NiaA) = P((NiaiA).) = P(NialAi) = InfP(A.) = infP. (A)
SoP, is a necessity measure as well. O

The fourth point of this theorem generalises a result from [23], where it is shown
that the lower probability induced by a probability measure and a strongly measurable
multi-valued mapping is always completely monotone, kenonotone for all natu-
ral k > 2. Theorem 1 tells us in particular that this result still holds if instead of a
probability we have a completely monotone lower probability on the initial space.
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4 A more general approach

Although the generalisation of random sets studied in the previous section is fairly in-
tuitive and straightforward, it has a number of shortcomings. First of all, there is the
emphasis on lower probabilities and events, rather than lower previsions and gambles.
Although the languages of gambles and events are equally powerful when working with
precise probabilities, Walley ([28]) has shown that gambles are much more expressive
than events in the context of imprecise probabilities. Secondly, the domajrend

/g of the respective lower probabilitigsandP, were assumed to he-fields, and”

is assumed to be strongly measurable with respect to thdmdds. This is something

the theory of random sets has inherited from the Kolmogorov approach to precise prob-
ability theory, where probability measures can only be defined dields. We have
already mentioned above (see Section 2) that in Walley's theory of lower previsions,
and in de Finetti’s approach to precise probability theory ([7]), coherent lower previ-
sions as well as linear previsions can be definedrbitrary sets of gambles that need

not have any predefined structure at all, and they can be extended by natural extension
to lower previsions defined on all gambles. We would therefore like to be able to find
a method to use aarbitrary multi-valued mappind : A — [J(Q) to turn anarbitrary
coherent lower previsioR on anarbitrary set.#” of gambles om\ into a coherent

lower previsiondefined on all gamblesn Q, or even o\ x Q. Moreover, we would

like this method to have a clear behavioural interpretation and motivation.

4.1 A behavioural interpretation of the basic model

First of all, let us shed some light on the meaning of the multi-valued mappivde
consider two random variablésandO taking values iM\ andQ respectively. These
random variables are linked in the following wa§L assumes the valuke € A, then
we know thaD assumes a value in(A) C Q, and nothing elsé.

The problem we are faced with can then be analysed as follows. We consider a
subject who has two sources of information. First, there is information about which
value the random variable will assume in/\, and he models this throughcaherent
lower previsionP on some set#” of gambles om\.®

The second source of information is the given interpretation of the multi-valued
mappingl: if the subject knows that the random variablassumes the valuein A,
then he also knows that the random variaBlassumes a value in(A), and nothing
else. We shall now argue that this type of information can be modelled by a special
type ofconditional lower prevision

Consider the partitionZ = {{A} x Q: A € A} of the setA x Q. For anyA in
A, the occurrence of the evefih } x Q corresponds to our subject knowing that the
random variabld. assumes the valuk, and the conditional conditional lower previ-
sionP(-|{A} x Q) models the available information about the valu¢lafO) when he
knows thatL = A. Taking into account the interpretation fbroutlined above, this
means thaP(:[{A} x Q) should reflect that the subject knows ttihtO) assumes a

"This interpretation of the multi-valued mépessentially goes back to Strassen [25].
8In Section 5, we shall pay attention to the particular case where the set of gasibies o-field of
events, and relate the results from the present section with those of Section 3.
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value in the se{A} x '(A), and nothing more! We have seen in Section 2.5 that this
information should be modelled by the vacuous lower prevision relatiy# o< (A ):
for any gambleX on A x Q

E(X|{/\}XQ)ZE{A}XW)(X)Zwép{/\)x()\»w)- (5)

We shall also use the short notatiB(X|A) for P(X|{A} x Q). P(X]|A) is the supre-
mum price that our subject should be prepared to pay for the gaxniblee knew that
L assumed the valug and nothing else.

Eqg. (5) gives us the value of the conditional lower previdigX |A ) for all A € A.
As we explained in Section 2.6, we can summarise all this information through

P(X|#2) = % 18P(X|B) = % Ix}1xaP(X|A),
Be# AEN

which we also denote &(X|A). Observe thaP(X|A) can also be interpreted as a
gamble oM\ x Q, whose value ifA, w) is given byP(X|A).

In summary, the information in the multi-valued magan be represented by the
conditional lower previsiorP(-|A). This conditional lower prevision is a function of
two things: the gambleX and the elementd of A.

Important Remark 1. We shall frequently identify the spac#(A) with the space
of those gambles oN x Q that areconstanton Q, that is, those gambles satisfying
Z(A,w)=Z(A,) forall A € Aand allw, & in Q. Similarly, it is clear that we can
identify the space? (Q) with the gambles o x Q that are constant ofv. Let us give
two examples of this. First of all, given a gamilen A x Q andA € A, we can define
the gamblex? onA x Q by X* (v, w) = X(A, w) for all (v,w) € A x Q. Observe that
X2 is constant o\, so we can identify it with a gamble dd. Moreover?

PX|A)= inf X(A,w)= inf X*(A,w)=P(X*A).
P(X|A) LU (A, w) LU (A, w) =P(X*|A)

Secondly, we have just introduced the notation

PXIA) = 3 1ajxaP(X|A)
AEN

for the gamble o\ x Q that assumes the val®X|A ) in the elementA , w) of A x Q.
Note that this gamble is constant &) so we can identify it with a gamble ok ¢

If Ais asubset of\ x Q, and we leX = 4 in Eq. (5), then we find that for all in
N
P(AIA) = inf 1a(A,w) =1a,(A),

wel (A)

9This property does not only hold for the special choice of the conditional lower prevision we made in
Eq. (5). One can show (see [28, Lemma 6.2.4]) that it is a necessary consequensepéthée coherenad
any conditional lower previsioR(-|A). Hence, on our approach, it is this consequence of separate coherence
thata posterioriallows us to treat a conditional lower previsiB(Y |B) as if it were a lower prevision of some
conditional object |B; see also footnote 1.
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whereA, is the subset of\ defined by
Ac={AeN:{A}xT(A) CA}. (6)

If in particularA is a subset o€, then it follows immediately thafA x A), = A,, i.e.,

P(A x AJA) is the indicator function of the lower inverge = {A e A: T(A) C A} of

A, defined in the previous section. This means that the conditional lower prevision
P(-|\) extends the notion of a lower inverse.

Definition 1. Given a multi-valued mapping: A — [J(Q), we can associate with any
gambleX on A x Q its lower inverseX, = P(X|A), which is a gamble oA defined by
X5(A) =P(X|A) =infyern) X(A, w) forall A in A

Since for anyA in A, P(-|]A) has been defined as the vacuous lower prevision on
Z (A x Q) relative to the sefA } xI'(A), itis a coherent lower prevision. Since more-
overP({A} x Q|A) = 1sincel (A) # 0, we may conclude that the conditional lower
previsionP(:|A\) is separately coherent

Technical Remart. We assume in this paper that the Agt={A ¢ A: T(A) =0} is
empty. But, for technical mathematical reasons (see for instance [6]) it is sometimes
necessary to consider multi-valued mappifigg\ — [J(Q) for which there ar@ such
thatl"(A) = 0, i.e., for which/Ag is non-empty. This would only be compatible with

the given information thatO assumes a value In(A) if L = A’, and could thus only

then be incorporated in the present model if our subject were absolutely certain that
could never assume any value/ig, or in other words if

NG € 2 andP(AG) = 1, (7)

whereA§ = {A e A: T(A) # 0} is the set-theoretic complement of the gt This
means that the subject is prepared to bet at all odds against the eventa$aimes

a value in\g. ForA € Ag andX € .Z(A x Q) we could then leP(X|A) = P, (X*),
whereP, is any coherent lower prevision defined off (Q) and X* is the gamble
derived fromX in Important Remark 1. It turns out that, under this proviso, the course
of reasoning followed below would still be valid, and that the final result would not
be influenced by the choice of th®, (see Technical Remark 2 further on for more
details).¢

In summary, the available information has been represented by means of the coher-
ent lower previsiorP on ¢ and the separately coherent conditional lower prevision
P(-|A\) on Z (N x Q). These represent our subject’s commitments to buy certain gam-
bles, based on this information.

4.2 Making inferences based on the basic model

We are, however, interested in what can be inferred from these commitments, and
in particular, what they imply about whether or not the subject should buy a gamble
X e Z(N\ x Q) for a given price. As we have seen in Section 2, there is in the be-
havioural theory of lower previsions a general reasoning technique based on the notion
of coherence, calledatural extensionwhich can be used to make inferences from
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assessments of lower previsions. In the special case considered here, it follows from
Theorem 2 below that there is a smallest (and therefore most conservative or least com-
mittal) unconditional lower previsioR,, defined onZ (A x Q) by Eq. (8), that extends

the unconditional lower previsiddfrom ¢ to . (A x Q) and that is coherent with the
conditional lower previsioP(-|A). It is called thenatural extensiorof P andP(-|A)

to an unconditional lower prevision off (A x Q). Its behavioural meaning is clear:

for any gambleX on A x Q, P,(X) is the supremum price for which the subject can

be forced to buy the gambke by constructing a finite combination of buying transac-
tions that are implicit in hi$ andP(-|A) and that he is therefore committed to accept.

In this senseP,(X) is the supremum buying price fof that we can infer from the
assessmen@andP(-|A\).

Theorem 2. Let P be a coherent unconditional lower prevision defined.#h C
Z(N), and letP(:|\) be the separately coherent conditional lower prevision defined
on Z (A x Q) by Eq.(5). ThenP andP(-|A\) are (jointly) coherent. The smallest co-
herent lower prevision ot (A x Q) that extend$ from 7" to £ (A x Q) and that is
coherent withP(:|A\) is given by

P, (X) =E(P(X|N)) (8)

for all X € Z (A x Q), whereE is the (unconditional) natural extension of the lower
previsionP from " to .Z(A\), i.e., for all gamble¥ on A,

EW)- s int Y<A>k§1uk[zk<A>P<zk>J ‘

This theorem is an immediate consequence of Walley’s Marginal Extension The-
orem ([28, Theorem 6.7.2]). Note also that for any ganiblen A (or any gamble
Z constant omQQ) we have indeed (by separate coherence) thatP(Z|A) whence
P,(Z) = E(Z). In particular, this tells us th&,(Z) = P(Z) for all Z € %, or in other
words thaP, is a coherent extension Bf i.e. a coherent lower prevision that coincides
with Pon 7.

If we recall Definition 1, we see th@&, (X) = E(X) for all X in Z(A x Q), and
therefore the concept of natural extension allows us to (i) give a behavioural motiva-
tion for the notion of a lower probability induced by a multi-valued mapping, defined
in Section 3; and (ii) extend it from lower probabilities to lower previsions (or from
events to gambles). We have thus proven in a general context what Walley showed in a
different way and in a finitary setting in [28, Section 4.3]. We shall discuss these issues
in more detail in Section 5.

Technical RemarR. If we allow thatl' may assume empty values, i.8g # 0, then
Theorem 2 will still hold, provided that the lower previsiddg, defined onZ(Q) for

all A € Ag and mentioned in Technical Remark 1, are coherent, so that the conditional
lower previsionP(-|A) is still separately coherent. For any gamileon A x Q, its

lower inverseX, will now assume the valuB, (X*) in any elemen of A such that

(A) =0, soX, will depend on the (arbitrary) choice of thy . But if we make the
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assumptions summarised in Eq. (7), which are necessary for our behavioural interpre-
tation of I to make any sense, then it turns out thia natural extensiof®, is not
influenced in any way by the choice of Bg! Indeed, it follows from the coherence
of the lower previsiorP, andP,(Ag x Q) = 1— P, (A§ x Q) = 1—P(A§) = 0, that
P, (X) =P, (Xlagq) andPs (X) = Po(Xlagq).

The natural extensioR, can also be seen as a lower envelope of induced lower
previsions. This is an immediate consequence of a more general result on conditioning,
proven by Walley ([28, Section 6.7 and in particular 6.7.5]).

Theorem 3. LetP be a coherent lower prevision defined on a subgeof £ (A), and
let P(-|A\) be the separately coherent conditional lower prevision define@¢n x Q)
by Eq.(5). Let.# (P) be the set of linear previsions a#f (A\) that dominateP:

A (P) = {PeP(A): (VX e A)(P(X) > B(X))}.

Then the natural extensioR, of P and P(:|A) is the lower envelope of the natural
extension$, of P andP(-|A\) whereP € .Z (P): for all X in Z(A x Q)

P.(X)= min P,(X)= min P(X,).
B.(X) = i, PCX) = i, PO

4.3 What is the essential information?

We see in Theorem 2 th&, is calculated using the natural extensiBrof the lower
previsionP. One reason for this is of course that, although we have seen that the lower
inverseX, = P(X|A) of a gambleX € Z(A x Q) can be considered as a gamble on
A, we have no guarantee th¥t should belong to the domairt” of P. We should
therefore exteng to the coherent lower previsidh on the larger domai? (A).

But this brings us to an interesting problem. If we restrict the gam¥ldsat we
consider to the set

o ={XeLNAxQ): X, € X}

of those gambles whose lower inverse belongs#fowe can calculat®, (X) usingP
rather than its natural extensi@h asP,(X) = E(X,) = P(X,)! In other words, using
P alone, we can define the lower previsiBpon the set of gambles?” C £ (A x Q)
by

P;(X) =P(X.) =P(P(X|N)), X €2 )

Note that if we identify gambles of with gambles om\ x Q that are constant o,
we may write that?” C ,.¢, or in other wordsP,; actually extend®.

Of course, sinc® is assumed to be coherent and therefore coincides with its natural
extensionE on its domain’Z’, P, is nothing but the restriction of the coherent lower
previsionP, to ,.#", and is therefore coherent as well.

Proposition 4. If the lower previsiorP on ¢ is coherent, the®; is a coherent lower
prevision on,.% .
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The question that now arises, is the following: dégsessentially contain all the
information inP,, or in other words, i®, equal to the (unconditional) natural extension
E, of P to a lower prevision ottZ (A x Q), given by

n
Ei(X)= sup inf XA, w) =Y |Z(A, w) _P1<Zk)]1 (10)
n>0 (A, w)eAxQ &L
Zl,...,Znonf/
H1,....,Hin=0

for all X € Z(A x Q)? Or, to formulate it in yet another manner, does the following

diagram commute?
composition withP(-|A\)

P Py
nat. extl lnat. ext.
composition withP(-|A
E p P(|\) p

—0

We now show that this is indeed the case. The following lemma allows us to put the
question of whetheE; andP, coincide in a different perspective.

Lemma 5. The natural extensioi, of P; to .Z(A x Q) coincides with the natural
extensiorP, of P andP(:|A\) if and only if the lower previsioit, is coherent with the
conditional lower previsiorP(-|A).

Proof. It is clear that ifE; = P, thenE; is coherent withP(-|A), because we know
from Theorem 2 thaP, is. Conversely, ifE; is coherent withP(-|A), thenE; will
dominate on its domait¥’ (A x Q) the smallest coherent extensiBnof P andP(-|A\)
to an unconditional lower prevision off (A x Q). But, sinceP, is a coherent extension
of P4, it always dominates the smallest coherent exteriioof P, on £ (A x Q). This
proves thak,; andP, are equal. O

We now proceed to prove thet andP(:|A\) are indeed guaranteed to be coherent.

Lemma 6. Consider two gambleX; and X, on A x Q. If P(X1|A) = P(Xz|A), then
E1(X1) = E1(X2). Consequently, iP(X1|A) = 0thenE;(X1) =0.

Proof. First of all, we show that for any gamblein ,.#", E;(X) is the supremun of
all a € R such that there are integee> 0, real g, ..., Uun > 0andZy, ..., Zyin o %"
such that for alh e Aandw e I'(A),

=}

XA, w)—a > ulZe(A, w) = P(P(ZN))].
=1

It is clear from Eq. (10) tha& > E;(X). Conversely, considen > 0O, real u, ...,

Un > 0andz, ..., Z, in ,..¢ satisfying the above inequality. We can modify the
gamblesZy, ..., Z, on the set(A,w): w¢T(A)}, A € A, in such a way that the
above inequality is extended to all elementg\af Q. It is important to note that this
change will not affect th&(Z|A), so the modified gambles will still belong to7".

So indeed5 < E;(X).
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Next, assume tha®(X;|A) = P(Xz|A) and leta < E;(X1). Then we have just
proven that there are integet> 0, real s, ...Un > 0andZy, ..., Z, in ..# such that

=}

XA, w)—a = % w(Zk(A, w) —P(P(ZA))],
K=1

forallA € Aandw e ' (A). Define the gambleg onA x Q by Yi(A, w) = P(Z|A) for
all (A, w) € A x Q. TheseY, are constant o@ andP(Yk|A) = P(Zk|A), soYk € o7,
andY(A) = Yk(A, w) = infycrp) Z(A,v) < Z(A,w) forall A e Aandw € T(A).
Consequently,

XA @)—a > Y M)~ PROGIA))
k=1

forallA € Aandw € '(A). This is equivalent to

POGIA) ~a = inf Xi(A.w) > kiukmw — PRI,

for all A € A, and since we can replag®X;|A) with P(Xz|A) in this inequality, this
eventually leads back to

=}

Xo(A,w)—a > % p[Y(A) = P(P(YdA))],
=

forallA e Aandw € I'(A). This implies thaE,(X2) > a, whenceE;(X2) > E1(X1).
The same argument witky andX; interchanged leads t,(X2) = E;(X1). To prove
the last statement, assume tR&K;|A\) = 0 and letX, = 0. Then clearlyP(X|A\) =
0= P(X1|A), whenceE;(X1) = E;(X2) = E;(0) = 0, where the last equality follows
from the coherence d&;. O

Theorem 7. LetP be a coherent lower prevision defined on a subgebf £ (A), and
let P(:|A\) be the separately coherent conditional lower prevision define@¢h x Q)
by Eq.(5). LetP, be the coherent lower prevision defined o/ by Eq.(9), and let
E; be its (unconditional) natural extension 6 (A x Q). ThenE; coincides with the
natural extensiorP, of P andP(-|A) to an unconditional lower prevision o’ (A x
Q).

Proof. Since bottE; andP(-|A) are defined on the linear spag&A x Q), we can de-
duce from Walley’s Theorem 6.5.3 in [28] tHa} is coherent withP(-|A), and therefore
by Lemma 5 coincides witR,, if and only if the following conditions are verified for
all X in Z(Ax Q) andA in A:

CL. Ei(X—P(X|N) >0;
C2. Eq (IppxaX —P(X|A)]) =0.

We now show that this is indeed the case. First, we check that C1 holds. F&riany
Z(NAxQ),
X=P(X|N) = ljyyxalX =P(X|v)],

ven
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and so we find for alk in A that

X=PX|A)]o(A) = P(X=P(X|A)[A)

=, 3 1wya(h@)IX(A,w) - BX)

0t (X, @) —P(XIA)) =0

¢From Lemma 6, we deduce that(X — P(X|A)) = 0, so C1 holds. To check that C2
holds, observe that fof in 2 (A x Q) andA andv in A:

P (I palX —POXIIV) = inf 1.0V, @)X(v. @)~ PX|2)]

=l (v) inf [X(v,w)—P(X|v)] =0.

werl (v)

This tells us thafl;y.o[X —P(X|A)]]_ =0, and from Lemma 6 we may then infer
that alsoE; (I1x1xq[X —P(X|A)]) = 0, so C2 holds and therefo® andP(-|A) are
coherent. O

5 Application to random sets

Let us now apply what we have learnt in the previous section to the problem we studied
in Section 3. We again consider a coherent lower probalfiligfined on a-field .a7p

of subsets of\, as well as ar-field <75 of subsets of2, and a multi-valued mapping

I: A —0(Q) that is strongly measurable with respect to thesféelds.

Then we can extenB to a lower previsiorP, = E(P(:|\)) on . Z(A x Q) that is
the natural extension & andP(-|A\). HereE is the (unconditional) natural extension
of the lower probabilityP to a lower prevision onZ(A). In particular, we conclude
from Eq. (6) that for any everi in <7, P(A x A|A) is the indicator function of the
setA, = {A € A: T(A) C A}, which belongs tozs sincerl is strongly measurable.
Consequently,

P.(AxA)=P({A €A1 T(A) CA}) =P.(A).

In other words, the natural extensionR&ndP(-|A\) to the set of eventsr, is nothing

but the induced lower probabilit, defined in Section 3! This gives a behavioural
interpretation to this induced lower probability, but at the same time, it provides us
with a natural way to extend it to a lower prevision /(Q), i.e., to associate a kind

of ‘integral’ with the induced lower probability, by restricti®), to gambles or© (or
constant om\): for all X in Z(Q), P, (X) = E(infer ) X(w)).

To give an example, P is a finitely additive probability? on <75, and therefore in
particular completely monotone, the induced lower probalilitgn <7 is completely
monotone as well by Theorem 1 (it is a so-called belief function ([24}) i§ finite).
This lower probability was given an evidential interpretation in [24], and it can now
be given a clear behavioural interpretatiéh(A) is the supremum acceptable buying
price for the gambléa—or equivalently, the supremum rate for betting on the event
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A—taking into account the behavioural dispositions expressed bothdnd by the
conditional lower previsio®(-|A) associated with the multi-valued mappifg

This leads us to another interesting question. As before, let us den®e e
restriction ofP, to o5, i.e.,P, is the induced lower probability mentioned in Section 3,
and letE, be its (unconditional) natural extension to all gambleS0oiThen we can ask
ourselves i, contains enough information in order to calculBteon «7o-measurable
gambles. In other words, d&, andP, coincide on«/g-measurable gambles?

To illustrate this question, let us again consider the case?isaa finitely additive
probability P, soP, = P, is completely monotone. Since the natural extension of a
2-monotone lower probability is given by Choquet integration ([27], see also [11]), we
find thatE(X,) = (C) [, X, dP. We would like to know if this coincides with the natural
extensiorg, of P, to .#(Q), which is given byE, (X) = (C) [ X dP.. In this particular
case, the equality far/o-measurableX indeed follows from a result by Wasserman
(which we can find in [14]). But we would like to find out whether such an equality
can be proven for more general types of lower probabilBies

We shall see below that this is only guaranteed to succeed if the lower probability
P is 2-monotone. But, as a first step, let us motivate by means of a counter-example
why we only seek to prove the equality fofo-measurable gambles.

Examplel. Consider an arbitrary non-empty gethat contains at least two elements,
and letQ = A. Let op =0 (M), o = {0,Q} and letl: A — [J(Q) be defined by
F(A)={A}forall A € A. ThisT is strongly measurable with respect4g, and.«7,.
Consider a coherent lower probabili/defined onaz,, and such that there is some
proper subsed of A with 0 < P(A) < 1. Clearly,A ¢ </n. We know that{A x A), =
{AeN: {A}xT(A) CAxA} =A, whenceP (A x A) = P(A) > 0. On the other
hand, the lower probabilitf?, induced one/, is completely specified b, (0) = 0
andP,(Q) = 1. Itis easy to show using the definition (1) of natural extension that
E.(A) = 0 sinceA # Q.10 This shows that generally speakify andE, need not
coincide on events (and gambles) that aresigtmeasurable¢

Let us now first assume that the lower probabilttgn <75 is 2-monotone. We have
seen in Theorem 1 that the induced lower probabRifyon <7, is 2-monotone as well.
We then have the following theorem.

Theorem 8. LetP be a 2-monotone lower probability defined on thdield </, on A,
and letP, be the 2-monotone lower probability defined on théeld o7 by

P.(A)=P({A eA:T(A) CA}), Acan,

wherel : A — [J(Q) is strongly measurable with respect tg, and «%. Then the
natural extensiorE, of P, coincides on«/o-measurable gambles with the natural
extensiorP, of P andP(-|A). In particular, we have for anyzg-measurable gamble
X onQ that

E*(X):(C)/QXdE*z(C)//\XodEZEo(X),

where the integrals are Choquet integrals [11].

10Alternatively, observe tha, is vacuous, so its natural extension is vacuous as well.
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Proof. Let X be a gamble of) that is.«Zo-measurable. Then there is a sequef)g

of @/o-measurable simple gambles converging uniformlyXto Since, by Walley’s
Theorem 2.6.1(l) in [28]Q(X,) — Q(X) for any coherent lower previsid@ defined on

the «%o-measurable gambles, we see that it suffices to prove the equality of the coherent
E, andP, for simple «@Zo-measurable gambles. Assume therefore ¥a simple.

Then we can writeX = S}_; X, whereF € @p, R C Fq for k=1,...,n—1,
Fn=Q, andxc > 0fork=1,...,n— 1. Since the natural extension of a 2-monotone
lower prevision is given by Choquet integration, we find that

E.(X) = (©) [ XA, = 5 %P () = 3 w(Fi)

It is not difficult to prove thatX, is a simple gamble oA with representation, =
S o1 X%lr ., where alsd, € @, R, € R, fork=1,...,n—1andF,, = A; hence,
we see that

5 %P(F) = (©) [ X.dP = E(X.) = P.(X).
3 %R =(©) | (%) =B.(X)

where the one but last equality follows from the fact that the natural extension of the
2-monotone lower probabilit® is also given by Choquet integration. O

As stated before, this theorem generalises results given by Wasserman; it also
proves what was essentially hinted at in [6, Remark 2]. It seems easy to generalise
it to not necessarily bounded gambles, using limit arguments. It could also fairly eas-
ily be generalised to lower probabiliti¢sdefined on a field, rather thanafield of
events.

The following counterexample shows tiatandP, need not coincide for altz,-
measurable gambles whéhis not 2-monotone. It is based on an idea expressed in
Theorem 6.2 in [27], and it uses the central result (Theorem 7) of the previous section.

Example2. Conside\ = {a,b,c,d} and letQ = A. Let.e/p =L (A), and letep be the
(o-)field generated by the partitiofa},{b},{c,d}}. Let': A — [J(Q) be defined
by(A)={A}forall A € A. Thenl is strongly measurable with respect4g, and
0.

Consider the lower probabilit on <75 given by the lower envelope of the prob-
ability measures with mass functio(&25,0.25,0.25,0.25), (0.5,0.5,0,0). It is clear
thatP is coherent, since any lower envelope is. HoweRédg not 2-monotone:

3
P({ach)+P({ad})=1> 7 =P({ac.d})+E({a}).

On the other hand, the lower probabilRy induced byl" on <7 is nothing but the
restriction ofP to ./, which is 2-monotone, sinceyg, is generated by only three atoms,
and it is easy to show that any coherent lower probability defined a field generated by
at most three atoms is necessarily 2-monotone. Consider the sisgplaeasurable
gamble

Z=ltacy +l{ady = lfap + lacay-
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Then, since the natural extensi@) of the 2-monotoneP, is given by Choquet-
integration for«/g-measurable gambles, we see that

3
E.(2)= (C)/QZdE* =P.({a}) +P.({a.c.d}) =P({a}) + P({a.c.d}) = 7.
On the other hand, if we use the notation established in the previous section, the set
OMAZ{XEX(/\XQ)Z XOE%/\}

contains the setA x A: A C Q}, or, with some abuse of notation, contalh&). Note

that the restriction o4 to [ (Q) is nothing but the original lower probabilify, so the
natural extensioiE of P will be dominated on its domait?’ (Q) — recall thatQ = A —

by the natural extensioR, of P, (see Theorem 7 for more details). In particular, this
means that, sincg is coherent and therefore superadditive, and since it coincides with
P on events (becaugeis coherent):

P,(Z) > E(Z) =E(l{ac} +lad)) = E(l{ac)) + E(l{ady)
=P({ac})+P({ad}) =1

This means tha®,(Z) > E,(Z), and therefore the natural extensiénof P, does not
coincide with the natural extensiéh of P andP(-|A) for all «/-measurable gambles.
¢

6 Conclusions

In this paper, we have started a study of lower probabilities and lower previsions in-
duced by multi-valued mappings, from the behavioural point of view, following the
suggestions in [28] and [6]. We have given a behavioural interpretation and justifica-
tion for the definitions of induced lower (and upper) probabilities that are commonly
used in the literature. This justification is based on the notions of coherence and natural
extension, which play a central part in the behavioural theory of imprecise probabili-
ties. It leads in a very natural way to the generalisation of the notions of induced lower
(and upper) probabilities that we have studied above, and which allows us to associate
a kind of integral with them. We have seen that (only) under some conditions this
integral is a Choquet integral.

It is moreover clear from the results we proved in the previous section that our
approach also allows us to study existing problems in the theory of random sets from a
new, different point of view. It turns out that it is once again the notions of coherence
and natural extension that lead to alternative proofs for, and generalisations of, existing
theorems. This provides evidence for their unifying and explanatory power.

There is a simple idea underlying the arguments of this paper, namely thalti-
valued map represents conditional information, and that this information can be rep-
resented by a (specific) conditional lower previsiomo put this idea in its proper
perspective, let us first consider the simpler casesifhglevalued mapy between the
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initial spaceN and the final spac@. Given a precise probability on the initial space
A, such a map induces a precise probabHgyon the final spac@ by

Py/(A) =P(y 1(A)) =P({A €At y(A) € A})

for subset#\ of Q.11 For gamble onQ, we have the well-known ‘change of variables
result’ for previsions or expectations (i.e., for the Lebesgue integrals associated with
the probabilities):

EpV(X):/QXdPy:/AXoydP:Ep(Xoy). (11)

The interpretation oEp, becomes immediate if we interpret the maps conditional
information: if the random variabld. assumes the valuein A, then we know thaD
assumes the valugA) in Q. This information can be represented by the following
conditional linear previsioR(-|/\): for all gamblesX on Q and allA € A,

P(X|A) =X(y(A)) = (Xeoy)(A),

i.e.,P(:]A) is the precise probability o all of whose probability mass lies in the point
y(A). We can now find the prevision (or expectation) of the garxbilyy combining the
marginal previsiorEp on the spacé\, and the conditional previsioR(-|A): using an
appropriate version of the law of total probability, or equivalently, the precise version
of Walley’s Marginal Extension Theorem ([28, Theorem 6.7.2]), or in other words,
natural extension, we find for the previsiBX) of the gambleX that

P(X) = Ep(P(X|A)) = Ep(X o) = En, (X), (12)

where the last equality follows from Eq. (11). This tells us ¥afor equivalentlyEp,)

is the probabilistic information of that can be deduced form the marginal madeel
on A and the conditional modé?(-|A\) that represents the information present in the
mapy.

When we want to generalise this course of reasoning from single-valued ymaps
to multi-valued map$, we face the following problem: the information present in the
multi-valued mappind can no longer be represented by a conditidinalar prevision.

In other words, if we want to remain within the framework of precise probability theory,
we must abandon the simple and powerful device of interprdtiag conditional in-
formation. But if we work with the theory of imprecise probabilities, it is still perfectly
possible to interprefl as conditional information that can be represented by a special
conditionallower prevision (see Eq. (5)). And so, the whole argument outlined above
can be extended from single-to multi-valued mappings, which is essentially what we
have done in this paper. Observe, in this respect, that Theorem 2 generalises Eq. (12),
and that Eq. (11) is a special case of Theorem 8.

As a topic for future research, we intend to investigate whether these notions also
allow us to shed new light on other existing problems in the theory of multi-valued
mappings, such as how to define independence, and how to provide a behavioural in-
terpretation to existing definitions of independence.

11| et us dispense with technical aspects of measurability here.

22



Acknowledgements

This paper was written during a visit of Enrique Miranda to the SYSTeMS group at
Ghent University, and has been partially funded by FEDER-MCYT, grant nhumber
BFM2001-3515, and URJC, PPR-2003-41, as well as by Research Project G.0139.01
of the Fund for Scientific Research, Flanders, Belgium. The scientific responsability
rests with the authors. They would also like to acknowledge a number of insightful
comments and suggestions for improvement made by two anonymous referees.

References

[1] Th. Augustin. Modelling weak information with generalised probability assign-
ments. In H. H. Bock and W. Polasek, editoBata Analysis and Information
Systems — Statistical and Conceptual Approachages 101-113. Springer Ver-
lag, Heidelberg, 1996.

[2] Th. Augustin. Generalized basic probability assignaméntsrnational Journal
of General System2004. Conditionally accepted for publication.

[3] J. O. Berger. The robust Bayesian viewpoint. In J. B. Kadane, eftdnistness
of Bayesian Analysepages 63-144. Elsevier Science, Amsterdam, 1984.

[4] G. Choquet. Theory of capacitiesAnnales de I'Institut Fourigr5:131-295,
1953-1954.

[5] I. Couso, S. Moral, and P. Walley. Examples of independence for imprecise prob-
abilities. Risk Decision and Poligys(2):165-181, 2000.

[6] G.de Cooman and D. Aeyels. A random set description of a possibility measure
and its natural extensiohEEE Transactions on Systems, Man and Cybernetics—
Part A: Systems and Humgr0(2):124-130, 2000.

[7] B. de Finetti.Theory of Probability John Wiley & Sons, Chichester, 1974-1975.
English Translation oTeoria delle Probabili.

[8] G. Debreu. Integration of correspondencesPtaceedings of the Fifth Berkeley
Symposium of Mathematical Statistics and Probabipigges 351-372, Berkeley,
1965.

[9] A. P. Dempster. Upper and lower probabilities generated by a random closed
interval. Annals of Mathematical Statistic39:957-966, 1967.

[10] A.P. Dempster. Upper and lower probabilities induced by a multivalued mapping.
Annals of Mathematical Statistic38:325-339, 1967.

[11] D. Denneberg. Non-Additive Measure and IntegralKluwer Academic, Dor-
drecht, 1994.

23



[12] F. J. Giron and S. Rios. Quasi-Bayesian behaviour: A more realistic approach
to decision making? In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and
A. F. M. Smith, editorsBayesian Statisticpages 17—-38. Valencia University
Press, Valencia, 1980.

[13] I. R. Goodman, H. T. Nguyen and E. A. Walk&onditional inference and logic
for intelligent systemsNorth-Holland, Amsterdam, 1991.

[14] M. Grabisch, H. T. Nguyen, and E. A. WalkeFFundamentals of Uncertainty
Calculi with Applications to Fuzzy Inferenciluwer Academic Publishers, Dor-
drecht, 1995.

[15] C.J. Himmelberg. Measurable relatiofaindamenta Mathematica87:53-72,
1975.

[16] D. G. Kendall. Foundations of a theory of random sets. In E. F. Harding and D. G.
Kendall, editorsStochastic Geometrpages 322—-376. Wiley, New York, 1974.

[17] A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnurgpringer,
Berlin, 1933.

[18] R. Kruse and K. D. Meyer.Statistics with Vague DataD. Reidel Publishing
Company, Dordrecht, 1987.

[19] I. Levi. The Enterprise of KnowledgMIT Press, London, 1980.

[20] G. Matheron. Random Sets and Integral Geometrjohn Wiley & Sons, New
York, 1975.

[21] E. Miranda, I. Couso, and P. Gil. A random set characterization of possibility
measuresinformation Science2004. Accepted for publication.

[22] E. Miranda, G. de Cooman, and |. Couso. Imprecise probabilities induced by
multi-valued mappings. IProceedings of the Ninth International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU 2002, Annecy, France, July 1-5, 208&)es 1061-1068. Guten-
berg, 2002.

[23] H. T. Nguyen. On random sets and belief functiodsurnal of Mathematical
Analysis and Application$5(3):531-542, 1978.

[24] G. Shafer. A Mathematical Theory of EvidencePrinceton University Press,
Princeton, NJ, 1976.

[25] V. Strassen. MeRfehler und Informatiafeitschrift fir Wahrscheinlichkeitstheo-
rie und Verwandte Gebiet@:273-305, 1964.

[26] M. Sugeno. The Theory of Fuzzy Integrals and Its ApplicationBhD thesis,
Tokyo Institute of Technology, Tokyo, 1974.

24



[27] P. Walley. Coherent lower (and upper) probabilities. Statistics Research Report
22, University of Warwick, Coventry, 1981.

[28] P. Walley.Statistical Reasoning with Imprecise Probabiliti€hapman and Hall,
London, 1991.

25



