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Abstract

We studyn-monotone lower previsions, which constitute
a generalisation ofn-monotone lower probabilities. We
investigate their relation with the concepts of coherence
and natural extension in the behavioural theory of impre-
cise probabilities, and improve along the way upon a num-
ber of results from the literature.
Keywords: n-monotonicity, coherence, natural exten-
sion, Choquet integral, comonotone additivity.

1 Introduction

Lower and upper previsions, mainly due to Walley [13],
are among the more interesting uncertainty models in im-
precise probability theory. They can be viewed as lower
and upper expectations with respect to closed convex
sets of probability measures (also called credal sets; see
Levi [10]), and they provide a unifying framework for
studying many other uncertainty models, such as proba-
bility charges (Bhaskara Rao and Bhaskara Rao [2]),2-
andn-monotone set functions (Choquet [3]), possibility
measures ([4, 5, 6, 14]), and p-boxes (Fersonet al [9]).
They have also been linked to various theories of integra-
tion, such as Choquet integration (Walley [12, p. 53]) and
Lebesgue integration (Walley [13, p. 132]).

The goal of this paper is to investigate hown-
monotonicity can be defined for lower previsions, and
to study the properties of thesen-monotone lower previ-
sions. We start out from Choquet’s [3] original and very
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general definition ofn-monotonicity for functionals de-
fined on arbitrary lattices.

The paper is structured as follows. Section 2 highlights
the most important aspects of the theory of lower previ-
sions that we shall need in the rest of the paper. Sec-
tion 3 is concerned with the definition ofn-monotonicity
for lower previsions. In Section 4, we establish a number
of interesting properties, and generalise a number of re-
sults in the literature, forn-monotone lower probabilities
on fields of events. In Section 5, we relaten-monotone
lower previsions to comonotone additive functionals and
Choquet integrals. Finally, Section 6 contains some con-
clusions on the matter at hand.

2 Coherent lower previsions

In this section, we introduce a few basic notions about
lower previsions. We refer to Walley [13] for a more in-
depth discussion, and for a behavioural interpretation of
the notions discussed below.

Consider a non-empty setΩ. A gamble f on Ω is a
bounded real-valued mapping onΩ. The set of all gam-
bles onΩ is denoted byL . It is a real linear space
under the point-wise addition of gambles, and the point-
wise scalar multiplication of gambles with real numbers.
Hence, a linear space of gambles will mean in this paper
a subset ofL that is closed under these two operations.

Special gambles are the ones that only take values in
{0,1}: let A be any subset ofΩ, also called anevent,
then the gambleIA, defined byIA(ω) := 1 if ω ∈ A and
IA(ω) := 0 otherwise, is called theindicator of A. This
establishes a correspondence between events and{0,1}-
valued gambles. Often we shall also denoteIA by A.
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A lower previsionP is defined as a real-valued map (a
functional) defined on some subsetdomP of L ; we call
domP thedomainof P. For any gamblef in domP, P( f )
is called the lower prevision off . If the domain ofP
contains only (indicators of) eventsA, then we also callP
a lower probability, and we writeP(IA) also asP(A), the
lower probability ofA.

Given a lower previsionP, theconjugate upper previ-
sion P of P is defined ondomP = −domP by P( f ) :=
−P(− f ) for every− f in the domain ofP. This conju-
gacy relationship allows us to focus on the study of lower
previsions only.

A lower previsionP whose domain is a linear space is
calledcoherentif the following three properties are satis-
fied for all f , g in domP and all non-negative realλ :

(P1) P( f )≥ inf f (accepting sure gain);

(P2) P(λ f ) = λP( f ) (positive homogeinity);

(P3) P( f +g)≥ P( f )+P(g) (superadditivity).

A coherent lower prevision on a linear space can al-
ways be extended to a coherent lower prevision on all
gambles. A lower previsionP with a general domain
(not necessarily a linear space) is then calledcoherentif it
can be extended to a coherent lower prevision on all gam-
bles. This is the case if and only ifsup[∑n

i=1 fi −m f0] ≥
∑n

i=1P( fi)−mP( f0) for any natural numbersn≥ 0 and
m≥ 0, and f0, f1, . . . , fn in the domain ofP.

There are a number of common consequences of co-
herence that we shall use throughout the paper. A lower
envelope of coherent lower previsions (with the same do-
main) is again a coherent lower prevision. Moreover,
consider a coherent lower previsionP, let f and g be
elements indomP, and let µ and λ be real numbers,
with λ ≥ 0. Then whenever the relevant gambles be-
long to domP, we have thatP( f + g) ≥ P( f ) + P(g),
P(λ f ) = λP( f ), P(µ) = µ and P( f + µ) = P( f ) + µ.
Moreoverinf f ≤ P( f )≤ P( f )≤ supf and consequently
0≤ P(| f |) ≤ P(| f |) ≤ sup| f |. Also, P is monotone: if
f ≤ g thenP( f ) ≤ P(g). Finally, both|P( f )−P(g)| ≤
P(| f −g|) and

∣∣P( f )−P(g)
∣∣ ≤ P(| f −g|). As an imme-

diate consequence of these properties, we see that if a
sequencefn of gambles converges uniformly to a gam-
ble f , i.e., sup| fn− f | → 0, then alsoP( fn)→ P( f ) and
P( fn)→ P( f ), so any coherent lower or upper prevision
is continuous with respect to the supremum norm.

A lower previsionQ is said todominatea lower previ-
sionP, if domQ⊇ domP andQ( f ) ≥ P( f ) for any f in
domP. We say that a lower previsionP avoids sure lossif
it is dominated by some coherent lower prevision onL .
This is the case if and only ifsup[∑n

i=1 fi ] ≥ ∑n
i=1P( fi)

for any natural numbern≥ 1 and anyf1, . . . , fn in domP.
A lower prevision avoids sure loss if and only if there is
a point-wise smallest coherent lower previsionEP on L
that dominatesP, namely, the lower envelope of all the
coherent lower previsions onL that dominateP. EP is
then called thenatural extensionof P.

A linear previsionP is a real-valued functional defined
on a set of gamblesdomP, that satisfiessup[∑n

i=1 fi −
∑m

j=1g j ] ≥ ∑n
i=1P( fi)−∑m

j=1P(g j) for any natural num-
bers n ≥ 0 and m≥ 0, and f1, . . . , fn, g1, . . . , gm in
domP. A linear previsionP is coherent, both when in-
terpreted as a lower, and as an upper prevision; the for-
mer means thatP is a coherent lower prevision ondomP,
the latter that−P(−·) is a coherent lower prevision on
−domP. For any linear previsionP, it holds thatP( f ) =
−P(− f ) wheneverf and− f belong to the domain ofP.
A lower previsionP whose domain is negation invariant
(i.e., −domP = domP), is a linear prevision if and only
if it is coherent andself-conjugate, i.e., P(− f ) = −P( f )
for all f in domP. A linear previsionP on L is a non-
negative, normed [P(1) = 1], real-valued, linear func-
tional on L . Its restriction to (indicators of) events is
then aprobability charge(or finitely additive probability
measure) on℘(Ω).

Let us denote the set of linear previsions onL that
dominateP by M (P). The following statements are
equivalent: (i)P avoids sure loss, (ii) the natural extension
of P exists; and (iii)M (P) is non-empty. The following
statements are equivalent as well: (i)P is coherent; (ii)P
coincides with its natural extensionEP ondomP; and (iii)
P coincides with the lower envelope ofM (P) on domP.
The last statement simply follows from the important fact
that the natural extension ofP is equal to the lower enve-
lope ofM (P): EP( f ) = minQ∈M (P) Q( f ), for any gamble
f in L . Often, as we shall see, this expression provides
a convenient way to calculate the natural extension of a
lower prevision that avoids sure loss. Finally it holds that
M (P) = M (EP). This result can be used to prove the
following “transitivity” property for natural extension: if
we denote byQ the restriction of the natural extensionEP
of a lower prevision (that avoids sure loss) to some set of
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gamblesK ⊇ domP, thenM (P) = M (Q) = M (EP),
and consequentlyEQ coincides withEP on all gambles.

3 n-Monotone lower previsions

Let us introduce our notion ofn-monotonicity for lower
previsions. A subsetS of L is called alattice if it is
closed under point-wise maximum∨ and point-wise min-
imum∧, i.e., if for all f andg in S , both f ∨g and f ∧g
also belong toS . For instance, the setL of all gambles
on Ω is a lattice. The set of natural numbers without zero
is denoted byN. By N∗ we denoteN∪{∞}.

The following definition is a special case of Choquet’s
[3] general definition ofn-monotonicity for functions
from an Abelian semi-group to an Abelian group.

Definition 1. Let n∈ N∗, and letP be a lower prevision
whose domaindomP is a lattice of gambles. Then we call
P n-monotoneif for all p∈ N, p≤ n, and all f , f1, . . . ,
fp in domP:

∑
I⊆{1,...,p}

(−1)|I |P

(
f ∧

∧

i∈I

fi

)
≥ 0.

The conjugate upper prevision of ann-monotone lower
prevision is calledn-alternating. An ∞-monotone lower
prevision (i.e, a lower prevision which isp-monotone for
all p ∈ N) is also calledcompletely monotone, and an
∞-alternating upper previsioncompletely alternating.

We use the convention that forI = /0,
∧

i∈I fi simply
drops out of the expressions (we could let it be equal to
+∞). Clearly, if a lower previsionP is n-monotone, it is
alsop-monotone for1≤ p≤ n. The following proposition
gives an immediate alternative characterisation for then-
monotonicity of lower previsions.

Proposition 1. Let n ∈ N∗, and consider a lower previ-
sionP whose domaindomP is a lattice ofL . ThenP is
n-monotone if and only if

(i) P is monotone, i.e., for allf and g in domP such
that f ≤ g, we haveP( f )≤ P(g); and

(ii) for all p∈N, 2≤ p≤ n, and all f1, . . . , fp in domP:

P

(
p∨

i=1

fi

)
≥ ∑

/06=I⊆{1,...,p}
(−1)|I |+1P

(
∧

i∈I

fi

)
.

Coherence guaranteesn-monotonicity only if n = 1:
any coherent lower prevision on a lattice of gambles is
monotone (or equivalently,1-monotone) but not necessar-
ily 2-monotone, as the following counterexample shows.

Counterexample 1. Let Ω = {a,b,c}, and consider the
lower previsionP defined on the singleton{ f} byP( f ) =
1, where f (a) = 0, f (b) = 1, f (c) = 2. The natural ex-
tensionEP of P, defined on the setL of all gambles onΩ
(obviously a lattice), is the coherent lower prevision given
by

EP(g) = min

{
g(b),g(c),

g(a)+g(c)
2

}

for all gamblesg on Ω. The restriction ofEP to the lat-
tice of {0,1}-valued gambles (i.e., indicators) onΩ, is
a 2-monotone coherent lower probability, simply because
Ω contains only three elements (see Walley [12, p. 58]).
However,EP is not 2-monotone: consider the gambleg
defined byg(a) = g(b) = g(c) = 1, then1 = EP( f ∨g) <
EP( f )+EP(g)−EP( f ∧g) = 1+1−0.5, which violates
the condition for 2-monotonicity.

Theorem 2. A linear previsionP on a lattice of gambles
is completely monotone and completely alternating.

Proof. Any linear previsionP is the restriction of some
coherent previsionQ on L (see for instance [13, Theo-
rem 3.4.2]). Now recall thatQ is a real linear functional,
and apply it to both sides of the following well-known
identity (for indicators of events this is known as thesieve
formula, or inclusion-exclusion principle, see [1])

p∨

i=1

fi = ∑
/06=I⊆{1,...,p}

(−1)|I |+1
∧

i∈I

fi .

to get

Q

(
p∨

i=1

fi

)
= ∑

/06=I⊆{1,...,p}
(−1)|I |+1Q

(
∧

i∈I

fi

)
.

So Q is completely monotone, and because in this case
condition (ii) in Proposition 1 holds with equality, it is
completely alternating as well. Now recall thatQ andP
coincide on the lattice of gamblesdomP, that contains all
the suprema and infima in the above expression.
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4 n-Monotone lower probabilities

4.1 Coherence, natural extension to events,
and the inner set function

If a lattice of gambles contains only (indicators of) events,
we call it a lattice of events. A lattice of events is there-
fore a collection of subsets ofΩ that is closed under (fi-
nite) intersection and union. If it is also closed under set
complementation and contains the empty set/0, we call
it a field. An n-monotone lower prevision on a lattice of
events is called ann-monotone lower probability. A com-
pletely monotone lower probabilityis of course one that is
∞-monotone, or equivalently,p-monotone for allp∈ N.

In what follows, we shall assume that both/0 and Ω
belong to the domain. This simplifies the notation and
the proofs of the results that follow. These results can
be easily generalised ton-monotone lower probabilities
whose domain does not containΩ.

Let us first study the relationship betweenn-
monotonicity and coherence. Recall that 1-monotonicity
is necessary, but not sufficient, for coherence. We shall
show in what follows that forn ≥ 2, n-monotonicity is
(up to normalisation) sufficient, but not necessary, for co-
herence. To this end, we consider theinner set function
P∗ associated with a monotone lower probabilityP whose
domaindomP is a lattice of events, containing/0 andΩ.
P∗ is defined by

P∗(A) = sup{P(B) : B∈ domP andB⊆ A} ,

for anyA⊆Ω. Clearly this inner set functionP∗ is mono-
tone as well, and it coincides withP on its domaindomP.

Let’s first mention some important known results for2-
monotone lower probabilities (recall that anyn-monotone
lower probability, forn≥ 2, is also2-monotone). A co-
herent lower probabilityP defined on a lattice of events is
2-monotone if and only if for allA andB in domP:

P(A∪B)+P(A∩B)≥ P(A)+P(B).

Walley showed that a2-monotone lower probabilityP on
a field is coherent if and only ifP( /0) = 0 andP(Ω) = 1
(this is a consequence of [12, Theorem 6.1, p. 55–56]).
He also showed that ifP is a coherent2-monotone lower
probabilityon a field, then its inner set functionP∗ is 2-
monotone as well and agrees with the natural extension

EP of P on events (see [13, Theorem 3.1.5, p. 125]). In
this section, we generalise these results ton-monotone
lower probabilities defined on a lattice of events.

First, we prove that the inner set function preservesn-
monotonicity; this result is actually due to Choquet [3,
Chapter IV, Lemma 18.3] (once it is noted that Choquet’s
‘interior capacity’ coincides with our inner set function).
As the proof in Choquet’s paper consists of no more than
a hint [3, p. 186, ll. 6–9], we work out the details below.

Theorem 3. Let n∈ N∗. If a lower probabilityP defined
on a lattice of sets, containing/0 andΩ, is n-monotone, its
inner set functionP∗ is ann-monotone lower probability
as well.

Proof. Let p∈N, p≤ n, and consider arbitrary subsetsB,
B1, . . . ,Bp of Ω. Fix ε > 0. Then for eachI ⊆ {1, . . . , p}
it follows from the definition ofP∗ that there is someDI

in domP such thatDI ⊆ B∩⋂
i∈I Bi and

P∗

(
B∩

⋂

i∈I

Bi

)
− ε ≤ P(DI )≤ P∗

(
B∩

⋂

i∈I

Bi

)
; (1)

P∗ is real-valued sinceP( /0) ≤ P∗ ≤ P(Ω). Similarly as
before, we use the convention that forI = /0, the corre-
sponding intersection drops out of the expressions (we
let it be equal toΩ). We shall also let the union of an
empty class be equal to/0. Define, for anyI ⊆ {1, . . . , p},
EI =

⋃
I⊆J⊆{1,...,p}DJ, then clearlyEI ∈ domP andDI ⊆

EI ⊆ B∩⋂
i∈I Bi . Now let F = E/0 and Fk = E{k} ⊆ F

for k = 1, . . . , p. ThenF and all theFk belong todomP,
and we have for anyK ⊆ {1, . . . , p} and anyk ∈ K that
EK ⊆ E{k} = Fk ⊆ B∩Bk, whence

EK ⊆
⋂

k∈K

Fk = F ∩
⋂

k∈K

Fk ⊆ B∩
⋂

k∈K

Bk.

Summarising, we find that for every givenε > 0, there are
F andFk in domP, such that for allI ⊆ {1, . . . , p}

DI ⊆ F ∩
⋂

i∈I

Fi ⊆ B∩
⋂

i∈I

Bi (2)

and, using the monotonicity ofP∗ and the fact that it co-
incides withP on its domaindomP, sinceP is monotone,
we deduce from Eqs. (1) and (2) that

P∗

(
B∩

⋂

i∈I

Bi

)
− ε ≤ P

(
F ∩

⋂

i∈I

Fi

)
≤ P∗

(
B∩

⋂

i∈I

Bi

)
.
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Consequently, for everyε > 0 we find that

∑
I⊆{1,...,p}

(−1)|I |P∗

(
B∩

⋂

i∈I

Bi

)

= ∑
I⊆{1,...,p}

I even

P∗

(
B∩

⋂

i∈I

Bi

)
− ∑

I⊆{1,...,p}
I odd

P∗

(
B∩

⋂

i∈I

Bi

)

≥ ∑
I⊆{1,...,p}

I even

P

(
F ∩

⋂

i∈I

Fi

)

− ∑
I⊆{1,...,p}

I odd

[
P

(
F ∩

⋂

i∈I

Fi

)
+ ε

]

= ∑
I⊆{1,...,p}

(−1)|I |P

(
F ∩

⋂

i∈I

Fi

)
−Npε ≥−Npε,

whereNp = 2p−1 is the number of subsets of{1, . . . , p}
with an odd number of elements, and the last inequality
follows from then-monotonicity ofP. Since this holds
for all ε > 0, we find thatP∗ is n-monotone on the lattice
of events℘(Ω).

We mentioned in Section 2 that a coherent lower prob-
ability on a lattice of events is always (1-)monotone. In
Counterexample 1, we showed that a coherent lower pre-
vision that is2-monotone on all events need not be2-
monotone on all gambles. But at the same time, a lower
probability defined on a field of events can be coherent
without necessarily being2-monotone, as Walley shows
in [12, p. 51]. Conversely, a2-monotone lower proba-
bility defined on a lattice of events need not be coher-
ent: it suffices to consider any constant lower probability
P on℘(Ω). Below, we give simple necessary and suffi-
cient conditions for the coherence of ann-monotone lower
probability, we characterise its natural extension, and we
prove that the natural extension of ann-monotone lower
probability to all events is stilln-monotone.

Proposition 4. LetP be ann-monotone lower probability
(n ∈ N∗, n ≥ 2) defined on a latticeS that contains/0
and Ω. ThenP is coherent if and only ifP( /0) = 0 and
P(Ω) = 1.

Proof. The conditions are clearly necessary for coher-
ence. Conversely, Theorem 3 implies that the inner

set functionP∗ of P is alson-monotone, and hence2-
monotone. Now, by Delbaen [7, p. 213], this lower prob-
ability is coherent, and consequently so isP.

The following proposition relates the natural extension
EP of an n-monotone lower probabilityP with the inner
set functionP∗.

Proposition 5. Let P be a coherentn-monotone lower
probability (n∈ N∗, n≥ 2) defined on a lattice of events
S that contains/0 andΩ. Then its natural extensionEP
restricted to events is ann-monotone lower probability as
well, and coincides with the inner set functionP∗ of P.

Proof. Consider anyA⊆Ω. Then for anyP in M (P),

P(A)≥ sup
B⊆A,B∈S

P(B)≥ sup
B⊆A,B∈S

P(B) = P∗(A).

Since we know thatEP(A) = min{Q(A) : Q∈M (P)},
we deduce thatEP(A)≥ P∗(A) for all A⊆Ω.

Conversely, letP be a coherentn-monotone lower prob-
ability onS . From Theorem 3,P∗ is n-monotone ifP is,
and applying Proposition 4,P∗ is a coherent extension of
P to all events. It therefore dominates the natural exten-
sionEP of P, whenceEP(A)≤ P∗(A) for all A⊆Ω.

In particular, the natural extension to all events of a
coherent andn-monotone lower probability is alson-
monotone. This result will be generalised further on.

4.2 Natural extension to all gambles, and
the Choquet integral

Walley [12, p. 56] has shown that the natural extensionEP
to all gambles of a coherent2-monotone lower probability
P defined on the set℘(Ω) of all events, is given by the
Choquet functional with respect toP.

EP( f ) = (C)
∫

f dP = inf f +(R)
∫ supf

inf f
GP

f (x)dx, (3)

where the integral on the right-hand side is a Rie-
mann integral, and the functionGP

f defined byGP
f (x) =

P({ f ≥ x}), is the decreasing distribution function of
f with respect toP; GP

f is always bounded and non-
increasing, and therefore always Riemann integrable. We
have used the common notation{ f ≥ x} for the set
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{ω ∈Ω : f (ω)≥ x}). This tells us that this natural exten-
sion iscomonotone additiveonL , because that is a prop-
erty of any Choquet functional associated with a mono-
tone set function on a field (see [8, Proposition 5.1]): if
two gamblesf andg arecomonotone, i.e.,

(∀ω1,ω2 ∈Ω)( f (ω1) < f (ω2) =⇒ g(ω1)≤ g(ω2)),

thenEP( f +g) = EP( f )+EP(g).
By Proposition 5, we may assume that a coherent2-

monotone lower probability defined on a lattice of events
that contains/0 andΩ, is actually defined on all of℘(Ω),
since we can extend it from the lattice of eventsdomP
to ℘(Ω) using the inner set function (natural extension)
P∗ associated withP, which is still 2-monotone. More-
over, the natural extension ofP to all gambles coincides
with the natural extension ofP∗ to all gambles, because
of the transitivity property mentioned in Section 2. So
Eq. (3) also holds for2-monotone coherent lower proba-
bilities defined on a lattice of events. We conclude:

Theorem 6. Letn∈N∗, n≥ 2, and letP be a coherentn-
monotone lower probability defined on a lattice of events
that contains both/0 andΩ. Then its natural extensionEP
to the setL of all gambles is given by

EP( f ) = (C)
∫

f dP∗ = inf f +(R)
∫ supf

inf f
P∗({ f ≥ x})dx.

We already know from Theorem 3 that the natural ex-
tensionP∗ of P to the set of all events is2-monotone (or
more generallyn-monotone) as well. This result holds
also for the natural extension to gambles.

Theorem 7. Letn∈ N∗, n≥ 2. If a coherent lower prob-
ability P on a lattice of eventsS , containing/0 andΩ, is
n-monotone, then its natural extensionEP is n-monotone
on the lattice of gamblesL .

Proof. Let p∈N, p≤ n, and letf , f1, . . . , fp be arbitrary
gambles onΩ. Let

a = min{inf f ,
p

min
k=1

inf fk} , b = max{supf ,
p

max
k=1

supfk}.

ConsiderI ⊆ {1, . . . , p} thena≤ inf( f ∧∧
i∈I fi) andb≥

sup( f ∧∧
i∈I fi). It is easily verified that

EP

(
f ∧

∧

i∈I

fi

)
= a+(R)

∫ b

a
GP∗

f∧∧
i∈I fi

(x)dx.

Since it is obvious that for anyx in R

GP∗
f∧∧

i∈I fi
(x) = P∗

(
{ f ≥ x}∩

⋂

i∈I

{ fi ≥ x}
)

,

it follows from then-monotonicity ofP∗ (see Theorem 3)
that for all realx

∑
I⊆{1,...,p}

(−1)|I |GP∗
f∧∧

i∈I fi
(x)≥ 0.

If we take the Riemann integral over[a,b] on both sides of
this inequality, and recall that∑I⊆{1,...,p}(−1)|I | = 0, we
get

∑
I⊆{1,...,p}

(−1)|I |EP

(
f ∧

∧

i∈I

fi

)
≥ 0.

This tells us thatEP is n-monotone.

We deduce in particular from this result that given a
coherentn-monotone lower probability defined on℘(Ω),
the lower prevision that we can define onL by means
of its Choquet functional is alson-monotone. Since triv-
ially the converse also holds, we deduce that the Choquet
functional respect to a lower probabilityP on℘(Ω) is n-
monotone if and only ifP is. This generalises a result by
Walley [12, Theorem 6.4].

Corollary 8. LetP be any coherent lower probability de-
fined on a lattice containing both/0 and Ω. Let n ∈ N∗,
n ≥ 2. ThenP is n-monotone, if and only ifEP is n-
monotone, if and only if(C)

∫ ·dP∗ is n-monotone.

Proof. If P is n-monotone, thenEP is n-monotone by
Theorem 7.

If EP is n-monotone, thenP is n-monotone sinceEP is
an extension ofP (becauseP is coherent), and so, by The-
orem 6,EP must coincide with(C)

∫ ·dP∗, which must be
thereforen-monotone as well.

Finally, if (C)
∫ ·dP∗ is n-monotone, thenP∗ must be

n-monotone since(C)
∫ ·dP∗ is an extension ofP∗. But,

P∗ is also an extension ofP (becauseP is coherent), so,P
is n-monotone as well. This completes the chain.

5 Representation results

Let us now focus on the notion ofn-monotonicity we have
given for lower previsions. IfP is a monotone lower pre-
vision on a lattice of gambles that contains all constant
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gambles, then itsinner extensionP∗ is given by

P∗( f ) = sup{P(g) : g∈ domP andg≤ f} . (4)

for all gamblesf on Ω. Clearly this inner extension is
monotone as well, and it coincides withP on its domain
domP. The following result generalises Theorem 3; their
proofs are completely analogous.

Theorem 9. Letn∈N∗. If a lower previsionP defined on
a lattice of gambles that contains all constant gambles is
n-monotone, its inner extensionP∗ is n-monotone onL .

We now investigate whether a result akin to Theorem 7
holds forn-monotone lower previsions: when will the nat-
ural extension of a coherentn-monotone lower prevision
be n-monotone? For Theorem 7, we needed the domain
of the lower probability to be a lattice of events containing
/0 andΩ. It turns out that for our generalisation we also
have to impose a similar condition on the domain: it will
have to be a linear lattice containing all constant gambles.
Recall that a subsetK of L is called alinear lattice if
K is closed under point-wise addition and scalar multi-
plication with real numbers, and moreover closed under
point-wise minimum∧ and point-wise maximum∨.

Consider a coherent lower prevision whose domain is
a linear lattice of gamblesK that contains all constant
gambles. Then its natural extension to the set of all gam-
blesL is precisely its inner extensionP∗ (see Walley [13,
Theorem 3.1.4]). This leads at once to the following theo-
rem, which is a counterpart of Theorem 7 forn-monotone
lower previsions.

Theorem 10. Let n ∈ N∗. If a coherent lower prevision
P defined on a linear lattice of gambles that contains all
constant gambles isn-monotone, then its natural exten-
sion EP to L is equal to its inner extensionP∗, and is
thereforen-monotone on the lattice of gamblesL .

Counterexample 1 tells us that this result cannot be ex-
tended to lattices that are not linear spaces.

We have not made any mention yet of the Choquet in-
tegral in relation to the natural extension. It turns out that
there is also a relationship between both concepts. Con-
sider a linear lattice of gamblesK that contains all con-
stant gambles. Then the setFK = {A⊆Ω : IA ∈K } of
events that belong toK is a field of subsets ofΩ. Let us
denote byLFK

the uniformly closed linear lattice

LFK
= cl(span(IFK

)),

where of courseIFK
= {IA : IA ∈K }, ‘cl’ denotes uni-

form closure, and ‘span’ the linear span.LFK
contains

all constant gambles as well. We call its elementsFK -
measurable gambles. EveryFK -measurable gamble is
a uniform limit of FK -simple gambles, i.e., elements of
span(IFK

). Moreover,LFK
⊆ cl(K ).

Theorem 11. Let P be ann-monotone coherent lower
prevision on a linear lattice of gamblesK that contains
all constant gambles. This lower prevision has a unique
coherent extension (its natural, or inner, extension)EP to
cl(K ), and this extension isn-monotone as well. Denote
byQ the restriction ofP to FK . Then for all f in LFK

,

EP( f ) = EQ( f ) = (C)
∫

f dQ∗

= inf f +(R)
∫ supf

inf f
Q∗({ f ≥ x})dx.

Consequently,EP is both n-monotone and comonotone
additive onLFK

.

Proof. Let us first show thatP has a unique coherent
extension tocl(K ). Let P′ be any coherent extension.
There is at least one coherent extension, namely its natu-
ral extension, which we denote byEP. We show thatP′
andEP coincide oncl(K ). Consider any elementh in
cl(K ). Then there is a sequencegn of gambles inK that
converges uniformly toh. Since bothP′ andEP coincide
with P onK , and are continuous on their domaincl(K ),
because they are coherent, we find that

P′(h) = lim
n→∞

P′(gn) = lim
n→∞

P(gn) = lim
n→∞

EP(gn) = EP(h).

SinceP is n-monotone and coherent, its restrictionQ to
the fieldFK is ann-monotone and coherent lower prob-
ability. By Theorem 6, the natural extensionEQ of Q to
the setL of all gambles is the Choquet functional associ-
ated with then-monotone inner set functionQ∗ of Q: for
any gamblef on Ω,

EQ( f ) = (C)
∫

f dQ∗ = inf f +(R)
∫ supf

inf f
Q∗({ f ≥ x})dx.

To prove that the coherent lower previsionsEQ andEP

coincide on the subsetLFK
of cl(K ), it suffices to

prove thatEQ and P coincide onspan(IFK
), since the

7



lower previsionsEQ and EP are guaranteed by coher-
ence to be continuous, and sinceEP andP coincide on
span(IFK

)⊆K , becauseP is coherent onK . Let there-
fore h be any element ofspan(IFK

), i.e., h is anFK -
simple gamble. Then we can always findn≥ 1, realµ1,
real non-negativeµ2, . . . , µn, and nestedF2 ⊇ ·· · ⊇ Fn

such thath = µ1 + ∑n
k=2 µkIFk. It then follows from

the comonotone additivity of the Choquet integral that
EQ(h) = µ1 + ∑n

k=2 µkQ(Fk). On the other hand, it fol-
lows from the coherence and the2-monotonicity ofP that

P(h) = µ1 +P

(
n

∑
k=2

µkIFk

)

= µ1−µ2 +P

(
n

∑
k=2

µkIFk

)
+P(µ2)

≤ µ1−µ2 +P

(
µ2∨

n

∑
k=2

µkIFk

)
+P

(
µ2∧

n

∑
k=2

µkIFk

)
.

Now it is easily verified thatµ2 ∨ ∑n
k=2 µkIFk = µ2 +

∑n
k=3 µkIFk andµ2∧∑n

k=2 µkIFk = µ2IF2, and consequently,
again using the coherence and the2-monotonicity ofP,
the fact thatQ coincides withP on FK , and continuing
in the same fashion,

P(h)≤ µ1−µ2 +P

(
µ2 +

n

∑
k=3

µkIFk

)
+P(µ2IF2)

= µ1 + µ2Q(F2)+P

(
n

∑
k=3

µkIFk

)

≤ µ1 + µ2Q(F2)+ µ3Q(F3)+P

(
n

∑
k=4

µkIFk

)

...

≤ µ1 +
n

∑
k=2

µkQ(Fk).

This tells us thatEQ(h)≥ P(h). On the other hand, since
P is a coherent extension ofQ, and since the natural ex-
tensionEQ is the point-wise smallest coherent extension
of Q, we also find thatEQ(h)≤ P(h). This tells us thatP
andEQ indeed coincide onspan(IFK

).

Walley has shown in [13] that in general a coherent
lower prevision is not determined by the values it assumes

on events. But the preceding theorem tells us that for co-
herent lower previsions that are2-monotone and defined
on a sufficiently rich domain, we can somewhat improve
upon this negative result: onFK -measurable gambles, at
least the natural extensionEP of then-monotone coherent
P is completely determined by the values thatP assumes
on the events inFK . Nevertheless, the following coun-
terexample tells us that we cannot expect to take this result
beyond the setLFK

of FK -measurable gambles.

Counterexample 2. Let Ω be the closed unit interval
[0,1] in R, and letP be the lower prevision on the lattice
K of all continuous gambles onΩ, defined byP( f ) =
f (0) for any f in K . SinceP is actually a linear pre-
vision, it must be completely monotone (see Theorem 2).
Observe thatK is a uniformly closed linear lattice that
contains all constant gambles. Moreover,FK = { /0,Ω},
soLFK

is the set of all constant gambles, and the natu-
ral extensionEQ of the restrictionQ of P to FK is the
vacuous lower prevision onL : EQ( f ) = inf f for all
gamblesf on Ω. Therefore, for anyg in K such that
g(0) > inf g, it follows thatEQ(g) < P(g): the equality
in Theorem 11 holds only for those gambles inK that
satisfyg(0) = inf g.

So we conclude that ann-monotone and coherent lower
prevision P defined on a linear lattice of gambles that
contains the constant gambles, cannot generally be writ-
ten (on its entire domain) as a Choquet functional associ-
ated with its restrictionQ to events. The following the-
orem is therefore quite surprising, as it tells us that, for
a lower prevision is defined on a sufficiently rich domain,
2-monotonicity and comonotone additivity of a lower pre-
vision are equivalent under coherence. As a consequence,
2-monotone coherent lower previsionsP on such domains
can indeedalwaysbe represented on their entire domain
by a Choquet integral (but not necessarily with respect to
the inner set function of the restrictionQ of P to events).

Theorem 12. Let P be a coherent lower prevision on a
linear lattice of gambles that contains all constant gam-
bles. ThenP is comonotone additive if and only if it is
2-monotone, and in both cases we have for allf in domP

P( f ) = (C)
∫

f dP∗ = inf f +(R)
∫ supf

inf f
P∗({ f ≥ x})dx.

8



Proof. Let us first prove the direct implication. Assume
that P is comonotone additive. Let us defineK+ :=
{ f ∈ domP: f ≥ 0}, and letP+ be the restriction ofP to
K+. This lower prevision is also coherent and comono-
tone additive, and it is defined on a class of non-negative
gambles. Moreover, givenf in K+ anda≥ 0, the gam-
blesa f , f ∧a and f − f ∧a belong toK+ becausedomP
is a linear lattice that contains the constant gambles and all
the above gambles are trivially non-negative. Hence, we
may apply Greco’s representation theorem (see [8, The-
orem 13.2], the conditions (iv) and (v) there are trivially
satisfied because all elements inK+ are bounded), and
conclude that there is a monotone set functionµ on℘(Ω)
with µ( /0) = 0 andµ(Ω) = 1 such that for allf in K+:

P+( f ) = (C)
∫

f dµ.

Consider now anyf in domP. Since f is bounded, and
coherence implies thatP( f +a) = P( f )+a for all a in R,
this also implies thatinf f +P+( f − inf f ) = P( f ), whence

P( f ) = inf f +(C)
∫

[ f − inf f ]dµ = (C)
∫

f dµ. (5)

It follows from the proof of Greco’s representation theo-
rem (see [8, Theorem 13.2]) that we can actually assume
µ to be defined as the restriction ofP∗ to events:

µ(A) = P∗(A) = sup{P( f ) : f ≤ IA and f ∈ domP} (6)

for all A⊆ Ω. By Theorem 10,µ is also equal to the re-
striction to events of the natural extensionEP = P∗ of P.
Let us considerA⊆ B⊆ Ω, and show thatEP(IA + IB) =
EP(IA)+EP(IB) = µ(A)+ µ(B). Since the coherence of
EP implies that it is superadditive, we only need to prove
that EP(IA + IB) ≤ µ(A) + µ(B). Given ε > 0, we de-
duce from Eq. (4) that there is somef in domP such
that f ≤ IA + IB and EP(IA + IB) ≤ P( f ) + ε. We may
assume without loss of generality thatf is non-negative
[becausef ∨0 belongs todomP and satisfies the same in-
equality]. Let us defineg1 = f ∧ 1 andg2 = f − f ∧ 1.
These gambles belong to the linear latticedomP. More-
over,g1 + g2 = f . Let us show thatg1 ≤ IB andg2 ≤ IA.
If ω /∈ B, we have0≤ f (ω) ≤ (IA + IB)(ω) = 0 whence
g1(ω) = g2(ω) = 0. If on the other handω ∈ A, there
are two possibilities: iff (ω) ≤ 1, theng2(ω) = 0 and
g1(ω) = f (ω) ≤ 1. If on the other handf (ω) > 1, then

g1(ω) = 1 andg2(ω) = f (ω)−1≤ 2−1 = 1. Finally, if
ω ∈ B\A, we havef (ω)≤ 1, whenceg1(ω) = f (ω)≤ 1
andg2(ω) = 0.

Moreover,g1 andg2 are comonotone: consider anyω1

and ω2 in Ω, and assume thatg2(ω1) < g2(ω2). Then
g2(ω2) > 0 and consequentlyω2 ∈A and f (ω2) > 1. This
implies in turn that indeedg1(ω2) = 1≥ g1(ω1). Hence,
sinceP is assumed to be comonotone additive,

EP(IA + IB)≤ P( f )+ ε = P(g1 +g2)+ ε
= P(g1)+P(g2)+ ε ≤ EP(A)+EP(B)+ ε,

and since this holds for allε > 0 we deduce that indeed
EP(IA + IB)≤ EP(A)+EP(B) = µ(A)+ µ(B).

Now consider two arbitrary subsetsC andD of Ω. Then
C∩D⊆C∪D, and consequently

µ(C∪D)+ µ(C∩D) = EP(IC∪D + IC∩D)

= EP(IC + ID)≥ EP(IC)+EP(ID) = µ(C)+ µ(D),

taking into account thatEP is superadditive (because it is
coherent). We conclude thatµ is 2-monotone on℘(Ω).
From Proposition 4, we conclude thatµ is a coherent
lower probability on℘(Ω), so by Theorem 6, its natu-
ral extension is the Choquet functional associated withµ,
and is therefore equal toP, by Eq. (5). If we now ap-
ply Theorem 7, we see that the coherent lower prevision
P given byP( f ) = (C)

∫
f dµ for all f in domP is also

2-monotone.
We now prove the converse implication. Assume that

P is 2-monotone. Then, applying Theorems 9 and 10,
its natural extensionEP = P∗ to all gambles is also2-
monotone, and consequently so is its restrictionµ to
events. Moreover,L℘(Ω) = L , because any gamble is the
uniform limit of some sequence of simple gambles. If we
now apply Theorem 11, we see thatEP( f ) = (C)

∫
f dµ

for all f in L . Consequently,EP is comonotone additive,
because the Choquet functional associated with a mono-
tone lower probability is, and so is thereforeP.

Hence, the natural extension of ann-monotone (n≥ 2)
and coherent lower prevision defined on a linear lattice
of gambles that contains the constant gambles is always
comonotone additive. Indeed, this natural extension is the
Choquet functional associated to its restriction to events.
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Corollary 13. Let n ∈ N∗, n ≥ 2, and let P be an n-
monotone coherent lower prevision defined on a linear
lattice that contains all constant gambles. ThenEP is
n-monotone, is comonotone additive, and is equal to the
Choquet integral with respect toP∗ (restricted to events).

Moreover, such a lower prevision is generally not
uniquely determined by its restriction to events, but it is
uniquely determined by the values that its natural exten-
sionEP = P∗ assumes on events. Of course, this natural
extension also depends in general on the values thatP as-
sumes on gambles, as is evident from Eq. (6).

An n-monotone (n≥ 2) coherent lower probabilityP on
℘(Ω), which usually has many coherent extensions toL ,
has actuallyonly one2-monotonecoherent extension to
L . Of course, this unique2-monotone coherent extension
coincides with the natural extension ofP.

Corollary 14. Let n∈ N∗, n≥ 2. Ann-monotone coher-
ent lower probability defined on all events has aunique
2-monotone (or equivalently, comonotone additive) co-
herent extension to all gambles, that is furthermore au-
tomatically alson-monotone.

Proof. Let P be ann-monotone lower probability defined
on all events. By Theorem 7, its natural extensionEP
to L is ann-monotone, and hence,2-monotone coherent
extension ofP. The proof is complete if we can show that
EP is the only2-monotone coherent extension ofP.

So, letQ be any2-monotone coherent extension ofP.
We show thatQ = EP. Let f be any gamble onΩ, then

Q( f ) = (C)
∫

f dQ = (C)
∫

f dP = EP( f ),

where the first equality follows from Corollary 13, the
second equality holds becauseQ coincides withP on
events, and the third one follows by applying Theorem 6.
This establishes uniqueness.

Next, we give a couple of properties that relate
comonotone additivity (or, equivalently,2-monotonicity)
of coherent lower previsions to properties of their sets of
dominating linear previsions.

Proposition 15. LetP be a coherent lower prevision on a
linear lattice of gambles. Consider its set of dominating
linear previsionsM (P).

(a) If P is comonotone additive on its domain then for
all comonotonef andg in domP, there is someP in
M (P) such thatP( f ) = P( f ) andP(g) = P(g).

(b) Assume in addition thatdomP contains all constant
gambles. ThenP is comonotone additive (or equiv-
alently 2-monotone) on its domain if and only if for
all comonotonef andg in domP, there is someP in
M (P) such thatP( f ) = P( f ) andP(g) = P(g).

Proof. To prove the first statement, assume thatP is
comonotone additive on its domain, and considerf and
g in domP that are comonotone. Thenf + g also be-
longs todomP, so we know thatP( f +g) = P( f )+P(g).
On the other hand, sinceP is coherent, there is someP
in M (P) such thatP( f + g) = P( f + g) = P( f )+ P(g).
So P( f ) + P(g) = P( f ) + P(g) and since we know that
P( f ) ≤ P( f ) andP(g) ≤ P(g), this implies thatP( f ) =
P( f ) andP(g) = P(g).

The ‘only if’ part of the second statement is an im-
mediate consequence of the first. To prove the ‘if’ part,
consider arbitrary comonotonef andg in domP. Then
f ∨ g and f ∧ g are comonotone as well, and belong to
domP, so by assumption there is aP in M (P) such that
P( f ∧g) = P( f ∧g) andP( f ∨g) = P( f ∨g). Then

P( f ∨g)+P( f ∧g) = P( f ∨g)+P( f ∧g)
= P( f )+P(g)≥ P( f )+P(g).

This tells us thatP is 2-monotone, and by Theorem 12
also comonotone additive, on its domain.

As a corollary, we deduce the following result, appar-
ently first proven by Walley [12, Cors. 6.4 and 6.5, p. 57].

Corollary 16. Let P be a coherent lower probability on
a lattice of events. Consider its set of dominating linear
previsionsM (P). ThenP is 2-monotone if and only if for
all A andB in domP such thatA⊆ B, there is someP in
M (P) such thatP(A) = P(A) andP(B) = P(B).

Proof. We just show that the direct implication is a con-
sequence of the previous results; the converse follows
easily by applying the condition toA∩B ⊆ A∪B, for
A and B in domP. Let P be a coherent lower previ-
sion defined on a lattice of events, that is moreover2-
monotone. By Theorem 7, the natural extensionEP of P
to all gambles is2-monotone and coherent. Hence, given
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A⊆ B∈ domP, sinceIA andIB are comonotone, Proposi-
tion 15 implies the existence of aP in M (EP) = M (P)
such thatP(A) = EP(A) = P∗(A) = P(A) and P(B) =
EP(B) = P∗(B) = P(B).

6 Conclusions

The results in this paper show that there is no real reason
to restrict the notion ofn-monotonicity to lower proba-
bilities. In fact, it turns out that it is fairly easy, and com-
pletely within the spirit of Choquet’s original definition, to
define and study this property for lower previsions. And
in fact, we have shown above that doing this does not lead
to just another generalisation of something that existed
before, but that it leads to genuinely new insights. One
important conclusion that may be drawn from our results
is that, under coherence,2-monotonicity of a lower previ-
sion is actually equivalent to comonotone additivity, and
therefore to being representable as a Choquet functional
(see Theorem 12 for a precise formulation).

We have presented our results for coherent lower previ-
sions, which are positively homogeneous, super-additive
functionals that satisfy a normalisation condition. Our re-
sults can be easily generalised to situations where nor-
malisation isn’t important, which is the case, for instance,
with Maaß’s so-calledexact functionals[11]. Moreover,
the material presented above allows us to claim that most
(if not all) of the lower integrals defined in the literature
are actually completely monotone, and therefore repre-
sentable as Choquet functionals. Due to limitations of
space, we could not discuss these additional results here,
but we do intend to report on them elsewhere.
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