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ABSTRACT. We explore the relationship between possibility measures (supremum pre-
serving normed measures) and p-boxes (pairs of cumulative distribution functions) on to-
tally preordered spaces, extending earlier work in this direction by De Cooman and Aeyels,
among others. We start by demonstrating that only those p-boxes who have 0–1-valued
lower or upper cumulative distribution function can be possibility measures, and we derive
expressions for their natural extension in this case. Next, we establish necessary and suffi-
cient conditions for a p-box to be a possibility measure. Finally, we show that almost every
possibility measure can be modelled by a p-box, simply by ordering elements by increas-
ing possibility. Whence, any techniques for p-boxes can be readily applied to possibility
measures. We demonstrate this by deriving joint possibility measures from marginals, un-
der varying assumptions of independence, using a technique known for p-boxes. Doing so,
we arrive at a new rule of combination for possibility measures, for the independent case.

1. INTRODUCTION

Firstly, possibility measures are supremum preserving set functions, and were intro-
duced in fuzzy set theory [39], although earlier appearances exist [28, 20]. Because of
their computational simplicity, possibility measures are widely applied in many fields, in-
cluding data analysis [32], diagnosis [4], cased-based reasoning [18], and psychology [27].
This paper concerns quantitative possibility theory [13], where degrees of possibility range
in the unit interval. Interpretations abound [11]: we can see them as likelihood functions
[12], as particular cases of plausibility measures [29, 30], as extreme probability distribu-
tions [31], or as upper probabilities [37, 6]. The upper probability interpretation fits our
purpose best, whence is assumed herein.

Secondly, probability boxes [14, 15], or p-boxes for short, are pairs of lower and upper
cumulative distribution functions, and are often used in risk and safety studies, in which
they play an essential role. P-boxes have been connected to info-gap theory [16], random
sets [19, 26], and also, partly, to possibility measures [1, 6]. P-boxes can be defined on ar-
bitrary finite spaces [9], and, more generally, even on arbitrarily totally pre-ordered spaces
[?]—we will use this extensively.

This paper aims to consolidate the connection between possibility measures and p-
boxes, making as few assumptions as possible. We prove that almost every possibility
measure can be interpreted as a p-box, simply by ordering elements by increasing possibil-
ity, whence, p-boxes effectively generalize possibility measures. Conversely, we provide
necessary and sufficient conditions for a p-box to be a possibility measure, whence, pro-
viding conditions under which the more efficient mathematical machinery of possibility
measures is applicable to p-boxes.

Key words and phrases. Probability boxes, possibility measures, maxitive measures, coherent lower and up-
per probabilities, natural extension.
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To study this connection, we use imprecise probabilities [36], because both possibility
measures and p-boxes are particular cases of imprecise probabilities. Possibility measures
are explored as imprecise probabilities in [37, 6, 23], and p-boxes were studied as imprecise
probabilities briefly in [36, Section 4.6.6] and [33], and in much more detail in [?].

The paper is organised as follows: in Section 2, we give the basics of the behavioural
theory of imprecise probabilities, and recall some facts about p-boxes and possibility mea-
sures; in Section 3, we first determine necessary and sufficient conditions for a p-box to be
maximum preserving, before determining in Section 4 necessary and sufficient conditions
for a p-box to be a possibility measure; in Section 5, we show that almost any possibility
measure can be seen as particular p-box, and that many p-boxes can be seen as a couple
of possibility measures; some special cases are detailed in Section 6. Finally, in Section 7
we apply the work on multivariate p-boxes from [?] to derive multivariate possibility mea-
sures from given marginals, and in Section 8 we give a number of additional comments
and remarks.

2. PRELIMINARIES

2.1. Imprecise Probabilities. We start with a brief introduction to imprecise probabilities
(see [2, 38, 36, 22] for more details). Because possibility measures are interpretable as
upper probabilities, we start out with those, instead of lower probabilities—the resulting
theory is equivalent.

Let Ω be the possibility space. A subset of Ω is called an event. Denote the set of all
events by ℘pΩq, and the set of all finitely additive probabilities on ℘pΩq by P .

In this paper, an upper probability is any real-valued function P defined on an arbitrary
subset K of ℘pΩq. With P, we associate a lower probability P on tA : Ac PK u via the
conjugacy relationship

PpAq � 1�PpAcq.

Denote the set of all finitely additive probabilities on ℘pΩq that are dominated by P by:

M pPq � tP PP : p@A PK qpPpAq ¤ PpAqqu

Clearly, M pPq is also the set of all finitely additive probabilities on ℘pΩq that dominate P
on its domain tA : Ac PK u.

The upper envelope E of M pPq is called the natural extension [36, Thm. 3.4.1] of P:

EpAq � suptPpAq : P PM pPqu

for all A�Ω. The corresponding lower probability is denoted by E, so EpAq � 1�EpAcq.
Clearly, E is the lower envelope of M pPq.

We say that P is coherent (see [36, p. 134, Sec. 3.3.3]) when it coincides with E on its
domain, that is, when, for all A PK ,

PpAq � EpAq.

The lower probability P is called coherent whenever P is.
The upper envelope of any set of finitely additive probabilities on ℘pΩq is coherent. A

coherent upper probability P and its conjugate lower probability P satisfy the following
properties [36, Sec. 2.7.4], whenever the relevant events belong to their domain:

(1) 0¤ PpAq ¤ PpAq ¤ 1.
(2) A� B implies PpAq ¤ PpBq and PpAq ¤ PpBq. [Monotonicity]
(3) PpAYBq ¤ PpAq�PpBq. [Subadditivity]
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FIGURE 1. Example of a p-box on r0,1s.

2.2. P-Boxes. In this section, we revise the theory and some of the main results for p-
boxes defined on totally preordered (not necessarily finite) spaces. For further details, we
refer to [?].

We start with a totally preordered space pΩ,¨q. So, ¨ is transitive and reflexive and
any two elements are comparable. As usual, we write x   y for x ¨ y and x � y, x ¡ y for
y   x, and x � y for x ¨ y and y ¨ x. For any two x, y P Ω exactly one of x   y, x � y, or
x¡ y holds. We also use the following common notation for intervals in Ω:

rx,ys � tz PΩ : x¨ z¨ yu

px,yq � tz PΩ : x  z  yu

and similarly for rx,yq and px,ys.
We assume that Ω has a smallest element 0Ω and a largest element 1Ω. This is not an

essential assumption, since we can always add these two elements to the space Ω.
A cumulative distribution function is a non-decreasing map F : Ω Ñ r0,1s for which

Fp1Ωq � 1. For each x P Ω, Fpxq is interpreted as the probability of r0Ω,xs. No further
restrictions are imposed on F .

The quotient set of Ω with respect to � is denoted by Ω{ �:

rxs� � ty PΩ : y� xu for any x PΩ

Ω{ � � trxs� : x PΩu.

Because F is non-decreasing, F is constant on elements rxs� of Ω{ �—we will use this
repeatedly.

Definition 1. A probability box, or p-box, is a pair pF ,Fq of cumulative distribution func-
tions from Ω to r0,1s satisfying F ¤ F .

A p-box is interpreted as a lower and an upper cumulative distribution function (see
Fig. 1), or more specifically, as an upper probability PF ,F on the set of events

tr0Ω,xs : x PΩuYtpy,1Ωs : y PΩu

defined by
PF ,Fpr0Ω,xsq � Fpxq and PF ,Fppy,1Ωsq � 1�Fpyq. (1)

We denote by EF ,F the natural extension of PF ,F to all events.
We now recall the main results that we shall need regarding the natural extension EF ,F

of PF ,F (see [?] for further details). First, because PF ,F is coherent, EF ,F coincides with
PF ,F on its domain.
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Next, to simplify the expression for natural extension, we introduce an element 0Ω�
such that:

0Ω�  x for all x PΩ

Fp0Ω�q � Fp0Ω�q � Fp0Ω�q � 0.

Note that p0Ω�,xs � r0Ω,xs. Now, let Ω� �ΩYt0Ω�u, and define

H � tpx0,x1sYpx2,x3sY � � �Ypx2n,x2n�1s : x0   x1   � � �  x2n�1 in Ω
�u.

Proposition 2 ([?]). For any A PH , that is A� px0,x1sYpx2,x3sY � � �Ypx2n,x2n�1s with
x0   x1   � � �  x2n�1 in Ω�, it holds that EF ,FpAq � PH

F ,FpAq, where

PH
F ,FpAq � 1�

n�1̧

k�0

maxt0,Fpx2kq�Fpx2k�1qu, (2)

with x�1 � 0Ω� and x2n�2 � 1Ω.

To calculate EF ,FpAq for an arbitrary event A � Ω, we can use the outer measure [36,

Cor. 3.1.9,p. 127] PH
F ,F

�
of the upper probability PH

F ,F defined in Eq. (2):

EF ,FpAq � PH
F ,F

�
pAq � inf

CPH ,A�C
PH

F ,FpCq. (3)

For intervals, we immediately infer from Proposition 2 and Eq. (3) that

EF ,Fppx,ysq � Fpyq�Fpxq (4a)

EF ,Fprx,ysq � Fpyq�Fpx�q (4b)

EF ,Fppx,yqq �

#
Fpyq�Fpxq if y has no immediate predecessor
Fpy�q�Fpxq if y has an immediate predecessor

(4c)

EF ,Fprx,yqq �

#
Fpyq�Fpx�q if y has no immediate predecessor
Fpy�q�Fpx�q if y has an immediate predecessor

(4d)

for any x   y in Ω,1 where Fpy�q denotes supz y Fpzq and similarly for Fpx�q. If Ω{ �
is finite, then one can think of z� as the immediate predecessor of z in the quotient space
Ω{ � for any z PΩ. Note that in particular

EF ,Fptxuq � Fpxq�Fpx�q (5)

for any x PΩ. We will use this repeatedly.

2.3. Possibility and Maxitive Measures. Very briefly, we introduce possibility and max-
itive measures. For further information, see [39, 13, 37, 6].

Definition 3. A maxitive measure is an upper probability P : ℘pΩq Ñ r0,1s satisfying
PpAYBq �maxtPpAq,PpBqu for every A, B�Ω.

It follows from the above definition that a maxitive measure is also maximum-preserving
when we consider finite unions of events.

The following result is well-known, but we include a quick proof for the sake of com-
pleteness.

Proposition 4. A maxitive measure P is coherent whenever PpHq � 0 and PpΩq � 1.

1In case x � 0Ω, evidently, 0Ω� is the immediate predecessor.
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Proof. By [25, Theorem 1], a maxitive measure P satisfying PpHq � 0 is 8-alternating,
and as a consequence also 2-alternating. Whence, P is coherent by [35, p. 55, Corol-
lary 6.3]. �

Possibility measures are a particular case of maxitive measures.

Definition 5. A (normed) possibility distribution is a mapping π : Ω Ñ r0,1s satisfying
supxPΩ πpxq � 1. A possibility distribution π induces a possibility measure Π on ℘pΩq,
given by:

ΠpAq � sup
xPA

πpxq for all A�Ω.

Equivalently, possibility measures can be defined as supremum-preserving upper prob-
abilities, i.e., as functionals Π for which

ΠpYAPA Aq � sup
APA

ΠpAq @A �PpΩq.

If we write EΠ for the conjugate lower probability of the upper probability Π, then:

EΠpAq � 1�ΠpAcq � 1� sup
xPAc

πpxq.

A possibility measure is maxitive, but not all maxitive measures are possibility mea-
sures.

As an imprecise probability model, possibility measures are not as expressive as for
instance p-boxes—for example, the only probability measures that can be represented by
possibility measures are the degenerate ones. This poor expressive power is also illustrated
by the fact that, for any event A:

ΠpAq   1 ùñ EΠpAq � 0, and therefore

EΠpAq ¡ 0 ùñ ΠpAq � 1,

meaning that every event has a trivial probability bound on at least one side. Their main at-
traction is that calculations with them are very easy: to find the upper (or lower) probability
of any event, a simple supremum suffices.

In the following sections, we characterize the circumstances under which a possibility
measure Π is the natural extension of some p-box pF ,Fq. In order to do so, we first
characterise the conditions under which a p-box induces a maxitive measure.

3. P-BOXES AS MAXITIVE MEASURES.

We show here that p-boxes pF ,Fq on any totally preordered space where at least one
of F or F is 0–1-valued are maxitive measures, and in this sense are closely related to
possibility measures. We then derive a simple closed expression of the (upper) natural
extension of such p-boxes.

3.1. A Necessary Condition for Maxitivity.

Proposition 6. If the natural extension EF ,F of a p-box pF ,Fq is maximum preserving,
then at least one of F or F is 0–1-valued.

Proof. We begin by showing that there is no x PΩ such that 0  Fpxq ¤ Fpxq   1. Assume
ex absurdo that there is such an x. For EF ,F to be maximum preserving, we require that

EF ,Fpr0Ω,xsYpx,1Ωsq �maxtEF ,Fpr0Ω,xsq,EF ,Fppx,1Ωsqu
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FIGURE 2. A p-box for the proof of Proposition 6.

But this cannot be. The left hand side is 1, whereas the right hand side is strictly less than
one, because, by Eq. (1),

EF ,Fpr0Ω,xsq � Fpxq   1,

EF ,Fppx,1Ωsq � 1�Fpxq   1.

Whence, for every x PΩ, at least one of Fpxq � 0 or Fpxq � 1 must hold. In other words,
Fpxq � 0 whenever Fpxq   1, and Fpxq � 1 whenever Fpxq ¡ 0 (see Figure 2). Hence, the
sets

A1 :� tx PΩ : Fpxq   1u

A2 :� ty PΩ : Fpyq ¡ 0u

are disjoint, and A1   A2 in the sense that x   y for all x P A1 and y P A2. Indeed, if
x P A1 and y P A2, then Fpxq   1, and Fpyq � 1 because Fpyq ¡ 0. These can only hold
simultaneously if x  y.

Note that A1 is empty when Fpxq � 1 for all x PΩ, and in this case the desired result is
trivially established. A2 is non-empty because Fp1Ωq � 1. Anyway, consider the sets

B1 :� tx PΩ : 0  Fpxq   1u � A1

B2 :� ty PΩ : 0  Fpyq   1u � A2

The proposition is established if we can show that at least one of these two sets is empty.
Suppose, ex absurdo, that both are non-empty. Pick any element c P B1 and d P B2 and

consider the set C � r0Ω,csYpd,1Ωs—note that c  d because c P A1 and d P A2, so pc,ds
is non-empty. Whence, by Eq. (2),

EF ,Fpr0Ω,csYpd,1Ωsq � 1�maxt0,Fpdq�Fpcqu.

Also, by Eq. (1),

EF ,Fpr0Ω,csq � Fpcq,

EF ,Fppd,1Ωsq � 1�Fpdq.
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So, for EF ,F to be maximum preserving, we require that

1�maxt0,Fpdq�Fpcqu �maxtFpcq,1�Fpdqu.

But this cannot hold. Indeed, because 0   Fpcq   1 and 0   1�Fpdq   1, the above
equality can only hold if Fpdq�Fpcq¡ 0—otherwise the left hand side would be 1 whereas
the right hand side is strictly less than 1. So, effectively, we require that

1�Fpdq�Fpcq �maxtFpcq,1�Fpdqu.

This cannot hold, because the sum of two strictly positive numbers (in this case 1�Fpdq
and Fpcq) is always strictly larger than their maximum. We conclude that EF ,F cannot be
maximum preserving if both B1 and B2 are non-empty. In other words, at least one of F or
F must be 0–1-valued. �

3.2. Sufficient Conditions for Maxitivity. We derive sufficient conditions for the two
different cases described by Proposition 6, starting with 0–1-valued F .

3.2.1. Maxitivity for Zero-One Valued Lower Cumulative Distribution Functions. We first
provide a simple expression for the natural extension of such p-boxes over events.

Proposition 7. Let pF ,Fq be a p-box with 0–1-valued F, and let B� tx PΩ� : Fpxq � 0u.
Then, for any A�Ω,

EF ,FpAq �

#
infxPΩ� : AXB¨x Fpxq if y  AXBc for at least one y P Bc,

1 otherwise.
(6)

�min
yPBc

inf
xPΩ� : AXr0Ω,ys¨x

Fpxq. (7)

In the above, A ¨ x means z ¨ x for all z P A, and similarly y   A means y   z for all
z P A. For example, it holds that H¨ x and y H for all x and y.

Proof. We deduce from Eq. (3) and from the conjugacy between EF ,F and EF ,F that for
any A�Ω,

EF ,FpAq � sup
px0,x1sY���Ypx2n,x2n�1s�A

ņ

k�0

maxt0,Fpx2k�1q�Fpx2kqu.

All the terms in this sum are zero except possibly for one (if it exists) where x2k P B,x2k�1 P
Bc, where we get 1�Fpx2kq. Aside, as subsets of Ω�, note that both B and Bc are non-
empty: 0Ω� P B and 1Ω P Bc. Consequently,

EF ,FpAq � 1� inf
x,y : xPB,yPBc,px,ys�A

Fpxq;

and therefore

EF ,FpAq � inf
x,y : xPB,yPBc,px,ys�Ac

Fpxq

� inf
x,y : xPB,yPBc,A�r0Ω,xsYpy,1Ωs

Fpxq

where it is understood that the infimum evaluates to 1 whenever there are no x P B and
y P Bc such that A� r0Ω,xsYpy,1Ωs.

Now, for any x P B and y P Bc, it holds that A� r0Ω,xsYpy,1Ωs if and only if

AXB� pr0Ω,xsYpy,1ΩsqXB� r0Ω,xs and

AXBc � pr0Ω,xsYpy,1ΩsqXBc � py,1Ωs,
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that is, if and only if

AXB¨ x and y  AXBc.

Hence, if there is an y P Bc such that y  AXBc, then:

(i) either there is no x P B such that AXB¨ x, whence

EF ,FpAq � 1� inf
xPΩ� : AXB¨x

Fpxq,

taking into account that for any x P Ω� such that AXB ¨ x it must be that x P Bc,
whence Fpxq � Fpxq � 1;

(ii) or there is some x P B such that AXB¨ x, in which case

EF ,FpAq � inf
xPB : AXB¨x

Fpxq � inf
xPΩ� : AXB¨x

Fpxq,

where the second equality follows from the monotonicity of F .

This establishes Eq. (6).
We now turn to proving Eq. (7). In case y  AXBc for at least one y P Bc, it follows that

EF ,FpAq � inf
xPΩ� : AXB¨x

Fpxq

But in this case, AXB� AXr0Ω,y1s for any y1 P Bc such that y1 ¨ y, because

AXr0,y1s � AXr0Ω,y1sXpBYBcq � pAXBXr0Ω,y1sqYpAXBcXr0Ω,y1sq � AXB

as BXr0Ω,y1s � B and AXBcXr0Ω,y1s � H because y1 ¨ y and y   AXBc. So, by the
monotonicity of F , Eq. (7) follows.

In case y⊀ AXBc for all y P Bc, it follows that

EF ,FpAq � 1� Fpxq

for all x in Bc—indeed, because AX r0,ys XBc � H for every y P Bc, it holds that AX
r0,ys¨ x implies x P Bc, and hence Fpxq � 1. Again, Eq. (7) follows. �

A few common important special cases are summarized in the following corollary:

Corollary 8. Let pF ,Fq be a p-box with 0–1-valued F, and let B � tx P Ω� : Fpxq � 0u.
If Ω{ � is order complete, then, for any A�Ω,

EF ,FpAq �min
yPBc

FpsupAXr0Ω,ysq.

If, in addition, Bc has a minimum, then

EF ,FpAq � FpsupAXr0Ω,minBcsq. (8)

If, in addition, Bc � r1Ωs� (this occurs exactly when F is vacuous, i.e. F � Ir1Ωs� ), then

EF ,FpAq � FpsupAq. (9)

Note that Eq. (9) is essentially due to [6, paragraph preceeding Theorem 11]—they
work with chains and multivalued mappings, whereas we work with total preorders. We
are now ready to show that the considered p-boxes are maxitive measures.

Proposition 9. Let pF ,Fq be a p-box where F is 0–1-valued. Then EF ,F is maximum-
preserving.
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Proof. Consider a finite collection A of subsets of Ω. If there are A PA such that, for all
y P Bc, y⊀ AXBc, then EF ,FpAq � 1� EF ,FpYAPA Aq by Eq. (6), establishing the desired
result for this case.

So, from now on, we may assume that, for every A P A , there is a yA P Bc such that
yA   AXBc. With y�minAPA yA P Bc, it holds that y YAPA AXBc, and so, by Eq. (6),

EF ,FpAq � inf
xPΩ� : AXB¨x

Fpxq for every A PA , and

EF ,FpYAPA Aq � inf
xPΩ� : YAPA AXB¨x

Fpxq.

Now, because A is finite, there is an A1 PA such that

tx PΩ
� : A1XB¨ xu � XAPA tx PΩ

� : AXB¨ xu

and because YAPA AXB¨ x if and only if AXB¨ x for all A PA ,

� tx PΩ
� : YAPA AXB¨ xu.

Consequently,

max
APA

EF ,FpAq �max
APA

inf
xPΩ� : AXB¨x

Fpxq

¥ inf
xPΩ� : A1XB¨x

Fpxq � inf
xPΩ� : YAPA AXB¨x

Fpxq � EF ,FpYAPA Aq.

The converse inequality follows from the coherence of EF ,F . Concluding,

max
APA

EF ,FpAq � EF ,F pYAPA Aq

for any finite collection A of subsets of Ω. �

3.2.2. Maxitivity for Zero-One Valued Upper Cumulative Distribution Functions. Let us
now consider the case of 0–1-valued F .

Proposition 10. Let pF ,Fq be a p-box with 0–1-valued F, and let C� tx PΩ� : Fpxq � 0u.
Then, for any A�Ω,

EF ,FpAq �

#
1� supyPΩ� : y AXCc Fpyq if AXC ¨ x for at least one x PC,

1 otherwise.
(10)

� 1�max
xPC

sup
yPΩ� : y AXpx,1Ωs

Fpyq. (11)

Proof. We deduce from Eq. (3) and from the conjugacy between EF ,F and EF ,F that for
any A�Ω,

EF ,FpAq � sup
px0,x1sY���Ypx2n,x2n�1s�A

ņ

k�0

maxt0,Fpx2k�1q�Fpx2kqu.

All the terms in this sum are zero except possibly for one (if it exists) where x2k PC,x2k�1 P
Cc, where we get Fpx2k�1q. Aside, as subsets of Ω�, note that both C and Cc are non-
empty: 0Ω� PC and 1Ω PCc. Consequently,

EF ,FpAq � sup
x,y : xPC,yPCc,px,ys�A

Fpyq;
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and therefore

EF ,FpAq � 1� sup
x,y : xPC,yPCc,px,ys�Ac

Fpyq

� 1� sup
x,y : xPC,yPCc,A�r0Ω,xsYpy,1Ωs

Fpyq

where it is understood that the supremum evaluates to 0 whenever there are no x PC and
y PCc such that A� r0Ω,xsYpy,1Ωs.

Now, for any x PC and y PCc, it holds that A� r0Ω,xsYpy,1Ωs if and only if

AXC � pr0Ω,xsYpy,1ΩsqXC � r0Ω,xs and

AXCc � pr0Ω,xsYpy,1ΩsqXCc � py,1Ωs,

that is, if and only if

AXC ¨ x and y  AXCc.

Hence, if there is an x PC such that AXC ¨ x, then:
(i) either there is no y PCc such that y  AXCc, whence

EF ,FpAq � 1� 1� sup
yPΩ� : y AXCc

Fpyq,

taking into account that for any y P Ω� such that y   AXCc it must be that y P C,
whence Fpyq � Fpyq � 0;

(ii) or there is some y PCc such that y  AXCc, in which case

EF ,FpAq � 1� sup
yPCc : y AXCc

Fpyq � 1� sup
yPΩ� : y AXCc

Fpyq,

where the second equality follows from the monotonicity of F .
This establishes Eq. (10).

We now turn to proving Eq. (11). In case AXC¨ x for at least one x PC, it follows that

EF ,FpAq � 1� sup
yPΩ� : y AXCc

Fpyq.

But in this case, AXCc � AXpx1,1Ωs for any x1 PC such that x1 © x, because

AXpx1,1Ωs � AXpx1,1ΩsXpCYCcq � pAXCXpx1,1ΩsqYpAXCcXpx1,1Ωsq � AXCc

as CcXpx1,1Ωs �Cc and AXCXpx1,1Ωs �H by assumption. So, by the monotonicity of
F , Eq. (11) follows.

In case AXC � x for all x PC, it follows that

EF ,FpAq � 1� 1�Fpyq

for all y in C—indeed, because AX px,1Ωs XC � H for every x P C, it holds that y  
AXpx,1Ωs implies y PC, and hence Fpyq � 0. Again, Eq. (11) follows. �

A few common important special cases are summarized in the following corollary:

Corollary 11. Let pF ,Fq be a p-box with 0–1-valued F, and let C � tx PΩ� : Fpxq � 0u.
If Ω{ � is order complete, and C has a maximum, then, for any A�Ω,

EF ,FpAq �

#
1�FpinfAXCcq if AXCc has no minimum
1�FppminAXCcq�q if AXCc has a minimum.

(12)
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If, in addition, C � t0Ω�u (this occurs exactly when F is vacuous, i.e. F � 1), then

EF ,FpAq �

#
1�FpinfAq if A has no minimum
1�FpminA�q if A has a minimum.

Proof. Use Proposition 10, and note that pmaxC,1Ωs �Cc. �

Using Eq. (10), we can also show that EF ,F is maximum-preserving when F is 0–1-
valued:

Proposition 12. Let pF ,Fq be a p-box where F is 0–1-valued. Then EF ,F is maximum-
preserving.

Proof. Consider a finite collection A of subsets of Ω. If there are A PA such that, for all
x PC, AXC � x, then EF ,FpAq � 1� EF ,FpYAPA Aq by Eq. (10), establishing the desired
result for this case.

So, from now on, we may assume that, for every A P A , there is an xA P C such that
AXC ¨ xA. With x�maxAPA xA PC, it holds that YAPA AXC ¨ x, and so, by Eq. (10),

EF ,FpAq � 1� sup
yPΩ� : y AXCc

Fpyq for every A PA , and

EF ,FpYAPA Aq � 1� sup
yPΩ� : y YAPA AXCc

Fpyq.

Now, because A is finite, there is an A1 PA such that

ty PΩ
� : y  A1XCcu � XAPA ty PΩ

� : y  AXCcu

and because y YAPA AXCc if and only if y  AXCc for all A PA ,

� ty PΩ
� : y YAPA AXCcu.

Consequently,

max
APA

EF ,FpAq �max
APA

�
1� sup

yPΩ� : y AXCc
Fpyq

�

¥ 1� sup
yPΩ� : y A1XCc

Fpyq � 1� sup
yPΩ� : y YAPA AXCc

Fpyq � EF ,FpYAPA Aq.

The converse inequality follows from the coherence of EF ,F . Concluding,

max
APA

EF ,FpAq � EF ,F pYAPA Aq

for any finite collection A of subsets of Ω. �

3.3. Summary of Necessary and Sufficient Conditions. Putting Propositions 6, 9 and 12
together, we get the following conditions.

Corollary 13. Let pF ,Fq be a p-box. Then, pF ,Fq is maximum-preserving if and only if

F is 0–1-valued

or
F is 0–1-valued.

These simple conditions characterise maximum-preserving p-boxes and bring us closer
to p-boxes that are possibility measures, and that we will now study.
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4. P-BOXES AS POSSIBILITY MEASURES.

In this section, we identify when p-boxes coincide exactly with a possibility measure.
By Corollary 13, when Ω{ � is finite, pF ,Fq is a possibility measure if and only if either F
or F is 0–1-valued. More generally, when Ω{ � is not finite, we will rely on the following
trivial, yet important, lemma:

Lemma 14. For a p-box pF ,Fq there is a possibility measure Π such that EF ,F �Π if and
only if

EF ,FpAq � sup
xPA

EF ,Fptxuq for all A�Ω (13)

and in such a case, the possibility distribution π associated with Π is πpxq � EF ,Fptxuq.

Proof. “if”. If EF ,FpAq � supxPA EF ,Fptxuq for all A � Ω, then EF ,F � EΠ with the sug-
gested choice of π , because, for all A�Ω,

EF ,FpAq � 1�EF ,FpA
cq � 1� sup

xPAc
EF ,Fptxuq � 1� sup

xPAc
πpxq � 1�ΠpAcq � EΠpAq.

“only if”. If EF ,F � EΠ, then, for all A�Ω,

EF ,FpAq �ΠpAq � sup
xPA

πpxq � sup
xPA

Πptxuq � sup
xPA

EF ,Fptxuq.

�

We will say that a p-box pF ,Fq is a possibility measure whenever Eq. (13) is satisfied.
Note that, due to Proposition 6, for a p-box to be a possibility measure, at least one of F

or F must be 0–1-valued. Next, we give a characterisation of p-boxes inducing a possibility
measure in each of these two cases.

4.1. P-Boxes with Zero-One-Valued Lower Cumulative Distribution Functions. As
mentioned, by Corollary 13, a p-box with 0–1-valued F is maxitive, and its upper natural
extension is given by Proposition 7. Whence, we can easily determine when such p-box is
a possibility measure:

Proposition 15. Assume that Ω{ � is order complete. Let pF ,Fq be a p-box with 0–1-
valued F, and let B � tx P Ω� : Fpxq � 0u. Then, pF ,Fq is a possibility measure if and
only if

(i) Fpxq � Fpx�q for all x PΩ that have no immediate predecessor, and
(ii) Bc has a minimum,

and in such a case,
EF ,FpAq � sup

xPAXr0Ω,minBcs

Fpxq (14)

Note that, in case 1Ω is a minimum of Bc, condition (i) is essentially due to [6, Ob-
servation 9]. Also note that, for EF ,F to be a possibility measure, both conditions are
still necessary even when Ω{ � is not order complete: the proof in this direction does not
require order completeness.

As a special case, we mention that EF ,F is a possibility measure with possibility distri-
bution

πpxq �

#
Fpxq if x¨minBc

0 otherwise.

whenever Ω{ � is finite.
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Proof. “only if”. Assume that pF ,Fq is a possibility measure. For every x PΩ that has no
immediate predecessor,

Fpx�q � sup
x1 x

Fpx1q

and because EF ,Fptx
1uq � Fpx1q�Fpx1�q (see Eq. (5)),

¥ sup
x1 x

EF ,Fptx
1uq

and because pF ,Fq is a possibility measure, by Lemma 14,

� EF ,Fpr0Ω,xqq � Fpxq

using that x has no immediate predecessor and Eqs. (4). The converse inequality follows
from the non-decreasingness of F .

Next, assume that, ex absurdo, Bc � tx PΩ� : Fpxq � 1u has no minimum. This simply
means that for every x P Bc there is an x1 P Bc such that x1   x. So, in particular, Fpxq �
Fpx�q � 1 for all x in Bc, and hence,

EF ,FpB
cq � sup

xPBc
EF ,Fptxuq � sup

xPBc
pFpxq�Fpx�qq � 0.

Yet, also,
EF ,FpB

cq � 1
by Eq. (6). We arrived at a contradiction.

Finally, we show that Eq. (14) holds. By Eq. (7),

EF ,FpAq �min
yPBc

inf
xPΩ� : AXr0Ω,ys¨x

Fpxq � inf
xPΩ� : AXr0Ω,minBcs¨x

Fpxq � EF ,FpA
1q,

with A1 :� AXr0Ω,minBcs. Since EF ,F is a possibility measure, we conclude that

EF ,FpAq � EF ,FpA
1q � sup

xPA1
EF ,Fptxuq � sup

xPA1
Fpxq,

because EF ,Fptxuq �Fpxq�Fpx�q�Fpxq, since Fpx�q� 0 for all x P r0,minBcs. Hence,
Eq. (14) holds.

“if”. The claim is established if we can show that Eq. (14) holds, because then

EF ,FpAq � sup
xPAXr0Ω,minBcs

Fpxq � sup
xPAXr0Ω,minBcs

EF ,Fptxuq¨ sup
xPA

EF ,Fptxuq,

and the converse inequality follows from the monotonicity of EF ,F .
Consider any event A�Ω, and let y be a supremum of A1 � AXr0Ω,minBcs (which ex-

ists because Ω{ � is order complete), so EF ,FpAq � Fpyq by Eq. (8). If y has an immediate
predecessor, then A1 has a maximum (as we will show next), and

EF ,FpAq � Fpyq � FpmaxA1q �max
xPA1

Fpxq � sup
xPA1

Fpxq.

If y has no immediate predecessor, then either A1 has a maximum, and the above argument
can be recycled, or A1 has no maximum, in which case

EF ,FpAq � Fpyq � Fpy�q � sup
xPA1

Fpxq.

The last equality holds because

Fpy�q � sup
x supA1

Fpxq
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and, A1 has no maximum, so for every x  supA1, there is an x1 PA1 such that x  x1  supA1,
whence

� sup
x1PA1

Fpx1q.

We are left to prove A1 has a maximum whenever y has an immediate predecessor.
Suppose that A1 has no maximum. Then it must hold that

x  y for all x P A1

since otherwise x� y for some x P A1, whereby x would be a maximum of A1.
But, since y has an immediate predecessor y�, the above equation implies that

x¨ y� for all x P A1.

Hence, y� is an upper bound for A1, yet y�   y: this implies that y is not a minimal
upper bound for A1, or in other words, that y is not a supremum of A1: we arrived at a
contradiction. We conclude that A1 must have a maximum. �

4.2. P-Boxes with Zero-One-Valued Upper Cumulative Distribution Functions. Sim-
ilarly, we can also determine when a p-box with 0–1-valued F is a possibility measure:

Proposition 16. Assume that Ω{ � is order complete. Let pF ,Fq be a p-box with 0–1-
valued F, and let C � tx P Ω� : Fpxq � 0u. Then, pF ,Fq is a possibility measure if and
only if

(i) Fpxq � Fpx�q for all x PΩ that have no immediate successor, and
(ii) C has a maximum,

and in such a case,
EF ,FpAq � 1� inf

yPAXCc
Fpy�q. (15)

Again, for EF ,F to be a possibility measure, both conditions are still necessary even
when Ω{ � is not order complete: the proof in this direction does not require order com-
pleteness.

As a special case, we mention that EF ,F is a possibility measure with possibility distri-
bution

πpxq �

#
1�Fpx�q if x PCc

0 otherwise,

whenever Ω{ � is finite.

Proof. “only if”. Assume that pF ,Fq is a possibility measure. For every x PΩ that has no
immediate successor,

Fpx�q � inf
x1¡x

Fpx1q � inf
x1¡x

Fpx1�q

where the latter equality holds because for every x1 ¡ x there is an x2 such that x1 ¡ x2 ¡ x;
otherwise, x would have an immediate successor. Now, because EF ,Fptx

1uq � Fpx1q �
Fpx1�q (see Eq. (5)), Fpx1�q ¤ 1�EF ,Fptx

1uq, whence

¤ inf
x1¡x

p1�EF ,Fptx
1uqq � 1� sup

x1¡x
EF ,Fptx

1uq

and because pF ,Fq is a possibility measure, by Lemma 14,

� 1�EF ,Fppx,1Ωsq � Fpxq,
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where last equality follows from Eq. (1). The converse inequality follows from the non-
decreasingness of F .

Next, assume that, ex absurdo, C� tx PΩ� : Fpxq � 0u has no maximum. Since Fpxq �
Fpx�q � 0 for all x in C,

EF ,FpCq � sup
xPC

EF ,Fptxuq � sup
xPC
pFpxq�Fpx�qq � 0.

Yet, also,
EF ,FpCq � 1

by Eq. (10)—indeed, the second case applies because there is no x PC such that C ¨ x, as
C has no maximum. We arrived at a contradiction.

Finally, we show that Eq. (15) holds. By Eq. (11),

EF ,FpAq � 1�max
xPC

sup
yPΩ� : y AXpx,1Ωs

Fpyq � 1� sup
yPΩ� : y AXpmaxC,1Ωs

Fpyq � EF ,FpA
1q,

with A1 :� AXpmaxC,1Ωs � AXCc. Since EF ,F is a possibility measure, we conclude
that

EF ,FpAq � EF ,FpA
1q � sup

yPA1
EF ,Fptyuq � sup

yPA1
p1�Fpy�qq � 1� inf

yPA1
Fpy�q,

because EF ,Fptyuq � Fpyq�Fpy�q � 1�Fpy�q, since Fpyq � 1 for all y P Cc. Hence,
Eq. (15) holds.

“if”. The claim is established if we can show that Eq. (15) holds, because then

EF ,FpAq � 1� inf
yPAXCc

Fpy�q � sup
yPAXCc

p1�Fpy�qq ¤ sup
yPA

EF ,Fptyuq,

and the converse inequality follows from the monotonicity of EF ,F .
Consider any event A�Ω, and let x be an infimum of A1 � AXCc (which exists because

Ω{ � is order complete). If x has an immediate successor, then A1 has a minimum (as we
will show next), and by Eq. (12),

EF ,FpAq � 1�FpminA1�q � 1�min
yPA1

Fpy�q � 1� inf
yPA1

Fpy�q.

If x has no immediate successor, then either A1 has a minimum, and the above argument
can be recycled, or A1 has no minimum, in which case Eq. (12) implies that

EF ,FpAq � 1�Fpxq � 1�Fpx�q � 1� inf
yPA1

Fpy�q.

Here the second equality follows from assumption (i) and the last equality holds because

Fpx�q � inf
y¡infA1

Fpyq

and, A1 has no minimum, so for every y¡ infA1, there is a y1 PΩ such that y¡ y1 ¡ infA1,
whence

� inf
y¡infA1

sup
y¡y1¡infA

Fpy1q � inf
y¡infA1

Fpy�q

and, again, A1 has no minimum, so for every y¡ infA1, there is a y2 P A1 such that y¡ y2 ¡
infA1, whence

� inf
y2PA1

Fpy2�q.
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We are left to prove A1 has a minimum whenever x has an immediate successor. Suppose
that A1 has no minimum. Then it must hold that

y¡ x for all y P A1

since otherwise y� x for some y P A1, whereby y would be a minimum of A1.
But, since x has an immediate successor x�, the above equation implies that

y© x� for all y P A1.

Hence, x� is a lower bound for A1, yet x�¡ x: this implies that x is not a maximal lower
bound for A1, or in other words, that x is not an infimum of A1: we arrived at a contradiction.
We conclude that A1 must have a minimum. �

4.3. Necessary and Sufficient Conditions. Merging Corollary 13 with Propositions 15
and 16 we obtain the following necessary and sufficient conditions for a p-box to be a
possibility measure:

Corollary 17. Assume that Ω{ � is order complete and let pF ,Fq be a p-box. Then pF ,Fq
is a possibility measure if and only if either

(L1) F is 0–1-valued,
(L2) Fpxq � Fpx�q for all x PΩ that have no immediate predecessor, and
(L3) tx PΩ� : Fpxq � 1u has a minimum,

or
(U1) F is 0–1-valued,
(U2) Fpxq � Fpx�q for all x PΩ that have no immediate successor, and
(U3) tx PΩ� : Fpxq � 0u has a maximum.

This result settles the cases where p-boxes reduce to possibility measures. We can now
go the other way around, and characterise those cases where possibility measures are p-
boxes. Similarly to what happens in the finite setting, we will see that almost all possibility
measures can be represented by a p-box.

5. FROM POSSIBILITY MEASURES TO P-BOXES

In this section, we discuss and extend some previous results linking possibility distribu-
tion to p-boxes. We show that possibility measures correspond to specific kinds of p-boxes,
and that some p-boxes correspond to the conjunction of two possibility distribution.

5.1. Possibility Measures as Specific P-boxes. Baudrit and Dubois [1] already discuss
the link between possibility measures and p-boxes defined on the real line with the usual
ordering, and they show that any possibility measure can be approximated by a p-box,
however at the expense of losing some information. We substantially strengthen their
result, and even reverse it: we prove that any possibility measure with compact range can
be exactly represented by a p-box with vacuous lower cumulative distribution function, that
is, F � Ir1Ωs� . In other words, generally speaking, possibility measures are a special case
of p-boxes on totally preordered spaces.

Theorem 18. For every possibility measure Π on Ω with possibility distribution π such
that πpΩq � tπpxq : x PΩu is compact, there is a preorder¨ on Ω and an upper cumulative
distribution function F such that the p-box pF � Ir1Ωs� ,Fq is a possibility measure with
possibility distribution π , that is, such that for all events A:

EF ,FpAq � sup
xPA

πpxq.
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In fact, one may take the preorder ¨ to be the one induced by π (so x ¨ y whenever
πpxq ¤ πpyq) and F � π .

Proof. Let ¨ be the preorder induced by π . Order completeness of Ω{ � is satisfied
because πpΩq is compact with respect to the usual topology on R. Indeed, for any A �
Ω, the supremum and infimum of π over A belong to πpΩq by its compactness, whence
π�1pinfxPA πpxqq consists of the infima of A, and π�1psupxPA πpxqq consists of its suprema.

Consider the p-box pIr1Ωs� ,πq. Then, for any A�Ω, we deduce from Eq. (9) that

EF ,FpAq � FpsupAq � πpsupAq � sup
xPA

πpxq

because x ¨ y for all x P A if and only if πpxq ¤ πpyq for all x P A, by definition of ¨,
and hence, a minimal upper bound, or supremum, y for A must be one for which πpyq �
supxPA πpxq (and, again, such y exists because πpΩq is compact). �

The representing p-box is not necessarily unique:

Example 19. Let Ω � tx1,x2u and let Π be the possibility measure determined by the
possibility distribution

πpx1q � 0.5 πpx2q � 1.

As proven in Theorem 18, this possibility measure can be obtained if we consider the order
x1   x2 and the p-box pF1,F1q given by

F1px1q � 0 F1px2q � 1

F1px1q � 0.5 F1px2q � 1.

However, we also obtain it if we consider the order x2   x1 and the p-box pF2,F2q given
by

F2px1q � 1 F2px2q � 0.5

F2px1q � 1 F2px2q � 1.

The p-box pF2,F2q induces a possibility measure from Corollary 13, also taking into ac-
count that Ω is finite. Moreover, by Eq. (5),

EF2,F2
px2q � Fpx2q�Fpx2�q � 1

EF2,F2
px1q � Fpx1q�Fpx1�q � 0.5

as with the given ordering, x2� � 0Ω� and x1� � x2. As a consequence, EF2,F2
is a

possibility measure associated to the possibility distribution π .

There are possibility measures which cannot be represented as p-boxes when πpΩq is
not compact:

Example 20. Let Ω � r0,1s, and consider the possibility distribution given by πpxq �
p1�2xq{8 if x  0.5, πp0.5q� 0.4 and πpxq� x if x¡ 0.5; note that πpΩq� r0.125,0.25qY
t0.4uYp0.5,1s is not compact. The ordering induced by π is the usual ordering on r0,1s.
Let Π be the possibility measure induced by π . We show that there is no p-box pF ,Fq on
pr0,1s,¨q, regardless of the ordering ¨ on r0,1s, such that EF ,F �Π.

By Corollary 13, if EF ,F � Π, then at least one of F or F is 0-1–valued. Assume first
that F is 0-1–valued. By Eq. (5), EF ,Fptxuq � Fpxq�Fpx�q � πpxq. Because πpxq ¡ 0
for all x, it must be that Fpx�q � 0 for all x, so F � π . Because F is non-decreasing, x¨ y
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if and only if Fpxq ¤ Fpyq; in other words, ¨ can only be the usual ordering on r0,1s for
pF ,Fq to be a p-box. Hence, F � It1u.

Now, with A� r0,0.5q, we deduce from Proposition 7 that

EF ,FpAq � inf
A¨x

Fpxq � 0.4¡ 0.25� sup
xPA

πpxq �ΠpAq,

where the second equality follows because Bc � t1u. Hence, EF ,F does not coincide with
Π.

Similarly, if F would be 0–1-valued, then we deduce from Eq. (5) that Fpxq � 1 for
every x, again because πpxq ¡ 0 for all x. Therefore, Fpx�q � 1� πpxq for all x. But,
because F is non-decreasing, ¨ can only be the inverse of the usual ordering on r0,1s for
pF ,Fq to be a p-box.

This deserves some explanation. We wish to show that Fpx�q   Fpy�q implies x   y.
Assume ex absurdo that x¡ y. But, then,

Fpx�q � sup
z x

Fpzq ¥ sup
z y

Fpzq � Fpy�q,

a contradiction. It also cannot hold that x � y, because in that case z   x if and only if
z   y, and whence it would have to hold that Fpx�q � Fpy�q. Concluding, it must hold
that x   y whenever Fpx�q   Fpy�q, or in other words, whenever x ¡ y. So, ¨ can only
be the inverse of the usual ordering on r0,1s and, in particular, r0,1s{ � is order complete.

Now, for pF ,Fq to induce the possibility measure Π, we know from Corollary 17 that
Fpxq � Fpx�q for every x that has no immediate successor in with respect to¨, that is, for
every x  0, or equivalently, for every x¡ 0. Whence,

Fpxq � Fpx�q � inf
y¡x

Fpyq � inf
y¡x

Fpy�q � 1� sup
y¡x

πpyq � 1� sup
y x

πpyq

for all x¡ 0. This leads to a contradiction: by the definition of π , we have on the one hand,

Fp0.5�q � sup
x 0.5

Fpxq � sup
x¡0.5

Fpxq � sup
x¡0.5

p1� sup
y x

πpyqq � 0.5

and on the other hand,
Fp0.5�q � 1�πp0.5q � 0.6.

Concluding, EF ,F coincides with Π in neither case.

Another way of relating possibility measures and p-boxes goes via random sets (see for
instance [19] and [9]). Possibility measures on ordered spaces can also be obtained via
upper probabilities of random sets (see for instance [6, Sections 7.5–7.7] and [21]).

5.2. P-boxes as Conjunction of Possibility Measures. In [9], where p-boxes are studied
on finite spaces, it is shown that a p-box can be interpreted as the conjunction of two
possibility measures, in the sense that M pPF ,Fq is the intersection of two sets of additive
probabilities induced by two possibility measures. The next proposition extends this result
to arbitrary totally preordered spaces.

Proposition 21. Let pF ,Fq be a p-box such that pF1 � F ,F1 � IΩq and pF2 � Ir1Ωs� ,F2 �

Fq are possibility measures. Then, pF ,Fq is the intersection of two possibility measures
defined by the distributions

π1pxq � 1�Fpx�q π2pxq � Fpxq

in the sense that M pPF ,Fq �M pΠ1qXM pΠ2q.



ON THE CONNECTION BETWEEN PROBABILITY BOXES AND POSSIBILITY MEASURES 19

Proof. Using Propositions 15 and 16, and the fact that, by construction, r0Ω,minBcs �
Cc � Ω, it follows readily that π1 and π2 are the possibility distributions corresponding to
the p-boxes pF1,F1q and pF2,F2q.

Thus, by assumption, EF1,F1
� Π1 and EF2,F2

� Π2. Because natural extensions of
two coherent lower previsions can only coincide when their credal sets are the same [36,
§3.6.1], it follows that

M pPF1,F1
q �M pΠ1q M pPF2,F2

q �M pΠ2q

We are left to prove that

M pPF ,Fq �M pPF1,F1
qXM pPF2,F2

q

but this follows almost trivially after writing down the constraints for each p-box. �

This suggests a simple way (already mentioned in [9]) to conservatively approximate
EF ,F by using the two possibility distributions:

maxtEπF
pAq,EπF

pAqu ¤ EF ,FpAq ¤ EF ,FpAq ¤mintEπF
pAq,EπF pAqu.

This approximation is computationally attractive, as it allows us to use the supremum pre-
serving properties of possibility measures. However, as next example shows, the approxi-
mation will usually be very conservative, and hence not likely to be helpful.

Example 22. Consider x   y P Ω. The distance between EF ,F and its approximation
mintEπF

,EπF u on the interval px,ys is given by

mintEπF
ppx,ysq,EπF ppx,ysqu�Eppx,ysq

�mintFpyq,1�Fpxqu�pFpyq�Fpxqq

�mintFpxq,1�Fpyqu.

Therefore, the approximation will be close to the exact value on this set only when either
Fpxq is close to zero or Fpyq is close to one.

6. NATURAL EXTENSION OF 0–1-VALUED P-BOXES

From Proposition 7, we can derive an expression for the natural extension of a 0–1-
valued p-box (see Figure 3):

Proposition 23. Let pF ,Fq be a p-box where F � ICc ,F � IBc for some C � B�Ω. Then
for any A�Ω,

EF ,FpAq �

$'&
'%

0 if there are x PC and y P Bc such that
AXC ¨ x and AXBXCc �H and y  AXBc

1 otherwise.
(16)

Proof. From Proposition 7, the natural extension of pF ,Fq is given by

EF ,FpAq �

#
infxPΩ� : AXB¨x Fpxq if y  AXBc for at least one y P Bc,

1 otherwise.

Now, if F � ICc , the infimum in the first equation is equal to 0 if and only if there is some
x PC such that AXB¨ x, and equal to 1 otherwise. Finally, note that AXB¨ x if and only
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FIGURE 3. A 0–1-valued p-box.

if

AXBXC � r0Ω,xsXC and

AXBXCc � r0Ω,xsXCc

and observe that BXC � C, r0Ω,xsXC � r0Ω,xs, and r0Ω,xsXCc �H, to arrive at the
conditions in Eq. (16). �

Moreover, Propositions 15 and 16 allow us to determine when this p-box is a possibility
measure:

Proposition 24. Assume that Ω{ � is order complete. Let pF ,Fq be a p-box where F �
ICc ,F � IBc for some C � B�Ω. Then pF ,Fq is a possibility measure if and only if C has
a maximum and Bc has a minimum. In such a case,

EF ,FpAq �

#
1 if AXpmaxC,minBcs �H

0 otherwise

or, in other words, in such a case, EF ,F is a possibility measure with possibility distribution

πpxq �

#
1 if x P pmaxC,minBcs

0 otherwise.

Proof. “only if”. Immediate by Propositions 15 and 16.
“if”. By Proposition 15, pF ,Fq is a possibility measure if and only if Bc has a minimum

and Fpxq � Fpx�q for every x with no immediate predecessor. The latter condition holds
for every x PC, and for every x PCc with a predecessor in Cc. Whence, we only need to
check whether Cc has a minimum—if not, then every x PCc has a predecessor in Cc—and
if so, that this minimum has an immediate predecessor (because obviously 1� FpminCq �
FpminC�q � 0 cannot hold).

Indeed, because C has a maximum, Cc � pmaxC,1Ωs. So, either Cc has a minimum,
in which case maxC must be the immediate predecessor of this minimum, or Cc has no
minimum.
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The expression for EF ,FpAq follows from Eq. (16). In that equality, without loss of
generality, we can take x�maxC and y�minBc, and AXC ¨maxC is obviously always
satisfied, so

EF ,FpAq �

#
0 if AXBXCc �H and minBc

  AXBc

1 otherwise

So, to establish the desired equality, it suffices to show that AXBXCc �H and minBc
 

AXBc if and only if AXpmaxC,minBcs �H.
Indeed, minBc

  AXBc precisely when minBc R A. Moreover,

BXCc � r0Ω,minBcqXpmaxC,1Ωs � pmaxC,minBcq.

So, the desired equivalence is established. �

In particular, we can characterise under which conditions a precise p-box, i.e., one
where F � F :� F , induces a possibility measure. The natural extension of precise p-
boxes on the unit interval was considered in [24, Section 3.1]. From Proposition 6, the
natural extension of F can only be a possibility measure when F is 0–1-valued. If we
apply Proposition 23 with B�C we obtain the following:

Corollary 25. Let pF ,Fq be a precise p-box where F � F is 0–1-valued, and let B� tx P
Ω� : Fpxq � 0u. Then, for every subset A of Ω,

EF ,FpAq �

#
0 if there are x P B,y P Bc such that AXB¨ x and y  AXBc

1 otherwise.

Proof. Immediate from Proposition 23. �

Moreover, Proposition 24 allows us to determine when this p-box is a possibility mea-
sure:

Corollary 26. Assume that Ω{ � is order complete. Let pF ,Fq be a precise p-box where
F �F is 0–1-valued, and let B�tx PΩ� : Fpxq � 0u. Then, pF ,Fq is a possibility measure
if and only if B has a maximum and Bc has a minimum. In that case, for every A�Ω,

EF ,FpAq �

#
0 if minBc R A
1 otherwise.

Proof. Immediate by Proposition 24 and Corollary 25. �

As a consequence, we deduce that a precise 0–1-valued p-box on pΩ,¨q � pr0,1s,¤q
never induces a possibility measure—except when F � Ir0,1s. Indeed, if F � Ir0,1s, then
BXr0,1s � H, and the maximum of B would need to have an immediate successor (the
minimum of Bc), which cannot be for the usual ordering ¤.

When F � Ir0,1s, we obtain maxB� 0� and minBc � 0, whence applying Corollary 26
we deduce that pF,Fq is a possibility measure, with possibility distribution

πpxq �

#
1 if x� 0
0 otherwise.

To see why the possibility distribution

πpxq �

#
1 if x� y
0 otherwise
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for any y¡ 0 does not correspond to the precise p-box pF,Fq with F � Iry,1s, first note that

Πpr0,yqq � sup
x y

πpxq � 0.

But, for Π to be the p-box EF,F , we also require that

EF,Fpr0,yqq � Fpyq�Fp0�q � 1

using Eq. (4), because y has no immediate predecessor. Whence, we arrive at a contradic-
tion.

7. CONSTRUCTING MULTIVARIATE POSSIBILITY MEASURES FROM MARGINALS

In [?], multivariate p-boxes were constructed from marginals. We next apply this con-
struction together with the p-box representation of possibility measures, given by Theo-
rem 18, to build a joint possibility measure from some given marginals. As particular
cases, we consider the joint,

(i) either without any assumptions about dependence or independence between vari-
ables, that is, using the Fréchet-Hoeffding bounds [17],

(ii) or assuming epistemic independence between all variables, which allows us to use
the factorization property [?].

Let us consider n variables X1, . . . , Xn assuming values in X1, . . . , Xn. Assume that
for each variable Xi we are given a possibility measure Πi with corresponding possibility
distribution πi on Xi. We assume that the range of all marginal possibility distributions is
r0,1s; in particular, Theorem 18 applies, and each marginal can be represented by a p-box
on pXi,¨iq, with vacuous F i, and F i � πi. Remember that the preorder ¨i is the one
induced by πi.

7.1. Multivariate Possibility Measures. The construction in [?] employs the following
mapping Z, which induces a preorder ¨ on Ω�X1��� ��Xn:2

Zpx1, . . . ,xnq �
n

max
i�1

πipxiq. (17)

With this choice of Z, we can easily find the possibility measure which represents the joint
as accurately as possible, under any rule of combination of coherent lower probabilities:

Lemma 27. Let d be any rule of combination of coherent upper probabilities, mapping
the marginals P1, . . . , Pn to a joint coherent upper probability

Än
i�1 Pi on all events. If

there is a continuous function u for which

nä
i�1

Pi

�
n¹

i�1

Ai

�
� upP1pA1q, . . . ,PnpAnqq

for all A1 �X1, . . . , An �Xn, then the possibility distribution π defined by

πpxq � upZpxq, . . . ,Zpxqq

induces the least conservative upper cumulative distribution function on pΩ,¨q that dom-
inates the combination

Än
i�1 Πi of Π1, . . . , Πn.

2With maxn
i�1 πipxiq, we mean maxtπipxiq : i P t1, . . . ,nuu.
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Proof. To apply [?, Lem. 22], we first must consider the upper cumulative distribution
functions, which in our case coincide with the possibility distributions, as functions on the
unit interval z P r0,1s. For the marginal possibility distribution πi, the preorder is the one
induced by πi itself, so, as a function of z, πi is simply the identity map:

πipzq � πipπ
�1
i pzqq � z.

Using [?, Lem. 22], the least conservative upper cumulative distribution function on the
space pΩ,¨q that dominates the combination

Än
i�1 Πi is given by

Fpzq � upπ1pzq, . . . ,πnpzqq � upz, . . . ,zq @z P r0,1s.

As a function of x PΩ, this means that

Fpxq � upZpxq, . . . ,Zpxqq

with the Z that induced ¨, that is, the one defined in Eq. (17).
Now, by Proposition 15, such upper cumulative distribution function corresponds to a

possibility measure with possibility distribution

πpxq � upZpxq, . . . ,Zpxqq

whenever Fpxq�Fpx�q for all x PΩ that have no immediate predecessor, that is, whenever

Fpxq � sup
y : Zpyq Zpxq

Fpyq

for all x such that Zpxq ¡ 0. But this must hold, because (i) the range of Z is r0,1s, so
Zpyq can get arbitrarily close to Zpxq from below, and (ii) u is continuous, so Fpyq �
upZpyq, . . . ,Zpyqq gets arbitrarily close to Fpxq � upZpxq, . . . ,Zpxqq. �

7.2. Natural Extension: The Fréchet Case. The natural extension �n
i�1Pi of P1, . . . , Pn

is the upper envelope of all joint (finitely additive) probability measures whose marginal
distributions are compatible with the given marginal upper probabilities. So, the model is
completely vacuous (that is, it makes no assumptions) about the dependence structure, as
it includes all possible forms of dependence. See [8, p. 120, §3.1] for a rigorous definition.
In this paper, we only need the following equality, which is one of the Fréchet bounds (see
for instance [36, p. 122, §3.1.1]):

nò
i�1

Pi

�
n¹

i�1

Ai

�
�

n
min
i�1

PipAiq (18)

for all A1 �X1, . . . , An �Xn.

Theorem 28. The possibility distribution

πpxq �
n

max
i�1

πipxiq (19)

induces the least conservative upper cumulative distribution function on pΩ,¨q that dom-
inates the natural extension �n

i�1Πi of Π1, . . . , Πn.

Proof. Immediate, by Lemma 27 and Eq. (18). �

In other words, if we consider the marginal credal sets M pΠ1q, . . . , M pΠnq and con-
sider the set M of all the finitely additive probabilities on Ω whose Xi-marginals belong to
M pΠiq for i� 1, . . . ,n, then M is included in the credal set of the possibility distribution
π as defined in Eq. (19).

Since it is based on very mild assumptions, it is not surprising that the possibility dis-
tribution given by Eq. (19) is very uninformative (that is, very close to a vacuous model
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where πpxq � 1 for every x): we shall have πpxq � 1 as soon as πipxiq � 1 for some i, even
if π jpx jq � 0 for every j� i. In particular, if one of the marginal possibility distributions is
vacuous, then so is π . This also shows that the corresponding possibility measure Π may
not have Π1, . . . , Πn as its marginals.

7.3. Independent Natural Extension. In contrast, we can consider joint models which
satisfy the property of epistemic independence between the different X1, . . . , Xn. These
have been studied in [23] in the case of two marginal possibility measures. The most
conservative of these models is called the independent natural extensionbn

i�1Pi of P1, . . . ,
Pn. See [?] for a rigorous definition and properties, and [23] for a study of joint possibility
measures that satisfy epistemic independence in the case of two variables. In this paper,
we only need the following equality for the independent natural extension:

nâ
i�1

Pi

�
n¹

i�1

Ai

�
�

n¹
i�1

PipAiq (20)

for all A1 �X1, . . . , An �Xn.

Theorem 29. The possibility distribution

πpxq �
�

n
max
i�1

πipxiq


n

(21)

induces the least conservative upper cumulative distribution function on pΩ,¨q that dom-
inates the independent natural extension bn

i�1Πi of Π1, . . . , Πn.

Proof. Immediate, by Lemma 27 and Eq. (20). �

Note, however, that there is no least conservative possibility measure that corresponds
to the independent natural extension of possibility measures [23, Sec. 6].

We do not consider the minimum rule and the product rule

n
min
i�1

πipxiq and
n¹

i�1

πipxiq,

as their relation with the theory of coherent lower previsions is still unclear. However, we
can compare the above approximation with the following outer approximation given by
[10, Proposition 1]:

πpxq �
n

min
i�1

p1�p1�πipxiqq
nq. (22)

The above equation is an outer approximation in case of random set independence, which
is slightly more conservative than the independent natural extension [5, Sec. 4], so in par-
ticular, it is also an outer approximation of the independent natural extension. Essentially,
each distribution πi is transformed into 1�p1�πiq

n before applying the minimum rule. It
can be expressed more simply as

1�
n

max
i�1

p1�πipxiqq
n.

If for instance πpxiq � 1 for at least one i, then this formula provides a more informative
(i.e., lower) upper bound than Theorem 29. On the other hand, when all πpxiq are, say, less
than 1{2, then Theorem 29 does better.

Finally, note that neither Eq. (21) nor Eq. (22) are proper joints, in the sense that, in
both cases, the marginals of the joint are outer approximations of the original marginals,
and will in general not coincide with the original marginals.
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8. CONCLUSIONS

Both possibility measures and p-boxes can be seen as coherent upper probabilities. We
used this framework to study the relationship between possibility measures and p-boxes.
Following [?], we allowed p-boxes on arbitrary totally preordered spaces, whence includ-
ing p-boxes on finite spaces, on real intervals, and even multivariate ones.

We began by considering the more general case of maxitive measures, and proved that
a necessary and sufficient condition for a p-box to be maxitive is that at least one of the
cumulative distribution functions of the p-box must be 0–1 valued. Moreover, we deter-
mined the natural extension of a p-box in those cases and gave a necessary and sufficient
condition for the p-box to be supremum-preserving, i.e., a possibility measure. As special
cases, we also studied degenerate p-boxes, and precise 0–1 valued p-boxes.

Secondly, we showed that almost every possibility measure can be represented as a p-
box simply by ordering elements by increasing possibility. Hence, in general, p-boxes are
more expressive than possibility measures, while still keeping a relatively simple represen-
tation and calculus [?], unlike many other models, such as for instance lower previsions
and credal sets, which typically require far more advanced techniques, such as linear pro-
gramming.

Finally, we considered the multivariate case in more detail, by deriving a joint possibility
measure from given marginals using the p-box representation established in this paper and
results from [?].

In conclusion, we established new connections between both models, strengthening
known results from literature, and allowing many results from possibility theory to be
embedded into the theory of p-boxes, and vice versa.

As future lines of research, we point out the generalisation of a number of properties
of possibility measures to p-boxes, such as the connection with fuzzy logic [39] or the
representation by means of graphical structures [3], and the study of the connection of
p-boxes with other uncertainty models, such as clouds and random sets.
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Kruse, and Frank Hoffmann, editors, Computational Intelligence for Knowledge-Based Systems Design,
Lecture Notes in Computer Science, pages 737–746. Springer, 2010.



26 M. TROFFAES, E. MIRANDA, AND S. DESTERCKE

[8] G. de Cooman and M. C. M. Troffaes. Coherent lower previsions in systems modelling: products and
aggregation rules. Reliability Engineering and System Safety, 85:113–134, 2004.

[9] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: I. Generalized
p-boxes. International Journal of Approximate Reasoning, 49(3):649–663, 2008.

[10] S. Destercke, D. Dubois, and E. Chojnacki. Consonant approximation of the product of independent
consonant random sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
17(6):773–792, 2009.

[11] D. Dubois. Possibility theory and statistical reasoning. Computational Statistics and Data Analysis, 51:47–
69, 2006.

[12] D. Dubois, S. Moral, and H. Prade. A semantics for possibility theory based on likelihoods. Journal of
Mathematical Analysis and Applications, 205:359–380, 1997.

[13] D. Dubois and H. Prade. Possibility Theory. Plenum Press, New York, 1988.
[14] S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Constructing probability boxes and

Dempster-Shafer structures. Technical Report SAND2002–4015, Sandia National Laboratories, January
2003.

[15] S. Ferson and W. Tucker. Sensitivity analysis using probability bounding. Reliability engineering and system
safety, 91(10-11):1435–1442, 2006.

[16] S. Ferson and W. Tucker. Probability boxes as info-gap models. In Proceedings of the Annual Meeting of
the North American Fuzzy Information Processing Society, New York (USA), 2008.

[17] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the Americal
Statistical Association, 58:13–30, 1963.
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