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Abstract general definition ofi-monotonicity for functionals de-
fined on arbitrary lattices.

We studyn-monotone lower previsions, which constitute The paper is structured as follows. Section 2 highlights

a generalisation ofi-monotone lower probabilities. Wethe most important aspects of the theory of lower previ-

investigate their relation with the concepts of coherengns that we shall need in the rest of the paper. Sec-

and natural extension in the behavioural theory of imprgon 3 is concerned with the definition afmonotonicity

cise probabilities, and improve along the way upon a nuffar lower previsions. In Section 4, we establish a number

ber of results from the literature. of interesting properties, and generalise a number of re-
Keywords: n-monotonicity, coherence, natural extersults in the literature, fon-monotone lower probabilities
sion, Choquet integral, comonotone additivity. on fields of events. In Section 5, we relatenonotone

lower previsions to comonotone additive functionals and
) Choquet integrals. Finally, Section 6 contains some con-
1 Introduction clusions on the matter at hand.

Lower and upper previsions, mainly due to Walley [13],

are among the more interesting uncertainty models in i?- Coherent lower previsions

precise probability theory. They can be viewed as lower

and upper expectations with respect to closed convexthis section, we introduce a few basic notions about

sets of probability measures (also called credal sets; f&@er previsions. We refer to Walley [13] for a more in-

Levi [10]), and they provide a unifying framework fordepth discussion, and for a behavioural interpretation of

studying many other uncertainty models, such as proge notions discussed below.

bility charges (Bhaskara Rao and Bhaskara Rao 2]), Consider a non-empty s€. A gamblef onQ is a

and n-monotone set functions (Choquet [3]), pOSSibilitﬁounded real-valued mapp|ng oh The set of all gam-

measures ([4, 5, 6, 14]), and p-boxes (Fersbml [9]). bles onQ is denoted by¥. It is a real linear space

They have also been linked to various theories of integighder the point-wise addition of gambles, and the point-

tion, such as Choquet integration (Walley [12, p. 53]) angise scalar multiplication of gambles with real numbers.

Lebesgue integration (Walley [13, p. 132]). Hence, a linear space of gambles will mean in this paper
The goal of this paper is to investigate how a subset of# thatis closed under these two operations.

monotonicity can be defined for lower previsions, and Special gambles are the ones that only take values in

to study the properties of thesemonotone lower previ- {0 1}: |et A be any subset of), also called arevent

sions. We start out from Choquet's [3] original and verhen the gambléa, defined byia(w) := 1if w € A and

*Corresponding author. Technologiepark 914, 9052 Zwijnaar(J@(w) := 0 otherwise, is called thindicator of A. This

Belgium. Tel: (+32) 92645653, Fax: (+32) 92645840, E-maifStablishes a correspondence between eventg@agdi-
gert.decooman@ugent.be valued gambles. Often we shall also denatby A.




A lower previsionP is defined as a real-valued map (a A lower previsionQ is said todominatea lower previ-
functional) defined on some subsktmP of .Z; we call sionP, if domQ 2 domP andQ(f) > P(f) for any f in
domP thedomainof P. For any gambld in domP, P(f) domP. We sa;Tthat a lower prEvisidjlavoids sure losg
is called the lower prevision of. If the domain ofP it is dominated by some coherent lower previsiongh
contains only (indicators of) evengs then we also calP  This is the case if and only Bup[S!; fi] > S, P(fi)
alower probability and we writeP(Ia) also asP(A), the for any natural number > 1 and anyfy, ..., f, in domP.
lower probability ofA. A lower prevision avoids sure loss if and only if there is

Given a lower previsiorP, the conjugate upper previ- a point-wise smallest coherent lower previsig on .Z
sionP of P is defined ondomP = —domP by P(f) := that dominate®, namely, the lower envelope of all the
—P(—f) for every —f in the domain ofP. This conju- coherent lower previsions o’ that dominateP. Ep is
gacy relationship allows us to focus on the study of low#ren called theatural extensiorf P. a
previsions only. A linear previsionP is a real-valued functional defined

A lower previsionP whose domain is a linear space isn a set of gambledomP, that satisfiesugy[, fi —
calledcoherenif the following three properties are satisy ', gj] > 3i'4 P(fi) — 31, P(gj) for any natural num-
fied for all f, gin domP and all non-negative real: bersn>0andm>0, and fy, ..., fn, 01, ..., m in
domP. A linear previsionP is coherent, both when in-
terpreted as a lower, and as an upper prevision; the for-
(P2) P(Af)=AP(f) (positive homogeinity); mer means tha is a coherent lower prevision @omP,

o the latter that—P(—-) is a coherent lower prevision on
(P3) P(f +9) > P(f) + P(g) (superadditivity). — domP. For any(linéar previsioR, it holds thatP(f) =

A coherent lower prevision on a linear space can a-P(—f) wheneverf and—f belong to the domain d?.
ways be extended to a coherent lower prevision on Alllower previsionP whose domain is negation invariant
gambles. A lower previsio® with a general domain (i.e., —domP = domP), is a linear prevision if and only
(not necessarily a linear space) is then catflederentifit if it is coherent andself-conjugatei.e., P(—f) = —P(f)
can be extended to a coherent lower prevision on all gafor all f in domP. A linear previsionP on .# is a non-
bles. This is the case if and onlystip[3 ' ; fi—mfy] > negative, normedH(1) = 1], real-valued, linear func-
S, P(fi) — mP(fo) for any natural numbers > 0 and tional on.Z. lts restriction to (indicators of) events is
m > 0, andfg, f1, ..., fn in the domain oP. then aprobability charge(or finitely additive probability

There are a number of common consequences of aweasure) ol (Q).
herence that we shall use throughout the paper. A loweiLet us denote the set of linear previsions .6f that
envelope of coherent lower previsions (with the same ddeminateP by .#(P). The following statements are
main) is again a coherent lower prevision. Moreovegguivalent: (i)P avoids sure loss, (ii) the natural extension
consider a coherent lower previsidh let f and g be of P exists; and (iii).# (P) is non-empty. The following
elements indomP, and lety and A be real numbers, statements are equivalent as well:Ri)s coherent; (ii)P
with A > 0. Then whenever the relevant gambles beeincides with its natural extensi@p ondomP; and (iii)
long to domP, we have thatP(f +g) > P(f)+P(g), P coincides with the lower envelope of (P) on domP.
P(Af) = AP(f), P(n) = p andP(f + p) = P(f) + p.  The last statement simply follows from the important fact
Moreoverinf f < P(f) < P(f) < supf and consequently that the natural extension &fis equal to the lower enve-
0 < P(|f]) < P(|f]) < sup|f|. Also, P is monotone: if lope of.#(P): Ep(f)=mingc 4(p) Q(f), for any gamble
f <gthenP(f) <P(g). Finally, both|P(f)—P(g)| < fin.Z. Often, as we shall see, this expression provides
P(|f —g|) and|P(f) —P(g)| <P(|f —g|). As animme- a convenient way to calculate the natural extension of a
diate consequence of these properties, we see that ibwaer prevision that avoids sure loss. Finally it holds that
sequencef, of gambles converges uniformly to a gam-#(P) = .# (Ep). This result can be used to prove the
ble f, i.e, sup|f, — f| — 0, then alscP(f,) — P(f) and following “transitivity” property for natural extension: if
P(fn) — P(f), so any coherent lower or upper previsiowe denote byQ the restriction of the natural extensi&n
is continuous with respect to the supremum norm. of a lower prevision (that avoids sure loss) to some set of

(P1) P(f) > inff (accepting sure gain);



gambles#” O domP, then.# (P) = .#(Q) = .# (Ep), Coherence guarante@smonotonicity only ifn = 1
and consequentligg coincides withEp on all gambles. any coherent lower prevision on a lattice of gambles is
N monotone (or equivalentl{-monotone) but not necessar-

.. ily 2-monotone, as the following counterexample shows.
3 n-Monotone lower previsions

Counterexample 1. Let Q = {a,b,c}, and consider the
Let us introduce our notion ai-monotonicity for lower |ower previsionP defined on the singletoftf } by P(f) =
prEViSionS. A subset” of .Z is called alattice if it is 1, Wheref(a) =0, f(b) =1, f(c) = 2. The natural ex-
closed under point-wise maximurmand point-wise min- tensionE, of P, defined on the se¥’ of all gambles or®

imumA, i.e, ifforall f andgin.”, bothfvgandfAg (obviously a lattice), is the coherent lower prevision given
also belong to”. For instance, the se¥ of all gambles by

onQ is a lattice. The set of natural numbers without zero

is denoted byN. By N* we denoteN U {eo}. Ep(g) = min {g(b),g(c),
The following definition is a special case of Choquet’s

[3] general definition ofn-monotonicity for functions for all gamblesg on Q. The restriction oEp to the lat-

from an Abelian semi-group to an Abelian group. tice of {0,1}-valued gambles (i.e., indicators) d®, is

a 2-monotone coherent lower probability, simply because

Definition 1. Letn € N*, and letP be a lower prevision .
. . . contains only three elements (see Walley [12, p. 58]).
whose domaindomP is a lattice of gambles. Then we cal . ) .
owever,Ep is not 2-monotone: consider the gambde

? q-monotgnef forall peN, p<n,andallf, fq, ..., defined byg(a) = g(b) = g(c) = 1, thenl — Ep(f v g) <
p in domP:

Ep(f)+Ep(g) — Ep(f Ag) = 1+1—0.5, which violates
) the condition for 2-monotonicity.
>0

m@+m@}
2

S (' (f AN
P} iel Theorem 2. A linear previsionP on a lattice of gambles

The conjugate upper prevision of aamonotone lower is completely monotone and completely alternating.

prevision is calledn-alternating An c-monotone lower
prevision (i.e, a lower prevision which monotone for
all peN) is also calledcompletely monotoneand an
co-alternating upper previsiosompletely alternating

Proof. Any linear previsionP is the restriction of some

coherent previsioQ on .Z (see for instance [13, Theo-

rem 3.4.2]). Now recall tha is a real linear functional,

and apply it to both sides of the following well-known
We use the convention that for= 0, A, fi simply identity (for indicators of events this is known as gieve

drops out of the expressions (we could let it be equal fiemula, or inclusion-exclusion principlesee [1])

+00). Clearly, if a lower previsiorP is n-monotone, it is

alsop-monotone fod < p < n. The following proposition P I+1

gives an immediate alternative characterisation fonrthe \/ fi = Z (=1 /\ fi.

o o i=1 0A C{T,....p} icl
monotonicity of lower previsions.

Proposition 1. Letn € N*, and consider a lower previ- to get
sion P whose domaimlomP is a lattice of.Z. ThenP is

. : P
n-monotone if and only if Q (\/ fi) _ z (—1)I'+1Q </\ fi> )
i=1 0A1C{L,....p}

(i) P is monotone, i.e., for alf and g in domP such [ iel
that f < g, we haveP(f) <P(g); and
. . So Q is completely monotone, and because in this case
(i) forall peN,2<p<n,andallfy,...,fpindomP:  condition (i) in Proposition 1 holds with equality, it is
p completely alternating as well. Now recall thatand P
P <\/ fi> > Z (—pl+ip (/\ fi> ) coincide on the lattice of gamblelemP, that contains all
i=1 0AICHT....p} i€l the suprema and infima in the above expression. [



4 n-Monotone lower probabilities Ep of P on events (see [13, Theorem 3.1.5, p. 125]). In
this section, we generalise these resultsrmonotone

4.1 Coherence, natural extension to eventsJower probabilities defined on a lattice of events.

and the inner set function First, we prove that the inner set function presenves

monotonicity; this result is actually due to Choquet [3,

If a lattice of gambles contains only (indicators of) eventBhapter IV, Lemma 18.3] (once it is noted that Choquet’s

we call it alattice of events A lattice of events is there-interior capacity’ coincides with our inner set function).

fore a collection of subsets @1 that is closed under (fi- o5 the proof in Choquet's paper consists of no more than

nite) intersection and union. If it is also closed under sgtint [3, p. 186, Il. 6-9], we work out the details below.
complementation and contains the empty Getve call

it a field An n-monotone lower prevision on a lattice off N€orem 3. Letn € N*. If a lower probabilityP defined
events is called an-monotone lower probabilityA com- ©n @ lattice of sets, containiryandQ, is n-monotone, its
pletely monotone lower probabilitg of course one that isinner set functiorP, is ann-monotone lower probability
w-monotone, or equivalently-monotone for alp ¢ N, as well.

In what follows, we shall assume that bathand Q  pyoof. Letpe N, p < n, and consider arbitrary subs@s
belong to the domain. This simplifies the notation ang} ...,Bp of Q. Fix e > 0. Then for each C {1,..., p}

the proofs of the results that follow. These results C@follows from the definition ofP, that there is som®,
be easily generalised to-monotone lower probabilitiesj, domP such thaD; € BN Bi and

whose domain does not contdin

Let us first study the relationship between
monotonicity and coherence. Recall that 1-monotonicity P,
is necessary, but not sufficient, for coherence. We shall
show in what follows that fon > 2, n-monotonicity is P, is real-valued sinc®(0) < P, < P(Q). Similarly as
(up to normalisation) sufficient, but not necessary, for cbefore, we use the convention that foe 0, the corre-
herence. To this end, we consider ihaer set function sponding intersection drops out of the expressions (we
P, associated with a monotone lower probabiltwhose let it be equal toQ). We shall also let the union of an
domaindomP is a lattice of events, containiandQ. empty class be equal @ Define, for anyl C {1,...,p},

Bmﬂ&)—s<P(D|)<P*<BmﬂBi>; (1)

iel iel

P, is defined by Ei = Uicscq...py Do, then clearlyg, € domP andD; C
El CBNNigBi- Now letF = Ep and K = Ex CF
P.(A) =sup{P(B): B € domP andB C A}, fork=1,...,p. ThenF and all theR belong todomP,

and we have for ani C {1,...,p} and anyk € K that

for anyA C Q. Clearly this inner set functioR, is mono- Ex C Egyy = R C BN By, whence

tone as well, and it coincides withion its domairdomP.
Let’s first mention somg_lmportant known results 2or Ex C ﬂ Fo=FnN ﬂ R CBN ﬂ By.

monotone lower probabilities (recall that amynonotone keK keK KkeK

lower probability, forn > 2, is also2-monotone). A co- - . .

herent lower probability? defined on a lattice of events iSSummar!smg, we find that for every given- 0, there are

2-monotone if and only if for alA andB in domP: F andF in domP, such that for all € {1,.... p}

C C i
P(AUB)+P(ANB) > P(A) + P(B). D —F”QF' —BQQB' 2)
Walley showed that @-monotone lower probabilit? on and, using the monotonicity &, and the fact that it co-
a fieldis coherent if and only iP(0) = 0 andP(Q) =1 incides withP on its domairdomP, sinceP is monotone,
(this is a consequence of [12, Theorem 6.1, p. 55-56})¢ deduce from Egs. (1) and (2) that
He also showed that P is a coherenB-monotone lower

probability on a field then its inner set functioR, is 2- p BﬁﬂB- _e<pP(E ﬂﬂF <p BﬁﬂB- .
monotone as well and agrees with the natural extension icl ' - il ) B icl !



Consequently, for every > 0 we find that set functionP, of P is alson-monotone, and henc2
monotone. Now, by Delbaen [7, p. 213], this lower prob-
) ability is coherent, and consequently s®is O

> (1P, (Bmﬂsi
I1C{1,....p}

= 2 e (B“ﬂa)lellqlz B (BmﬂBi

The following proposition relates the natural extension
) Ep of ann-monotone lower probability? with the inner

set functiorP, .
1¢{1,..., iel c{1,..., iel
I even I'odd Proposition 5. Let P be a coherenn-monotone lower
< plE E probability (n € N*, n > 2) defined on a lattice of events
= - ﬂﬂ ! & that containsd and Q. Then its natural extensioBp
1C{1,...,p} iel . . S
I'even restricted to events is ammonotone lower probability as

well, and coincides with the inner set functiBn of P.

Proof. Consider anyA C Q. Then for anyP in .7 (P),

P(A)> sup P(B)> sup P(B)=P,(A).
(—plp (F ﬂﬂﬁ) —Np€ > —Npe, BCABe BCABe

. Since we know thaEp(A) = min{Q(A): Qe .#Z(P)},
whereNp = 2P~ is the number of subsets ¢L,...,p} we deduce thap(A) > P, (A) forall AC Q.
with an odd number of elements, and the last inequalityConversely, leP be a coherem-monotone lower prob-
follows from then-monotonicity of P. Since this holds ability on.”. From Theorem 3R, is n-monotone ifP is,
for all € > 0O, we find thatP, is n-monotone on the latticeand applying Proposition £, is a coherent extension of
of eventd](Q). O Pto all events. It therefore dominates the natural exten-

. . . sionEp of P, whenceEp(A) <P, (A)foral ACQ. O
We mentioned in Section 2 that a coherent lower prob- -

ability on a lattice of events is always (1-)monotone. In In particular, the natural extension to all events of a
Counterexample 1, we showed that a coherent lower pgeherent andh-monotone lower probability is alsa-
vision that is2-monotone on all events need not Be monotone. This result will be generalised further on.
monotone on all gambles. But at the same time, a lower

probability defined on a field of events can be coherezl]tz Natural extension to all gambles, and
without necessarily being-monotone, as Walley shows . '

in [12, p. 51]. Conversely, & monotone lower proba- the Choquet integral

bility'defin_ed on a IatFice of events need not be COh?\Nalley [12, p. 56] has shown that the natural extengipn
ent: it suffices to consider any constant lower probabiliy 5| gambles of a cohereBtmonotone lower probability

PonlJ(Q). Below, we give simple necessary and suffp defined on the sefl(Q) of all events, is given by the
cient conditions for the coherence ofimonotone lower Choquet functional with respect R

probability, we characterise its natural extension, and we

prove that the natural extension of afmonotone lower _ . supf o
probability to all events is stith-monotone. Ep()=(C) / fog=inff+(R) _/inff Gr(¥dx, (3)

Proposition 4. LetP be ann-monotone lower probability \yhere the integral on the right-hand side is a Rie-
(n € N*, n > 2) defined on a lattice” that containsd  nann integral, and the functiod? defined byGF(x) =

and Q. ThenB is coherent if and only iP(@) = 0 and P({f > x}), is the decreasing distribution function of
BQ)=1. f with respect toP; G? is always bounded and non-
Proof. The conditions are clearly necessary for cohdncreasing, and therefore always Riemann integrable. We
ence. Conversely, Theorem 3 implies that the innkave used the common notatidrf > x} for the set



{we Q: f(w) >x}). This tells us that this natural extenSince it is obvious that for anyin R

sion iscomonotone additiven £, because that is a prop-
erty of any Choquet functional associated with a mono- G?P; =P {f>xn{fi=x}],
tone set function on a field (see [8, Proposition 5.1]): if Niet i N icl

two gamblesf andg arecomonotongi.e., it follows from then-monotonicity ofP, (see Theorem 3)

(Voo wp € Q)(f(aoy) < fam) = g(wr) < g(wp)), thatforallreal

P
thenEp(f +g) = Ep(f) + Ep(0). > (DG, (020
By Proposition 5, we may assume that a cohent
monotone lower probability defined on a lattice of eventbwe take the Riemann integral ovgt b] on both sides of
that contain® andQ, is actually defined on all af(Q), this inequality, and recall that;c(;_p(—1)I' =0, we
since we can extend it from the lattice of evedtsmP get

to [J(Q) using the inner set function (natural extension) I

P, associated wittP, which is still 2-monotone. More- z (—D"Ep f/\_/\ fi] >0.

over, the natural extension &fto all gambles coincides '<{L-P} iel

with the natural extension @@, to all gambles, because! his tells us thaEp is n-monotone. =

of the transitivity property mentioned in Section 2. S0 \we deduce in particular from this result that given a

Eg. (3) also holds foP-monotone coherent lower probagqperenn-monotone lower probability defined an(Q),

bilities defined on a lattice of events. We conclude: the lower prevision that we can define ofi by means

Theorem 6. Letn € N*, n > 2, and letP be a coherenn-  Of its Choquet functional is alse-monotone. Since triv-

monotone lower probability defined on a lattice of even@lly the converse also holds, we deduce that the Choquet

that contains botid andQ. Then its natural extensidg, functional respect to a lower probabiliBonJ(Q) is n-

to the setZ of all gambles is given by ~ monotone if and only iP is. This generalises a result by
supt Walley [12, Theorem 6.4].

Ep(f) = (C)/ fdP, =inff+ (R)/ P.({f >x})dx. Corollary 8. LetP be any coherent lower probability de-

inf f fined on a lattice containing both and Q. Letn € N*,
We already know from Theorem 3 that the natural ex-> 2. ThenP is n-monotone, if and only iEp is n-

tensionP, of P to the set of all events i2-monotone (or monotone, if and only ifC) [ - dP, is n-monotone.

more generallyn-monotone) as well. This result hold

also for the natural extension to gambles.

Proof. If P is n-monotone, therEp is n-monotone by
Theorem 7. a

Theorem 7. Letn € N*, n> 2. If a coherent lower prob-  If Ep is n-monotone, thei® is n-monotone sinc&p is
ability P on a lattice of events”, containingd andQ, is an extension oP (becaus® is coherent), and so, by The-
n-monotone, then its natural extensiBg is n-monotone orem 6,Ep must coincide withC) [ - dP,, which must be
on the lattice of gamble&’. a thereforen-monotone as well.

Finally, if (C) [-dP, is n-monotone, therP, must be
n-monotone sincéC) [ -dP, is an extension oP,. But,
P, is also an extension &f (becausé is coherent), sa?
is n-monotone as well. This completes the chain. O

Proof. Letpe N, p<n, and letf, f;, ..., fy be arbitrary
gambles oQ. Let

P
a=min{inf f, rkrlirlﬂnf f«} b= max{supf,rp_palxsupfk}.

Considert C {1,...,p} thena<inf(f AAiq fi) andb> 5  Representation results
sup(f A Aig fi). Itis easily verified that

Let us now focus on the notion afmonotonicity we have

b . .. .
Ep fA/\ f| =a+ (R)/ G%A/\- C(x)dx. given for lower previsions. Pis a monotone lower pre-
- el a et i vision on a lattice of gambles that contains all constant



gambles, then itener extensiorr, is given by where of courséz, = {lIa: |a € 2}, ‘cl’ denotes uni-
form closure, andspan the linear span.Zz , contains
= : <f}. T
P.(f) = sup{P(g): g € domP andg < f} ) all constant gambles as well. We call its elemeffig -
for all gamblesf on Q. Clearly this inner extension ismeasurable gamblesEvery.# ,-measurable gamble is
monotone as well, and it coincides wikhon its domain a uniform limit of .% , -simple gambles.e., elements of
domP. The following result generalises Theorem 3; thesparil #, ). Moreover,Zz,, C cl(%").

proofs are completely analogous.
Theorem 11. Let P be ann-monotone coherent lower

Theorem 9. Letn € N". If a lower previsiorP defined on revision on a linear lattice of gamble#” that contains
a lattice of gambles that contains all constant gamblesd§ onstant gambles. This lower prevision has a unique
n-monotone, its inner extensiéh is n-monotone onZ’.  coherent extension (its natural, or inner, extensiEg)to

We now investigate whether a result akin to Theoremc(.#"), and this extension is-monotone as well. Denote
holds forn-monotone lower previsions: when will the natby Q the restriction ofP to .% . Then for allf in £z,
ural extension of a coherentmonotone lower prevision
be n-monotone? For Theorem 7, we needed the domai

| - (1) = Eql1) = (©) [ 1dQ

of the lower probability to be a lattice of events containing =~
0 andQ. It turns out that for our generalisation we also ) supf
have to impose a similar condition on the domain: it will -
have to be a linear lattice containing all constant gambles.
Recall that a subse¥” of . is called alinear latticeif ConsequentlyEp is both n-monotone and comonotone
¢ is closed under point-wise addition and scalar mul@dditive onZz .

plication with real numbers, and moreover closed undlgFoof Let us first show thaP has a unique coherent
point-wise minimumA and point-wise maximury. C . 9 :
extension tocl(.#"). Let P’ be any coherent extension.

Consider a coherent lower prevision whose domain . . .
P 'Il?lere is at least one coherent extension, namely its natu-

a linear lattice of gambles?” that contains all constant . . ;
gambles. Then its natural extension to the set of all gatr‘ﬁ! extens!on., which W? denote @3 We show thag
andEp coincide oncl(.#"). Consider any elemerit in

bles.Z is precisely its inner extensid?, (see Walley [13, = . .
Theorem 3.1.4]). This leads at once to the following the (#). Then there is a sequenggof gambles in¥” that

. k g o
rem, which is a counterpart of Theorem 7 femonotone Sv?tﬁvgrgﬁyngrc:(rjrglryet&n?i':jguzogrﬁhae?fiEmcgi@?e
lower previsions. = ' '

because they are coherent, we find that
Theorem 10. Letn € N*. If a coherent lower prevision

P defined on a linear lattice of gambles that contains aR’(h) = rI]im P(gn) = rI1im P(gn) = rI1im Ep(gn) = Ep(h).

constant gambles is-monotone, then its natural exten-

sionEp to . is equal to its inner extensioR,, and is SinceP is n-monotone and coherent, its restrictiQnto

thereforen-monotone on the lattice of gamblgs. the field.Z is ann-monotone and coherent lower prob-
Counterexample 1 tells us that this result cannot be &Rility. By Theorem 6, the natural extensiéi of Qto

tended to lattices that are not linear spaces. the setZ of all gambles is the Choquet functional associ-
We have not made any mention yet of the Choquet itéd with then-monotone inner set functid@, of Q: for

tegral in relation to the natural extension. It turns out thafy gamblef onQ,

there is also a relationship between both concepts. Con-

sider a linear lattice of gambleg” that contains all con- Eq(f) = (C) / fdQ, =inff+(R)

stant gambles. Thenthe sét, = {ACQ:lpc %} of

gventts tl?at be'irr‘]g t‘%/_f's alfleklj of Z“l_bsetsldﬁ; Letus 14 prove that the coherent lower previsioBg and Ep
enote byZz,, the uniformly closed linear lattice coincide on the subse®z , of cl(.¥), it suffices to

ZLz, =cl(sparl z,,)), prove thatEq and P coincide onsparil 7, ), since the

supf

Q.({f>x})dx.

inf



lower previsionsEg and Ep are guaranteed by coheron events. But the preceding theorem tells us that for co-
ence to be continuous, and singég andP coincide on herent lower previsions that alemonotone and defined
sparil 7, ) C ., becaus® is coherent on’’. Letthere- on a sufficiently rich domain, we can somewhat improve
fore h be any element o$paril ~ ), i.e, his an.Z,- upon this negative result: off ,,-measurable gambles, at
simple gamble. Then we can always find> 1, real u;, least the natural extensidp of then-monotone coherent
real non-negatively, ..., U,, and nested» O --- D F, P is completely determined by the values tRassumes
such thath = py + SR, tilg,. It then follows from on the events in7 . Nevertheless, the following coun-
the comonotone additivity of the Choquet integral thégrexample tells us that we cannot expect to take this result
EQ(h) =M+, uQ(F). On the other hand, it fol- beyond the se¥’z , of % ,-measurable gambles.

lows from the coherence and tBenonotonicity ofP that o
Counterexample 2. Let Q be the closed unit interval

h n [0,1] in R, and letP be the lower prevision on the lattice
P(h)=m+P kzz“lek 2 of all continuous gambles o, defined byP(f) =
B f(0) for any f in J#. SinceP is actually a linear pre-
n .. .
o vision, it must be completely monotone (see Theorem 2).
“Hi- et (kzz“k'ﬂ> +P(k2) Observe that?” is a uniformly closed linear lattice that

contains all constant gambles. Moreovér,, = {0,Q},

n n .
<U—p+P v e | +p A I | S0Z7, is the set of all constant gambles, and the natu-
HL—H2 T (uz k;”k Fk) o (Ilz k;uk Fk) ral extensionEQ of the restrictionQ of P to .%  is the
Now it is easily verified thatu, Vv S0, pdr, = pa + vacuous lower prevision or¥’: Eg(f). = inff for all
SN o tidr, andua A ST, ik, = Lolr,, and consequently, gamblesf on Q. Therefore, for any in .Z" such that
again using the coherence and @ienonotonicity ofp, 9(0) > infg, it follows thatEq(g) < P(g): the equality
the fact thatQ coincides withP on .% -, and continuing N Theorem 11 holds only for those gambles’fi that

in the same fashion, satisfyg(0) = infg.
P(h) < p n | P (1l So we conclude that ammonotone and coherent lower
P < —p+P “2+k;“k R | TP (k2lR,) prevision P defined on a linear lattice of gambles that
7n contains the constant gambles, cannot generally be writ-
ten (on its entire domain) as a Choquet functional associ-
= P I . o .
Ha+ 2Q(F2) +P <k23“k Fk) ated with its restrictiorQ to events. The following the-

" orem is therefore quite surprising, as it tells us that, for
< i + 1oQ(F2) + H3Q(Fs) + P <Z “kh:k) a lower prevision is defined on a suff!c_mfntly rich domain,
- - =1 2-monotonicity and comonotone additivity of a lower pre-
vision are equivalent under coherence. As a consequence,
2-monotone coherent lower previsidA®n such domains
n can indeedhlwayshe represented on their entire domain
SHt Zzﬁ‘kQ(Fk)- by a Choquet integral (but not necessarily with respect to
k= the inner set function of the restrictigpof P to events).
This tells us thaEq(h) > P(h). On the other hand, since a
P is a coherent extension @, and since the natural ex-Theorem 12. Let P be a coherent lower prevision on a
tensionEg, is the point-wise smallest coherent extensidiiear lattice of gambles that contains all constant gam-

of Q, we also find thaEQ(h) < P(h). This tells us thaP bles. TherP is cqmonotone additive if and pnly if it is
- . .= 2-monotone, and in both cases we have forfath domP

andEg indeed coincide osparfl 7, ). O
Walley has shown in [13] that in general a coherer(f) — (C)/de* =inff+(R) /Supf P.({f >x})dx.

lower prevision is not determined by the values it assumes inf f



Proof. Let us first prove the direct implication. Assume(w) =1 andgx(w) = f(w)—1<2—1=1. Finally, if
that P is comonotone additive. Let us defing, := w e B\A, we havef(w) <1, whencegs(w) = f(w) <1
{f edomP: f >0}, and letP, be the restriction oP to andg,(w) = 0.

4. This lower prevision is also coherent and comono- Moreover,g; andg, are comonotone: consider any
tone additive, and it is defined on a class of non-negatiard w, in Q, and assume thak(w) < g2(wy). Then
gambles. Moreover, givehin J#, anda > 0, the gam- g(ay) > 0and consequentlgp, € Aandf () > 1. This
blesaf, f Aaandf — f Aabelong to.?, becauselomP implies in turn that indeed; (w;) =1 > g1(w1). Hence,
is a linear lattice that contains the constant gambles andsiticeP is assumed to be comonotone additive,

the above gambles are trivially non-negative. Hence, we

may apply Greco’s representation theorem (see [8, TheEP(|A+ lg) <P(f)+&=P(g1+0p)+¢

orem 13.2], the conditions (iv) and (v) there are trivially B

satisfied because all elements.#i. are bounded), and =P(91) +P(92) + £ <Ep(A) +Ep(B) +¢,
conclude that there is a monotone set functioon(J (Q)

with 11(0) = 0 and(Q) — 1 such that for allf in 7. and since this holds for alf > 0 we deduce that indeed

EE(|A+ |B) < EE(A) +EE(B) = H(A) + IJ(B).
q Now consider two arbitrary subse&sandD of Q. Then
P (f) :(C)/f H- CND C CuD, and consequently

Consider now anyf in domP. Sincef is bounded, and _
coherence implies th&( f +a) = P(f)+aforallain R, H(CUD) +u(€ND) =Ep(lcup +lenp)
this also implies thanf f +P. (f —inf f) =P(f),whence ~ =Ep(lc+1p) = Ep(lc) +Ep(lp) = u(C) + u(D),

: : king into account th& is superadditive (because it is
P(f) = inf f C/f— ffd:C/fd. 5) taking fp is sup
P(f)=inff+(C) [ [f —inff]du = (C) W ) coherent). We conclude thatis 2-monotone ori](Q).

It follows from the proof of Greco’s representation the From Proposition 4, we conclude thatis a coherent

rem (see [8, Theorem 13.2]) that we can actually assu@%Vsrtggzp:nb!!tghgg?)’e?cf) %t'-g?gl)fs,r:o?:"altf dna.ttl:]-
u to be defined as the restriction Bf to events: X lont quet functi ! Wi

and is therefore equal B, by Eq. (5). If we now ap-

p(A) =P, (A) =sup{P(f): f <lnandf € domP} (6) Ply Theorem 7, we see that the coherent lower prevision
P given byP(f) = (C) [ fdu for all f in domP is also

for all AC Q. By Theorem 10y is also equal to the re-2-monotone.

striction to events of the natural extensigp = P, of P. We now prove the converse implication. Assume that

Let us consideA C B C Q, and show thag,;(l,nL Ig) = P is 2-monotone. Then, applying Theorems 9 and 10,

Ep(la) +Ep(Ig) = u(A) + u(B). Since the coherence ofits natural extensiofEp = P, to all gambles is als@-

Ep implies that it is superadditive, we only need to prov@onotone, and consequently so is its restrictjorto

that Ep(Ia+ 1) < H(A) + u(B). Givene > 0, we de- events. MoreoverZ}; o) =.¢, because any gamble is the

duce from Eq. (4) that there is sonfein domP such uniform limit of some sequence of simple gambles. If we

that f <Ia+1g andEp(la+18) < P(f) + €. We may now apply Theorem 11, we see t&s(f) = (C) / fdu

assume without loss of generality thiis non-negative for all f in .. ConsequentlyEp is comonotone additive,

[because v 0 belongs tadomP and satisfies the same inbecause the Choquet functional associated with a mono-

equality]. Let us defing; = fAlandgy = f — f ALl tone lower probability is, and so is therefd?e O
These gambles belong to the linear lattiteamP. More-
over,g; + g2 = f. Let us show that); < Ig andgp < Ia. Hence, the natural extension of emmonotone f > 2)

If w¢ B, we haveO < f(w) < (Ia+1g)(w) = 0whence and coherent lower prevision defined on a linear lattice
01(w) = g2(w) = 0. If on the other handv € A, there of gambles that contains the constant gambles is always
are two possibilities: iff () < 1, thengy(w) = 0 and comonotone additive. Indeed, this natural extension is the
01(w) = f(w) < 1. If on the other hand (w) > 1, then Choquet functional associated to its restriction to events.



Corollary 13. Letne N*, n> 2, and letP be ann- (a) If P is comonotone additive on its domain then for
monotone coherent lower prevision defined on a linear all comonotonef andg in domP, there is somé in
lattice that contains all constant gambles. ThEp is A (P) such thatP(f) = P(f) andP(g) = P(g).
n-monotone, is comonotone additive, and is equal to the

Choquet integral with respect @, (restricted to events), (?) Assume in addition thatomP contains all constant
gambles. Thet® is comonotone additive (or equiv-

Moreover, such a lower prevision is generally not alently 2-monotone) on its domain if and only if for
uniquely determined by its restriction to events, but it is all comonotonef andg in domP, there is somé in
uniquely determined by the values that its natural exten- .# (P) such thatP(f) = P(f) andP(g) = P(g).
S'OnEE. — P, assumes on events. Of course, this naturlf'glrloof. To prove the first statement, assume tRais
extension also depends in general on the valuedthat o . . .

. . comonotone additive on its domain, and consiflexnd
sumes on gambles, as is evident from Eq. (6). in domP that are comonotone. Theh+ g also be-

An n-monotonef > 2) coherent lower probabiliti? on g — ' 9

) . longs todomP, so we know thaP(f +g) = P(f)+P(g).
has sctualony oneZ-manatanéconerent extension 100" e oter hand, S s onerert, the s sorfe
yony in . (P) such thaP(f +g) = P(f +g) = P(f) + P(g).

<. Of course, this uniqgu2-monotone coherent extensioréo‘ P(f)+ P(g) = P() + P(g) and since we know that
coincides with the natural extensionf P(f) < P(f) andE?g) < P?g), this implies tha(f) —

Corollary 14. Letn € N*, n > 2. Ann-monotone coher- P(f) andP(g) = P(g). o
ent lower probability defined on all events hasiaique ~ The ‘only if' part of the second statement is an im-
2-monotone (or equivalently, comonotone additive) cBlediate consequence of the first. To prove the ‘if’ part,

herent extension to all gambles, that is furthermore agonsider arbitrary comonotoneandg in domP. Then
tomatically alson-monotone. fvgandf Ag are comonotone as well, and belong to

domP, so by assumption there isRain .# (P) such that

Proof. Let P be ann-monotone lower probability definedp(f Ag) = P(f Ag) andP(f vg) = P(f v g). Then
on all events. By Theorem 7, its natural extensks
to .# is ann-monotone, and hencg;monotone coherent  P(f v g)+P(f Ag) = P(f vg)+P(f AQ)
extension oP. The proof is complete if we can show that = P(f)+P(g) > P(f) +P(g).
Ep is the only2-monotone coherent extensionf - -

So, letQ be any2-monotone coherent extension®f This tells us thaP is 2-monotone, and by Theorem 12
We show thaQ = Ep. Let f be any gamble o, then  also comonotone additive, on its domain. O

As a corollary, we deduce the following result, appar-
Q(f) = (C)/ fdQ= (C)/ fdP=Ep(f), ently first proven by Walley [12, Cors. 6.4 and 6.5, p. 57].

where the first equality follows from Corollary 13, thécorollary 16. Let P be a coherent lower probability on
second equality holds becau§e coincides withP on a lattice of events. Consider its set of dominating linear
events, and the third one follows by applying Theorem Brevisions.# (P). ThenP is 2-monotone if and only if for
This establishes uniqueness. O all AandB in domP such thatA C B, there is som in
# (P) such thatP(A) = P(A) andP(B) = P(B).
Next, we give a couple of properties that relate _ _ o
comonotone additivity (or, equivalentlg;monotonicity) Proof. We just show that the direct implication is a con-

of coherent lower previsions to properties of their sets 8fduence of the previous results; the converse follows
dominating linear previsions. easily by applying the condition t&NB C AUB, for

A and B in domP. Let P be a coherent lower previ-
Proposition 15. LetP be a coherent lower prevision on asion defined on a lattice of events, that is moreaer
linear lattice of gambles. Consider its set of dominatingonotone. By Theorem 7, the natural extendignof P
linear previsionsZ (P). to all gambles i2-monotone and coherent. Hence, given

10



A C B e domP, sincela andlg are comonotone, Proposi- [2] K. P. S. Bhaskara Rao and M. Bhaskara RHuweory

tion 15 implies the existence ofRin .# (Ep) = .# (P) of Charges Academic Press, London, 1983.
such thatP(A) = Ep(A) = P,(A) = P(A) and P(B) = "
Ep(B) =P.(B) =P(B). g [3] G. Choquet. Theory of capacitiesAnnales de

I'Institut Fourier, 5:131-295, 1953-1954.

6 Conclusions [4] G. de Cooman. Integration and conditioning in nu-
merical possibility theory.Annals of Mathematics

The results in this paper show that there is no real reason 2nd Artificial Intelligence 32:87-123, 2001.

to restrict the notion oh-monotonicity to lower proba- [5] G.de Cooman and D. Aeyels. Supremum preserving

bilities. In fact, it turns out that it is fairly easy, and com- upper probabilitiesinformation Scienced18:173—
pletely within the spirit of Choquet’s original definition, to 212 1999.

define and study this property for lower previsions. And

in fact, we have shown above that doing this does not legé] G. de Cooman and D. Aeyels. A random set de-
to just another generalisation of something that existed scription of a possibility measure and its natural
before, but that it leads to genuinely new insights. One extension. IEEE Transactions on Systems, Man
important conclusion that may be drawn from our results and Cybernetics—Part A: Systems and Humans
is that, under coherenc2;monotonicity of a lower previ- 30:124-130, 2000.

sion is actually equivalent to comonotone additivity, and
therefore to being representable as a Choquet functiondl
(see Theorem 12 for a precise formulation).

We have presented our results for coherent lower previ-
sions, which are positively homogeneous, super-additMg| p. pennebergNon-Additive Measure and Integral
functionals that sgtlsfy a nor_mallsatlop copdmon. Ourre- * kiuwer Academic, Dordrecht, 1994.
sults can be easily generalised to situations where nor-
malisation isn’t important, which is the case, for instance[9] Scott Ferson, Vladik Kreinovich, Lev Ginzburg,
with Maal's so-callegxact functional§11]. Moreover, Davis S. Myers, and Kari Sentz. Constructing prob-
the material presented above allows us to claim that most ability boxes and Dempster-Shafer structures. Tech-
(if not all) of the lower integrals defined in the literature  nical Report SAND2002-4015, Sandia National
are actually completely monotone, and therefore repre- Laboratories, January 2003.
sentable as Choquet functionals. Due to limitations of

space, we could not discuss these additional results h&td] - Levi. The Enterprise of KnowledgeMIT Press,
but we do intend to report on them elsewhere. London, 1980.

F. Delbaen. Convex games and extreme points.
Journal of Mathematical Analysis and Applications
45:210-233, 1974.

[11] S. Maal.Exact functionals, functionals preserving
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