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Abstract

In this paper we formulate the problem of inference under incomplete information in
very general terms. This includes modelling the process responsible for the incompleteness,
which we call the incompleteness process. We allow the process’ behaviour to be partly
unknown. Then we use Walley’s theory of coherent lower previsions, a generalisation of the
Bayesian theory to imprecision, to derive the rule to update beliefs under incompleteness
that logically follows from our assumptions, and that we call conservative inference rule.
This rule has some remarkable properties: it is an abstract rule to update beliefs that can be
applied in any situation or domain; it gives us the opportunity to be neither too optimistic
nor too pessimistic about the incompleteness process, which is a necessary condition to
draw reliable while strong enough conclusions; and it is a coherent rule, in the sense that it
cannot lead to inconsistencies. We give examples to show how the new rule can be applied
in expert systems, in parametric statistical inference, and in pattern classification, and
discuss more generally the view of incompleteness processes defended here as well as some
of its consequences.

1. Introduction

We consider a very general inference problem: we want to draw conclusions Z from the
observation of facts Y . Here Z and Y are variables that are related, in the sense that
observing the value y of Y in Y may change our beliefs about which value z the target
variable Z assumes in Z.1

Although apparently simple, the above setting already captures the main features of
many important problems, such as making inference in expert systems, learning the values
of some statistical parameters from data, learning from data how to classify new objects
into one out of a set of preestablished categories (i.e., doing so-called pattern classification),
and others.

Let us make this more concrete with the help of the graphical language of Bayesian
networks (Pearl, 1988):2 consider the well-known ‘Asia’ net displayed in Figure 1, which
is intended to model an artificial medical problem. The nodes of a Bayesian network are

*. Preliminary work on the topic of this paper appeared in the proceedings of ISIPTA ’05: the fourth
International Symposium on Imprecise Probabilities and Their Applications (Zaffalon, 2005).

1. Throughout the paper, we shall maintain the convention of using capital letters for variables, the cor-
responding calligraphic letters for their spaces of possibilities, and lower-case letters for the elements of
such spaces.

2. The results in the present paper are not restricted to the case of Bayesian networks, but since they can
be applied to Bayesian networks, we often use them to convey the intuition more easily.
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Figure 1: The Bayesian network called Asia. The letters in parentheses denote the variables
corresponding to each node. Each variable, say X, is assumed to be binary with
states x′ for ‘yes’ and x′′ for ‘no’.

variables and the arcs model probabilistic dependencies between them; each node holds the
probability distribution of the node itself given any joint state of the parent nodes. The
probabilities making up these distributions are also called the parameters of the network.

Now, if we assume that the network (both the graph and the parameters) is provided
by a domain expert, then we are in the field of expert systems. Say that the network is
used for diagnosing lung cancer; in this case R is the target node while the others are used
to predict the value of R. Therefore in this case Z corresponds to R and Y is the vector
(V,K,B,H,O,L,A). In another situation, we may want to infer some of the parameters
from data. For example, denote by Θ the chance that there is tuberculosis conditional on
a recent visit to Asia, and say that there is the possibility to collect a sample D of joint
values of B and V from which we wish to infer the value of Θ. In this problem of so-called
parametric inference, Z corresponds to Θ and Y to the sample D. Finally, say that our goal
is to use the Asia net to learn from data how to diagnose lung cancer, i.e., to predict the state
of R for the next patient we see, whom we characterise by the vector (V,K,B,H,O,L,A).
In this case we need to collect, in a data set D, the values of all the variables in the network
for the past patients. This data set is exploited to infer the parameters of the Asia net, which
is then used for classification by predicting the value of R as in the case of expert systems.
Therefore, when the focus is on pattern classification, Z corresponds to the so-called class
variable, namely R, while Y is the tuple (D,V,K,B,H,O,L,A).
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The common feature of all the previous examples is that observing Y is useful for
inferring Z, and indeed this is the reason why Y has been introduced in the model. But
there is a subtle point about observing Y that is important to realise: very often, the
observation of a fact does not coincide with the fact itself. For example, consider again the
Asia network, focusing on the problem of parametric inference: in this case, it may well
happen that we make mistakes while collecting the values of B and V in a sample; we might
for instance mix up some ‘yes’ values with ‘no’ values. It is useful to regard this situation as
related to two levels of information: the latent level of the actual sample that records the
right values of the variables, and the manifest level of the observed sample, which is related
to, but does not necessarily coincide with the actual sample, and which is going to be used
for the inference. We can exploit the paradigm based on the latent and the manifest level
more generally as a powerful conceptual tool. For instance, when we use the Asia network
as an expert system, it may be the case that for a certain patient characterised by the vector
of values (v′, k′′, b′′, h′′, o′, l′, a′), it is only possible to access the values of the variables H and
A. Therefore our observation of the characteristics of the patient will be (?, ?, ?, h′′, ?, ?, a′),
where we denote the symbol of missing value by a question mark. Again, we can think of
the former vector as latent and the latter as manifest. More generally speaking, the idea
underlying the present discussion is that the devices that we use to observe Y , whatever
they are, may not let us see Y exactly as it is.

In order to account for this problem, we explicitly model the observation of Y by a
new variable W , taking values in a finite set W of possible observations. We call W the
observation of Y . In our previous terminology, W is a manifest variable while Y is a latent
one. In other words, we regard W as the output of the process of observing facts, which
is called the observational process in this paper (other authors call it the measurement
process). We can think of many different types of observational processes. In this paper
we restrict the attention to the special case of observational processes called incompleteness
processes (IPs). IPs are processes that lead to set-valued observations by coarsening facts.
A special case of IPs are missingness processes, i.e., those that turn some facts into their
entire possibility space.

For example, the process that prevented some of the variables from being observed in
the expert system case is a coarsening process: it has turned the fact (v′, k′′, b′′, h′′, o′, l′, a′)
into the observation (?, ?, ?, h′′, ?, ?, a′), which can be regarded as the set of the 25 complete
vectors obtained by replacing the question marks with values of the unobserved variables
in all the possible ways. On the other hand, if we take the fact under consideration to be
a single variable, say V , then the process that makes V not observed is just a missingness
process as writing a question mark is equivalent to writing the entire possibility space for
such a variable.3

Missing or coarsened data are indeed a commonplace with expert systems, because
the evidence on which an inference task is based is usually incomplete. But they arise
frequently also in many other fields; in data mining, just to mention one, missing data are
a pervasive problem in applications as well as an important theoretical area of research. In

3. With IPs it makes sense to introduce the additional variable W even only because the incomplete
observations are not in the possibility space for Y ; in the case of the Asia net, this happens because
the symbol ‘?’ is not a possible value for any variable; observations that contain question marks must
necessarily be in the possibility space of W .
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other words, the challenges posed by IPs are widespread. This also means that the problem
of incomplete information appears to be a fundamental component of the general task of
uncertain reasoning; it is conceptually deep and leads to complicated problems in practice.

Moreover, while we have powerful theoretical tools for the general task of uncertain rea-
soning, such as Bayes rule and its generalisations, there are few tools for uncertain reasoning
under incompleteness in the general case. Currently, the most popular approach is based on
the assumption that the IP produces incompleteness by coarsening facts at random, which
means non-selectively. The assumption that models non-selectiveness is called coarsening
at random (CAR (Gill, Van der Laan, & Robins, 1997), or MAR (Little & Rubin, 1987),
i.e., missing at random, in the special case of missingness processes; see also (Jaeger, 2008)).
CAR implies that the incompleteness is non-informative and can be ignored; it thus creates
the formal basis for applying the methods developed for complete information to the incom-
plete case. For example, if we assume that the vector (?, ?, ?, h′′, ?, ?, a′) has been created
by a CAR IP, then we are allowed to infer the value of R on the sole basis of the sub-vector
(h′′, a′); more precisely, if we aim at computing the posterior probability of R = r′, CAR
allows us to write P (R = r′|W = (?, ?, ?, h′′, ?, ?, a′)) = P (R = r′|H = h′′, A = a′). But this
is not the case in general.

In fact, incompleteness may well be informative. For example, in the Asia network, it
may be the case that the information on whether or not a person has been to Asia is not
provided with the same frequency in the two groups. This is an example of incompleteness
generated within a communication protocol, where giving or not some information is a key
part of the communication. This somewhat selective way of reporting information, albeit
very frequent, is not compatible with the CAR assumption. This was pointed out long ago
in (Shafer, 1985), who also has outlined the implications as well as the complications for
uncertain reasoning: among these, the fact that modelling IPs can be a very difficult task.
More recently, it has been used to argue against the frequent use of CAR (Grünwald &
Halpern, 2003); by now there is a large agreement in the scientific community that CAR is
strong, and hence inappropriate in many situations (see (Manski, 2003)).

De Cooman and Zaffalon (de Cooman & Zaffalon, 2004) tried to remedy this by an
approach to IPs alternative to CAR that is based on coherent lower previsions (Walley,
1991), i.e., closed convex sets of probabilities also called credal sets in (Levi, 1980). This
has led to a rule for updating beliefs under incomplete information in expert systems called
the conservative updating rule (CUR).

If we regard CAR as the most optimistic approach to incomplete information, CUR
should be regarded as the most pessimistic: it does not assume nearly anything about
the IP, and in practice it leads to inference based on working with the set of all facts
consistent with (i.e., all the completions of) the incomplete information at hand. In
the previous example in which we wish to compute the posterior probability of R = r′,
CUR leads us to consider all the 25 completions of the vector (?, ?, ?, h′′, ?, ?, a′), i.e.,
(v, k, b, h′′, o, l, a′), v ∈ V, k ∈ K, b ∈ B, o ∈ O, l ∈ L, and to compute for each of
them P (r′|v, k, b, h′′, o, l, a′). The posterior inference is then summarised by the lower and
upper probabilities P (R = r′|W = (?, ?, ?, h′′, ?, ?, a′)) := minv,k,b,o,l P (r′|v, k, b, h′′, o, l, a′)
and P (R = r′|W = (?, ?, ?, h′′, ?, ?, a′)) := maxv,k,b,o,l P (r′|v, k, b, h′′, o, l, a′). In other words,
the inference is imprecise, i.e., the width of the interval determined by the lower and up-
per probabilities does not need to be zero, as a logical consequence of the ignorance CUR
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assumes about the IP. As an interesting side remark, CUR is as flexible as CAR in dealing
with incomplete data: both of them eventually lead to conclusions that depend only on the
Y variable. The W variable at a certain point of the derivation cancels out.

CUR has some drawbacks. It forces us to always assume ignorance about the IP, even
when we know that the process is CAR, for instance. This could be the case of the previous
example in which we might know that the variables B,O,L are subject to a CAR IP; by
using CUR we should be obliged to ignore this information and take all of their completions,
as above; and this would lead to inference that is much too weak. Furthermore, CUR has
been developed for expert systems only. It cannot be applied to parametric inference when
the parameter space is infinite, and some other limitation in the assumptions leading to
CUR may sometimes prevent it from being applied more generally.

This paper is an attempt to get the best out of CAR and CUR. We assume that the IP
is actually made of two parts, one that acts as a CAR process and another that is unknown
to us. Then we use the theory of coherent lower previsions to derive the corresponding rule,
which we call the conservative inference rule (CIR).

CIR has the following properties:

• Much like traditional, CAR-based, updating, and unlike CUR, it is a rule for the
abstract task of updating beliefs on the basis of observations. As such, it can be
applied in every situation. With CIR, different applications follow by simply giving
different meanings to facts Y , observations W , and to the quantity Z in which we are
interested.

• CIR allows all the variables involved in an analysis, except for W and Y , to take values
from infinite spaces (CUR allows only finite spaces). This allows us to easily focus
on statistical problems where the goal of inference is often the value of a continuous
parameter, or in problems where we also use auxiliary continuous variables that are
later ‘marginalised’ out to build our model.

• It can deal with incomplete observations, not only missing ones as CUR.

• Finally, and importantly, CIR is shown to lead to self-consistent (or coherent) inference
in the strong sense of (Walley, 1991, Section 7.1.4(b)).

CIR leads to treat the information made incomplete by the CAR IP similarly to the tradi-
tional updating, and that subject to the unknown one similarly to CUR. As an example, con-
sider again the vector (?, ?, ?, h′′, ?, ?, a′) by assuming that the variables B,O,L are subject
to a CAR IP and V,K to an IP whose behaviour is unknown to us. CIR leads to the following
posterior lower and upper probabilities for R = r′: P (R = r′|W = (?, ?, ?, h′′, ?, ?, a′)) :=
minv,k P (r′|v, k, h′′, a′) and P (R = r′|W = (?, ?, ?, h′′, ?, ?, a′)) := maxv,k P (r′|v, k, h′′, a′).
If, in addition, we know that only two completions of V,K make sense, say (v′, k′′) and
(v′′, k′) (this means that the unknown IP is a coarsening rather than a missingness process),
the ability of CIR to deal with coarsening processes allows it to take advantage of such an
information, leading to the more informative lower and upper probabilities obtained opti-
mising only over those two completions. Furthermore, CIR leads to inference that is based,
as its predecessors, only on facts, not on the W variable.
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We have tried to organise this paper so as to make it more accessible also to the readers
that prefer not to go into the formal proofs behind CIR. In particular, the paper is logically
divided in two parts. The first part, up to and including Section 5, is intended to describe
what can be obtained by CIR and its scope of application. Therefore this part briefly
gives some introductory material that is needed to define CIR, such as some notions of
coherent lower previsions in Section 2 and of incompleteness processes in Section 3. The
definition of CIR is given in Section 4. We discuss its significance and compare it with
CUR in Section 4.1. Then we show how CIR can be applied to probabilistic expert systems
(Section 5.1), parametric inference (Section 5.2), and pattern classification (Section 5.3),
each time giving also an example. In this first part we also discuss a number of properties and
consequences of the wider view of IPs that we are defending here (e.g., Sections 5.2.2–5.2.3).
Some of these (Section 5.3.2) are particularly important for data mining; this depends on
the fact that it is usually not possible to learn about the IP from data, and yet the inferences
we do may critically depend on it.

The second part of this paper is more technical as it works out the foundations of CIR.
To this aim, we first give advanced notions about coherent lower previsions in Section 6.1,
such as updating, independence, and coherence in the sense of (Walley, 1991). Then we
state a number of probabilistic assumptions in Section 6.2, including CAR, discuss them in
Section 6.3 (CAR is also discussed further in Appendix A) and derive CIR in Section 6.4.
The parts that are even more technical, and which are needed to show that applying CIR
cannot lead to inconsistencies, are relegated to Appendix B.

2. Coherent lower previsions

We give a short introduction to the concepts and results from the behavioural theory of
imprecise probabilities that we shall need to introduce the conservative inference rule. We
refer the reader to (Walley, 1991) for an in-depth study of coherent lower previsions, and
to (Miranda, 2008a) for a survey of the theory.

Consider a possibility space Ω. It may represent for instance the set of possible outcomes
ω of an experiment. In the theory of coherent lower previsions, the beliefs about the
likelihood of these outcomes are represented by means of lower previsions of gambles on Ω:

Definition 1 Given a possibility space Ω, a gamble is a bounded real-valued function on
Ω. The set of all gambles on Ω is denoted by L(Ω). A lower prevision P is a real functional
defined on some set of gambles K ⊆ L(Ω).

A gamble f represents a random reward, which depends on the a priori unknown value ω
of Ω. A lower prevision P on a set of gambles K represents a subject’s supremum acceptable
buying prices for these gambles, in the sense that for all ε > 0 and all f in K, the subject
is disposed to accept the uncertain reward f −P (f) + ε, where P (f) and ε can also be seen
as constant gambles that are identically equal to the real values P (f) and ε, respectively.4

Intuitively, lower previsions represent lower expectations of gambles: our subject should be

4. We say then that the gamble f − P (f) + ε is desirable for our subject, and that f − P (f) is almost-
desirable. It follows from this interpretation that the set of desirable (resp., almost-desirable) gambles
should be closed under addition and multiplication by non-negative reals, and that a gamble f that
dominates a desirable gamble g should also be desirable (resp., almost-desirable).
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disposed to buy a gamble for anything smaller than the expected reward; however, his lack
of knowledge about the probability of the different rewards may enable him only to give a
lower bound for this expectation, accepting then any buying price smaller than this bound.
The bound is his lower prevision for the gamble.

We shall use IA to denote a special type of gamble: the indicator function of the set A,
i.e., the function whose value is 1 for the elements of A and 0 elsewhere. We shall sometimes
use the notation P (A) for the lower prevision P (IA) when no confusion is possible.

Consider variables X1, . . . , Xn, taking values in the sets X1, . . . ,Xn, respectively. For
any subset J ⊆ {1, . . . , n} we shall denote by XJ the (new) variable

XJ := (Xj)j∈J ,

which takes values in the product space

XJ := ×j∈JXj .

We shall also use the notation X n for X{1,...,n}. We identify the possibility space Ω with
X n.

Definition 2 Let J be a subset of {1, . . . , n}, and let πJ : X n → XJ be the so-called
projection operator, i.e., the operator that drops the elements of a vector in X n that do
not correspond to indexes in J . A gamble f on X n is called XJ -measurable when for all
x, y ∈ X n, πJ(x) = πJ(y) implies that f(x) = f(y). We shall denote by KJ the set of
XJ -measurable gambles.

This notion means that the value f takes depends only on the components of x ∈ X n
that belong to the set J .5

There is a one-to-one correspondence between the XJ -measurable gambles on X n and
the gambles on XJ : given an XJ -measurable gamble f on X n, we can define f ′ on XJ by
f ′(x) := f(x′), where x′ is any element in π−1

J (x); conversely, given a gamble g on XJ , the
gamble g′ on X n given by g′(x) := g(πJ(x)) is XJ -measurable.

Let O be a subset of {1, . . . , n}, and let P (XO) be a lower prevision on the set KO
of XO-measurable gambles. We say that PO is coherent if and only if the following three
conditions hold for all f, g ∈ KO, and λ > 0:

(C1) P (f) ≥ inf f .

(C2) P (λf) = λP (f).

(C3) P (f + g) ≥ P (f) + P (g).

Coherence means that a subject cannot raise the lower prevision P (f) of a gamble by
considering the acceptable buying transactions that are implied by other gambles in the
domain.

5. This notion is related to the common notion of measurability as it implies that the gamble f : Xn → R
is indeed a measurable mapping if we consider the σ-field {π−1

J (A) : A ⊆ XJ} on the initial space and
any σ-field in the final space.
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Remark 1 (Coherent upper previsions) Although for most of the paper we shall work
with coherent lower previsions, or supremum acceptable buying prices, we shall also use at
times the so-called coherent upper previsions. The upper prevision of a gamble f , P (f),
represents the infimum acceptable selling price for f for our subject, in the sense that for
any ε > 0 the transaction P (f) + ε− f is desirable for him.

Taking into account this interpretation, it follows that the upper and lower previsions
must be conjugate functions, in the sense that P (f) = −P (−f) for all gambles f . This is
why we shall work almost exclusively with lower previsions, and use upper previsions only
to refer to their conjugate functions when this helps to simplify the notation. Finally, we
say that an upper prevision is coherent if so is its conjugate lower prevision. ♦

It is important at this point to introduce a particular case of coherent lower previsions
that will be of special interest for us: linear previsions.

Definition 3 A lower prevision P (XO) on the set KO is linear if and only if it is coherent
and P (f + g) = P (f) + P (g) for all f, g ∈ KO.

Linear previsions correspond to the case where a subject’s supremum acceptable buying
price (lower prevision) coincides with his infimum acceptable selling price (or upper previ-
sion) for every gamble on the domain. When a coherent lower prevision P (XO) is linear,
we denote it by P (XO). A linear prevision corresponds to the expectation operator (the
Dunford integral (Bhaskara Rao & Bhaskara Rao, 1983)) with respect to a finitely additive
probability.

One interesting feature of linear previsions allows us to easily characterise coherence.

Definition 4 P (XO) is said to dominate P (XO) if P (f) ≥ P (f) for every XO-measurable
gamble f .

A lower prevision P (XO) is coherent if and only if it is the lower envelope of a closed6

and convex7 set of dominating linear previsions, which we denote byM(P (XO)). It follows
also that P (XO) is the lower envelope of the set of extreme points ofM(P (XO)). We denote
the set of extreme points of M(P (XO)) by ext(M(P (XO)).

Example 1 Assume that our subject has the information that the outcome of the variables
in XO belongs to some finite subset A of XO, and nothing more. Then he should model these
beliefs by the so-called vacuous lower prevision PA(XO) given by PA(f) := minω∈A f(ω)
for every f ∈ KO. The set M(PA(XO)) of dominating linear previsions corresponds to the
finitely additive probabilities P (XO) satisfying the constraint P (A) = 1. Among these, the
extreme points are the degenerate probability measures with respect to some ω ∈ A, and it
follows that any linear prevision in M(PA(XO)) is a convex combination of these. ♦

6. In the weak* topology, which is the smallest topology for which all the evaluation functionals given by
f(P ) := P (f), where f ∈ L(Ω), are continuous.

7. That is, for all linear previsions P1, P2 in the set and all α ∈ (0, 1), the linear prevision αP1 + (1− α)P2

also belongs to this set.
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Consider now two disjoint subsets O, I of {1, . . . , n}. P (XO|XI) represents a subject’s
behavioural dispositions about the gambles that depend on the outcome of the variables
{Xk, k ∈ O}, after coming to know the outcome of the variables {Xk, k ∈ I}. As such, it
is defined on the set of gambles that depend on the values of the variables in O ∪ I only,8

i.e., on the set KO∪I of the XO∪I -measurable gambles on X n. Given such a gamble f and
x ∈ XI , P (f |XI = x) represents a subject’s supremum acceptable buying price for the
gamble f , if he came to know that the variable XI took the value x (and nothing else). We
can thus consider the gamble P (f |XI) on XI , that on x ∈ XI takes the value P (f |XI = x).

Definition 5 The functional P (·|XI) that maps a gamble f in its domain KO∪I to the
gamble P (f |XI) is called a conditional lower prevision.

This definition is well-posed as the sets {π−1
I (x) : x ∈ XI} form a partition of X n. When

there is no possible confusion about the variables involved in the lower prevision, we shall
use the notation P (f |x) for P (f |XI = x). In particular, P (y|x) will mean P (Iy|x) for all
pairs of values x, y.

In Walley’s theory a conditional lower prevision P (XO|XI) defined onKO∪I is required to
be self-consistent, or separately coherent. Separate coherence means on the one hand that if
a subject knows that the variable XI has taken the value x, he cannot raise the (conditional)
lower prevision P (f |x) of a gamble by considering the acceptable buying transactions that
are implied by other gambles in the domain, and on the other hand that he should bet at
any odds on the event that XI = x after having observed it.

In this case, where the domain is a linear set of gambles, the definition is the following:

Definition 6 The conditional lower prevision P (XO|XI) is separately coherent if and only
if for all x ∈ XI , f, g ∈ KO∪I , and λ > 0:

(SC1) P (f |x) ≥ infω∈π−1
I (x) f(ω).

(SC2) P (λf |x) = λP (f |x).

(SC3) P (f + g|x) ≥ P (f |x) + P (g|x).

Using these conditions, we see more clearly that a separately coherent conditional lower
prevision can also be regarded as a lower bound for a conditional expectation. It also follows
that if I = ∅, separate coherence coincides with the notion of coherence introduced above.

Given a separately coherent conditional lower prevision P (XO|XI) with domain KO∪I ,
we can see P (XO|x) as defined on the set of XO-measurable gambles, because for any f ∈
KO∪I , P (f |x) = P (g|x), where g is the XO-measurable gamble given by g(w) = f(πIc(w), x)
for all w ∈ X n.

As with the unconditional case, we can also consider conditional upper previsions, which
represent our subject’s infimum acceptable selling prices for the gambles f in KO∪I , after
coming to know the value of the variables in XI (and nothing else). We have P (f |x) =
−P (−f |x) for all gambles f . Similarly, a conditional lower prevision P (XO|XI) on the

8. We refer to (Miranda & de Cooman, 2005; Walley, 1991) for more general definitions of the following
notions in this section in terms of partitions, and for domains that are not necessarily (these) linear sets
of gambles.
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set KO∪I is linear if and only if it is separately coherent and P (f + g|x) = P (f |x) +
P (g|x) for all x ∈ XI and f, g ∈ KO∪I . Conditional linear previsions correspond to the
case where a subject’s supremum acceptable buying price (lower prevision) coincides with
his infimum acceptable selling price (or upper prevision) for every gamble in the domain.
When a separately coherent conditional lower prevision P (XO|XI) is linear, we denote it
by P (XO|XI).

A conditional lower prevision P (XO|XI) dominates P (XO|XI) if P (f |x) ≥ P (f |x)
for every XO∪I -measurable gamble f and every x ∈ XI . A conditional lower prevision
P (XO|XI) is separately coherent if and only if it is the lower envelope of a closed and
convex set of dominating conditional linear previsions, which we denote byM(P (XO|XI)).
This is a bit of an abuse of notation, since actually for every x ∈ XI the set M(P (XO|x))
is a set of linear previsions. It follows also that P (XO|XI) is the lower envelope of the set
of extreme points of M(P (XO|XI)), where we say that P (XO|XI) is an extreme point of
M(P (XO|XI)) when for every x ∈ XI , P (XO|x) is an extreme point of the closed convex set
M(P (XO|x)). We denote the set of extreme points ofM(P (XO|x)) by ext(M(P (XO|x))).

Example 2 Consider the following experiment: a subject throws a coin; if it lands on heads,
he selects a ball from an urn with red and white balls of unknown composition; if it lands on
tails, he selects a ball from an urn with red and blue balls also of unknown composition. Let
X1 be the result of the first experiment, with values in {heads, tails}, and X2 be the color
of the ball drawn in the second experiment, with values in {red, white, blue}.

We may model this using the conditional prevision P (X2|X1) where P (X2|X1 = heads)
is vacuous on {red, white}, and P (X2|X1 = tails) is vacuous on {red, blue}. The extreme
points of M(P (XO|XI)) are the conditional previsions P (XO|XI), where P (XO|heads) is
degenerate on either red or white, and P (XO|tails) is degenerate on either red or blue. ♦

3. The basic setting

3.1 The domain

As we mentioned in the Introduction, in this paper we consider the problem of drawing
conclusions about the value that a target variable Z takes in Z from information about of
the value that another variable Y takes in a set Y. In this paper we shall assume that the
set Y is finite, but the set Z of possible values for the target variable Z can be infinite.

3.2 The incompleteness process

It is not uncommon that the devices that we use to get information about Y , whatever they
are, may not let us see Y exactly as it is. Because of this, we explicitly model the observation
of Y by a new variable W , taking values in the finite setW of possible observations. We call
W the observation of Y . W represents the outcome of the observational process. In this
paper we focus on the observational processes called incompleteness processes, which can
not only turn a fact into its entire possibility space, but also into other non-empty subsets
of the possibility space.

Remark 2 (Concerning the W variable) We remark that it is necessary to introduce
the variable W even if it is quite a common habit in applications to deal only with the
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variables Z and Y . The possibility to drop W depends on the assumptions done. For
instance, if we assume CAR/MAR then the W variable at a certain point of the derivation
cancels out, leading to formulae that only involve Z and Y . But one should not confuse
the operational procedures with the theoretical representation needed for the derivation of a
rule. The theoretical derivation has to take into account that the latent level of information,
represented by Y , does not need to coincide with the manifest level, namely W , and hence
that we need to model the process that leads from Y to W . This is also necessary because
there are assumptions other than those made in this paper that do not lead eventually to
drop W . Moreover, the distinction between the latent and the manifest level is not a new
proposal at all: on the contrary, it is present, somewhat implicitly, even in the original works
about MAR (Little & Rubin, 1987) and fully explicitly in more recent works (Grünwald &
Halpern, 2003).♦

We focus now on representing the IP. We start by characterising the IP for Y by a so-called
multi-valued map ΓY (this idea of modelling the IP through a multi-valued map goes back
essentially to (Strassen, 1964)). ΓY is what connects facts with observations: for all y ∈ Y,
ΓY gives us the set Γ(y) ⊆ W of observations into which the IP may turn fact y. We require
such a set to be non-empty:

y ∈ Y ⇒ Γ(y) 6= ∅. (IP1)

Take for example the Asia network. If the fact under consideration is the instance y :=
(v′, k′′, b′′, h′′, o′, l′, a′) of the vector (V,K,B,H,O,L,A), taken to be equal to Y , then Γ(y)
represents the set of all the incomplete instances that may be generated by the IP starting
from y. For instance, the IP may be such that Γ(y) is equal to the set of 27 incomplete
instances obtained from (v′, k′′, b′′, h′′, o′, l′, a′) by giving the possibility to replace the values
in the vector with question marks in all the possible ways.

ΓY makes it possible to associate, to each observation w ∈ W, the set of facts that may
originate it: i.e.,

{w}∗ := {y ∈ Y : w ∈ Γ(y)}.

In the Asia network, our observation might be w = (?, ?, ?, h′′, ?, ?, a′). If Γ(y) is defined
as above, then {w}∗ is the set of the 25 completions of (?, ?, ?, h′′, ?, ?, a′). Γ(y) might also
be defined differently, for instance by allowing only for some replacements of values in the
vector y with question marks (the possibility to replace values with question marks might
also depend on the values that some variables in the vector take jointly). In this case
{w}∗ would be a subset of the 25 completions. What is important is that the set {w}∗
does not allow us to identify the value of Y uniquely, unless it is a singleton. This tells
us that IPs are observational processes that produce W by coarsening Y , i.e., by yielding
an observation w corresponding to a set {w}∗ of possible values for Y that we expect to
encompass y (this expectation will be formalised in Section 6.2.2). It follows that IPs
are a generalisation of the, perhaps more popular, missingness processes, which consider
only two possibilities: either {w}∗ is a singleton or it is Y, in which case Y is said to be
missing. In the case of the Asia net, we could characterise a missingness process by writing
Γ(y) = {(v, k, b, h, o, l, a), (?, ?, ?, ?, ?, ?, ?)} for all y = (v, k, b, h, o, l, a) ∈ Y.9 If {w}∗ = ∅,

9. To avoid confusion, it may be worth outlining that whether a process is a coarsening or a missingness
process depends on what we focus on. In the case of the Asia network, for instance, the process can be a
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w cannot be produced by any y ∈ Y, and can therefore be eliminated from W without any
further consequences; we shall henceforth assume that

w ∈ W ⇒ {w}∗ 6= ∅. (IP2)

Finally, we define for each w ∈ W the set of facts of which w is the only compatible
observation:

{w}∗ := {y ∈ Y : Γ(y) = {w}}.

3.3 Refining facts, observations, and the incompleteness process

In this section, we add some structure to the incompleteness process by representing it as
the combination of two different incompleteness processes, which act on different parts of
a fact. We model these two parts by writing Y := (Ȳ , Ŷ ), where Ȳ and Ŷ are two new
variables, with values in Ȳ and Ŷ, respectively, such that Y = Ȳ × Ŷ. In an analogous way,
we regard the observation W of Y as the observation W̄ of Ȳ jointly with the observation
Ŵ of Ŷ , and hence write W := (W̄ , Ŵ ). Here again, W̄ and Ŵ are two new variables, with
values in W̄ and Ŵ, respectively, such that W = W̄ × Ŵ.

The additional variables introduced indeed allow us to think of two new IPs: the first acts
on variable Ȳ , leading to observation W̄ , and thus is characterised by a certain multi-valued
map ΓȲ ; the second acts on variable Ŷ , leading to observation Ŵ , and is characterised by
another multi-valued map ΓŶ . We call them the unknown IP and the CAR IP, respectively,
as by the former we aim at modeling an IP whose behaviour is unknown to us and by the
latter a CAR IP.

Assuming that
y ∈ Y ⇒ Γ(y) = Γ(ȳ)× Γ(ŷ) (IP3)

allows us to regard the two IPs, taken together, as the single incompleteness process intro-
duced in Section 3.2, i.e., the one that maps (Ȳ , Ŷ ) = Y into (W̄ , Ŵ ) = W . From now on,
we call this the overall IP. Assumption (IP3) follows as a consequence of our intention to
model problems where there are two IPs which observe different parts of a fact and therefore
do not interact. This is discussed at some length at the end of Section 6.3.

We now impose some assumptions about the unknown and the CAR IP. Consider the
sets {w̄}∗, {w̄}∗, {ŵ}∗, and {ŵ}∗, defined in the obvious way on the basis of ΓȲ and ΓŶ .
The following assumptions resemble Assumptions (IP1)–(IP2) and are motivated by the
same arguments:

ȳ ∈ Ȳ ⇒ Γ(ȳ) 6= ∅ (IP4)

ŷ ∈ Ŷ ⇒ Γ(ŷ) 6= ∅ (IP5)

w̄ ∈ W̄ ⇒ {w̄}∗ 6= ∅ (IP6)

ŵ ∈ Ŵ ⇒ {ŵ}∗ 6= ∅. (IP7)

We also impose an additional requirement on the unknown IP:

w̄ ∈ W̄ ⇒ {w̄}∗ = ∅. (IP8)

missingness process for each single variable of the net (i.e., it yields either the value of the variable or a
question mark) and simultaneously be a coarsening process for the vector of variables (in the sense that
it does not only yield the vector of values or the vector made entirely of question marks).
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We do so as a means to start implementing the idea that there is ignorance about the
procedure used by the unknown IP to select an observation starting from a fact.

Having Γ(y) = Γ(ȳ)× Γ(ŷ) for all y ∈ Y implies that {w}∗ = {w̄}∗ × {ŵ}∗ and {w}∗ =
{w̄}∗ × {ŵ}∗ for all w ∈ W. This shows that (IP4)–(IP7) imply (IP1)–(IP2).

4. The conservative inference rule

The notations introduced so far finally allow us to write the definition of the conservative
inference rule. To this extent, we assume that we have beliefs about (Z, Y ) in the form of
a joint lower prevision P 1.

Definition 7 (Conservative inference rule) Consider a gamble g on Z and w ∈ W,
and assume that P 1({w}∗) > 0. Let {w̄}∗1 := {ȳ ∈ {w̄}∗ : P 1(ȳ, {ŵ}∗) > 0}, and define

R(g|ȳ, {ŵ}∗) := inf
P≥P 1:P (ȳ,{ŵ}∗)>0

P (g|ȳ, {ŵ}∗)

for all ȳ ∈ {w̄}∗1. Then we let

R(g|w) := min
ȳ∈{w̄}∗1

R(g|ȳ, {ŵ}∗). (CIR)

Later, in Section 6.4, we shall see that this definition actually follows as a theorem under a
certain number of assumptions.

Let us clarify the intuition behind the definition of R(g|w). Our goal is to update beliefs
about a certain function g of Z once we make the observation w about Y . Remember that
w can be regarded as the pair (w̄, ŵ), where w̄ is the part of the observation originated
by the unknown IP and ŵ that originated by the CAR IP. The conservative inference
rule prescribes to update beliefs by adopting the lower prevision R(g|w) computed as in
Formula (CIR). This means (i) to consider all the completions ȳ of w̄ with the property
that the conditioning event (Ȳ = ȳ, Ŷ ∈ {ŵ}∗) has positive upper probability under P 1;
(ii) to compute our updated beliefs under each of these events: we can do this by applying
Bayes’ rule to each linear prevision that dominates P 1 and for which the event has positive
probability, so as to create a set of posterior linear previsions whose lower envelope is
R(g|ȳ, {ŵ}∗); finally, to define the lower prevision R(g|w) as the minimum of the lower
previsions obtained under all the completions considered. This minimum, in particular, has
the meaning to be as conservative as possible with respect to the data that has been made
incomplete by the unknown IP: we deal with them by considering all the complete data that
could have been there before the IP started operating. On the other hand, the data subject
to the CAR IP are treated as usual, that is, by conditioning on the set of completions {ŵ}∗.

4.1 Significance of the conservative inference rule

We can think of CIR as a generalisation of two kinds of updating rules. It generalises the
traditional updating rule, the one that, for instance, prescribes discarding missing observa-
tions. CIR coincides with such a rule in the case the IP is made only of the CAR component.
On the other hand, if there is no CAR component, and the overall IP is unknown, CIR is
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similar to (but more powerful than) the so-called conservative updating rule (CUR) pro-
posed in (de Cooman & Zaffalon, 2004). When both components are present, CIR acts as
a mix of traditional updating and CUR.

As CUR, CIR is an imprecise-probability rule: it generally leads to lower and upper
expectations, and partially determined decisions. This follows, in part, as it allows P 1 to
be imprecise. Yet, even if we take that to be a linear prevision P1, CIR turns out to be
an imprecise-probability rule: imprecision arises as a logical consequence of our ignorance
about the unknown IP.

4.1.1 Comparison with CUR

It is instructive to analyse more deeply the difference between CIR and CUR. To this extent,
let us first give the definition of CUR using the notation introduced so far:

Definition 8 (Conservative updating rule) Assume that Z is a finite set, that Y = Ȳ
and W = W̄ , that is, that the overall IP is entirely unknown. Furthermore, assume that ΓȲ
is originated by missing values: this means that if we regard Ȳ as vector-valued, each of its
components is either observed precisely or it is missing. Assume also that P 1(ȳ) > 0 for all
ȳ ∈ {w̄}∗. For every gamble g on Z, define

R(g|ȳ) := inf
P≥P 1:P (ȳ)>0

P (g|ȳ)

for all ȳ ∈ {w̄}∗. Then we let

R(g|w̄) := min
ȳ∈{w̄}∗

R(g|ȳ). (CUR)

The major differences between CIR and CUR are discussed below.

• The first difference is that CUR allows only the unknown IP to be present. In doing
so, CUR does not model beliefs stronger than ignorance about the IP, for which CUR-
based inferences will be more conservative than necessary. CIR tries to remedy this by
allowing for mixed states of knowledge made of ignorance and CAR. This makes CIR
a flexible rule that should lead to strong enough conclusions in many applications.

• The by far most important difference between CIR and CUR is the generality of ap-
plication. The theory used to derive CUR is restricted to the case when P 1 is directly
assessed rather than obtained through a number of conditional and unconditional
lower previsions, possibly together with some notion of independence. This is the
case, for instance, of statistical inference which involves using a certain number of
lower previsions to model prior knowledge and the likelihood function and some no-
tion of independence (or exchangeability) to build P 1. Although one can apply CUR
also in these more general and common conditions, its theory does not guarantee
that CUR leads to self-consistent inference in those cases. CIR, on the other hand,
is shown in Sections 6.4 to lead to coherent inference under a very wide spectrum of
conditions, which should cover nearly all the practical situations. This means that
applying CIR always leads to probabilities that are self-consistent as well as consistent
with the original assessments. (Observe that since CUR is a special case of CIR, our
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proofs finally show that CUR also leads to self-consistent inference.) In other words,
CIR is more much than CUR a rule for the general task of updating beliefs based on
the observation of facts. In this, it is similar in spirit to traditional updating, which
we typically use in every situation: e.g., in the case of expert systems as well as to
update our beliefs given data in problems of statistical inference. With CIR, different
applications follow by simply giving different meanings to facts (Ȳ , Ŷ ), observations
(W̄ , Ŵ ), and to the quantity Z in which we are interested. Section 5 will give examples
to show how this is done in a variety of cases.

There are three further characteristics that make CIR more flexible than CUR.

• The first is that CIR allows the target space to be infinite, while CUR was defined
only for the case of finite spaces.

• The second is that CIR deals with general incompleteness processes, while CUR only
with the special case of processes that may originate missing information for the
variables under consideration. This is related to the restriction about ΓȲ mentioned
in the definition of CUR. This characteristic of CIR is important when aiming to
obtain as strong conclusions as possible: by taking advantage of partially observed
facts, CIR leads in general to stronger conclusions than CUR.

• The third is somewhat more technical. CUR requires that every element in {w̄}∗
is given positive upper probability. CIR requires this only for the entire set {w̄}∗.
The difference is important in practice. To see this, consider that in applications it
is quite common to represent deterministic relations among variables by degenerate
probabilities equal to zero or one. These relations naturally give rise to zero upper
probabilities: every joint state of the variables that does not satisfy the relation has
zero upper probability by definition. CUR cannot be used in these applications. CIR
can, and it simply leads to neglect the states with zero upper probabilities: more
precisely, given an observation (w̄, ŵ), it leads to consider only the compatible facts
(ȳ, {ŵ}∗) for which it is possible to condition on them as they are given positive upper
probability, or, in other words, such that ȳ ∈ {w̄}∗1.

Section 5.1 will show how some of these differences between CIR and CUR impact on
an example.

4.1.2 Originality of CIR

An interesting thing to note is that CIR, such as traditional updating and CUR, is based
only on the variables Z and Y : i.e., for applying CIR one does not need to consider the
W -variables. This makes CIR particularly simple to use. Another consideration concerns
originality: to the best of our knowledge, CIR appears here for the first time. There are
contributions in the literature similar to CIR for the case of statistical model learning from
samples made incomplete by an unknown missingness process (see for instance (Manski,
2003; Ramoni & Sebastiani, 2001; Zaffalon, 2002)). This is not surprising, as the intuition
to take all the completions of an incomplete sample is actually very natural. But we are
not aware of any work proposing, and especially deriving, an abstract and general rule to
update beliefs from incomplete information such as CIR.
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5. Applications

In the following subsections we shall show how CIR leads easily to several different rules
according to the applications under study, and in doing so we present a number of examples.
To make things simpler we do not go in the details of the multi-valued maps used; we shall
only take W̄ to be the set of all the non-empty subsets of Ȳ, and assume that the hypotheses
done throughout the paper hold. We adopt similar considerations for the CAR IP.

5.1 CIR for expert systems

Probabilistic expert systems represent the key quantities in a domain by a vector of variables,
which in this section are assumed to take values from finite spaces. One or more of these
variables are the target, i.e., the variables that are the objective of inference. The remaining
ones are introduced to the extent of inferring the value of the target.

V = v′ 0.01

K = k′ 0.5

v′ v′′

B = b′ 0.05 0.01

k′ k′′

R = r′ 0.1 0.01

k′ k′′

H = h′ 0.6 0.3

b′r′ b′r′′ b′′r′ b′′r′′

O = o′ 1 1 1 0

o′ o′′

L = l′ 0.98 0.05

o′h′ o′h′′ o′′h′ o′′h′′

A = a′ 0.9 0.7 0.8 0.1

Table 1: Asia example: probabilities for each variable (first column) in the graph conditional
on the values of the parent variables. The state ‘prime’ corresponds to ‘yes’.

The Asia network in Figure 1 represents a well-known artificial example of expert system
in the medical domain. It is supposed that an expert has provided the graph as well as
the probabilities that define the Asia network, as reported in Table 1. If we want to use
the network to make diagnosis, we first choose a target node, such as R or B. Then we
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collect information about the patient, as well as the results of medical tests, such as X-rays,
and make it available to the network by instantiating the related nodes in the graph to the
observed values. Finally, we query the network to update the probability of the target node
given the evidence inserted.

But usually not all the nodes, apart from the target node, are instantiated as some
values are missing, and the way the network has to compute belief updating depends on
our assumptions about them. The traditional way entails marginalising them out and it
is equivalent to assuming that they are subject to a MAR process. This is the special
case of CIR obtained by dropping the unknown IP. The general version of CIR offers more
flexibility in their treatment, and can produce a very different solution, as we illustrate by
an example below. In it we also use coarsened observations so as to show how set-valued
observations may enter the picture of probabilistic inference both in the CIR and in the
CAR case.

Example 3 Say that you are a senior doctor at a hospital and find on your desk a report
from a junior colleague about a certain patient he visited. The patient came to the hospital
under a state of dyspnea (A = a′). Your colleague visited the patient and did not find
any sign of bronchitis (H = h′′). He also made some questions to the patient to collect
background information. He remembered that he had to ask something about smoking as
well as about some recent trip to Asia; but in the end he was not clear nor determinate
enough and he got to know only that the patient was concerned with only one of the two
things. Your unexperienced colleague thought then the situation was not serious and sent
the patient back home. You are instead a bit more cautious. In fact you suspect that the
patient might have hidden some information for privacy reasons, although you recognise
that you do not know these reasons. Overall, you are implicitly assuming the existence of
an unknown IP for the variables V and K that leads to {w̄}∗ = {(v′, k′′), (v′′, k′)}, where we
denote by w̄ the value of W̄ that corresponds to the observation of (V,K). In other words
you regard (v′, k′′) and (v′′, k′) as the only two possible completions for the information that
you lack about (V,K).

Let us make two remarks before proceeding: (i) that the unknown IP is a coarsening
process, not just a missingness process, and this is what allows us to restrict the completions
of (V,K) only to two elements; and (ii) that despite the name the unknown IP is (also very)
informative when we use coarsened rather than missing values.

You finally judge the remaining variables to be subject to a MAR IP. This is very rea-
sonable as your colleague simply decided not to have the patient do any test. In this case the
probability of missingness is one independently of the actual values of the variables under
consideration. It is instructive to stress that in this case the MAR IP is just your colleague.

At this point you are ready to do some diagnosis. You first run an algorithm for Bayesian
nets using the completion (v′, k′′), obtaining that the posterior probability for cancer is 0.052
and that for tuberculosis is 0.258; then you run the algorithm once more, in this case using
the completion (v′′, k′), which leads to 0.423 for the updated probability of cancer and 0.042
for that of tuberculosis. Now the question is that the first run suggests that you should
diagnose tuberculosis, and the second that you should diagnose cancer. Since you have no
idea about which one is the right completion of (V,K), you admit that you are not able
to discriminate between tuberculosis and cancer at this time. In other words, your model
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is telling you that the information you have is too weak to draw any useful conclusion,
and is implicitly suggesting to collect stronger information. In order to do so, you invite
the patient for a next visit, explaining the importance of knowing whether he has been to
Asia, something that he actually confirms, thus letting you know eventually that V = v′ and
K = k′′. Your updated probabilities are then 0.052 for cancer and 0.258 for tuberculosis. On
this basis, you ask the patient to undergo X-rays, which turn out to be abnormal (L = l′),
leading to 0.151 and 0.754, respectively, as probabilities for cancer and tuberculosis, and you
diagnose tuberculosis.

Consider what might happen by assuming all the variables to be subject to a CAR/MAR
IP, as it is common with Bayesian nets. In that case, the information you have initially is
that A = a′, H = h′′, and that (V,K) ∈ {(v′, k′′), (v′′, k′)}. It is just CAR that allows us to
forget about W̄ and to write down that (V,K) belongs to {(v′, k′′), (v′′, k′)}. This event is
easy to incorporate in a Bayesian network: it is enough to insert a new node in the Asia
network that is child of both V and K and that is in state ‘yes’ with probability one if and
only if (V,K) ∈ {(v′, k′′), (v′′, k′)}. This new node is then instantiated in state ‘yes’. At this
point, running an algorithm for Bayesian nets yields that the probabilities for cancer and
tuberculosis conditional on A = a′, H = h′′, and (V,K) ∈ {(v′, k′′), (v′′, k′)}, are 0.418 and
0.045, respectively. This would make you suspect that there is cancer; moreover, it might
well induce you to take the following erroneous course of reasoning: ‘since the probability
of cancer is that high even without knowing the exact values of V and K, trying to obtain
that information is a waste of time; I must rather focus on more concrete evidence such
as X-rays to make my diagnosis.’ But obtaining the positive X-rays test (L = l′) would
enforce your beliefs even more by raising the probability of cancer up to 0.859, leading you
to a mistaken diagnosis. ♦

These considerations are not limited to expert systems based on precise probability; com-
pletely analogous considerations would be done in the case of expert systems that model
knowledge using closed convex sets of mass functions (or, equivalently, by the coherent lower
prevision which is their lower envelope) for which CIR is also suited. Credal networks, for
example, provide such modelling capabilities (Cozman, 2000, 2005).

It is easy to rephrase expert system models in the setting of this paper. Say that
the expert system is based on the vector of variables (Z, Ȳ1, . . . , Ȳm, Ŷ1, . . . , Ŷn), where Z
is the target variable, and the others are those subject to the unknown and the CAR
IP, respectively. Then it is sufficient to write Ȳ := (Ȳ1, . . . , Ȳm), Ŷ := (Ŷ1, . . . , Ŷn), and
to consider that a set M of joint mass functions for (Z, Y ), or equivalently the lower
prevision P 1 made by taking its lower envelope, is given. Doing inference with an expert
system, in quite a general form, corresponds then to compute R(g|w̄, ŵ), where w̄ is now
the observation of the Ȳ vector and ŵ that of the Ŷ vector.

We consider some cases to make things clearer. At an extreme, which we already
mentioned, there is the case m = 0, which means that there is only the CAR IP. The
updating rule that follows from CIR is then the traditional updating: R(g|ŵ) = R(g|{ŵ}∗).
Say that, to be even more specific, g is the indicator function Iz of some z ∈ Z, and that
{ŵ}∗ = {(ŷ1, . . . , ŷj , ŷ

′
j+1, . . . , ŷ

′
n) ∈ Ŷ : ŷ′j+1 ∈ Ŷj+1, . . . , ŷ

′
n ∈ Ŷn)}, i.e., that the first

j variables of Ŷ are observed precisely, while the others are missing. The updating rule
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becomes:
R(g|{ŵ}∗) = R(Iz|ŷ1, . . . , ŷj , Ŷj+1, . . . , Ŷn) = R(Iz|ŷ1, . . . , ŷj),

which is equal to infP≥P 1:P (ŷ1,...,ŷj)>0 P (z|ŷ1, . . . , ŷj). The latter is an updating rule imple-
mented by credal networks; and if P 1 is a linear prevision, it is the rule used with Bayesian
networks.

Consider now the other extreme: n = 0, i.e., when there is only the unknown IP. Sim-
ilarly to the previous case, say that g is the indicator function for z; and that {w̄}∗ =
{(ȳ1, . . . , ȳi, ȳ

′
i+1, . . . , ȳ

′
m) ∈ Ȳ : ȳ′i+1 ∈ Ȳi+1, . . . , ȳ

′
m ∈ Ȳm)}. CIR becomes then R(g|w̄) =

minȳi+1∈Ȳi+1,...,ȳm∈Ȳm
infP≥P 1:P (ȳ1,...,ȳm)>0 P (z|ȳ1, . . . , ȳm). This case nearly coincides with

the conservative updating rule proposed in (de Cooman & Zaffalon, 2004), with the dif-
ferences already discussed in Section 4.1. These differences are important: for instance,
that CUR cannot deal with coarsened observations makes it impossible to use it to model
the observation in Example 3. Some of them would even prevent CUR from being applied
more generally to the example: on the one hand, the presence of the logical ‘or’ gate in
the Asia network creates states of zero upper probability (e.g., B = b′, R = r′, O = o′′)
that are incompatible with the assumptions underlying CUR; on the other, since domain
knowledge (i.e., the Asia net) is built out of a number of conditional mass functions, we
cannot guarantee that CUR leads to self-consistent inference as its proof does not deal with
such an extended case. We know that CIR instead does lead to self-consistent inference as
a consequence of Corollary 3 in Appendix B.

When neither m nor n are equal to zero, CIR becomes a mix of the two extreme cases
just illustrated, as in the example: it leads to treat the variables subject to the CAR IP by
the traditional updating, while treating those subject to the unknown IP similarly to what
CUR does. Mixing the two things has the advantage of greater expressivity: it allows us to
represent beliefs about the overall IP that are in between the two extremes.

We conclude this section by briefly discussing the problem of doing computations with
CIR and its special case CUR.

In the context of doing classification with Bayesian nets according to CUR, (Antonucci
& Zaffalon, 2007) have proved an NP-hardness result, as well as given an exact algorithm.
The algorithm is a variant of the variable elimination algorithm that has a better complexity
than the traditional algorithms on Bayesian nets (implicitly using CAR): it works in linear
time not only on polytree networks (i.e., those for which there is at most one path between
any two nodes in the graph after dropping the orientation of the arcs) but also on a number
of more general nets; on the remaining ones it takes exponential time. Moreover, in another
paper (Antonucci & Zaffalon, 2006) the same authors have shown that when there are
missing observations the problem of CIR-updating in Bayesian nets and that of traditional
(i.e., MAR-based) updating in credal nets are equivalent. This is exploited in a recent
paper (Antonucci & Zaffalon, 2008, Section 9) to show the NP-hardness of CIR-updating
in Bayesian nets, and to give a procedure to solve such a problem via existing algorithms
for credal nets. The idea behind such a procedure is relatively straightforward, and it
takes inspiration from a method proposed by (Pearl, 1988, Section 4.3) to represent an
instantiated node in a Bayesian net using an equivalent formulation: the formulation is
based on removing the instantiation from the node and on adding a dummy child to it
that is actually instantiated to a certain value. This approach is basically taken as it is for
CIR-updating in the case of a node missing in an unknown way; CIR imposes to deal with
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it by considering all its possible instantiations. Considering the dummy-child method for
each of them is shown to be equivalent to using a single imprecise-probability dummy child
that is instantiated to a unique value. In this way the node that was originally missing in an
unknown way can be treated as a node missing at random, while the dummy child is simply
an instantiated imprecise-probability node. As a consequence, the original Bayesian net
becomes a credal network and our task becomes the computation of MAR-based updating
on such a net. Since there are already many algorithms designed for this task, the described
transformation allows one to solve the CIR-updating problem via known algorithms for the
MAR-updating problem on credal nets. Yet, MAR-updating on credal networks is a more
difficult problem that MAR-updating on Bayesian nets, as it is NP-hard also on polytrees
(de Campos & Cozman, 2005). Therefore CIR-updating appears to be more demanding
than MAR- or CUR-updating. This is not necessarily going to be a problem in practice as
approximate algorithms for credal nets nowadays allow one to solve updating problems on
large-scale networks (e.g., see (Antonucci, Zaffalon, Sun, & de Campos, 2008)).

5.2 CIR for parametric statistical inference

In a statistical problem of parametric inference, we are given a sample that we use to update
our beliefs about a so-called parameter, say Θ, with values θ ∈ T . The admissible values
for Θ index a family of data generation models that we consider possible for the problem
under consideration. Here we do not exclude the possibility of this set being infinite, as it
is often the case in statistics.

In this setting, a fact is thus the true, and hence complete, sample. We represent it as
the following vector of variables:

Y :=


D1

D2
...
DN

 . (1)

The elements of a sample are also called units of data. We assume from now on, that the
variables Di have the same space of possibilities for every i.

We can exemplify the problem of parametric statistical inference by focusing once again
on the Asia Bayesian network in Figure 1: a frequent step in the construction of Bayesian
nets is the inference of the network parameters from a data set. Say, for instance, that we
are interested in evaluating the chance Θ that a person suffers from tuberculosis if we know
that the same person has made a recent visit to Asia. To this extent we might exploit a
data set for the variables B and V , such as the one below:

y :=



(b′, v′)
(b′, v′′)
(b′, v′′)
(b′′, v′′)
(b′′, v′)
(b′′, v′)

 , (2)

for which we assume in addition that the data have been generated according to an identical
and independently distributed (IID) process.
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We can do parametric inference relying on the tools of Bayesian statistics, for instance.
This means to compute the posterior linear prevision (i.e., the posterior expectation) P (g|y),
for a certain function g : T → R. This is obtained integrating the posterior density function
for Θ, obtained in turn by Bayes’ rule applied to a prior density function, and the likelihood
function (or likelihood) L(θ) := P (y|θ).

In this case, a common choice for the prior would be a Beta density for Θ: Bs,t′(θ) ∝
θst
′−1(1−θ)s(1−t′)−1, where s and t′ are positive real hyper-parameters that are respectively

the overall strength of the prior knowledge and the prior expectation of Θ. In the case of
the data set (2), this choice leads to a posterior expectation for Θ that is equal to 1+st′

3+s .
Setting s := 1 and t′ := 1/2, namely, Perks’ prior (Perks, 1947), we obtain 1+st′

3+s = 0.375,
which can be regarded as an approximation to the true parameter value.

Imprecise probability approaches to parametric inference often extend Bayesian statis-
tical methods by working with a set of prior density functions, and by updating each of
them by Bayes’ rule, whenever possible, using the same likelihood function, thus obtaining
a set of posteriors. An example is the imprecise Dirichlet model (Walley, 1996a). In our no-
tation and terminology, this means that in the imprecise case parametric inference is based
on the unconditional lower prevision P 1(Θ, Y ), obtained by means of the prior P 1(Θ) and
the likelihood P (Y |Θ) through a rule called marginal extension, that is updated into the
posterior lower prevision R(Θ|Y ) by a procedure called regular extension. Marginal and
regular extension will be introduced more precisely in Section 6.1.

In the previous example related to the data set (2) where the variables are binary, the
imprecise Dirichlet model is called imprecise Beta model (Bernard, 1996), and can be easily
applied as follows. The idea is to consider the set of all the Beta densities with fixed prior
strength, say s = 1: i.e., the set of all Bs,t′ such that s = 1 and t′ ∈ (0, 1).10 This set can be
regarded as a single imprecise prior that only states that the prior probability for category
b′ lies in (0, 1), which seems a more reasonable way to model a state of prior ignorance about
Θ than a Bayesian prior, such as Perks’ above. This imprecise prior leads to an imprecise
posterior expectation for Θ: to compute it, it is enough to reconsider the expression 1+st′

3+s
and let t′ take all the values in (0, 1); this leads to the interval [0.25, 0.50] that is delimited by
the lower and the upper posterior probabilities obtained from 1+st′

3+s when t′ = 0 and t′ = 1,
respectively. Again, this ‘interval estimate’11 appears to be much more reasonable and
reliable than the precise posterior expectation obtained by the Bayesian approach, taking
especially into account that the sample available to infer the parameter under consideration
has size three!

But in real problems we often face the further complication of having to deal with
incompleteness in statistical data: rather than a complete sample y, we may be given an
incomplete sample w, i.e., one that corresponds to a set {w}∗ of complete samples. The

10. The reason why we exclude the extreme points of the interval is to avoid creating conditioning event with
zero lower probability and have to discuss their implications. In the present setup this is not restrictive,
as it can be shown that the closed interval would eventually lead to the same inferences.

11. It is important to be aware that these intervals are conceptually very different tools from Bayesian
credible intervals, which arise out of second-order information about a chance. The present intervals
arise only out of ignorance about the unknown IP, something that makes a set of IPs be consistent
with our assumptions and about which we have no second-order information. Stated differently, the
counterpart of these intervals in the precise case are the point estimates, not the credible intervals,
which should instead be compared with imprecise credible intervals (e.g., see (Walley, 1996a)).
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set {w}∗ arises as a consequence of missingness or partial observability of some values. The
data set (2) might for instance be turned by an incompleteness process into the following
incomplete data set:

w :=



(b′, v′)
(b′, v′′)
(b′, ?)

(b′′, v′′)
(b′′, ?)
(?, v′)

 . (3)

In this example {w}∗ is the set of the eight complete data sets that are obtained by replacing
the question marks in all the possible ways.

The question is then how to do parametric inference with an incomplete sample. We
represent each unit in Vector (1) by regarding the generic variable Di as the pair (Ȳi, Ŷi),
and let Ȳ := (Ȳ1, . . . , ȲN ), Ŷ := (Ŷ1, . . . , ŶN ), so that Y = (Ȳ , Ŷ ).

Now it is easy to use CIR to address the question of parametric inference with incomplete
data, if we know that Ŷ is subject to a CAR IP, and we do not know the IP that acts on
Ȳ . Observing that Θ plays the role of Z, we obtain that CIR prescribes using the following
rule: R(g|w) = minȳ∈{w̄}∗1 R(g|ȳ, {ŵ}∗), which rewrites also as

R(g|w̄, ŵ) = min
ȳ∈{w̄}∗1

inf
P≥P 1:P (ȳ,{ŵ}∗)>0

P (g|ȳ, {ŵ}∗), (4)

because imprecision on (Θ, Y ) originates via prior imprecision only. We prove in Corollary 4
in Appendix B that this rule leads to self-consistent inference.

We can regard the lower expectation in Equation (4) as arising from two kinds of impre-
cise beliefs. The first are beliefs about Θ that we model by the lower prevision P 1(Θ). The
remaining beliefs are embodied by the likelihood function. This is imprecise knowledge, too,
since there are actually multiple likelihood functions, because of the unknown IP, and we
model them using the different conditional previsions P (Θ|ȳ, {ŵ}∗) for ȳ ∈ {w̄}∗1. In other
words, working with incomplete data according to CIR is equivalent to working with the set
of posteriors that arise by applying Bayes’ rule, whenever possible, to each prior-likelihood
pair in the model.

In the case of the data set (2), we might know that in order to create the incomplete
sample (3) out of it, the variable B has been subject to a MAR missingness process, while
we might not know what kind of missingness process has acted on variable V ; in this
case, the generic unit i of (2) can be written as the pair (ŷi, ȳi). Say that we focus
again on computing the posterior expectation for Θ, chosen to be that a person suffers
from tuberculosis if we know that the same person has made a recent visit to Asia. Say
also that we use Perks’ prior as we did before in the Bayesian case, in order not to get
distracted in the discussion by prior imprecision. In this case, the outer minimum in (4)
corresponds to minimising over the four completions for variable V ; the following infimum
corresponds to take into account Perks’ prior. The four completions mentioned above give
rise to four different data sets that contain a single missing value in the last unit. For each of
them, we can compute the lower probability for the category b′ conditional on v′, using the
Expectation-Maximisation algorithm (Dempster, Laird, & Rubin, 1977) together with Perk’s
prior, obtaining four values: 0.63, 0.87, 0.50, 0.83 (these values are rounded to the second
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digit). The lower probability is then their minimum: 0.5; analogously, their maximum is the
upper probability: 0.87. We can again think of these two values as delimiting an interval
for the probability under consideration: [0.5, 0.87]. The width of this interval reflects our
ignorance about the missingness process for V .

We consider now the Bayesian case, using for both B and V the MAR assumption, as
it is very common when learning parameters from data sets. In this case, the Expectation-
Maximisation algorithm together with Perks’ prior yields an estimate for the probability
equal to 0.86. Apart from the unrealistic precision of this estimate obtained from such a
small data set, we can observe that using MAR has arbitrarily led us very close to the upper
extreme of the interval [0.5, 0.87]. This is even more questionable when we consider that
the Bayesian estimate from the complete data set (2) was close to the lower extreme.

In summary, by using CIR we are able to obtain interval estimates that are arguably
more realistic than the point estimates provided by more traditional methods when the
MAR assumption is not justified. This also follows by exploiting the option given by CIR
to use models of prior knowledge that carefully model the available information, or the
absence of information, such as the imprecise Dirichlet model.

Finally, as the example illustrates, working with multiple likelihoods is a consequence
of taking all the possible completions of the incomplete part of the sample subject to the
unknown IP. This is a very intuitive procedure; therefore, it is not surprising that analogous
procedures have already been advocated with missing data in the context of robust statis-
tical inference (Manski, 2003; Ramoni & Sebastiani, 2001; Zaffalon, 2002). Actually, the
discussion in this (and the following) section can be regarded as a formal justification of the
cited approaches from the point of view of imprecise probability. It can also be regarded as
a generalisation of some of those approaches in that it considers the joint presence of the
CAR and the unknown IP, and because it allows one to work with incomplete rather than
missing data.

5.2.1 IID+ID case

In the previous section, we have not made hypotheses about the generation of the complete
sample. However, in practice it is very frequent to deal with independent and identically
distributed data (also called multinomial data), and indeed we have already assumed IID
for the data in (2). With multinomial data, the units are identically distributed conditional
on θ, and this helps simplifying the developments. Call D the space of possibilities common
to the units. When we assume that D is finite (as we shall do in our derivation of the CIR
rule in Section 6.4), the parameter Θ is defined as the vector [Θd]d∈D, where the generic
element Θd represents the aleatory probability of D = d. It follows that θ ∈ T is the vector
[θd]d∈D, whose generic element θd is P (d|θ); and that T is a subset of the |D|-dimensional
unit simplex. Taking into account that units are also independent conditional on θ, it
follows that the likelihood factorises as

∏N
i=1 θdi

.

When complete data are IID, it may be reasonable to assume that also the overall IP is
independently distributed (ID). Such an assumption allows us to represent the observation
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of the complete sample as a vector, i.e., as an incomplete sample:

W :=


W1

W2
...

WN

 .
Here the generic unit Wi is the observation of Di. Remember that we regard Di as the
pair (Ȳi, Ŷi); as a consequence, we also regard Wi as the pair of variables (W̄i, Ŵi), with
W̄i and Ŵi the observations of Ȳi and Ŷi, respectively. Finally, let W̄ := (W̄1, W̄2, . . . , W̄N )
and Ŵ := (Ŵ1, Ŵ2, . . . , ŴN ). For an example it is sufficient to consider the data set in (3),
which is just an instance of W in the current language; and its generic unit i is an instance
of Wi = (W̄i, Ŵi), where W̄i corresponds to variable V and Ŵi to B.

Using the newly introduced notation, the form that CIR takes is the following (with
obvious meaning of the symbols):

R(g|w̄, ŵ) = min
(ȳ1,...,ȳN )∈{w̄}∗1

R(g|ȳ1, . . . , ȳN , {ŵ1}∗, . . . , {ŵN}∗), (5)

where R(g|ȳ1, . . . , ȳN , {ŵ1}∗, . . . , {ŵN}∗) is equal to

inf
P≥P 1,P (ȳ1,...,ȳN ,{ŵ1}∗,...,{ŵN}∗)>0

P (g|ȳ1, . . . , ȳN , {ŵ1}∗, . . . , {ŵN}∗).

That this rule leads to self-consistent inference is established in Corollary 4 in Appendix B.
Moreover, the new formulation shows that the ID assumption for the incompleteness pro-
cess leads in practice to inhibiting certain types of coarsening: those that create logical
‘connections’ between different units. On the one hand, this confirms the expressive power
of coarsening. On the other, it suggests that in applications it might be easier to forget
about the ID assumption and simply focus on the specification of the kind of coarsening
behaviour. This approach appears to be more intuitive and hence more accessible especially
to people with little experience in statistics that might be involved in the analysis.

5.2.2 Full IID case?

Is it reasonable to assume that an IP is identically distributed besides independently dis-
tributed? And what are the consequences of such an assumption?

We start by addressing the second question. Under IID for complete data, the generic
element d ∈ D has a fixed aleatory probability, which we denoted by Θd. Call W the space
of possibilities common to the variables Wi, i = 1, . . . , N . Under IID for the IP, the generic
element w of W has a fixed aleatory probability to be produced conditional on d, let us
call it Φd

w. It follows that w has a fixed unconditional aleatory probability to be produced:
Ψw :=

∑
d∈D Θd · Φd

w, which means that the process that produces elements of W is also
multinomial. This seems to considerably simplify the setup considered so far, and can thus
be regarded as an advantage of the full IID assumption (this advantage has clear practical
consequences in the case of pattern classification, as illustrated in Section 5.3.2.)

On the other hand, and here we turn to address the first question, the possible advan-
tages seem to be dwarfed by the strength of the assumption itself. It is indeed questionable
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that such an assumption may be largely valid in applications. IPs are often generated by
sophisticated behaviour patterns that involve humans, or other complex agents, and that
can be regarded as protocols of communications. In this case giving or not giving some
information is a fundamental and an intelligent part of the communication. Assuming in
this case that the IP is IID, seems to be too much of a strong assumption. In fact, there is
a fundamental difference between data-generating processes (giving rise to Z and Y ) and
observational processes (giving rise to W ). We believe that the essence of this difference
is that in a number of cases it does not make much sense to assume that an observational
process is identically distributed, while IID does make sense, or is at least a reasonable
approximation for many data-generating processes.

5.2.3 CAR units

Having considered the IID+ID setup in Section 5.2.1 gives us the opportunity to slightly
extend the analysis done so far. The idea is that the since the overall IP does not need to
be identically distributed, it may happen to act as a CAR process for some units. Say that
a certain unit 0 is entirely coarsened at random. The question is what form takes CIR now.

This is easy to see by defining Ȳ := (Ȳ1, . . . , ȲN ), Ŷ := (D0, Ŷ1, . . . , ŶN ), and the
corresponding observation variables W̄ := (W̄1, . . . , W̄N ), Ŵ := (W0, Ŵ1, . . . , ŴN ), which
lead to the following rule:

R(g|w̄, ŵ) = min
(ȳ1,...,ȳN )∈{w̄}∗1

R(g|ȳ1, . . . , ȳN , {w0}∗, {ŵ1}∗, . . . , {ŵN}∗).

In particular, if Unit 0 is missing, i.e., {w0}∗ = D, the rule prescribes to discard such a unit
from consideration:

R(g|w̄, ŵ) = min
(ȳ1,...,ȳN )∈{w̄}∗1

R(g|ȳ1, . . . , ȳN , {ŵ1}∗, . . . , {ŵN}∗).

This observation is particularly important for applications because it may well be the case
that in practice some units are entirely missing in a non-selective way. CIR tells us that all
such units, as Unit 0 above, are not going to alter our beliefs about Z.

The situation is obviously different if some units are turned into missing units by an
unknown process; in this case there is no justification to discard them. The correct way
to proceed is to make those missing values part of the observed data, and then to apply
CIR again. This would lead us to consider all the completions of such missing units into
account.

5.3 CIR for pattern classification

This section focuses on problems of pattern classification, a special case of so-called predictive
inference. Loosely speaking, this kind of inference is concerned with predicting future
elements of a sequence based on the available part of the sequence itself. In a classification
problem, the available sequence is represented by the following matrix:

C1 F1

C2 F2
...

...
CN FN

 . (6)
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The generic line i, or unit i, of the matrix represents an object described by a pair of
variables that we relabel as Di := (Ci, Fi) to be consistent with the notation used for
parametric inference. Variable Ci represents a characteristic of the object in which we are
interested, and that we call class. Denote the set of classes by C. By definition of pattern
classification, C is a finite set. Variable Fi represents some features of the object that are
informative about the class.

We can try to make this more clear by an example focused again on the Asia network.
Say that we have a data set that records the state of the variables in the Asia network for
a number of persons. Say also that we are interested in classifying people as smokers or
non-smokers. In this case, the value of Ci, i.e., the class variable for the i-th person in the
data set, is the state of variable K in the Asia network for person i. Variable Fi is then the
vector of all the remaining variables in the Asia network for such a person; in other words,
Fi represents the profile of person i in the data set.

Now we consider the next element in the sequence, represented as the further unit
D := (C,F ), also called the unit to classify. In the previous example, D would be the next
person we see. The goal of classification is to predict the value that C assumes given values
of all the other variables; in the example this amounts to predict whether the next person
is smoker or not given the profile of that person, and the relationship between profiles and
classes that is suggested by the historical data. In other words, in this framework C is Z
and (D1, . . . , DN , F ) is Y .

Predicting the class c′ for C can be regarded as an action with uncertain reward gc′ ,
whose value gc′(c) depends on the value c that C actually assumes. In the case of precise
probability, the optimal prediction is a class copt that maximises the expected reward:

P (gcopt |d1, . . . , dN , f) ≥ P (gc′ |d1, . . . , dN , f), c′ ∈ C.

The previous expression is equivalent to the next:

P (gcopt − gc′ |d1, . . . , dN , f) ≥ 0, c′ ∈ C.

This is very similar to the expression used with imprecise probability: in this case an optimal
class is one that is undominated, i.e., such that for all c′ ∈ C:12

P (gcopt − gc′ |d1, . . . , dN , f) > 0.

Despite the similarity in notation, it is important to realise that there is a fundamental
difference in the two cases: precise probability always leads to a determinate prediction,
imprecise probability does not. With imprecise probability there is a progression according
to which stronger beliefs lead to less indeterminate decisions, up to completely determined
ones (see (de Cooman & Zaffalon, 2004, Section 2.10) for a wider discussion of decision
making with imprecise probability).

The discussion up to this point has highlighted that both with precise and with imprecise
probabilities, predictions are based on (upper, and hence lower) previsions of functions
g : C → R. In order to address the issue of incompleteness in pattern classification, we can

12. Walley calls maximality the related decision criterion (Walley, 1991). See (Troffaes, 2007) for a compar-
ison with other criteria.
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therefore, without loss of generality, restrict the attention to the task of updating beliefs
about C.

This task is usually regarded as made of two distinct steps. The first is concerned
with learning from a sample, represented here by Matrix (6), a probabilistic model of the
relationship between features and classes. The second is applying the model to the observed
value f of F in order to finally compute the (lower) prevision of a gamble g.

We illustrate the two steps in the case of IID data; more general cases can be treated
analogously.

In the Bayesian framework, the first step is often done in a way similar to parametric
inference. One defines a family of density functions that may be responsible for producing
the units of data, index them by the admissible values θ ∈ T of a (usually continuous)
parameter Θ, and then assesses a prior density for Θ. The prior and the likelihood lead
via Bayes’ rule to the posterior density for Θ conditional on (d1, . . . , dN ). The second step
corresponds to use such a posterior together with the density (or the mass function) for D
conditional on Θ, to obtain (integrating Θ out) the so-called predictive posterior: i.e., the
mass function for C conditional on (d1, . . . , dN , f), which embodies the wanted probabilistic
model of the relationship between features and classes. Computing the posterior prevision
P (g|d1, . . . , dN , f) is trivial at that point.

The situation is similar in the imprecise case, with the difference that using a set of
prior densities, i.e., a lower prior P 1(Θ), leads to a lower predictive prevision:

P (g|d1, . . . , dN , f) := inf
P≥P 1:P (d1,...,dN ,f)>0

P (g|d1, . . . , dN , f).

Now we are ready to address the issue of incomplete data using CIR. We must first define
the variables that are subject to the CAR and the unknown IP. With respect to feature
variables, we assume that the generic variable Fi is equal to the pair (F̄i, F̂i), with the usual
meaning of the symbols, and in the same way, that F = (F̄ , F̂ ). Define the vectors Ȳ and
Ŷ as Ȳ := (C1, F̄1, . . . , CN , F̄N , F̄ ), Ŷ := (F̂1, . . . , F̂N , F̂ ). To make things more readable,
we also define Ȳi := (Ci, F̄i), Ŷi := F̂i, for all i = 1, . . . , N ; and ȲN+1 := F̄ , ŶN+1 := F̂ .

There is obviously arbitrariness in the above definitions of the vectors Ȳ and Ŷ , and
it might well be the case that some applications require different choices. The present
definitions are only done for illustrative purposes.

With the above definitions, CIR leads to the following rule to update beliefs about g:

R(g|w̄, ŵ) = min(ȳ1,...,ȳN+1)∈{w̄}∗1 infP≥P 1:P (ȳ1,...,ȳN+1,{ŵ1}∗,...,{ŵN+1}∗)>0

P (g|ȳ1, . . . , ȳN+1, {ŵ1}∗, . . . , {ŵN+1}∗). (7)

Corollary 5 proves that this rule leads to self-consistent inference. Equation (7) states that
one should consider (i) the set of possible completions of the part of the observed sample
originated by the unknown IP, ×Ni=1{w̄i}∗1; (ii) the set of possible completions of the part of
the unit to classify originated by the unknown IP, {w̄N+1}∗1; and (iii) the set of (possible)
precise priors, which are those dominating our prior lower prevision P 1(Θ). For each of the
above choices, the problem becomes the computation of the posterior expectation of g as
in a single Bayesian (i.e., precise-probability) classifier. When we consider all the possible
choices in (i)–(iii) above, working with (7) amounts to work with a set of Bayesian classifiers.
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The set of posterior expectations originated by the Bayesian classifiers is summarised in (7)
as a lower expectation.

We can look at the problem also from another point of view. Imprecision that produces
the lower expectation (7) can be regarded as originated by three components. The first is
the presence of multiple priors. The second is the presence of multiple likelihoods, each
of which is consistent with a certain completion of the part of the sample originated by
the unknown IP. The third component is the set-valued observation of the part F̄ of the
features of the unit to classify, which we can regard as an imprecise description of the object
to classify.

5.3.1 An example

Let us focus again on the initial example in Section 5.3 in which we were interested in
classifying people as either smokers or non-smokers. To make things easier, we take gc′ to
be the 0-1 loss function, i.e., we compute posterior probabilities rather than expectations in
order to issue a classification. Moreover, we take the graph of the Asia net to represent the
probabilistic dependencies between the variables involved (yet, we do not assume the net
parameters to be given as learning the parameters from data is part of the inferential task
of classification that we have to solve). To make the example more handy, we assume that
for all the people we want to classify we miss information about the variables V , B, O, L
and A in the Asia net, and that this missingness is MAR: that is, these variables constitute
F̂ . This implies, through (7), that we can actually discard variables V , B, O, L and A from
consideration: we can equivalently work out our inference task by relying only on a learning
set for the variables K, R and H alone. This holds because working with (7) amounts to
work with a set of Bayesian classifiers, and the above property holds for each of them.13

As a consequence, it turns out that the only portion of the Asia net which is relevant for
the classification is that displayed in Figure 2. Such a structure, with the feature variables

+ s

Lung cance(R) Bronc(H)itis

Smo(K)ing

Figure 2: The naive sub-network of the Asia net related to the variables K, R and H.

represented as disconnected children of the class variable is called a naive network. When
we use it as a precise-probability classifier, it is best known as naive Bayes classifier (Duda
& Hart, 1973).

13. A proof in relationship with a specific classifier can be found in (Corani & Zaffalon, 2008, Section 3.1.2).
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Say that our learning set, originated by an IID process, is the following:

d̄N :=



(r′, h′′, k′)
(r′, h′′, k′)
(r′, h′, k′)
(r′, h′, k′)
(r′′, h′, k′)
(r′′, h′, k′′)
(r′′, h′, k′′)
(r′′, h′′, k′′)
(r′′, h′′, k′′)
(r′, h′′, k′′)


.

This data set is characterised by a strong positive relationship between smoking and cancer
and a weak positive relationship between smoking and bronchitis. Learning naive Bayes
from d̄N and applying the model to the four joint instances of the feature variables, we
obtain the following predictions:


(r′, h′, k′)
(r′, h′′, k′)
(r′′, h′, k′′)
(r′′, h′′, k′′)

 , (8)

where we have used Perks’ prior for naive Bayes14 in the above experiments. If we replace
such a prior with an imprecise one, we obtain an extension of naive Bayes to imprecise
probability. If we moreover define such a prior P 1(Θ) so as to model a state of prior
ignorance, similarly to what we have done in the case of parametric inference, we obtain
an imprecise-probability classifier that is an instance of the so-called naive credal classifier
2 (NCC2 (Corani & Zaffalon, 2008)). We can reinterpret NCC2 as a set of naive Bayes
classifiers. In the present case, we have a classifier per each precise prior consistent with
(i.e., dominating) the imprecise one.

The way NCC2 issues a classification on a specific instance of R andH can be understood
easily in terms of the set of naive Bayes classifiers to which it corresponds: the classification
of NCC2 is the union of the classes issued by all the naive Bayes classifiers in the set.15

This means that if all the naive Bayes classifiers issue the same class, then the classification
of NCC2 is determinate, i.e., made of a single class. Otherwise, when there is disagreement
among the naive Bayes classifiers, then NCC2 issues the entire set K, i.e., an indeterminate
classification.16

14. Modified as described in (Zaffalon, 2001, Section 5.2) (refer to Perks’ prior defined ‘in analogy with the
IDM’ in that section) to make the comparison easier.

15. This is the case because the class variable is binary.
16. This total indeterminacy is a consequence of the class variable being binary; in other cases the output set

of classes can be any subset of classes, not only the least informative one. In these cases, the classification
is only partially indeterminate, and carries therefore useful information.
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If we infer NCC2 from the learning set d̄N , we obtain again the determinate predictions
reported in (8):17 this means that the information in the data is strong enough to smooth
the contribution of each precise prior used by NCC2 in favor of a single class.

We can move to more interesting examples by introducing missing values. Consider the
following two instances to classify that are missing the information about cancer:[

(?, h′)
(?, h′′)

]
. (9)

The treatment of these instances will be very different from naive Bayes to NCC2. NCC2
can naturally embed our assumption that R and H are made missing by an unknown
process, and deal with it by considering the two completions of the question mark in each
instance. In other words, the classification of NCC2 will be not only, as before, equal to the
union of the classes delivered by the equivalent set of naive Bayes classifiers, but the union
will also be taken with respect to the two completions of the instance to classify. On the
other hand, naive Bayes will have to assume MAR to deal with the incomplete instances,
and this will lead it to discard R from the conditioning variables.

The classifications issued by naive Bayes and NCC2 are respectively:[
(?, h′, k′)
(?, h′′, k′′)

]
,

[
(?, h′,K)
(?, h′′,K)

]
.

In other words, for naive Bayes knowing the state of bronchitis is sufficient to determine
whether a person is smoker or not, despite the weak relationship in the learning set between
those two characteristics; NCC2 is more cautious and believes that it is not possible to
determine the smoking state because it is missing, not necessarily in an ignorable way, the
value of a very important predictor variable.

The situation can become even more critical for naive Bayes if we use an incomplete
learning set w̄N := (w̄1, . . . , w̄N ) rather than d̄N , such as

w̄N :=



(r′, h′′, k′)
(r′, h′′, k′)
(r′, ?, k′)
(r′, ?, k′)
(r′′, ?, k′)

(r′′, h′, k′′)
(r′′, h′, k′′)
(r′′, ?, k′′)
(r′′, ?, k′′)
(r′, ?, k′′)


.

We have originated this data set from d̄N by turning some values of H into missing so that
the complete portion of the data set suggests that H is a very good predictor for K. This is
going to be a problem for naive Bayes, because it has still to deal with the incompleteness
assuming MAR, which leads it to compute the counts from the learning set discarding the

17. The predictions of NCC2 can be computed by an open-source software freely available at
http://www.idsia.ch/∼giorgio/jncc2.html.
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missing values. NCC2, on the other hand, implicitly considers all the complete data sets
that are consistent with w̄N . Therefore in this case NCC2 can be regarded as the set of
naive Bayes classifiers that are obtained by considering all the precise priors previously
described in relationship with NCC2 and all the likelihoods that arise from the complete
data sets consistent with w̄N .

Running both classifiers to predict the class of the units in (9), we obtain that naive
Bayes predicts that the first person is not a smoker and that the second is, in both cases
with posterior probability equal to 0.90 ! NCC2, more reasonably, outputs K in both cases,
as a way to say that there is not information enough to make any reliable prediction. This
example also points out that NCC2 correctly suspends the judgment even on instances on
which precise models such as naive Bayes are actually very confident (for more details about
this point, see (Corani & Zaffalon, 2008, Section 4.4)).

5.3.2 On the failure of empirical evaluations

Consider the question of the IID vs. the ID assumption for an IP, as discussed in Sec-
tion 5.2.2, but placed here in the context of classification. To make things easier, we focus
on finite possibility spaces, and assume in addition that the CAR IP is not present and that
the classes are always observed precisely (i.e., as singletons).

The first interesting thing to note is the following. Recall that imposing the full IID
assumption (i.e., IID both for the data-generating process and the IP) implies that the
(set-valued) observations can be regarded as the outcomes of a multinomial process. This,
together with the fact that the classes are always observed precisely, enables us to dis-
card the Y -variables from consideration: they are not necessary because one can learn the
relationship between the classes and the features directly by using the W -variables.

This shows that the full IID assumption in classification makes CIR collapse to the
traditional updating rule, although applied to the W -variables. This makes things easier
to deal with, and can thus be regarded as an advantage of the full IID assumption in
classification. But we have already argued that the IID assumption for an IP is strong, and
so we turn to consider the weaker ID assumption also for pattern classification, that we
consider more tenable.

Let us focus on a very simple classification setting where the complete data are generated
in an IID way, and where the IP is ID. The problem is to predict the class of the unit to
classify given its features and the previous units (1, . . . , N). This is usually done in the
precise case by following a maximum expected utility approach. Call a model that acts in
such a way a precise classifier.

It is common practice with precise classifiers to measure their accuracy empirically. In its
simplest form, this is obtained by randomly splitting the available data into a learning and
a test set, by inferring the classifier from the former and testing it on the latter. This simple,
yet powerful, idea is responsible for much of the success and popularity of classification, as
it enables one to be relatively confident about how well a classifier performs on previously
unseen data. Unfortunately, this key characteristic is lost when we cannot assume that the
unknown IP is IID.

To see why, consider a Boolean class variable C and two Boolean variables A1 and A2,
such that F = (A1, A2). Assume that C is the result of the exclusive logical disjunction
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applied to A1 and A2: i.e., C = 1 if and only if either A1 = 1 or A2 = 1, but not
both. Assume that the complete data are eventually turned into incomplete data by an
(unknown) IP whose only action is to make A2 missing if and only if (A1, A2) = (1, 0).
Let WA1 and WA2 be the observation variables for A1 and A2, respectively. The IP is
then characterised by P (WA2 = {0, 1}|A1 = 1, A2 = 0) = 1, so that observing the pattern
(WA1 = {1},WA2 = {0, 1}) implies C = 1 with certainty. In these conditions, any precise
classifier is clearly expected to learn that A2 being missing is irrelevant to predict the class,
whose value coincides with the value of A1. Since this is true for all the available data,
partitioning them into learning and test set will do nothing but confirm it: the prediction
accuracy on the pattern (WA1 = {1},WA2 = {0, 1}) will be perfect, i.e., 100%. But the
IP is not identically distributed, and it happens that when the classifier is put to work in
an operative environment, the IP changes, in particular by making A2 missing if and only
if (A1, A2) = (1, 1); or, in other words: P (WA2 = {0, 1}|A1 = 1, A2 = 1) = 1. Once put
to work in practice, the classifier will be always wrong on the pattern (WA1 = {1},WA2 =
{0, 1}), the prediction accuracy dropping to 0%.

Of course the example is designed so as to illustrate an extreme situation. However,
experiments on real data sets done without using such an extreme unknown IP, as reported
in (Corani & Zaffalon, 2008, Section 4.6), show that this phenomenon can indeed severely
bias the empirical measures of performance. This appears to point to a fact: that empirical
evaluations are doomed to failure in general when the data are made incomplete by a non-
IID unknown process.

These considerations may have profound implications for classification, and more gener-
ally for data analysis. These fields of scientific research rest on two fundamental pillars: (i)
that the assumptions made to develop a certain model (e.g., a classifier) are tenable; and (ii)
that empirical evaluations are reliable. The crucial point is that both pillars may be very
fragile with incomplete data, so being unable to sustain credible models and conclusions.

The way left to cope with such critical issues seems necessarily to rely on doing tenable
assumptions. This involves recognising that the incompleteness process may not be IID.

6. Theoretical derivation

So far we have defined CIR and discussed its characteristics as well as a number of example
applications. It is time now to report the theoretical development behind it.

6.1 Further notions about coherent lower previsions

We introduce some further notions about coherent lower previsions that we need in the rest
of the paper.

6.1.1 Coherence of a number of conditional previsions

Reconsider the setup introduced in Section 2 made of variables X1, . . . , Xn about which a
subject expresses beliefs. In practice, he can provide assessments for any disjoint subsets
O, I of {1, . . . , n}; it is thus not uncommon to model a subject’s beliefs using a finite number
of different conditional lower previsions. Formally, we are going to consider what we shall
call collections of conditional lower previsions.
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Definition 9 Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be conditional lower previsions with re-
spective domains K1, . . . ,Km ⊆ L(X n), where Kj is the set of XOj∪Ij -measurable gambles,18

for j = 1, . . . ,m. This is called a collection on X n when for each j1 6= j2 in {1, . . . ,m},
either Oj1 6= Oj2 or Ij1 6= Ij2.

This means that we do not have two different conditional lower previsions giving information
about the same set of variables XO, conditional on the same set of variables XI .

Even if all the conditional lower previsions in a collection are separately coherent, they do
not need to be coherent with one another, so that a collection could still express inconsistent
beliefs. To be able to model this joint coherence, we first introduce some new concepts.
Remember that we use IA to denote the indicator function of the set A, i.e., the function
whose value is 1 for the elements of A and 0 elsewhere.

Definition 10 For all gambles f in the domain KO∪I of the conditional lower prevision
P (XO|XI), and all x ∈ XI , we shall denote by G(f |x) the gamble that takes the value
Iπ−1

I (x)(y)(f(y)−P (f |x)) for all y ∈ X n, and by G(f |XI) the gamble equal to
∑

x∈XI
G(f |x).

These are (almost-)desirable gambles for our subject: under the behavioural interpreta-
tion of P (f |x) as the supremum acceptable buying price for f contingent on x, the gamble
G(f |x)+εIπ−1

I (x) is equivalent to buying f for the price P (f |x)−ε, provided that XI = x, and
is therefore desirable. Since this happens for ε arbitrarily small, we deduce that the trans-
action G(f |x) is almost-desirable. That G(f |XI) =

∑
x∈XI

G(f |x) is also almost-desirable
follows from the rationality principle that a sum of gambles which are almost-desirable for
our subject should also be almost-desirable 19.

Definition 11 The XI-support S(f) of a gamble f in KO∪I is given by

S(f) := {π−1
I (x) : x ∈ XI , fIπ−1

I (x) 6= 0}, (10)

i.e., it is the set of conditioning events for which the restriction of f is not identically zero.

Definition 12 Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent. They are co-
herent when for all fj ∈ Kj, j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, f0 ∈ Kj0 , z0 ∈ XIj0 , there is
some B ∈ {π−1

Ij0
(z0)} ∪

⋃m
j=1 Sj(fj) such that

sup
x∈B

 m∑
j=1

Gj(fj |XIj )−Gj0(f0|z0)

 (x) ≥ 0,

where Sj(fj) is the XIj -support of fj, as defined by Equation (10).

We restrict the supremum to a subset of X n because a gamble f ≤ 0 such that f < 0
on some subset A of X n should not be desirable for our subject.

18. We use Kj instead of KOj∪Ij in order to alleviate the notation when no confusion is possible about which
variables are involved.

19. In the case of an infinite XI we need to add another rationality principle (Walley, 1991, Sect. 6.3.3).
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The notion in Definition 12 is sometimes also called joint (or strong) coherence. It is the
strongest notion of self-consistency in Walley’s theory, and can be regarded as the unique
axiom of such a theory. The intuition behind this notion is that we should not be able
to raise the conditional lower prevision for a gamble taking into account the acceptable
transactions implicit in the other conditional previsions. Let us make this clearer. Assume
Definition 12 fails, and that there is some δ > 0 such that m∑

j=1

Gj(fj |XIj )−Gj0(f0|z0)

 (x) ≤ −δ < 0, (11)

for every x in B ∈ {π−1
Ij0

(z0)} ∪
⋃m
j=1 Sj(fj). As a consequence,

Gj0(f0|z0)− δIz0 = Iz0(f0 − (P j0(f0|z0) + δ)) ≥
m∑
j=1

Gj(fj |XIj ),

taking into account that the inequality holds trivially on the elements outside {π−1
Ij0

(z0)} ∪⋃m
j=1 Sj(fj), and that on this class it is a consequence of Eq. (11). But since the right-hand

side is a sum of almost-desirable gambles, this means that the left-hand side should also
be almost-desirable. This means that any price strictly smaller than P j0(f0|z0) + δ should
be an acceptable buying price for the gamble f0, conditional on z0. This contradicts the
interpretation of P j0(f0|z0) as the supremum acceptable buying price.

Example 4 (Walley, 1991, Example 7.3.5) Let X1, X2 be two random variables taking
values in {1, 2, 3}, and assume that we make the somewhat contradictory assessments X1 =
1 ⇒ X2 = 1, X1 = 2 ⇒ X2 = 2, X2 = 1 ⇒ X1 = 2, X2 = 2 ⇒ X1 = 1 and X1 = 3 ⇔
X2 = 3. These assessments can be modelled by the conditional previsions P (X1|X2) and
P (X2|X1) given by

P (f |X2 = 1) = f(2, 1), P (f |X2 = 2) = f(1, 2), P (f |X2 = 3) = f(3, 3)
P (f |X1 = 1) = f(1, 1), P (f |X1 = 2) = f(2, 2), P (f |X1 = 3) = f(3, 3)

for any gamble f on X1 × X2. To see that they are not coherent, consider the gambles
f1 = I{(1,2),(2,1)}, f2 = I{(1,1),(2,2)}, f3 = 0. It follows from Equation (10) that S1(f2) =
{{1} × X2, {2} × X2} and S2(f1) = {X1 × {1},X1 × {2}}. Then

G(f1|X2) +G(f2|X1)−G(f3|X1 = 1) = G(f1|X2) +G(f2|X1) < 0

on the set {(x1, x2) ∈ B for some B ∈ S1(f2) ∪ S2(f1) ∪ π−1
1 (1)} = X1 ×X2 \ {(3, 3)}. ♦

6.1.2 Coherence graphs

A collection of lower previsions can be given a graphical representation that we call a coher-
ence graph (Miranda & Zaffalon, 2009). A coherence graph is a directed graph made of two
types of nodes: actual and dummy nodes. Dummy nodes are in one-to-one correspondence
with the lower previsions in the collection; actual nodes represent the variables X1, . . . , Xn.

34



Conservative Inference Rule

V

B

?

?
s
s

K
?

s
U�

s s
R H
�w s
?
O

?
L

- �ss
?
A

Figure 3: The coherence graph originated by the A1+-representable collection: P 1(V ),
P 2(K), P 3(B|V ), P 4(R|K), P 5(H|K), P 6(O|B,R), P 7(L|O), P 8(A|O,H).

Figure 3 shows the coherence graph for the conditional distributions owned by the nodes
of the Asia network which we represent as lower previsions, i.e., P 1(V ), P 2(K), P 3(B|V ),
P 4(R|K), P 5(H|K), P 6(O|B,R), P 7(L|O), P 8(A|O,H). In order to avoid confusion, we
stress that a coherence graph can be built out of any set of lower previsions, not just those
arising from graphical models. We use the Asia network here only for illustrative purposes.
Moreover, in building the coherence graph from the Asia net, we completely disregard any
independence information coded by the net, and we focus only on the list of conditional
distributions. Also, the coherence graph is the same irrespective of whether the conditional
assessments are linear or not.

We adopt some conventions to display a coherence graph: we denote actual nodes with
the same letter of the corresponding variable; dummy nodes are instead denoted by black
solid circles and are not labelled. Finally, for a dummy node with both a single parent and
a single child, we do not show the arrow entering the node, so as to make the graph simpler
to see.

A collection of lower previsions is turned into a coherence graph by turning each of
its lower previsions into a subgraph called a D-structure: a directed graph consisting of a
dummy node, its directed predecessors (i.e., its parents) and successors (i.e., its children),
and the arcs connecting the dummy node to its parents and children. The parents of the
dummy node are the actual nodes corresponding to the variables on the right-hand side
of the conditioning bar of the prevision related to the dummy node. The children are
the actual nodes corresponding to the variables on the left-hand side of the conditioning
bar. For example, the D-structure for P 1(V ) is the subgraph in Figure 3 consisting of V ,
its dummy parent, and the arc connecting them; the D-structure for P 6(O|B,R) is the
subgraph consisting of the actual nodes B, R, O, the dummy that is child of the first two
and parent of the last one, and the three arcs connecting them.

In order to distinguish a coherence graph from other graphical models such as Bayesian
nets, note that in a coherence graph we cannot deduce independence between nodes in the
graph: for instance, in Figure 3 we cannot conclude that the variables L,A are independent
given O,H. The reason is that we can have instances of conditional previsions with this
very same coherence graph for which the variables L and A are dependent.
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Coherence graphs can have different forms, and each of these forms has some implication
on the coherence of the related collection of lower previsions. In this paper we focus on
coherence graphs called of type A1+: these coherence graphs are acyclic and have the
property that each actual node in the graph has exactly one parent. This is indeed the case
of the graph in Figure 3. A more general class of graphs is A1 graphs, which is defined
similarly to the A1+ case but with the difference that each actual node in the graph is
required to have at most one parent.

When a coherence graph is of type A1+ (resp. A1), we say that the related collection of
lower prevision is A1+-representable (resp. A1-representable). A1-representable collections
are interesting because the separate coherence of the lower previsions in the collection is
equivalent to their joint coherence, as shown in (Miranda & Zaffalon, 2009, Proposition 4).
This means that A1-representable collections are known to be coherent irrespective of the
numbers that make up their lower previsions, provided that they give rise to separately
coherent lower previsions.

6.1.3 Updating coherent lower previsions

One updating rule that can be used with lower previsions is the regular extension:

Definition 13 Let P be a coherent lower prevision, f ∈ KO∪I and x ∈ XI an element for
which P (x) > 0, where P is the conjugate upper prevision derived from P . The regular
extension R(f |x) is R(f |x) := inf

{
P (fIx)
P (x) : P ∈M(P ), P (x) > 0

}
.

Recall thatM(P ) is the set of linear previsions P with domain L(X n) that dominate P .
When XI is finite and P (x) > 0 for all x ∈ XI , the conditional lower prevision R(XO|XI)
defined by regular extension is coherent with P . The definition shows that the regular
extension also has a nice sensitivity analysis interpretation: i.e., applying Bayes rule to
the dominating linear previsions whenever possible. Perhaps for this reason, the regular
extension has been proposed and used a number of times in the literature as an updating
rule (de Campos, Lamata, & Moral, 1990; de Cooman & Zaffalon, 2004; Fagin & Halpern,
1991; Jaffray, 1992; Walley, 1981, 1991, 1996b).

Example 5 Assume we know that a coin is loaded, in the sense that it either always lands
on heads or on tails, but we don’t know on which. Let Xi be the outcome of a throw for
i = 1, 2. Our beliefs about (X1, X2) may be modelled by the vacuous lower prevision P on
{(heads, heads), (tails, tails)}. If we apply regular extension to define R(X2|X1), we obtain

R(X2 = heads|X1 = heads) = 1, R(X2 = tails|X1 = tails) = 1,

taking into account that P (heads, heads) + P (tails, tails) = 1 for any linear prevision P ∈
M(P ). ♦

6.1.4 Products of conditional previsions

We shall later use a generalisation of the marginal extension theorem (Walley, 1991, Theo-
rem 6.7.2) established in (Miranda & de Cooman, 2007).
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Definition 14 Let P 1(XO1), P 2(XO2 |XI2), . . . , Pm(XOm |XIm) be separately coherent con-
ditional lower previsions with respective domains K1, . . . ,Km, where I1 = ∅ and Ij =
∪j−1
i=1 (Ii ∪ Oi) = Ij−1 ∪ Oj−1 for j = 2, . . . ,m. Their marginal extension to L(X n) is

given by
P (f) = P 1(P 2(. . . (Pm(f |XIm)| . . . )|XI2)),

and it is the smallest unconditional coherent lower prevision which is (jointly) coherent with
P 1(XO1), P 2(XO2 |XI2), P 3(XO3 |XI3), . . . , Pm(XOm |XIm).

To see that the above definition makes sense, note that for any gamble f on X n,
Pm(f |XIm) is a gamble on XIm , and hence belongs to the domain of Pm−1(XOm−1|XIm−1);
then Pm−1(Pm(f |XIm)|XIm−1) is a gamble on XIm−1 which belongs therefore to the domain
of Pm−2(XOm−2 |XIm−2); and by repeating the argument, P 2(. . . (Pm(f |XIm)| . . . )|XI2) is a
gamble on XI2 = XO1 which belongs to the domain of the unconditional prevision P 1.

The idea behind the construction of the marginal extension is that, when we have
hierarchical information, the way to combine it into a joint prevision is to follow the order in
which this information is structured. It reduces, for instance, to the law of total probability
in the case of linear previsions and finite spaces. But it is applicable in more general
situations: when we combine a finite number of previsions, and not only two of them; when
we are dealing with infinite spaces; and when we have lower previsions instead of linear
ones.

We give next a notion of conditional independence for coherent lower previsions that we
shall use in the following.

Definition 15 Consider three variables, Xi, Xj , Xk, and a coherent conditional lower pre-
vision P (Xi, Xj |Xk). Xi and Xj are strongly independent conditional on Xk if Xi and Xj

are stochastically independent given Xk for all the extreme points of M(P (Xi, Xj |xk)) and
for all xk ∈ Xk.

The previous definition allows joint beliefs to be created out of marginal ones, as it is com-
mon with independence in precise probability: consider the coherent conditional lower pre-
visions P i(Xi|Xk) and P j(Xj |Xk). We build their so-called strong product P sp(Xi, Xj |Xk),
i.e., the least-committal lower prevision that follows from them and the assumption of strong
independence, as the lower envelope of the following set:

Msp := {P (Xi, Xj |Xk) := Pi(Pj(Xj |Xi, Xk)|Xk) s.t.∀xk ∈ Xk,
Pi(Xi|xk) ∈ ext(M(P i(Xi|xk))), P (Xj |xk) ∈ ext(M(P j(Xj |xk)),
and ∀xi ∈ Xi, Pj(Xj |xi, xk) := P (Xj |xk)},

where Pj(Xj |Xi, Xk) is defined using stochastic independence, and the linear prevision
P (Xi, Xj |Xk) is obtained by applying the marginal extension theorem.

Strong independence is a relatively straightforward generalisation of stochastic inde-
pendence to imprecision. It is also a notion that can immediately be given a sensitivity
analysis interpretation: since for every xk ∈ Xk each extreme point of M(P sp(Xi, Xj |xk))
satisfies stochastic independence, we can interpret P sp(Xi, Xj |Xk) as a model arising from
partial knowledge of an underlying linear prevision P (Xi, Xj |Xk) which is known to satisfy
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stochastic independence. In other words, P sp(Xi, Xj |Xk) could be regarded as obtained
by listing a number of candidate linear previsions P (Xi, Xj |Xk), each of which satisfies
stochastic independence, and by taking their lower envelope.

It should also be remarked that in the imprecise case, where we work with sets of proba-
bilities or previsions, there is not a unique extension of the notion of stochastic independence
of probability measures (see (Campos & Moral, 1995; Couso, Moral, & Walley, 2000) or
(Miranda, 2008a, Section 4)). The notion we have just considered is the strongest, and
therefore more informative, of the possibilities considered in the references above.20

A notion alternative to strong independence is for instance epistemic irrelevance (Walley,
1991, Section 9.1.1).

Definition 16 Given the coherent lower previsions P i(Xi|Xj , Xk) and P i(Xi|Xk), we say
that Xj is epistemically irrelevant to Xi conditional on Xk if it holds that P i(Xi|Xj , Xk) =
P i(Xi|Xk).

Epistemic irrelevance is naturally suited for a behavioural interpretation: Xj is irrelevant
to Xi given Xk because in the context of Xk the beliefs of a subject about Xi, expressed
by the coherent lower prevision P i(Xi|Xk), do not change after getting to know the value
of Xj . A sensitivity analysis interpretation of epistemic irrelevance is not possible in gen-
eral because for a joint created out of marginal information and epistemic irrelevance, the
related extreme points do not necessarily satisfy stochastic independence. In fact, strong
independence implies epistemic irrelevance while the converse implication does not hold.
Moreover, irrelevance is an asymmetric notion: knowing that Xj is irrelevant to Xi does
not imply that Xi is irrelevant to Xj . One can create a symmetric notion of epistemic inde-
pendence (see, e.g.,(Miranda, 2008a; Walley, 1991)) by requiring that both Xj is irrelevant
to Xi and Xi is irrelevant to Xj ; still, strong independence implies epistemic independence
but the other way around does not hold.

Strong independence can be expressed by means of epistemic irrelevance together with
a further requirement. Consider P i(Xi|Xk) and P j(Xj |Xk); we want to create their strong
product using epistemic irrelevance. We first write that P j(Xj |Xi, Xk) = P j(Xj |Xk), as
strong independence implies epistemic irrelevance. Then we apply the marginal extension
theorem to create the so-called irrelevant product P ip(Xi, Xj |Xk) = P i(P j(Xj |Xi, Xk)|Xk),
which is the least committal lower prevision that follows from the marginals and the as-
sumption of epistemic irrelevance. In terms of the sets of dominating linear previsions, the
marginal extension theorem states that P ip(Xi, Xj |Xk) is the lower envelope of the set

Mip := {P (Xi, Xj |Xk) = Pi(Pj(Xj |Xi, Xk)|Xk) : ∀xi ∈ Xi, xk ∈ Xk,
Pi(Xi|xk) ∈ ext(M(P i(Xi|xk))), Pj(Xj |xi, xk) ∈ ext(M(P j(Xj |xi, xk)))}.

Even if for all xk ∈ Xk the sets ext(M(P j(Xj |xi, xk))), xi ∈ Xi, are identical to one another
because of the irrelevance condition, when building a joint prevision P (Xi, Xj |Xk) we are
not forced to choose the same extreme point in each of them. This is just what makes the

20. This is related to the fact that it never holds that all the precise previsions in a convex set with more
than one element satisfy stochastic independence; therefore requiring it for the extreme points of the
credal set, which are the ones keeping all the behavioural information, amounts to go as far as possible
on the direction to independence.
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difference between Mip and Msp, and in fact we can write Msp in a way more similar to
Mip as follows:

Msp := {P (Xi, Xj |Xk) = Pi(Pj(Xj |Xi, Xk)|Xk) : ∀xi ∈ Xi, xk ∈ Xk,
Pi(Xi|xk) ∈ ext(M(P i(Xi|xk))), Pj(Xj |xi, xk) ∈ ext(M(P j(Xj |xi, xk)))
s.t. Pj(Xj |x′i, xk) = Pj(Xj |x′′i , xk) if x′i = x′′i }.

In other words, we can think of the strong product as obtained by the same procedure that
we use for the irrelevant product, with the additional requirement that for each xk ∈ Xk,
the extreme points chosen in ext(M(P j(Xj |xi, xk))), xi ∈ Xi, must coincide every time.
We shall use this observation in Section 6.2.3.

6.2 Modeling beliefs

Our aim in this section is to represent our beliefs about the vector (Z, Y,W ). We intend
to model beliefs using coherent lower previsions. We refer to Sections 2 and 6.1 and, more
generally, to (Walley, 1991) for the concepts and results we shall need.

A way to represent beliefs about (Z, Y,W ) is through a coherent lower prevision on L(Z×
Y×W), representing our joint beliefs about these variables. But, as with precise probability,
it is often easier to build joint models out of the composition of simpler conditional and
unconditional models. We shall therefore start by focusing on the following lower previsions,
which we illustrate for clarity by a coherence graph in Figure 4:

(LP1) A coherent lower prevision, denoted by P 1, on the set of XZ,Y -measurable gambles;

(LP2) A separately coherent conditional lower prevision P 2(W̄ |Z, Y ) on the set of XZ,Y,W̄ -
measurable gambles, modelling our beliefs about W̄ given the value (z, y) taken by
(Z, Y ).

(LP3) A conditional lower prevision P 3(Ŵ |Z, Y, W̄ ) on L(Z × Y × W), representing our
beliefs about Ŵ given the value that (Z, Y, W̄ ) takes.
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Ȳ
?

s

W̄ Ŵ
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Figure 4: The coherence graph for the initial conditional lower previsions that express be-
liefs about (Z, Y,W ).

The coherent lower prevision P 1 is intended to express our beliefs about the domain of
interest, which is modeled by the variables Z and Y . In other words, by P 1 we express
our beliefs about facts. The conditional lower prevision P 2(W̄ |Z, Y ) is concerned with
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our beliefs about the unknown incompleteness process. Finally, by the conditional lower
prevision P 3(Ŵ |Z, Y, W̄ ) we express our beliefs about the CAR incompleteness process.
How exactly this is done is detailed in the next sections. For the moment, we are going
to build a joint coherent lower prevision for (Z, Y,W ) out of the lower previsions listed
in (LP1)–(LP3). This is done by the marginal extension theorem introduced in Section 6.1.4.

In the present case, the generalised marginal extension theorem states that the lower
prevision P given by

P (f) = P 1(P 2(P 3(f |Z, Y, W̄ )|Z, Y ))

for all gambles f on Z × Y × W is the smallest (using the point-wise ordering of lower
previsions) coherent lower prevision on L(Z × Y × W) that is jointly coherent with the
lower previsions listed in (LP1)–(LP3). This implies, for example, that P coincides with
the coherent lower prevision P 1 on its domain. Because it is the smallest lower prevision
to be coherent with our assessments, P captures the behavioural implications present in
P 1, P 2(W̄ |Z, Y ) and P 3(Ŵ |Z, Y, W̄ ), without making any additional assumptions; we shall
therefore use it as the model of our beliefs about the vector (Z, Y,W ).

P is also the lower envelope of the closed and convex set M(P ) of dominating linear
previsions. It will be useful for the purposes of this paper to construct this set explicitly.
Consider the set

M′ :=

{
P : P (g) = P1(hg), hg(z, y) :=

∑
w

g(z, y, w)P2(w̄|z, y)P3(ŵ|z, y, w̄)

}
, (12)

for all g ∈ L(Z,Y,W), where P1 ∈ ext(M(P 1)), P2(W̄ |z, y) ∈ ext(M(P 2(W̄ |z, y))) and
P3(Ŵ |z, y, w̄) ∈ ext(M(P 3(Ŵ |z, y, w̄))) for any (z, y, w) ∈ Z × Y × W. Then M(P ) =
CH(M′), where the operator CH(·) stands for convex closure. As a consequence, P can
be calculated as the lower envelope of the class M′.

6.2.1 Domain beliefs

Consider variables Z and Y , which represent facts. Beliefs about facts, in the form of a
coherent lower prevision P 1, are specific of the domain under consideration; for this reason,
we call them domain beliefs. In the case of the Asia network, P 1 would correspond simply
to the joint mass function coded by the network itself.

We shall impose only a minimal assumption about domain beliefs, just because P 1 must
be as flexible a tool as possible in order to express beliefs in a wide range of domains. This
task will be postponed after focusing on a very different kind of beliefs, which we call beliefs
about the incompleteness process.

6.2.2 Beliefs about the incompleteness process

These are naturally of a conditional type: they formalise what we believe about the ‘modus
operandi’ of the overall IP, i.e., the procedure by which it turns facts into observations.
We represent these beliefs through assumptions to be satisfied by the conditional lower
prevision P 2(W̄ |Z, Y ), related to the unknown IP, and P 3(Ŵ |Z, Y, W̄ ), related to the CAR
IP. We start with the unknown IP.

The unknown IP has been introduced to formalise the idea of an incompleteness process
about which we are nearly ignorant. The term ‘nearly’ is there to emphasise that, despite a
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deep kind of ignorance, something is assumed to be known about the unknown IP. For one
thing, it produces incompleteness only on the basis of Ȳ . More formally, we assume that
there is a separately coherent conditional lower prevision P 2(W̄ |Ȳ ) such that

P 2(f |z, y) = P 2(f |ȳ) (BIP1)

for all XW̄ ,Y,Z-measurable gambles f and any (z, y) in (Z,Y).
(BIP1) states that observing different values for Z and Ŷ does not change our beliefs about
W̄ , once we know what value Ȳ takes in Ȳ. This assumption turns the coherence graph in
Figure 4 into that of Figure 5. Assumption (BIP1) arises somewhat naturally within our
interpretation of IPs as observational processes, in which we regard the unknown IP just
as a process that takes Ȳ in input and outputs W̄ . Still, it is an important assumption for
the following developments, and is therefore discussed in some detail in Section 6.3.
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Figure 5: The coherence graph in Figure 4 after the application of Assumption (BIP1).

The second thing that we assume about the unknown IP is related to the perfection of
the multi-valued map ΓȲ :

ȳ ∈ Ȳ ⇒ P 2(Γ(ȳ)c|ȳ) = 0. (BIP2)

In other words, by this assumption we practically exclude the possibility that for some
ȳ ∈ Ȳ, the unknown IP may lead to observations outside Γ(ȳ). Note that for this to
be well-defined, it is important to assume that Γ(ȳ) is non-empty as required by (IP4).
Remember that, here and elsewhere, we use P to refer to the conjugate upper prevision of
P ; see Remark 1 for more details.

Nothing more is assumed about the unknown IP. We are then led to introduce some
assumptions about the CAR IP, of which the first two are analogous to (BIP1) and (BIP2),
respectively. The first one is the existence of a separately coherent conditional lower previ-
sion P 3(Ŵ |Ŷ ) such that

P 3(f |z, y, w̄) = P 3(f |ŷ) (BIP3)

for all XW,Y,Z-measurable gambles f and (z, y, w̄) in (Z,Y, W̄). This assumption turns the
coherence graph in Figure 5 into that of Figure 6.

The second is an assumption of perfection of the multi-valued map ΓŶ :

ŷ ∈ Ŷ ⇒ P 3(Γ(ŷ)c|ŷ) = 0. (BIP4)

Again, this assumption is made possible by (IP5).
Now we assume something more substantial about the CAR IP. Indeed, the CAR IP

has been introduced to model a process that produces incompleteness in a random fashion,
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Ȳ
?

s

W̄ Ŵ
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Figure 6: The coherence graph in Figure 5 after the application of Assumption (BIP3).

that is to say, in a way that is not related to the underlying value that Ŷ takes in Ŷ. We
model this belief as follows:

ŵ ∈ Ŵ, ŷ ∈ {ŵ}∗ ⇒ P 3(ŵ|ŷ) = P 3(ŵ|ŷ) = αŵ, (BIP5)

where the αŵ’s are positive constants that satisfy
∑

ŵ∈Γ(ŷ) αŵ = 1, where the restriction
ŵ ∈ Γ(ŷ) is justified by (BIP4).

This assumption is usually called coarsening at random (or CAR) (Gill et al., 1997). In
the special case of missingness processes, one usually refers to CAR as missing at random
(or MAR) (Little & Rubin, 1987). CAR/MAR is probably the most frequently imposed
assumption on IPs in the literature; it embodies the idea that an IP is non-selective (or
non-malicious) in producing observations. Together with (BIP4), it makes the conditional
prevision P 3(Ŵ |Ŷ ) precise: i.e., our beliefs about the CAR IP are determinate (they are
then the conditional expectation with respect to a probability distribution). An important
point is that we must require explicitly that ΓŶ be compatible with the CAR assumption
(see Appendix A for details); this leads to an assumption about ΓŶ other than those reported
in Section 3.3: we assume that

ΓŶ leads through (BIP5) to an admissible system of linear constraints, (IP9)

that is, one that has a solution.
Now that we have characterised the unknown and the CAR IPs, we have also to deter-

mine the way in which they interact to make up the overall IP; we do this by imposing an
assumption of strong independence, as introduced in Section 6.1.4:

W̄ and Ŵ are strongly independent conditional on Y. (BIP6)

This assumption is discussed in Section 6.3.21

21. There are similarities between the model developed in this section and the more traditional hidden
Markov models (see for instance (Rabiner, 1989)). First, both focus on the distinction between the two
levels of information, the latent and the manifest one, as discussed in the Introduction. For this reason
both are concerned with an explicit representation of the observational process, which is what relates
the W and the Y variables, and which in our case coincides with the incompleteness process. If we refer
to Figure 6, to make things more concrete, we see that the W -variables are manifest and they depend
directly only on the related hidden Y -variables. This is a common representation in hidden Markov
models. Second, Assumption (BIP6) could be interpreted as a kind of Markovianity property. Yet, there
are also differences: a major one is the two W -variables are not related to an order (such as a time order),
and more generally that we are not explicitly representing any order in our model. Another is that we
quantify the probabilistic information of an observation conditional on the related hidden variable by a
set of conditional mass functions rather than a single one. This gives us more expressivity and is the key
to model the unknown IP.
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6.2.3 Joint beliefs

In this section we aim at constructing the joint coherent lower prevision P mentioned at the
beginning of Section 6.2. To do that, we need first to find explicit representations for the
assessments related to the unknown and the CAR IP, on the basis of Assumptions (BIP1)–
(BIP6). The joint will be constructed then using the marginal extension theorem mentioned
at the beginning of the section, and taking into account the assumption of strong indepen-
dence (BIP6).

Consider the unknown IP. Assumption (BIP1) allows us to focus our attention on the
conditional lower prevision P 2(W̄ |Ȳ ). Thanks to Assumption (BIP2), we know that for
any ȳ in Ȳ, P 2(W̄ |ȳ) gives lower probability one to Γ(ȳ). Since we know nothing else, we
take P 2(W̄ |ȳ) to be the least-committal such lower prevision, i.e., the smallest separately
coherent conditional lower prevision that assigns probability one to Γ(ȳ). Such a lower
prevision is also called vacuous relative to Γ(ȳ), and is given by P 2(f |ȳ) = min{f(w̄, ȳ) :
w̄ ∈ Γ(ȳ)} for any XW̄ ,Ȳ -measurable gamble f .22

Using indicator functions, we can easily write the extreme points of M(P 2(W̄ |ȳ)). Let
Iγ̄ : W̄ → {0, 1} be the indicator function for γ̄ ∈ Γ(ȳ). We write Iγ̄ rather than I{γ̄} to
simplify notation. Then ext(M(P 2(W̄ |ȳ))) = {Iγ̄ : γ̄ ∈ Γ(ȳ)}. This concludes the definition
of P 2(W̄ |ȳ) and also of P 2(W̄ |z, y), given that they coincide. Yet, when dealing with
P 2(W̄ |z, y), we shall use a slightly different formulation: ext(M(P 2(W̄ |z, y)) = {Iγ̄(z,y) :
γ̄(z, y) ∈ Γ(ȳ)}. The reason is that the extended notation γ̄(z, y) allows us to know, in
addition to the vertex, the value (z, y) on which we focus, and, consequently, that we focus
on the specific lower prevision P 2(W̄ |z, y). Hence, we shall see γ̄ as a mapping from Z ×Y
to W̄ such that for any (z, y), γ̄(z, y) belongs to Γ(ȳ).

The situation is somewhat easier with the CAR IP. Similarly to the previous case,
we know that we can restrict our attention to the conditional lower prevision P 3(Ŵ |Ŷ ),
thanks to (BIP3). But we also know that the conditional lower prevision P 3(Ŵ |Ŷ ) is
actually precise (we shall denote it by P3(Ŵ |Ŷ ) from now on), and P3(Ŵ |ŷ) consists of the
single mass function determined by Assumption (BIP5): i.e., the mass function that assigns
probability P (ŵ|ŷ) = αŵI{ŵ}∗(ŷ) to the generic element ŵ ∈ Ŵ.

At this point we can define the coherent lower prevision P that models our beliefs about
the value that (Z, Y,W ) assume jointly. We do this by rewriting Expression (12) according
to the previous arguments and using in addition (BIP6):

M′ := {P : P (g) = P1(hg), hg(z, y) =
∑

w αŵg(z, y, w)Iγ̄(z,y)(w̄)I{w̄}∗(ȳ)I{ŵ}∗(ŷ),
P1 ∈ ext(M(P 1)), γ̄(z, y) ∈ Γ(ȳ) s.t. γ̄(z, y) = γ̄(z′, y′) if ȳ = ȳ′,

(z, y, w) ∈ Z × Y ×W}, (13)

where we have introduced the new term I{w̄}∗(ȳ). Such a term is actually redundant, and
is introduced only because it is convenient for the next developments. To see that it is
redundant, note that I{w̄}∗(ȳ) = 0 implies that w̄ /∈ Γ(ȳ) and hence, since γ̄(z, y) ∈ Γ(ȳ) by
definition, we have that Iγ̄(z,y)(w̄) = 0. The usage of (BIP6), on the other hand, leads to the
more substantial introduction of the requirement that γ̄(z, y) = γ̄(z′, y′) when ȳ = ȳ′. This
is needed to represent strong independence by means of epistemic irrelevance, as discussed

22. It follows from this that the implication in (BIP2) is actually an equivalence.
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at the end of Section 6.1.4. The lower envelope P of the setM′ thus constructed is therefore
called the strong product of the assessments P 1(Z, Y ), P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ).

That the strong product is a coherent lower prevision, which is also coherent with
P 1(Z, Y ), P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ), follows from Corollary 1 in Appendix B. Importantly, this
is also the case if the coherent lower prevision P 1(Z, Y ) is constructed in a modular way
from smaller pieces of information (i.e., as a joint which is coherent with a number of smaller
pieces of information), provided that the coherence graph representing them is A1+; such
a situation is very often the case. It is the case, for instance, for all the the examples in
Sections 5.1–5.3, as shown by Corollaries 3–5 in Appendix B.

6.2.4 An assumption about domain beliefs

Recall that we have introduced W as a way to model observations, and hence our beliefs
should be consistent with the possibility of doing such an observation. To this extent, it
seems necessary that we at least believe that {w}∗ can be produced:

w ∈ W ⇒ P ({w}∗) > 0, (DB1)

taking into account that coherence implies that P ({w}∗) = P 1({w}∗). Assumption (DB1)
is equivalent to the existence of an extreme point P1 ofM(P 1) such that P1({w}∗) > 0. The
following proposition shows that this assumption is sufficient to make our beliefs consistent
with the possibility to do the observation w.

Proposition 1 Assumption (DB1) implies that P (w) := P (Z,Y, w) > 0.

Proof. Let P1 be an extreme point of M(P 1) satisfying P1({w}∗) > 0, which exists by
Equation (DB1), and take γ̄(z, y) = w̄ for any ȳ ∈ {w̄}∗. The joint P constructed from
Equation (13) satisfies P (w) = αŵP1({w}∗) > 0. Hence, P (w) > 0. 2

6.3 Assumptions discussed

We now discuss (BIP1), (BIP5) and (BIP6) in more detail. The other assumptions are quite
weak and relatively easy to accept. Assumptions (BIP2) and (BIP4) may be exceptions as
it makes sense to consider IPs that are imperfect (or that can lie), but this is out of the
scope of the present paper.

We start with Assumption (BIP5), i.e., CAR. CAR models a process that does not
coarsen facts with a specific purpose. CAR excludes in this way many common and im-
portant processes. Consider the medical domain, for example, focusing on a diagnostic
application. A fact in this case might describe information about a patient, such as gender,
age, lifestyle, and also the results of medical tests. Conclusions would be made by the
possible diseases. The IP in this case (at least part of it) often results from the interaction
between the doctor and the patient; indeed, there is usually a systematic bias in reporting,
and asking for, symptoms that are present instead of symptoms that are absent; and a
bias to report, and ask for, urgent symptoms more than others (Peot & Shachter, 1998).
Furthermore, a doctor typically prescribes only a subset of the possible diagnostic tests,
according to personal views and cost/benefit criteria.23 Overall, the process described is

23. This seems to support the idea that we shall hardly get ever rid of incompleteness: often, incompleteness
does not happen by mistake, rather, it is generated deliberately. In these cases it actually represents
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non-CAR by definition, because the incompleteness arises following patterns that do depend
on the specific facts under consideration.

Descriptions such as the one above support the idea that CAR is strong by means of
informal arguments. But also on the formal level, recent research has suggested that CAR
should be assumed to hold less frequently that it appears to be in practice (Grünwald &
Halpern, 2003); and one should also remember that there is no way to test CAR statistically
(Manski, 2003), so that there is always some degree of arbitrariness in assuming it. All of
this should be taken into account in order to put CAR in a more balanced perspective.
This is not to say that CAR should be rejected a priori, as there are situations when CAR
is completely justified. Consider one notable example: the case when we know that Ŷ is
missing with probability equal to one. In this case the related IP clearly satisfies MAR: the
probability of missingness is one irrespective of the value of Ŷ . More broadly speaking, MAR
holds for processes that produce missingness in an unintentional way. In these cases, not
assuming MAR would lead to results that are far too weak. The CAR IP in the modelling
framework presented in Section 6.2.2 is designed just to account for these situations: i.e., to
provide one with some flexibility in stating beliefs about the incompleteness process without
having to adopt necessarily a worst-case approach (as opposed to the best case embodied
by CAR/MAR), of the kind of the unknown IP.

The unknown IP is designed to model one’s ignorance about an incompleteness process.
It makes sense to adopt a conservative approach to model IPs in practice, for two specific
reasons: first, IPs may be very difficult processes to model. They are a special case of
observational processes, which often result from by human-to-human interaction, or by
other complex factors; in a number of cases they can actually be regarded as the result of a
communication protocol. The medical example above is intended to illustrate just this. It is
not saying anything new: the difficulty in modelling IPs has been pointed out already long
ago (Grünwald & Halpern, 2003; Shafer, 1985). But IPs are difficult objects to handle also
for a second reason: IP models can be tightly dependent on specific situations. Consider
the medical example: again different doctors typically ask different questions to diagnose
a disease, even in the same hospital. By changing hospital, one can find entirely different
procedures to diagnose the same disease, as the procedures depend on the local culture, on
the money available to make the tests, and which ones, or the local time constraints. In
other words, even if one is able to model an IP for a specific situation, that model may no
longer be appropriate when another doctor is in charge of doing the diagnosis, or when one
tries to apply the IP model to another hospital, perhaps in another country. In summary,
modelling the IP (especially in a precise way) may present serious practical difficulties,
as, in contrast with domain beliefs (e.g., medical knowledge), the way information can be
accessed may well depend on the particular environment where a system will be used; and
this means that models of the IP may not be easily reusable, and may therefore be costly.

These arguments support considering a conservative approach to model the IP that
can be effectively implemented, and this is the reason for introducing the unknown IP in
Section 6.2.2. Recall that the unknown IP is actually only nearly unknown, because we

patterns of knowledge (indeed, one can often tell what disease a patient was, or was not, suspected to
have by looking only at the medical tests that a doctor did, and did not, prescribe). In this sense, it
seems that incompleteness is doomed to be deeply rooted to many, if not most, real problems; and as
such, it appears to be a fundamental, and indissoluble, component of uncertain reasoning.
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require that (BIP1) holds. On the other hand, observe that by dropping (BIP1) we could
draw only vacuous conclusions about Z. To see this, suppose that you want to predict
the probability of Z = z given a certain observation w. Assume from now to the end
of the section that there is no CAR IP, in order to make things easier. Then without
assuming (BIP1), we could not exclude the possibility that the IP produces w if and only
if Z 6= z, so that the probability of Z = z is zero. In the same way, we could not exclude
the possibility that the IP produces w if and only if Z = z, so that the probability of Z = z
is one. Of course, all the intermediate randomised cases would also be possible, so that the
probability would be vacuous. This is to emphasise, perhaps not surprisingly, that complete
ignorance about an IP is not consistent with the possibility of drawing useful conclusions.

Having said this, it is still useful to wonder whether (BIP1) is reasonable in the present
setup. This is easier to do if we rewrite (BIP1) in a somewhat more natural form. We focus
on the special case where the spaces of possibilities are finite and we have precise beliefs
about the unknown IP. We can then multiply both sides of the equation P (w|z, y) = P (w|y)
by the conditional probability of z given y, obtaining P (z, w|y) = P (z|y)P (w|y). The new
equation states that variables Z and W are independent conditional on Y . In other words,
the original assumption is then equivalent to saying that if we already know fact y, making
the observation w is completely superfluous for predicting the target variable. This appears
to be nothing else but the precise characterisation of the problems of incomplete or missing
information: these problems are characterised by the fact that when something that can
be missing is actually measured, the problem of missing information disappears. If this
were not the case, the observation w would not only carry information about z via its
implications on the fact y: it would say something about z also on its own. But this means
that some information useful to predict the target variable has not been included in the
definition of the possible facts (see (de Cooman & Zaffalon, 2004) for further discussion
about an assumption called MDI that is related to (BIP1)).

We conclude this section discussing Assumption (BIP6), namely the strong independence
of W̄ and Ŵ conditional on Y . We discuss this assumption because one could in principle
consider weaker notions of independence to replace strong independence.

The reason why we have used strong independence is that for the kind of general frame-
work that we have developed it is technically quite difficult to embed other judgments of
independence of W̄ and Ŵ conditional on Y . On the other hand, the problem with strong
independence is that it does not easily lend itself to a full behavioural interpretation un-
like other notions, such as epistemic irrelevance or independence. And we acknowledge
that the behavioural interpretation is important both as a way to guide the mathematical
developments and when one comes to decision making.

Yet, one could argue that the inference rule, CIR, that follows from our assumptions is
the weakest possible one (if we exclude the rule that leads to vacuous posterior expectations
and that does not lead to any informative conclusion) for the part related to the unknown
IP, because it leads to consider all the replacements for the missing information as the
possible latent data. Therefore one could conjecture that by replacing strong independence
of W̄ and Ŵ conditional on Y with a weaker notion of independence, the inference rule
could either stay the same or lead to vacuous inferences. Whatever the outcome, the choice
of strong independence would be even more reasonable.
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6.4 Derivation of CIR

In order to formulate the basic problem of this paper in a sufficiently general way, we focus
on the problem of updating beliefs about a generic function g : Z → R, to posterior beliefs
conditional on W = w. In the precise case, this would be done by computing

P (g|w) =
P (gIw)
P (w)

,

provided that P (w) > 0.
Something similar can be done in the imprecise case, but in such a case it not uncom-

mon for P (w) to be zero. In that case, we should obtain an infinite number of conditional
lower previsions which are coherent with P (W ). This has been already discussed in (de
Cooman & Zaffalon, 2004), where the authors proposed the regular extension as a more
effective updating rule. This is a very natural choice also under the sensitivity analysis
interpretation of coherent lower previsions, as pointed out in Section 6.1.3, and is therefore
also the choice that we pursue. Using the regular extension entails an additional rationality
assumption that is reported in (Walley, 1991, Appendix J3); its coherence with the uncon-
ditional lower prevision it is derived from is trivial in the present context, where W is finite
(see Appendix B for more details). We also recall that if P (w) > 0, the regular extension
provides the only coherent updated lower prevision.

The form of the CIR rule given in Definition 7 in Section 4 is derived in the next theorem.
It is important to remark that for this theorem to hold, we need to require that the space Ȳ
of the unknown IP be finite, while this is not necessary for all the other results we establish
in Appendix B. The reason for this is that when Ȳ is infinite the class {w̄}∗1 that we define
in the theorem may be empty for some w̄ in W̄, making the rule inapplicable.

Theorem 1 (Conservative inference rule theorem) Consider a gamble g on Z and
w ∈ W. Let {w̄}∗1 := {ȳ ∈ {w̄}∗ : P 1(ȳ, {ŵ}∗) > 0}, and let us define the regular extension

R(g|ȳ, {ŵ}∗) = inf
P≥P 1:P (ȳ,{ŵ}∗)>0

P (g|ȳ, {ŵ}∗)

for all ȳ ∈ {w̄}∗1. Then

R(g|w) = E1(g|w) := min
ȳ∈{w̄}∗1

R(g|ȳ, {ŵ}∗).

Proof. First of all, for any prevision P constructed using Equation (13),

P (w) = αŵ
∑

ȳ∈Ȳ,γ̄(z,y)=w̄

P (ȳ, {ŵ}∗) = αŵ
∑

ȳ∈{w̄}∗,γ̄(z,y)=w̄

P (ȳ, {ŵ}∗), (14)

for any w ∈ W, where the second equality follows from Assumption (BIP2), and also taking
into account that the mapping γ̄ depends only on the value of Ȳ . Similarly, we also have

P (gIw) = αŵ
∑

ȳ∈Ȳ,γ̄(z,y)=w̄

P (gIȳ,{ŵ}∗) = αŵ
∑

ȳ∈{w̄}∗,γ̄(z,y)=w̄

P (gIȳ,{ŵ}∗)

for any w ∈ W and any gamble g on Z.
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Fix w ∈ W, and define M := {P ≥ P 1 : P (w) > 0}, M1 := {P ≥ P 1 : P (ȳ, {ŵ}∗) >
0 for some ȳ ∈ {w̄}∗}. For all gambles g on Z, R(g|w) = inf{P (g|w) : P ∈ M} and
E1(g|w) = inf{P (g|ȳ, {ŵ}∗) : P ∈M1}.

We start proving that E1(g|w) ≥ R(g|w). For this, we are going to prove that for any
ȳ ∈ {w̄}∗ and any P ∈ M1 such that P (ȳ, {ŵ}∗) > 0 there is some P ′ ∈ M such that
P ′(g|w) ≤ P (g|ȳ, {ŵ}∗). Consider then such P , and let P1 be its restriction to L(Z × Y).
Then P1 ≥ P 1. Let γ̄ be a mapping such that γ̄(z, y) = w̄ and γ̄(z′, y′) 6= w̄ when ȳ′ 6= ȳ.
We can construct such a mapping because by Assumption (IP8) the set {w̄}∗ = ∅, and
therefore for every ȳ′ ∈ {w̄}∗ there is some w̄

′ 6= w̄ such that ȳ′ ∈ {w̄′}∗. Let P ′ ≥ P be
the joint prevision constructed from P1 and γ̄ using Equation (13). Taking into account
Equation (14), we see that this prevision satisfies P ′(w) = αŵP

′(ȳ, {ŵ}∗) = αŵP (ȳ, {ŵ}∗) >
0. As a consequence,

P ′(g|w) =
P ′(gIw)
P ′(w)

=
αwP

′(gIȳ,{ŵ}∗)
αwP ′(ȳ, {ŵ}∗)

=
P (gIȳ,{ŵ}∗)
P (ȳ, {ŵ}∗)

= P (g|ȳ, {ŵ}∗),

where the last equality holds because P (ȳ, {ŵ}∗) > 0. Hence, we deduce that E1(g|w) ≥
R(g|w).

We show now the converse inequality. We are going to prove that for any P ∈M there
is some P ′ ∈M1 such that P (g|w) ≥ P ′(g|y, {w̄}∗). Consider P ∈M.

P (g|w) =
P (gIw)
P (w)

=
αŵ
∑

ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (gIȳ,{ŵ}∗)
αŵ
∑

ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (ȳ, {ŵ}∗)
=

∑
ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (gIȳ,{ŵ}∗)∑
ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (ȳ, {ŵ}∗)

.

Define I := {ȳ ∈ {w̄}∗ s.t. P (ȳ, {ŵ}∗) > 0, γ̄(z, y) = w̄}. Since P (w) > 0, it follows
from Equation (14) that this set is non-empty, and the above equality can be expressed as

P (g|w) =

∑
ȳ∈I P (gIȳ,{ŵ}∗)∑
ȳ∈I P (ȳ, {ŵ}∗)

.

Applying Lemma 3 in the Appendix we deduce the existence of ȳ1 ∈ I such that

P (gIȳ1,{ŵ}∗)
P (ȳ1, {ŵ}∗)

≤
∑

ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (gIȳ,{ŵ}∗)∑
ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (ȳ, {ŵ}∗)

.

Let P1 be the restriction of P to L(Z×Y). Consider a mapping γ̄ such that γ̄(z, y) = w̄
when ȳ = ȳ1 and γ̄(z′, y′) 6= w̄ for any other y′. We can construct such a mapping because
by Assumption (IP8) the set {w̄}∗ = ∅, and therefore for every ȳ′ ∈ {w̄}∗ there is some
w̄
′ 6= w̄ such that ȳ′ ∈ {w̄′}∗. Let P ′ ≥ P be the joint prevision constructed from P1 and γ̄

using Equation (13). This prevision satisfies P ′(ȳ1, {ŵ}∗) = P (ȳ1, {ŵ}∗) > 0. Moreover,

P ′(g|ȳ1, {ŵ}∗) =
P ′(gIȳ1,{ŵ}∗)
P ′(ȳ1, {ŵ}∗)

=
P (gIȳ1,{ŵ}∗)
P (ȳ1, {ŵ}∗)

≤
∑

ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (gIȳ,{ŵ}∗)∑
ȳ∈{w̄}∗,γ̄(z,y)=w̄ P (ȳ, {ŵ}∗)

= P (g|w),

where the second equality follows because P ′ = P = P1 on L(Z ×Y). We deduce from this
E1(g|w) ≤ R(g|w) and as a consequence they are equal. 2

An important point is whether the lower prevision defined by the CIR rule in this
theorem is going to be coherent with the initial assessments: P 1(Z, Y ), P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ).

48



Conservative Inference Rule

We want this to be the case as we want CIR to lead to self-consistent inference. This question
is given a positive answer by Theorem 3 in Appendix B.

Moreover, from this theorem we also deduce (in its subsequent Corollary 2) that co-
herence will also be maintained under much more general conditions: on the one hand,
for some of the examples of application of the CIR rule discussed in Sections 5.1–5.3,
P 1(Z, Y ) is obtained by making the strong product of a number of conditional lower pre-
visions P 1(XO1 |XI1), . . . , Pm(XOm |XIm). Here we consider a set of variables of interest
{X1, . . . , Xn} that contains {Z, Y } and does not include W . We assume moreover that
the coherence graph associated to P 1(XO1 |XI1), . . . , Pm(XOm |XIm) is A1+, from which it
follows (see Appendix B) that ∪mi=1(Ii ∪ Oi) = ∪mi=1Oi = {1, . . . , n}. An instance of such a
situation is given in Figure 7.

B R H
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Figure 7: A more general model.

Corollary 2 in Appendix B shows that coherence also holds in this more general situation.
On the other hand, the corollary also proves that coherence is maintained if we apply
the regular extension to a finite number of conditioning events, thus actually creating an
additional finite number of coherent lower previsions out of the original assessments: all of
these assessments are going to be jointly coherent. This is another important result as in
practice one indeed often conditions on a number of events. These theoretical results give
us guarantees that the CIR rule is ‘well-behaved.’

7. Conclusions

In this paper we have introduced a new rule to update beliefs under incompleteness that we
have called conservative inference rule (CIR). CIR has been designed by explicitly taking
into consideration the problem of modelling the process that makes our observations in-
complete, and that we have called the incompleteness process (or IP). We have represented
such a process as made of two sub-processes, one that is non-selective and another that
is unknown to us. As a consequence, CIR deals differently with data that are known to
be coarsened at random from the other ones. In the first case CIR treats them using the
CAR/MAR assumption, in the other by taking all the completions of the incomplete data.

CIR can be regarded as a generalisation of both the traditional, Bayesian rule to update
beliefs and of the recently proposed conservative updating rule (de Cooman & Zaffalon,
2004). CIR is a generalisation of these two rules as it enables one to consider mixed sit-
uations. This should make of CIR quite a flexible rule in applications. Moreover, this
enables CIR to avoid the risk of being overconfident about the IP, which is a problem for
the traditional updating, as well as to avoid being over-pessimistic as it may happen with
the conservative updating rule.
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CIR is a also very general rule. It can be used with coarsened or missing data, in
statistics as well as in expert systems, and it can be applied to predict the state of a
target variable irrespective of the cardinality of its space of possibilities. We have indeed
tried to illustrate these characteristics using a number of application domains. Moreover,
using some examples we have shown that CIR makes quite a difference with the traditional
CAR/MAR-based way of dealing with incomplete data: in these examples the traditional
updating is shown to lead to conclusions that are hardly justifiable from the evidence at
hand, and, even worse, can do it in such a way that a user may not realise this. In these
cases CIR is instead naturally more cautious and clearly communicates to a user that there
are limits to the strength of the possible conclusions, as a logical consequence of the strength
(or weakness) of the available information.

Finally, CIR has some nice theoretical properties, most notably that it is a coherent rule.
Loosely speaking, this means that by using CIR it is not possible to give rise to probabilistic
inconsistencies. As it can be seen from Theorem 3 in Appendix B, the assumptions we
require for coherence of CIR are fairly general: if our initial assessments are of a special
kind, which we have characterised using a graphical structure called a coherence graph of
type A1+, then we require only that some of the possibility spaces involved in the analysis
are finite and that the conditioning events in these spaces have positive upper probability.
These hypotheses guarantee that we can use Walley’s notion of regular extension to update
our beliefs and that the assessments thus obtained are coherent with our initial assessments.

We should like to conclude this section commenting also a bit on some of the assumptions
we have considered in the construction of our model and in some open problems that we
can derive from this work.

One point is the requirement that some of the spaces of possibilities be finite. This could
be relaxed by taking into account that a conditional prevision defined by regular extension
can be coherent with the unconditional it is derived from even in the infinite case. However,
we cannot guarantee that the third point of Lemma 2 in Appendix B holds in these more
general situations, and this point is necessary for the proof of Theorem 3. This is related to
the notion of conglomerability discussed in much detail in (Walley, 1991). An open problem
would be to extend our results to more general situations by addressing the question of
conglomerability. On the other hand, as we said, our results are applicable even if the
target space Z of our variable of interest, Z, is infinite. This has allowed us, for instance, to
model parametric inference in the case where the parameter space is infinite, as discussed in
Section 5.2. Moreover, we are not assuming that the upper probability of the values of Z is
positive, and this allows us to include the case where our prior beliefs about the parameter
are precise and the parameter space is infinite, which coincides with the traditional setup.

Another important point is our assumption on the domains of our lower previsions:
we have required for instance that P 1(Z, Y ) is defined on the set of all XZ∪Y -measurable
gambles. Similar considerations have been made for P 2(W̄ |Ȳ ) and P 3(Ŵ |Ŷ ). When these
requirements are not met, we can still apply our results by extending our assessments using
the notion of natural extension in (Walley, 1991). It is easy to see that these extensions will
satisfy the hypotheses of our theorems. These considerations allow us to cover in particular
the case where we have lower probabilities instead of lower previsions.

An interesting feature of the CIR rule derived in Theorem 1 is that it allows us to
make the passage from the updated information about Z knowing the observation W to the
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information about Z knowing the value that Y takes. We think that the key for this is that
we are using only vacuous and linear previsions to express the information that Y provides
about W , i.e., that the components of the incompleteness process are either unknown or
random. It is an open problem to determine whether there are other possibilities allowing
us to have an analogous property. Similarly, it would be interesting to study if the other
assumptions in the incompleteness process can be weakened.

To conclude, CIR is a new rule to update beliefs under incompleteness, it is very general,
and is based on solid theoretical foundations. It gives us for the first time the opportunity to
avoid being both too optimistic and too pessimistic about the incompleteness process, thus
creating a basis to draw credible and strong enough conclusions in a number of applications.

This is not to say that we regard CIR as the last word in the subject. On the contrary, it
seems to us that research on IPs has so far only scratched the surface of uncertain reasoning
under incompleteness. In particular, there will be probably a number of applications where
rules stronger than CIR (yet based on more tenable assumption than traditional updating)
are needed. Developing these rules appears to be an important research avenue. Such an
investigation will probably have to be directed primarily at creating new assumptions about
IPs that make the resulting rule stronger while still general enough. A way to do this could
be using as a starting point the the framework developed here. In particular, one could
take Assumptions (IP1)–(IP9), (BIP3)–(BIP6) and (DB1) as they are, while strengthening
those related to the unknown IP, that is, (BIP1) and (BIP2). Then the machinery used
to derive CIR could be used again to derive the new rule that follows from the stronger
assumptions. Which new assumptions to impose and whether or not they will lead to a rule
that is useful while not too domain-specific is matter for future investigation.
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Appendix A. On the CAR assumption (IP9)

It is important to realise that not all the multi-valued maps ΓŶ are consistent with the
CAR assumption. Here is an example: take Ŷ := {1, 2, 3, 4}, Ŵ := {a, b, c}, and define the
multi-valued map by ΓŶ (1) := {a, b}, ΓŶ (2) := {b, c}, ΓŶ (3) := {a, c}, ΓŶ (4) := {a, b, c}.
By (BIP5), we should have then P3(a|1) = P3(a|3) = P3(a|4) = αa, P3(b|1) = P3(b|2) =
P3(b|4) = αb, and P3(c|2) = P3(c|3) = P3(c|4) = αc. Requiring in addition the non-
negativity of the probabilities and that the conditional mass functions be normalised, leads
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to the following system of linear constraints:

αa + αb = 1
αb + αc = 1
αa + αc = 1
αa + αb + αc = 1
αa, αb, αc ≥ 0.

This system has no solution, as adding the first three equations we deduce that αa+αb+αc =
1.5, which is incompatible with the fourth equation. Therefore there is no CAR process
consistent with ΓŶ as defined above.

The example shows that in order to define ΓŶ properly, we need to add (IP9) as a
further assumption to (IP5) and (IP7): that the system of linear constraints originated by
ΓŶ through (BIP5) has a solution, namely, that it is admissible. Checking admissibility is
easy because Ŷ is finite and hence so is the number of constraints in the system; this allows
one to use standard techniques from linear programming to solve the problem.

The example also points to another question, which concerns its relationship with Gill
et al.’s well-known ‘CAR is everything’ theorem given in (Gill et al., 1997, Section 2).
Loosely speaking, such a theorem states, in a precise probability context, that it is always
possible to define a CAR process; and the example seems to contradict the theorem.

In order to show that there is actually no contradiction, we need to represent the example
in the setup of Gill et al.’s paper, which is focused on random sets. This means that they
regard Ŵ as a variable that takes values from the powerset of Ŷ, and hence that the CAR
IP is intended as a function that maps elements of Ŷ into subsets of Ŷ itself.

To make the transition, we identify each element of ŵ ∈ Ŵ with the corresponding
set {ŵ}∗; in our example, the possible values of Ŵ , interpreted as a random set, are then
{1, 3, 4}, {1, 2, 4}, and {2, 3, 4}. The intuition here is that the element 1 of Ŷ can be
coarsened by the CAR IP into the set {1, 3, 4} or {1, 2, 4}; the element 2 into {1, 2, 4} or
{2, 3, 4}; the element 3 into {1, 3, 4} or {2, 3, 4}; and the element 4 into {1, 3, 4}, {1, 2, 4}
or {2, 3, 4}. For the correspondence to be really consistent, we also need to make sure that
zero probability is assigned to all the elements of the power set of Ŷ that do not correspond
to any of the sets {ŵ}∗, ŵ ∈ Ŵ; this is necessary because of (BIP4) and because Gill et al.’s
setup does not explicitly use the notion of multi-valued mapping. With this background we
can take a closer look at the relationship between the example and Gill et al.’s theorem.

What the theorem states, in our language, is that no matter how Ŵ is distributed,
one can find an unconditional mass function for Ŷ and a CAR process that lead Ŵ to be
distributed in the same way. But if we select an unconditional mass function for the random
set Ŵ that respects the constraint of assigning zero probabilities as above, we are actually
implementing the multi-valued map of the example, and we know that there is no CAR
process consistent with it.

The key to solve the paradox is that Gill et al. allow the CAR-IP probabilities P3(Ŷ ′|ŷ)
to be non-zero for any set Ŷ ′ ⊆ Ŷ that includes ŷ, not only for the sets determined by the
multi-valued map, as we do. This freedom makes it possible to always find a CAR process.

Consider again the example above, and assume that Ŵ is distributed uniformly over the
three sets {1, 3, 4}, {1, 2, 4}, {2, 3, 4}: i.e., each of them is assigned probability equal to 1

3 .
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We can make this choice consistent with a CAR process by choosing α{1,3,4} := α{1,2,4} :=
α{2,3,4} := 1

3 (i.e., αa := αb := αc := 1
3) if, in addition, we set α{1} := α{2} := α{3} := 1

3 ,
i.e., if we allow the CAR process to be able to potentially output other three sets. But
since we know that the three other sets cannot be really returned, we are obliged to also
set P (1) := P (2) := P (3) := 0, thus solving the problem, although arguably in a somewhat
artificial way.

Indeed, since we are forced to set to zero the probability of some elements in Ŷ, one
might wonder why those elements have to be included in the set Ŷ. Precisely this observation
has been already used as a source of criticism of Gill et al.’s ‘CAR is everything’ theorem
(Grünwald & Halpern, 2003, Section 4.4), leading the authors of the latter paper to say
that in these cases it is like if there is actually no CAR process. Our formulation based on
the multi-valued map simply confirms this statement in an alternative way.

Appendix B. Coherence of CIR

In this appendix, we are going to prove that the assessments in the construction of the
conservative inference rule satisfy the notion of coherence and moreover that they are also
coherent with any probabilistic assessment that we deduce from them using CIR. In doing
so, we want to cover also the case where the unconditional prevision P 1(Z, Y ) is constructed
from a number of other conditional and unconditional previsions, which is a very typical
case in practice. We shall use the notations established in Section 2 and Section 6.1. We
consider then variables X1, . . . , Xn taking values in respective sets X1, . . . ,Xn, and take a
collection of conditional previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm).

We start with a lemma that shows that A1 graphs naturally entail a notion of order of
the corresponding lower previsions: in particular, that it is possible to permute the indexes
of the lower previsions in such a way that the only admissible paths between two dummy
nodes are those in which the index of the origin precedes that of the destination.24

Lemma 1 If the coherence graph of {P 1(XO1 |XI1), . . . , Pm(XOm |XIm)} is A1, then we
may assume without loss of generality that for any k = 1, . . . ,m, Ok ∩ (∪k−1

i=1 Ii) = ∅.

Proof. We start proving that Ok∩(∪mi=1Ii) = ∅ for some k. Assume ex-absurdo that this
does not hold. Then for any k ∈ {1, . . . ,m} there is some f(k) 6= k such that Ok∩If(k) 6= ∅.
Define z0 := 1, zk := f(zk−1) ∀k ≥ 1. It must be {zk} ∩ {z0, . . . , zk−1} = ∅ for all k ≥ 1, or
we should establish a cycle in the coherence graph, contradicting thus that it is A1. Hence,
|{z0, z1, . . . , zk−1}| = k for all k ≥ 1, and this means that zm does not exist, or, equivalently,
that Ozm−1 ∩ Ii = ∅ ∀i = 1, . . . ,m. Hence, there is some k such that Ok ∩ (∪mi=1Ii) = ∅. We
can assume without loss of generality that k = m.

We prove now that there is some k 6= m such that Ok∩(∪m−1
i=1 Ii) = ∅. Assume ex-absurdo

that this does not hold. Then for all k ∈ {1, . . . ,m−1} there is some g(k) 6= k,m such that
Ok ∩ Ig(k) 6= ∅. Define z0 := 1, zk := g(zk−1) ∀k ≥ 1. It must be {zk} ∩ {z0, . . . , zk−1} = ∅
for all k ≥ 1, or we should establish a cycle in the coherence graph, contradicting thus that
it is A1. Hence, |{z0, z1, . . . , zk−1}| = k for all k ≥ 1, and this means that zm−1 does not

24. This order notion is similar to the graph-theoretic notion of topological ordering, but here it is applied
only to the dummy nodes.
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exist, or, equivalently, that Ozm−2 ∩ Ii = ∅ ∀i = 1, . . . ,m − 1. Hence, there is some k 6= m
such that Ok ∩ (∪m−1

i=1 Ii) = ∅. We can assume without loss of generality that k = m− 1.
A similar reasoning allows us to deduce the existence of an order ≺ in {1, . . . ,m} such

that Ok ∩ (∪j≺kIj) = ∅ for all k = 1, . . . ,m. Finally we assume without loss of generality
that this order coincides with the natural order. 2

Now we restrict the attention to the particular case of A1+ graphs. From Lemma 1,
if a collection template {P 1(XO1 |XI1), . . . , Pm(XOm |XIm)} is A1+-representable, we can
assume without loss of generality that I1 = ∅. Let A1 := ∅, Aj := ∪j−1

i=1 (Ii ∪ Oi) for
j = 2, . . . ,m + 1, and let P ′j(XOj |XAj∪Ij ) be given on the set Hj of XAj+1-measurable
gambles for j = 1, . . . ,m by

P ′j(f |z) := P j(f(z, ·)|πIj (z))

for all z ∈ XAj∪Ij and all f ∈ Hj . Since P j(XOj |XIj ) is separately coherent for j =
1, . . . ,m, so is P ′j(XOj |XAj∪Ij ). Moreover, thanks to Lemma 1 and that {O1, . . . , Om}
forms a partition of {1, . . . , n} when we focus on A1+ graphs, the sets of indices of the
conditional variables in P ′1(XO1), . . . , P ′m(XOm |XAm∪Im) form an increasing sequence and
hence they satisfy the hypotheses of the generalised marginal extension theorem. As a
consequence, P ′1(XO1), . . . , P ′m(XOm |XAm∪Im) are also coherent.

A similar reasoning shows that if we take for j = 1, . . . ,m a conditional linear prevision
P ′j(XOj |XAj∪Ij ) that dominates P ′j(XOj |XAj∪Ij ), then P ′1(XO1), . . . , P ′m(XOm |XAm∪Im) are
jointly coherent. Moreover, since {O1, . . . , Om} is a partition of {1, . . . , n}, Theorem 3 in
(Miranda & de Cooman, 2007) implies that the only prevision P on X n which is coherent
with the assessments P ′1(XO1), . . . , P ′m(XOm |XAm∪Im) is

P (f) = P ′1(P ′2(. . . (P ′m(f |XAm∪Im)| . . . )|XA2∪I2)). (15)

In other words, P ′1(XO1), . . . , P ′m(XOm |XAm∪Im) give rise to a unique joint lower prevision.

Definition 17 Assume that Pλ(XOj |XAj∪Ij ) dominates P ′j(XOj |XAj∪Ij ) for all λ ∈ Λ and
all j = 1, . . . ,m and

inf
λ∈Λ

Pλ(XOj |XAj∪Ij ) = P ′j(XOj |XAj∪Ij ).

The coherent lower prevision P defined as P := infλ∈Λ Pλ, where Pλ is the coherent prevision
determined by Pλ(XO1), . . . , Pλ(XOm |XAm∪Im) and Equation (15), is called a lower envelope
model.

Intuitively, a lower envelope model is a joint lower prevision that is built out of a number
of conditional and unconditional assessments. The interest in lower envelope models arises
because it is a very common practice to build joint models out of smaller conditional and
unconditional ones, and then to use the joint model to draw some conclusions. Lower
envelope models abstract this procedure in the general case of coherent lower previsions.
As particular cases of lower envelope models, we can consider the following:

1. If for each j = 1, . . . ,m we consider all the Pλ(XOj |XAj∪Ij ) in M(P ′j(XOj |XAj∪Ij )),
then P is the marginal extension of P ′1(XO1), . . . , P ′m(XOm |XAm∪Im).
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2. If for j = 1, . . . ,m we take all the Pλ(XOj |XAj∪Ij ) in the set of extreme points of
M(P ′j(XOj |XAj∪Ij )), with the additional requirement that Pλ(XOj |z) = Pλ(XOj |z′)
if πIj (z) = πIj (z′), then the lower envelope model P is called the strong product of
P 1(XO1), . . . , Pm(XOm |XIm).

In this paper, we make our inferences using the strong product. From the results in (Mi-
randa & de Cooman, 2007), if we let Pj(XOj |XIj ) be an extreme point ofM(P j(XOj |XIj ))
for j = 1, . . . ,m and we build a linear prevision P in the manner described above, then
P, P1(XO1 |XA1∪I1), . . . , Pm(XOm |XAm∪Im) are coherent. Moreover, we deduce the follow-
ing:

Theorem 2 Let P 1(XO1), . . . , Pm(XOm |XIm) be an A1+-representable collection, and let
P be a lower envelope model associated to it. Then P , P 1(XO1), . . . , Pm(XOm |XIm) are
coherent.

Proof. It is a consequence of the marginal extension theorem in (Miranda & de Cooman,
2007) that for any λ ∈ Λ the previsions Pλ, Pλ(XO1 |XA1∪I1), . . . , Pλ(XOm |XAm∪Im) are
coherent. Applying Theorem 8.1.6 in (Walley, 1991), we deduce that the lower envelopes of
these families, which are the lower previsions P , P ′1(XO1 |XA1∪I1), . . . , P ′m(XOm |XAm∪Im),
are also coherent. The result now follows applying that any gamble f in Kj belongs to Hj ,
and that P ′j(f |XAj∪Ij )(x) = P ′j(f(πAj∪Ij (x), ·)|πAj∪Ij (x)) = P j(f(πIj (x), ·)|πIj (x)) for all
x ∈ X n. 2

We have the following useful corollary of this theorem:

Corollary 1 Let P be the strong product of P 1(Z, Y ), P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ), constructed in
Section 6.2.3. P is coherent and it is also jointly coherent with the original assessments
P 1(Z, Y ), P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ). This holds also if P 1(Z, Y ) is constructed as a joint which is
coherent with a number of smaller pieces of information, provided that the coherence graph
representing them is A1+.

Proof. That P is a coherent lower prevision follows because it is the lower envelope
of a set of linear previsions. Its coherence with P 1(Z, Y ), P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ) follows from
Theorem 2, because the coherence graph of P 1(Z, Y ), P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ) is A1+, as it
is evident from Figure 6. In the more general situation when P 1(Z, Y ) is constructed
in a modular way the result follows similarly as the coherence graph representing these
assessments together with P 2(W̄ |Ȳ ), P3(Ŵ |Ŷ ) will also be A1+. 2

We prove next that if we use regular extension to derive new conditional previsions
Pm+1(XOm+1 |XIm+1), . . . , Pm+k(XOm+k

|XIm+k
) from the strong product P , these condi-

tional previsions are coherent with all the initial assessments. For this, we need to establish
first the following Lemma:

Lemma 2 Let P , P (XO|XI) be coherent unconditional and conditional previsions, with XI
finite. Let R(XO|XI) be defined from P using regular extension for z ∈ XI when P (z) > 0,
and be equal to P (XO|z) when P (z) = 0. Then:

1. P ,R(XO|XI) are coherent.
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2. R(XO|XI) ≥ P (XO|XI).

3. For any P ≥ P , there is some P (XO|XI) which is coherent with P and dominates
P (XO|XI).

Proof. Since XI is a finite set, we can apply Theorem 6.5.4 in (Walley, 1991) to deduce
that the coherence of P ,R(XO|XI) is equivalent to P (Iz(f −R(f |z))) = 0 for all z ∈ XI .25

If P (z) = 0, this is trivial. If P (z) > 0, it follows from (Walley, 1991, Appendix (J3)).
For the second statement, consider some z in XI with P (z) > 0, and f ∈ KO∪I . Assume

ex-absurdo that R(f |z) < P (f |z). It follows from the definition of the regular extension
that there is some P ≥ P such that P (z) > 0 and P (f |z) < P (f |z). Since P (z) > 0,
it follows from the generalised Bayes rule that P (f |z) is the unique value satisfying 0 =
P (Iz(f−P (f |z))). As a consequence, given P (f |z) > P (f |z), we have that Iz(f−P (f |z)) ≥
Iz(f − P (f |z)), whence

0 = P (Iz(f − P (f |z))) ≥ P (Iz(f − P (f |z))) ≥ P (Iz(f − P (f |z)) = 0,

using that since P , P (XO|XI) are coherent they satisfy the generalised Bayes rule. But this
implies that P (Iz(f − P (f |z))) = P (Iz(f − P (f |z))) = 0, and then there are two different
values of µ for which P (Iz(f − µ)) = 0. This is a contradiction.

We finally establish the third statement. Consider P ≥ P , and z ∈ XI . If P (z) > 0,
then for any f ∈ KO∪I P (f |z) is uniquely determined by the generalised Bayes rule and
dominates the regular extension R(f |z). Hence, P (f |z) ≥ R(f |z) ≥ P (f |z), where the
last inequality follows from the second statement. Finally, if P (z) = 0, taking any element
P (XO|z) of M(P (XO|z)) we have that P (Iz(f − P (f |z))) = 0 for all f ∈ KO∪I . This
completes the proof. 2

Before we establish our next result, we need to introduce a consistency notion for con-
ditional lower previsions that is less restrictive than coherence:

Definition 18 Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent conditional pre-
visions. They are weakly coherent when for all fj ∈ Kj, j = 1, . . . ,m, j0 ∈ {1, . . . ,m},
f0 ∈ Kj0 , z0 ∈ XIj0 ,

sup
x∈Xn

 m∑
j=1

Gj(fj |XIj )−Gj0(f0|z0)

 (x) ≥ 0. (16)

The intuition behind this notion is that our subject should not raise the conditional
lower prevision P j0(f0|z0), which represents his supremum acceptable buying price for f0

contingent on z0, in any positive ε, using the desirable gambles G1(f1|XI1),. . . ,Gm(fm|XIm).
The difference with the notion of (strong) coherence is that the supremum of sum in Eq. (16)
is required to be non-negative over the whole space X n, and not necessarily when at least one
of the summands is non-zero. This implies that the condition holds trivially for gambles
f0, f1, . . . , fm for which there are elements w ∈ X n which do not belong to any set in
π−1
Ij0

(z0) ∪ ∪mj=1Sj(fj).

25. This is called the generalised Bayes rule. When P (x) > 0, there is a unique value for which P (G(f |x)) =
P (Ix(f − P (f |x))) = 0 holds.
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From (Miranda & Zaffalon, 2009, Theorem 1), P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are
weakly coherent if and only if there is a joint lower prevision P (X1, . . . , Xn) that is pairwise
coherent with each conditional lower prevision P j(XOj |XIj ) in the collection. Similar results
hold in the case where we focus on collections made of linear previsions, with the difference
that the joint whose existence is equivalent to weak coherence is linear, too. However, under
the behavioural interpretation, a number of weakly coherent conditional lower previsions
can still present some forms of inconsistency; see (Walley, 1991, Example 7.3.5) for an
example and (Walley, 1991, Chapter 7) and (Miranda, 2008b; Walley, Pelessoni, & Vicig,
2004) for some discussion.

Theorem 3 Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent conditional lower
previsions whose associated coherence graph is A1+. Let P be their strong product. Consider
disjoint Om+j , Im+j for j = 1, . . . , k. Assume that XIm+j is finite for j = 1, . . . , k and that
P (z) > 0 for all z ∈ XIm+j , and define Pm+j(XOm+j |XIm+j ) using regular extension for
j = 1, . . . , k. Then

P , P 1(XO1 |XI1), . . . , Pm+k(XOm+k
|XIm+k

) are coherent.

Proof. LetM denote the set of linear previsions constructed by combining the extreme
points of M(P j(XOj |XIj )), j = 1, . . . ,m, in the manner described by Equation (15). The
strong product P is the lower envelope of M.

Since XIm+j is finite for j = 1, . . . , k, it follows from (Walley, 1991, Appendix (J3)) that
P and Pm+j(XOm+j |XIm+j ) are coherent. Applying Theorem 1 in (Miranda & Zaffalon,
2009), we deduce that the previsions P , P 1(XO1 |XI1), . . . , Pm+k(XOm+k

|XIm+k
) are weakly

coherent. Hence, Theorem 7.1.5 in (Walley, 1991) implies that it suffices to show that
P 1(XO1 |XI1), . . . , Pm+k(XOm+k

|XIm+k
) are coherent. Consider fi ∈ Ki for i = 1, . . . ,m+k,

j0 ∈ {1, . . . ,m+ k}, z0 ∈ XIj0 , f0 ∈ Kj0 , and let us prove that

sup
ω∈B

[
m+k∑
i=1

[fi − P i(XOi |XIi)]− Iz0(f0 − P j0(f0|z0))

]
(ω) ≥ 0 (17)

for some B ∈ π−1
Ij0

(z0) ∪ ∪m+k
i=1 Si(fi).

Assume first that j0 ∈ {m+1, . . . ,m+k}. If Equation (17) does not hold, there is some
δ > 0 such that

sup
ω∈π

I−1
j0

(z0)

[
m+k∑
i=1

[fi − P i(XOi |XIi)]− Iz0(f0 − P j0(f0|z0))

]
(ω) = −δ < 0.

Since P (z0) > 0 by assumption, it follows from the definition of the regular extension that
there is some P in M such that P (z0) > 0 and Pj0(f0|z0) − P j0(f0|z0) < δ

2 . From the
definition of the elements of M, there are Pi(XOi |XIi) in M(P i(XOi |XIi)), i = 1, . . . ,m,
such that P is coherent with Pi(XOi |XIi) for i = 1, . . . ,m. On the other hand, applying
Lemma 2, for any j = 1, . . . , k, there is a conditional prevision Pm+j(XOm+j |XIm+j ) that
dominates Pm+j(XOm+j |XIm+j ) and is coherent with P . Note that Pj0(XOj0

|z0) is uniquely
determined from P by Bayes’s rule because P (z0) > 0.
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Using these conditional previsions, we deduce that for any ω ∈ X n,[
m+k∑
i=1

[fi − Pi(XOi |XIi)]− Iz0(f0 − Pj0(f0|z0))

]
(ω)

≤

[
m+k∑
i=1

[fi − P i(XOi |XIi)]− Iz0(f0 − P j0(f0|z0))

]
(ω) +

δ

2
,

whence [
m+k∑
i=1

[fi − Pi(XOi |XIi)]− Iz0(f0 − Pj0(f0|z0))

]
(ω) ≤ −δ

2

for any ω ∈ π−1
Ij0

(z0). Let us denote g :=
∑m+k

i=1 [fi−Pi(XOi |XIi)]− Iz0(f0−Pj0(f0|z0)). The
coherence of P, Pj(XOj |XIj ) for j = 1, . . . ,m + k implies that P (g) = 0. But then we also
have P (g) ≤ P (gIz0) ≤ − δ

2P (z0) < 0, where the first inequality holds because g ≤ 0 since
we are assuming that Equation (17) does not hold. This is a contradiction.

Assume next that j0 ∈ {1, . . . ,m}, and let us prove the existence of a linear prevision
Q ∈ M and conditional previsions Pj(XOj |XIj ) in M(P j(XOj |XIj )) coherent with Q for
j = 1, . . . ,m + k such that Pj0(f0|z0) = P j0(f0|z0) and Q(B) > 0 for some B ∈ π−1

Ij0
(z0) ∪

∪m+k
i=1 Si(fi).

• Assume first that P (z0) > 0. Then there is some P in M such that P (z0) > 0.
This prevision is determined by (and therefore coherent with) conditional previsions
P1(XO1 |XI1), . . . , Pm(XOm |XIm), where Pi(XOi |XIi) belongs to M(P i(XOi |XIi)) for
i = 1, . . . ,m.

Let P ′j0(XOj0
|XIj0

) be an extreme point ofM(P j0(XOj0
|XIj0

)) such that P ′j0(f0|z0) =
P (f0|z0), and let Q be the element of M determined by the conditional previsions
P1(XO1 |XI1), . . . , P ′j0(XOj0

|XIj0
), . . . , Pm(XOm |XIm). Since the coherence graph of

P 1(XO1 |XI1), . . . , Pm(XOm |XIm) is A1, Lemma 1 implies that we can assume with-
out loss of generality that for all k = 1, . . . ,m, Ok ∩ (∪k−1

i=1 Ii) = ∅. Since more-
over {O1, . . . , Om} forms a partition of {1, . . . , n}, we deduce that Ii ⊆ ∪i−1

j=1Oj for
i = 1, . . . , n. In particular, Ij0 ⊆ ∪

j0−1
j=1 Oj , whence the value of Q on XIj0 -measurable

gambles is uniquely determined by P1(XO1 |XI1), . . . , Pj0−1(XOj0−1 |XIj0−1). As a con-
sequence, Q(z0) = P (z0) > 0.

Consider now conditional previsions Pm+j(XOm+j |XIm+j ) which are pairwise coherent
with Q and dominate Pm+j(XOm+j |XIm+j ) for j = 1, . . . , k. There are such previsions
because of Lemma 2. The previsions

Q, P1(XO1 |XI1), . . . , P ′j0(XOj0
|XIj0

), . . . , Pm(XOm |XIm),
Pm+1(XOm+1 |XIm+1), . . . , Pm+k(XOm+k

|XIm+k
)

satisfy the conditions stated above, with B = π−1
Ij0

(z0).

• If P (z0) = 0, there are two possibilities: either fm+1 = · · · = fm+k = 0, and then
Equation (17) holds because P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are coherent; or there
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is some j1 ∈ {1, . . . , k} such that fm+j1 6= 0. In that case, we consider a set B ∈
Sm+j1(fm+j1). This set is of the form B := π−1

Im+j1
(z1) for some z1 ∈ XIm+j1

. Because

P (z1) > 0 by assumption, there is some Q ∈ M such that Q(z1) > 0. From the
definition of M, there are Pi(XOi |XIi) in M(P i(XOi |XIi)), i = 1, . . . ,m, such that
Q is coherent with Pi(XOi |XIi) for i = 1, . . . ,m. Consider a prevision P ′j0(XOj0

|z0)
in M(P j0(XOj0

|z0)) such that P ′j0(f0|z0) = P j0(f0|z0), and define the conditional
prevision P ′j0(XOj0

|XIj0
) by

P ′j0(f |z) =

{
P ′j0(f |z0) if z = z0

Pj0(f |z0) otherwise.

Since Q(z0) = P (z0) = 0, given any f ∈ Kj0 Q(P
′
j0

(f |XIj0
)) = Q(Pj0(f |XIj0

)) =
Q(f), where the last equality follows from the coherence of Q and Pj0(XOj0

|XIj0
).

Hence, Q and P ′j0(XOj0
|XIj0

) are coherent. On the other hand, applying Lemma 2,
for all j = 1, . . . , k, there is Pm+j(XOm+j |XIm+j ) ≥ Pm+j(XOm+j |XIm+j ) that is
coherent with Q. From all this we deduce that

Q,P1(XO1 |XI1), . . . , P ′j0(XOj0
|XIj0

), . . . , Pm+k(XOm+k
|XIm+k

)

satisfy the above stated conditions, with B = π−1
Im+j1

(z1).

If we now take these previsions, we deduce that for all ω ∈ X n,[
m+k∑
i=1

[fi − Pi(XOi |XIi)]− Iz0(f0 − Pj0(f0|z0))

]
(ω)

≤

[
m+k∑
i=1

[fi − P i(XOi |XIi)]− Iz0(f0 − P j0(f0|z0))

]
(ω).

Let us denote g :=
∑m+k

i=1 [fi − Pi(XOi |XIi)] − Iz0(f0 − Pj0(f0|z0)). The coherence of Q
and Pj(XOj |XIj ) for j = 1, . . . ,m + k implies that Q(g) = 0. Consider the set B ∈
π−1
Ij0

(z0)∪∪m+k
i=1 Si(fi) for which Q(B) > 0. If Equation (17) does not hold, then there must

be some δ > 0 s.t. supω∈B g(ω) = −δ < 0. Since it also follows that g(ω) ≤ 0, we deduce
that Q(g) ≤ Q(gIB) ≤ −δQ(B) < 0. This is a contradiction.

We conclude from this that Equation (17) holds and as a consequence the previsions
P , P 1(XO1 |XI1),. . . ,Pm+k(XOm+k

|XIm+k
) are coherent. 2

Next we use the results above to apply the CIR rule in more general frameworks. This is
necessary for some of the examples of application of the CIR rule discussed in Sections 5.1–
5.3.

Corollary 2 Let {X1, . . . , Xn} be a set of variables that contains {Z, Y } and does not
include W . Assume that the coherence graph associated to P 1(XO1 |XI1),. . . , Pm(XOm |XIm)
is A1+. Let P be the strong product of

P 1(XO1 |XI1), . . . , Pm(XOm |XIm), P (Ŵ |Ŷ ), P (W̄ |Ȳ ).

Assume that XIm+j is finite for j = 1, . . . , k and that P (z) > 0 for all z ∈ XIm+j , and define
Pm+j(XOm+j |XIm+j ) using regular extension for j = 1, . . . , k. Then:
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(i) P , P 1(XO1 |XI1), . . . , Pm(XOm+k
|XIm+k

), P (Ŵ |Ŷ ), P (W̄ |Ȳ ) are coherent.

(ii) If P (Z|W ) is one of the previsions we derive from the strong product P using regular
extension, then P (Z|W ) satisfies Equation (CIR).

Proof. First of all, P 1(XO1 |XI1), . . . , Pm(XOm |XIm), P (Ŵ |Ŷ ), P (W̄ |Ȳ ) satisfy the hy-
potheses of Theorem 2: their associated coherence graph is A1+ and {W,XO1 , . . . , XOm}
is our set of variables of interest. Hence, their strong product P is coherent with all
these assessments. If moreover we use regular extension to build the updated models
Pm+j(XOm+j |XIm+j ) using regular extension for j = 1, . . . , k, it follows from Theorem 3
that the conditional lower previsions Pm+1(XOm+j |XIm+1), . . . , Pm+k(XOm+k

|XIm+k
) are

coherent with P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm), P (Ŵ |Ŷ ), P (W̄ |Ȳ ).
Secondly, the strong product P coincides with the one we obtain using the uncon-

ditional lower prevision P (XO1 , . . . , XOm) which we obtain by making the strong prod-
uct of P 1(XO1 |XI1), . . . , Pm(XOm |XIm) on the one hand and the conditional assessments
P (Ŵ |Ŷ ), P (W̄ |Ȳ ) on the other hand: from the results in (Miranda & de Cooman, 2007)
the extreme points of the set M(P (XO1 , . . . , XOm)) are obtained by applying marginal
extension on the extreme points of M(P 1(XO1 |XI1)),. . . ,M(Pm(XOm |XIm)). Hence, the
updated prevision P (Z|W ) we obtain by regular extension also satisfies Equation (CIR) in
this case. 2

Corollary 3 Updating a credal network a finite number of times by CIR leads to coherent
inference.

Proof. It is enough to observe that the probabilistic assessments used to build credal
networks lead to an A1+ coherence graph, as detailed in (Miranda & Zaffalon, 2009, The-
orem 8), and that such a graph, supplemented with the parts for P (W̄ |Ȳ ) and P (Ŵ |Ŷ ),
remains an A1+ graph. The result follows then by Corollary 2. 2

Corollary 4 Doing parametric inference a finite number of times by CIR according to
Rules (4) and (5) leads to coherent inference.

Proof. The coherence of Rule (4) is ensured by Corollary 2 since the coherence graph
of the overall assessments used is A1+, as shown in Figure 8. The same holds for Rule (5)

R/

s
Ȳ Ŷ

?
W̄

?
Ŵ

s s

?
Θ

s

Figure 8: The coherence graph for parametric statistical inference.

once we observe that also in this case the related coherence graph is A1+, as illustrated in
Figure 9. 2
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Ȳ1 Ŷ1
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Figure 9: The coherence graph for parametric statistical inference in the IID+ID case.

Corollary 5 Computing a finite number of posterior predictive lower previsions by CIR for
classification according to Rule (7) leads to coherent inference.

Proof. The coherence of Rule (7) is ensured by Corollary 2 since the coherence graph of
the overall assessments used is A1+, as shown in Figure 10. 2
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Ȳ1 Ŷ1
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ȲN ŶN
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Figure 10: The coherence graph for pattern classification in the IID+ID case.

Lemma 3 Consider bj ≥ 0, cj > 0 for j = 1, . . . , n. Then there is some j1 such that(∑n
j=1 bj∑n
j=1 cj

)
≥ bj1
cj1
. (18)

Proof. Assume ex-absurdo that Equation (18) does not hold. Then for any j = 1, . . . ,m,
cj

Pn
k=1 bkPn

k=1 ck
< bj , and by making the sum over all j on both sides of the inequality we obtain

that
n∑
j=1

cj
∑n

k=1 bk∑n
k=1 ck

=
n∑
k=1

bk <

n∑
j=1

bj ,

a contradiction. 2
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