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Abstract

Random intervals constitute one of the classes of random sets with
a greater number of applications. In this paper, we regard them as the
imprecise observation of a random variable, and study how to model the
information about the probability distribution of this random variable.
Two possible models are the probability distributions of the measurable
selections and those bounded by the upper probability. We prove that, un-
der some hypotheses, the closures of these two sets in the topology of the
weak convergence coincide, improving results from the literature. More-
over, we provide examples showing that the two models are not equivalent
in general, and give sufficient conditions for the equality between them.
Finally, we comment on the relationship between random intervals and
fuzzy numbers.
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1 Introduction

Random set theory has been applied in such different fields as economy ([20]),
stochastic geometry ([27]) or when dealing with imprecise information ([26]).
Within random sets, random intervals are especially interesting, as the works
carried out in [9, 11, 24] show. One of their advantages respect to other types of
random sets is their easy interpretation as a model for uncertainty and impreci-
sion. Consider a probability space (Ω,A, P ) and a random variable U0 : Ω → R
modeling some behaviour of the elements of Ω. Due to some imprecision in the
observation of the values U0(ω), or to the existence of missing data, we may
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not know precisely the images of the elements from Ω by U0. A possible model
for this situation would be to give, for any ω in Ω, upper and lower bounds of
its image by U0 (i.e., a margin for error in the observation); we obtain then an
interval Γ(ω) = [A(ω), B(ω)] which we assume is certain to include the value
U0(ω).

Given this model, we can study which is the information conveyed by the
multi-valued mapping Γ about the probability distribution of the random vari-
able U0. On the one hand, we know that U0 belongs to the class of the random
variables whose values are included in the images of the multi-valued mapping.
Thus, its probability distribution belongs to the class of the probability dis-
tributions of these random variables. We will denote this class by P (Γ). On
the other hand, the probability induced by U0 is bounded between the upper
and lower probabilities of Γ. These two functions were introduced by Dempster
in 1967 ([8]; see also the previous work by Strassen in [36]). We will denote
them by P ∗ and P∗, respectively, and will denote the class of the probabilities
bounded between them by M(P ∗). Hence, we can consider two models of the
available information: the class of probability distributions of the measurable
selections of the random set, P (Γ), and the set of probabilities bounded be-
tween the upper and the lower probability of the random set, M(P ∗). The first
of these two models is the most precise we can consider with the available infor-
mation, so P (Γ) ⊆ M(P ∗); however, the class M(P ∗) is more interesting from
an operational point of view, because it is convex, closed in some cases, and is
uniquely determined by the values of P ∗. The goal of this paper is to study the
relationship between these two models.

The paper is organized as follows: in Section 2, we introduce some concepts
and notations that we will use in the rest of the paper. In Section 3, we recall
some useful results from the literature and study the relationship between the
classes P (Γ) and M(P ∗). In Section 4, we establish sufficient conditions for the
equality between these two sets of probabilities, first for random closed intervals
and later for random open intervals. Section 5 contains some comments on the
connection between random intervals and fuzzy numbers. Finally, in Section 6
we give our conclusions and open problems on the subject.

2 Preliminary concepts

Let us introduce the notation we will use throughout the paper. We will denote
a probability space by (Ω,A, P ), a measurable space (X,A′) and a multi-valued
mapping, Γ : Ω → P(X). NP will denote the class of null sets respect to a
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probability P , and δx will denote the degenerate probability distribution on a
point x. Given a topological space (X, τ), βX will denote its Borel σ-field, that
is, the σ-field generated by the open sets. In particular, βR will denote the Borel
σ-field on R, and given A ∈ βR, βA will denote the relative σ-field on A. On the
other hand, λ will denote the Lebesgue measure on βR, and λA will denote the
restriction of λ to βA. Given a random variable U : Ω → R, FU : R→ [0, 1] will
denote its distribution function, and PU : βR → [0, 1], its induced probability.
A set of probabilities will be called W-compact (resp. W-closed) when it is
compact (resp., closed) in the topology of the weak convergence. A multi-valued
mapping will be called compact (resp., closed, open) when Γ(ω) is a compact
(resp., closed, open) subset of X for every ω ∈ Ω. Most of the multi-valued
mappings to appear in this paper will take values on (R, βR); nevertheless, we
will also consider the case where the final space is Polish.

Definition 2.1. [25] A topological space (X, τ) is called Polish if it is metriz-
able for some metric d such that (X, d) is complete and separable.

Formally, a random set is a multi-valued mapping satisfying some measur-
ability condition. Most of the conditions appearing in the literature (see for
instance [21]) use the concepts of upper and lower inverse:

Definition 2.2. [34] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and Γ : Ω → P(X) a multi-valued mapping. Given A ∈ A′, its upper
inverse by Γ is Γ∗(A) := {ω ∈ Ω | Γ(ω) ∩ A 6= ∅}, and its lower inverse,
Γ∗(A) := {ω ∈ Ω | ∅ 6= Γ(ω) ⊆ A}.

In this paper, Γ will be a model of the imprecise observation of a random
variable U0 : Ω → X (which we will call original random variable), in the
sense that, given ω ∈ Ω, all we know about the value U0(ω) is that it belongs
to the set Γ(ω). We deduce from Definition 2.2 that Γ∗(A) ⊆ U−1

0 (A) ⊆ Γ∗(A)
for any A in the final σ-field. Γ∗(A) is the smallest superset of U−1

0 (A) we
can give, taking into account the available information, whereas Γ∗(A) is the
greatest subset of U−1

0 (A) that we can give. We will denote A∗ := Γ∗(A) and
A∗ = Γ∗(A) when no confusion is possible.

Definition 2.3. [34] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and Γ : Ω → P(X) a multi-valued mapping. Γ is said to be strongly
measurable when Γ∗(A) ∈ A for any A ∈ A′.

Taking into account that Γ∗(A) = (Γ∗(Ac))c ∀A ∈ A′, a strongly measurable
multi-valued mapping also satisfies Γ∗(A) ∈ A for any A in the final σ-field.
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Definition 2.4. [8] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space, and let Γ : Ω → P(X) be a strongly-measurable multi-valued mapping.
The upper probability induced by Γ is given by

P ∗Γ : A′ −→ [0, 1]

A ↪→ P (Γ∗(A))
P (Γ∗(X))

,

and the lower probability, by

P∗Γ : A′ −→ [0, 1]

A ↪→ P (Γ∗(A))
P (Γ∗(X))

.

When Γ is not strongly measurable, it is not possible to define the upper and
lower probabilities on the whole of the final σ-field. Since these functions are one
of the main points of interest in this paper, we will assume that Γ is a strongly
measurable multi-valued mapping, and call it then a random set. We will
denote P ∗ := P ∗Γ and P∗ := P∗Γ when there is no ambiguity about the random
set inducing the upper and lower probabilities. These functions are conjugate
(i.e., P ∗(A) = 1 − P∗(Ac) ∀A ∈ A′), because of the duality existing between
the upper and lower inverses. On the other hand, we will assume throughout
the paper that Γ(ω) is non-empty for all ω, because it includes at least the
value U0(ω). As a consequence, P ∗Γ(A) = P (A∗), P∗Γ(A) = P (A∗) ∀A ∈ A′. As
Nguyen proved in [34], the upper probability of a random set is lower continuous
and ∞-alternating, while the lower probability is upper continuous and ∞-
monotone.

We are now ready to introduce the problem that we will study in this paper.
Let Γ be a random set modelling the imprecise observation of a random variable
U0. Then, all we know about this random variable is that it belongs to the class

S(Γ) := {V : Ω → X measurable | V (ω) ∈ Γ(ω) ∀ ω}.

The elements of S(Γ) are called measurable selections of the random set Γ1.
In particular, the probability distribution of U0 belongs to

P (Γ) := {PV | V ∈ S(Γ)},
1Some authors ([1, 19]) prefer to work with almost everywhere selections, that is, measur-

able mappings V such that V (ω) ∈ Γ(ω) almost surely; however, the interpretation we have
given to Γ as a model for the imprecise observation of U0 forces us to restrict our attention
to measurable mappings whose images are included in those of Γ for all the elements of the
initial space.
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and the probability that the values of U0 belong to A ∈ A′ is an element of

P (Γ)(A) := {PV (A) | V ∈ S(Γ)}.

On the other hand, the information given by Γ can also be modeled through
the upper and lower probabilities. For any V ∈ S(Γ) and for any A ∈ A′,
it is Γ∗(A) ⊆ V −1(A) ⊆ Γ∗(A). Hence, P (Γ)(A) is included in the interval
[P∗(A), P ∗(A)] for all A ∈ A′, and if we define

M(P ∗) := {Q : A′ → [0, 1] probability | Q(A) ≤ P ∗(A) ∀ A ∈ A′},

we have P (Γ) ⊆ M(P ∗). We will refer to M(P ∗) as the class of probabilities
dominated by the upper probability, or credal set generated by P ∗. This is
a convex set, and is uniquely determined by the upper probability.

If we are to use a random set as a model for imprecise information, it is
interesting to see which is the best way of summarizing the probabilistic infor-
mation it conveys. From an operational point of view, it is preferable to work
with M(P ∗): the class P (Γ) is not convex in general, and it doesn’t have an
easy representation in terms of a function. However, as we showed in [29], in
some cases the class P (Γ) can be way more precise than M(P ∗). Our goal in
this paper is to study the relationship between these two sets of probabilities
when Γ is a random interval. This problem has been studied for other types of
random sets ([4, 5, 18, 19, 30]), but, as far as we are aware, never for random
intervals.

3 Relationships between P (Γ) and M(P ∗)

In this section, we are going to study the relationships between the sets of
probabilities P (Γ) and M(P ∗) induced by a random interval Γ. Although the
term ‘random interval’ usually means a multi-valued mapping whose images are
intervals of the real line, in this paper it will refer to random sets of the type
(A, B) or [A,B], with A,B : Ω → R. At the end of the paper we will give a
brief account of the properties of random sets of the type (A, B] or [A,B), for
A,B : Ω → R.

Definition 3.1. Let (Ω,A, P ) be a probability space, A,B : Ω → R. The
random closed interval of extremes A and B is given by

Γ : Ω → P(R)

ω ↪→ [A(ω), B(ω)].
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and the random open interval of extremes A, B,

Γ′ : Ω → P(R)

ω ↪→ (A(ω), B(ω)).

We are assuming in this paper that the multi-valued mapping Γ has non-
empty images, because U0(ω) belongs to Γ(ω) for all ω. As a consequence,
given a random closed interval [A,B], it should be A(ω) ≤ B(ω) for all ω in
the initial space, and given a random open interval (A,B), we must assume
A(ω) < B(ω) ∀ω. Hence, there are choices of A,B such that the random closed
interval [A,B] is a possible model for our problem but the random open interval
(A, B) is not. Although this seems to prevent us from making a simultaneous
study of random open and random closed intervals, some of the properties we
shall prove can be derived easily even if Γ(ω) = ∅ for some ω; moreover, we find
it simpler, from a mathematical point of view, to prove them simultaneously
for both types of random intervals. This is for instance the case of our next
result, where we characterize the strong measurability of a random interval.
This characterization is interesting because, although the strong measurability
is necessary to work with the upper and lower probabilities, it does not always
have a straightforward interpretation in terms of the images of the multi-valued
mapping. In the case of random intervals, we are going to show that it amounts
to the measurability of the variables A and B determining the lower and upper
bounds of the images of U0

2:

Theorem 3.1. Consider a probability space (Ω,A, P ), and let A,B : Ω → R
such that A ≤ B. Let Γ = [A,B], Γ1 = (A,B). The following statements are
equivalent:

(a) Γ is strongly measurable.

(b) A,B are measurable.

(c) Γ1 is strongly measurable.

Proof:

(a) ⇒ (b) Given x ∈ R, A−1((−∞, x]) = Γ∗((−∞, x]) ∈ A and B−1((−∞, x]) =
Γ∗((−∞, x]) ∈ A, taking into account that Γ is strongly measurable.
Hence, A and B are measurable.

2A similar result by Wasserman can be found in [17, Lemma 6.1], although his result applies
to the composition of non-negative measurable mappings with random closed intervals.
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(b) ⇒ (c) Consider C ∈ βR. Then, (C, d) is a separable metric space, whence there
exists a countable set D ⊆ C dense in C. Given ω ∈ Γ∗1(C), the intersec-
tion Γ1(ω) ∩ C 6= ∅ is a non-empty open set in (C, βC). Hence, (Γ1(ω) ∩
C) ∩D = Γ1(ω) ∩D 6= ∅, because D is dense, and as a consequence ω ∈
Γ∗1(D). Thus, Γ∗1(C) = Γ∗1(D) = ∪x∈DΓ∗1({x}) = ∪x∈D(A−1(−∞, x) ∩
B−1(x,∞)). This last set is measurable, for it is a countable union of
measurable sets, and this implies that Γ1 is strongly measurable.

(c) ⇒ (a) Assume finally that Γ1 is strongly measurable. Then, A,B are also mea-
surable: for any x ∈ R, A−1(−∞, x) = Γ∗1(−∞, x) and B−1(−∞, x] =
Γ1∗(−∞, x). Now, for any C ∈ βR,

Γ∗(C) = {ω | Γ(ω) ∩ C 6= ∅} = {ω | (Γ1 ∪ {A,B})(ω) ∩ C 6= ∅}
= {ω | Γ1(ω) ∩ C 6= ∅} ∪ {ω | A(ω) ∈ C} ∪ {ω | B(ω) ∈ C}

= Γ∗1(C) ∪A−1(C) ∪B−1(C) ∈ A.

We conclude that Γ is strongly measurable. ¥

Remark 3.1. Although this is not relevant for the problem studied in the paper,
this theorem implies the equivalence between a number of measurability condi-
tions in the case of random intervals. The relationships between these conditions
for other types of random sets were studied by Himmelberg and others in [21, 22].
Using Theorem 3.1, we can prove that, if Γ is a random (closed or open) in-
terval, the strong measurability is equivalent to the so-called weak-measurability,
C-measurability and measurability. ¨

Next, we recall the main results established in the literature about the sets
P (Γ) and M(P ∗) that hold in particular for random intervals. Most of them
have been proven for more general types of random sets, and, as we will show,
can be improved when the images of the random set are intervals of the real
line. We start with random closed intervals. They constitute a particular case
of compact random sets on Polish spaces, which satisfy the following properties:

Theorem 3.2. Let (Ω,A, P ) be a probability space, (X, τ) a Polish space and
Γ : Ω → P(X), a compact random set. Then,

1. P ∗ is continuous for decreasing sequences of compact sets.

2. P ∗(A) = supK⊆Acompact P ∗(K) = infA⊆Gopen P ∗(G) ∀A ∈ βX .

3. M(P ∗) is W-compact.
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4. P ∗(A) = max P (Γ)(A) ∀A ∈ βX .

5. M(P ∗) = Conv(P (Γ)).

The first point of this theorem was proven in [5]. Together with some results
from [23], it implies points 2 and 3. On the other hand, the equality P ∗(A) =
sup P (Γ)(A) ∀A ∈ βX was given in [6]. In [29], we showed that P (Γ)(A) has
indeed a maximum and a minimum value. These two facts together imply
the fourth point. Finally, point 5 was proven in [4]. Although this last point
establishes a link between P (Γ) and M(P ∗), this is not a very strong one, as
the following example shows:

Example 3.1. Consider ω0 ∈ R, the probability space ({ω0}, {{ω0}, ∅}, δω0) and
let us define Γ : Ω → P(R) by Γ(ω0) = [0, 1]. Then, P (Γ) = {δx | x ∈ [0, 1]}.
On the other hand, P ∗(A) = 1 ∀A ∈ βR s.t. A ∩ [0, 1] 6= ∅, whence M(P ∗) =
{Q : βR → [0, 1] probability | Q([0, 1]) = 1}. ¨

Let us summarize now the properties of random open intervals that have
been established in the literature.

Theorem 3.3. [29] Let (Ω,A, P ) be a probability space, (X, d) a separable met-
ric space and Γ : Ω → P(X), an open random set. Then,

1. P ∗(A) = supJ⊆A finite P ∗(J) ∀A ∈ βX .

2. P ∗(A) = max P (Γ)(A) ∀A ∈ βX .

Although the results summarized in Theorems 3.2 and 3.3 are interesting
in their own right, we would like to know if there exists a stronger relation-
ship between M(P ∗) and P (Γ): as Example 3.1 shows, the equality M(P ∗) =
Conv(P (Γ)), which holds when Γ is a random closed interval, does not prevent
the existence of an important difference of precision between P (Γ) and M(P ∗);
in the case of random open intervals, we do not even know whether that equality
holds. We are going to prove that, given a random (closed or open) interval de-
fined on a non-atomic probability space, the closures of M(P ∗) and P (Γ) under
the topology of the weak convergence coincide. We will use some ideas from
[31].

Let Q := {q1, q2, . . . } denote the set of the rational numbers. Fix n ∈ N,
and let Qn be the field generated by {(−∞, q1], . . . , (−∞, qn]}. Assume, for the
sake of simplicity, that the elements {q1, . . . , qn} satisfy q1 < q2 < · · · < qn.3

3This is done merely to simplify the notation in our further development, but is not essential
to the construction. Note also that we are only assuming it for the natural number n fixed.
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Then, Qn coincides with the field generated by

Dn := {(−∞, q1], (q1, q2], . . . , (qn−1, qn], (qn,∞)},

which is the class of the (finite) unions of elements from Dn. Let us denote
Dn = {E1, . . . , En+1}, and let us define

P (Γ)n := {PV pQn
| V ∈ S(Γ)}

and
M(P ∗)n := {Q pQn

| Q ∈ M(P ∗)},
the classes of the restrictions of the elements of P (Γ) and M(P ∗) to the field Qn.
Each of these restrictions is uniquely determined by its values in the class Dn,
because a probability measure is additive. We are going to prove that P (Γ)n

and M(P ∗)n coincide when the initial probability space is non-atomic. This will
mean that, for every natural number n and for any Q ∈ M(P ∗), there exists
Pn ∈ P (Γ) such that Q and Pn coincide on the sets (−∞, q1], . . . , (−∞, qn]. Our
proof requires the following lemma:

Lemma 3.4. Let (Ω,A, P ) be a non-atomic probability space, and let Γ : Ω →
P(R) be a random interval. Then, P (Γ)n is convex.

Proof: Consider U1, U2 ∈ S(Γ), α ∈ (0, 1), and let us prove the existence of
U ∈ S(Γ) such that PU = αPU1 + (1− α)PU2 on Qn. Consider the measurable
partition of Ω given by {Cij | i, j = 1, . . . , n + 1}, where Cij = U−1

1 (Ei) ∩
U−1

2 (Ej), and let βij = P (Cij). The non-atomicity of (Ω,A, P ) implies the
existence, for all i, j = 1, . . . , n+1, of a measurable set Dij ⊆ Cij s.t. P (Dij) =
αβij . Take D = ∪n+1

i=1 ∪n+1
j=1 Dij , and define

U := U1ID + U2IDc .

• Taking into account that U1, U2 are measurable selections of Γ, we deduce
that U(ω) ∈ Γ(ω) for all ω ∈ Ω.

• Given F ∈ βR, U−1(F ) = (U−1
1 (F ) ∩ D) ∪ (U−1

2 (F ) ∩ Dc) ∈ A, because
D ∈ A and U1, U2 are measurable. Hence, U belongs to S(Γ).
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• Fix i ∈ {1, . . . , n + 1}. Then,

PU (Ei) = P (U−1
1 (Ei) ∩D) + P (U−1

2 (Ei) ∩Dc) =
n+1∑

j=1

P (Cij ∩D)

+
n+1∑

l=1

P (Cli ∩Dc) =
n+1∑

j=1

P (Dij) +
n+1∑

l=1

[P (Cli)− P (Dli)] =
n+1∑

j=1

αβij

+
n+1∑

l=1

[βli−αβli] = α

n+1∑

j=1

βij+(1−α)
n+1∑

l=1

βli = αPU1(Ei)+(1−α)PU2(Ei).

Using the additivity of PU , we deduce that PU (G) = αPU1(G) + (1 −
α)PU2(G) for all G ∈ Qn.

We conclude that the class P (Γ)n is convex. ¥

Let us define the multi-valued mapping

Γ′ : Ω −→ P(Dn)

ω ↪→ {Ei | Γ(ω) ∩ Ei 6= ∅}.

It is strongly measurable respect to the σ-fields A and P(Dn): given I ⊆
{1, . . . , n + 1}, it is Γ

′∗({Ei | i ∈ I}) = {ω | ∃i ∈ I, Ei ∈ Γ′(ω)} = {ω |
∃i ∈ I, Γ(ω) ∩ Ei 6= ∅} = {ω | Γ(ω) ∩ (∪i∈IEi) 6= ∅} = Γ∗(∪i∈IEi) ∈ A. More-
over, it takes values on a space, Dn, with a finite number of elements. Hence,
we may apply the properties established in [8, 30] for random sets on finite
spaces. Let π ∈ Sn+1 be a permutation, and let Qπ be the probability measure
on P(Dn) satisfying

Qπ({Eπ(1), . . . , Eπ(j)}) = P ∗Γ′({Eπ(1), . . . , Eπ(j)}) ∀j = 1, . . . , n + 1. (1)

(Qπ is completely determined on P(Dn) by these equations because of its ad-
ditivity). Then ([8, 30]), Ext(M(P ∗Γ′)) = {Qπ | π ∈ Sn+1} and M(P ∗Γ′) =
Conv({Qπ | π ∈ Sn+1}). These considerations allow us to establish the follow-
ing result:

Lemma 3.5. Let (Ω,A, P ) be a non-atomic probability space, and let Γ : Ω →
P(R) be a random interval. Then, M(P ∗)n = P (Γ)n.

Proof: It is clear that P (Γ)n ⊆ M(P ∗)n. Conversely, consider Q ∈ M(P ∗),
and let us define a probability Q1 on P(Dn) by the equations

Q1({Ej}) = Q(Ej) ∀j = 1, . . . , n + 1. (2)
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Q1 belongs to M(P ∗Γ′): given I ⊆ {1, . . . , n + 1}, Q1({Ei}i∈I) = Q(∪i∈IEi) ≤
P ∗Γ(∪i∈IEi) = P ∗Γ′({Ei}i∈I). Let us prove that there exists P ′ ∈ P (Γ)n s.t.
P ′(Ej) = Q1({Ej}) ∀j = 1, . . . , n + 1. Assume first that Q1 is an extreme
point of M(P ∗Γ′), i.e., that there exists some π ∈ Sn+1 s.t. Q1 is equal to
the probability Qπ defined by Equation (1). From Theorems 3.2 and 3.3,
given j ∈ {1, . . . , n + 1}, there exists Vj ∈ S(Γ) such that PVj

(∪j
i=1Eπ(i)) =

P ∗Γ(∪j
i=1Eπ(i)) = P ∗Γ′({Eπ(1), . . . , Eπ(j)}). Let us denote Fj = V −1

j (∪j
i=1Eπ(i)),

and define Uπ : Ω → R by

Uπ = V1IF1 +
n+1∑

i=2

ViIFi\∪i−1
j=1Fj

.

• Fn+1 = V −1
n+1(∪n+1

i=1 Eπ(i)) = V −1
n+1(R) = Ω. Hence, Uπ is well-defined.

• It is a measurable selection of Γ, because it is a measurable finite combi-
nation of measurable selections.

• Consider j ∈ {1, . . . , n + 1}. Then, PUπ (∪j
i=1Eπ(i))

= P (V −1
1 (∪j

i=1Eπ(i)) ∩ F1) +
n+1∑

k=2

P (V −1
k (∪j

i=1Eπ(i)) ∩ [Fk \ ∪k−1
l=1 Fl])

≥ P (V −1
1 (∪j

i=1Eπ(i)) ∩ F1) +
j∑

k=2

P (V −1
k (∪j

i=1Eπ(i)) ∩ [Fk \ ∪k−1
l=1 Fl])

= P (F1) +
j∑

k=2

P (Fk \ ∪k−1
l=1 Fl) = P (F1 ∪ · · · ∪ Fj) ≥ P (Fj)

= P ∗Γ(Eπ(1) ∪ · · · ∪ Eπ(j)) = P ∗Γ′({Eπ(1), . . . , Eπ(j)}).

On the other hand, PUπ (∪j
i=1Eπ(i)) ≤ P ∗Γ(∪j

i=1Eπ(i)) = P ∗Γ′({Eπ(i)}j
i=1),

because Uπ ∈ S(Γ). Therefore, PUπ (∪j
i=1Eπ(i)) = P ∗Γ′({Eπ(i)}j

i=1) =
Q1({Eπ(i)}j

i=1) ∀j = 1, . . . , n + 1.

Now, if Q1 is not an extreme point of M(P ∗Γ′), there exist l ≥ 2, λ1, . . . , λl ≥
0,

∑l
i=1 λi = 1, π1, . . . , πl ∈ Sn+1 such that Q1 =

∑l
i=1 λiQπi , where Qπi is the

extreme point of M(P ∗Γ′) defined by (1). Then,

Q1({Ej}) =
l∑

i=1

λiQπi({Ej}) =
l∑

i=1

λiPUπi
(Ej) =

(
l∑

i=1

λiPUπi

)
(Ej) ∀j.

From Lemma 3.4, P (Γ)n is convex, whence there exists W ∈ S(Γ) s.t.

PW (Ej) =

(
l∑

i=1

λiPUπi

)
(Ej) = Q1({Ej}) = Q(Ej) ∀j = 1, . . . , n + 1.
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We deduce that Q ∈ P (Γ)n, and this implies that P (Γ)n = M(P ∗n). ¥

Let us prove now that, if the initial probability space is non-atomic, the
W-closures of P (Γ) and M(P ∗) coincide.

Theorem 3.6. Consider a non-atomic probability space (Ω,A, P ) and a random
interval Γ : Ω → P(R). Then, M(P ∗) = P (Γ).

Proof: It is clear that P (Γ) ⊆ M(P ∗). Conversely, consider Q ∈ M(P ∗).
For any natural number n, the restriction of Q to the field Qn belongs to
M(P ∗)n = P (Γ)n, whence there exists Pn ∈ P (Γ) such that Pn((−∞, qi]) =
Q((−∞, qi]) for all i = 1, . . . , n. Consider the sequence {Pm}m ⊆ P (Γ). For
any rational number q, the sequence {Pm((−∞, q])}m converges to Q((−∞, q]),
because it is constant on this value after some natural mq by construction. Hence
([2]), {Pm}m converges weakly to Q. We deduce that M(P ∗) ⊆ P (Γ) ⊆ M(P ∗),
whence M(P ∗) = P (Γ). ¥

Remark 3.2. The reader can find similar results in [18, 33]; nevertheless, these
results assume either the completeness of the initial probability space or work
with almost everywhere selections, something we do not consider in our case.
Moreover, the work in [33] is related to the notion of selectionable distribution
from [1], which allows to change the initial probability space while keeping the
upper probability, something not possible in our context. Another interesting
study on this subject can be found in [19], in that case with the canonical σ-field
generated by Γ on the initial space, that is, the smallest σ-field that makes Γ
strongly measurable. ¨

If Γ is in particular a random closed interval, we deduce from the third point
of Theorem 3.2 that M(P ∗) = P (Γ). This is interesting because the difference
between a set of probabilities and its closure will in general be much smaller
than the one existing respect to its closed convex hull; hence, when the initial
probability space is non-atomic, the difference of precision between P (Γ) and
M(P ∗) will not be too big, and in particular we will not have situations like the
one given by Example 3.1. Next, we check that the previous theorem does not
hold for arbitrary initial probability spaces:

Example 3.2. Consider the random interval from Example 3.1, where Ω =
{ω0} and Γ(ω0) = [0, 1]. We showed then that M(P ∗) = {Q : βR → [0, 1] prob. |
Q([0, 1]) = 1} and P (Γ) = {δx | x ∈ [0, 1]}. From Theorem 3.2, M(P ∗) is W-
closed. On the other hand, given a sequence of degenerate probabilities {δxn}n, it
can only converge weakly to another degenerate probability δx, with limn xn = x.
Hence, P (Γ) is also W-closed and P (Γ) 6= M(P ∗). ¨
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Next, we prove that given a random open interval, the closure or M(P ∗)
coincides with the closed convex hull of P (Γ). We use the classes Qn and
Dn = {E1, . . . , En+1} and the random set Γ′ from our previous results.

Theorem 3.7. Let (Ω,A, P ) be a probability space, Γ a random open interval.
Then, M(P ∗) = Conv(P (Γ)).

Proof: It is clear that Conv(P (Γ)) ⊆ M(P ∗), because M(P ∗) is con-
vex. Conversely, consider Q ∈ M(P ∗). Fix n ∈ N, and let us define a
probability measure Qn

1 on P(Dn) by Equation (2). Then, Qn
1 belongs to

M(P ∗Γ′) = Conv(Ext(M(P ∗Γ′))). From Lemma 3.5, given an extreme point
Qπ of M(P ∗Γ′) there exists PUπ

∈ P (Γ) such that PUπ
(Ej) = Qπ({Ej}) ∀j =

1, . . . , n + 14. Hence, given Qn
1 ∈ Conv(Ext(M(P ∗Γ′))), there exists Pn ∈

Conv(P (Γ)) such that Pn(Ej) = Qn
1 ({Ej}) = Q(Ej) ∀j = 1, . . . , n + 1. Now,

reasoning as in Theorem 3.6, it can be checked that the sequence of prob-
ability measures {Pn}n ⊆ Conv(P (Γ)) converges weakly to Q. Therefore,
M(P ∗) ⊆ Conv(P (Γ)) ⊆ M(P ∗), whence M(P ∗) = Conv(P (Γ)). ¥

Summarizing, we have showed that, given a random interval Γ, the closure
of M(P ∗) is the closed convex hull of P (Γ) and, if the initial probability space
is non-atomic, then it coincides with P (Γ). We are going to show next that,
even in this last case, the sets P (Γ) and M(P ∗) do not coincide in general.

Example 3.3. Consider the probability space ([0, 1], β[0,1], λ[0,1]), the random
variables A,B : [0, 1] → R given by A(ω) = −ω, B(ω) = ω ∀ω, and let Γ =
[A,B]. Consider Q = PA+PB

2 . It is clear that Q belongs to M(P ∗), because
PA, PB ∈ P (Γ) ⊆ M(P ∗) and this set is convex. Let us show that it does
not belong to P (Γ). Assume ex-absurdo that there exists V ∈ S(Γ) such that
PV = Q. Then, given C = V −1([0, 1]) ∈ β[0,1], it is λ[0,1](C) = PV ([0, 1]) =

Q([0, 1]) = 0.5. Let us define H = {D ∈ β[0,1] | λ[0,1](D ∩ C) = λ[0,1](D)

2 }.
We are going to prove that H = β[0,1]. For this, we are going to show that H
contains the class C = {[x, 1] | x ∈ [0, 1]} and that it is a σ-field.

• It is clear that ∅ ∈ H. On the other hand, λ[0,1](C) = 0.5 = λ[0,1]([0,1])

2 ,
whence [0, 1] ∈ H.

• Given x ∈ (0, 1],

V −1([x, 1]) ⊆ V −1([0, 1]) ∩ Γ∗([x, 1]) = C ∩ [x, 1] ⇒

PV ([x, 1]) = Q([x, 1]) =
λ[0,1]([x, 1])

2
≤ λ[0,1](C ∩ [x, 1]).

4Although Lemma 3.5 assumes the non-atomicity of the initial probability space, it can be
checked that this condition is not necessary for this particular property.
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Similarly,

V −1([−1,−x]) ⊆ V −1([−1, 0)) ∩ Γ∗([−1,−x]) = Cc ∩ [x, 1]

⇒ PV ([−1,−x]) = Q([−1,−x]) =
λ[0,1]([−1,−x])

2

=
λ[0,1]([x, 1])

2
≤ λ[0,1](Cc ∩ [x, 1]).

Now,

1− x = λ[0,1]([x, 1]) = λ[0,1]([x, 1] ∩ C) + λ[0,1]([x, 1] ∩ Cc)

≥ λ[0,1]([x, 1])
2

+
λ[0,1]([x, 1])

2
= 1− x ⇒ λ[0,1]([x, 1])

2
= λ[0,1]([x, 1] ∩ C) = λ[0,1]([x, 1] ∩ Cc).

This shows that the class C is included in H. Let us show now that H also
includes the field generated by C. Consider the following classes:

• C1 := {D, Dc | D ∈ C}. Given x ∈ [0, 1],

λ[0,1]([0, x) ∩ C) = λ[0,1](C)− λ[0,1]([x, 1] ∩ C)

= 0.5− 1− x

2
=

x

2
=

λ[0,1]([0, x))
2

.

Hence, C1 ⊆ H.

• C2 = {D1 ∩ · · · ∩ Dn | Di ∈ C1} = {[0, x), [x, 1], [x1, x2) | x, x1, x2 ∈
[0, 1], x1 < x2}. Given x1 < x2 ∈ [0, 1],

λ[0,1]([x1, x2) ∩ C) = λ[0,1]([x1, 1] ∩ C)− λ[0,1]([x2, 1] ∩ C)

=
1− x1

2
− 1− x2

2
=

x2 − x1

2
,

whence [x1, x2) ∈ H. Hence, C2 ⊆ H.

• C3 := {D1 ∪ · · · ∪Dn | Di ∈ C2 ∀i,Di ∩Dj = ∅ ∀i 6= j}. Given D1, . . . , Dn

pairwise disjoint in H,

λ[0,1]((∪n
i=1Di) ∩ C) =

n∑

i=1

λ[0,1](Di ∩ C)

=
n∑

i=1

λ[0,1](Di)
2

=
λ[0,1](∪n

i=1Di)
2

.

Hence, C3 ⊆ H, and it is ([3]) C3 = Q(C).

14



Now, taking into account that the Lebesgue measure is continuous, we can prove
that given a monotone sequence of elements of H, its limit also belongs to H.
Hence, H is a monotone class and contains the field generated by C, whence it
contains the σ-field generated by this class, i.e., β[0,1]. Hence, for any D ∈ β[0,1],

λ[0,1](D ∩ C) = λ[0,1](D)

2 . But this implies in particular that 0.5 = λ[0,1](C) =
λ[0,1](C)

2 = 0.25. This is a contradiction. Hence, Q does not belong to P (Γ) and
this set is a proper subset of M(P ∗). ¨

This example shows that, even when the initial probability space is non-
atomic, the upper probability does not necessarily keep all the available infor-
mation about the probability distribution of PU0 : the class M(P ∗) does not
coincide in general with P (Γ). Our next section will be devoted to the search
of sufficient conditions for the equality between these two sets of probabilities.
First, we will give conditions valid for random closed intervals, and later we will
focus on random open intervals.

4 Sufficient conditions for the equality between
P (Γ) and M(P ∗)

In this section, we are going to study under which conditions the sets of prob-
abilities P (Γ) and M(P ∗) coincide. The equality between them will mean that
the available information about the probability induced by the original ran-
dom variable (which is given by the class of the probability distributions of the
measurable selections) can be modelled through the upper probability of the
random interval. Indeed, taking into account that the upper probability of a
random closed interval is completely determined by its values on the compact
or the open sets (from the second point of Theorem 3.2) and that the upper
probability of a random open interval is determined by its values on the finite
sets (see the first point of Theorem 3.3), when P (Γ) and M(P ∗) agree there is
an even simpler way to represent the available information.

We are going to focus on random intervals defined on non-atomic probabil-
ity spaces: as Theorem 3.6 shows, in that case the closures of P (Γ) and M(P ∗)
coincide, something that does not hold for arbitrary random intervals. More-
over, the non-atomicity of the initial probability space is not a very restrictive
hypothesis: it holds for instance if we have the additional knowledge that PU0 ,
the probability induced by the original random variable, is continuous (see for
instance [15]).
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4.1 Conditions on random closed intervals

Let us focus first on random closed intervals. As Example 3.3 shows, the sets
of probabilities P (Γ) and M(P ∗) do not necessarily coincide when the initial
probability space is non-atomic. We shall prove that, under some additional
conditions on the extremes of the random closed interval, it is P (Γ) = M(P ∗).
The initial probability space of all the random intervals we shall consider in
this section will be ([0, 1], β[0,1], λ[0,1]). Although the use of the interval [0, 1]
will simplify somewhat the proofs of the results we will establish, they can be
easily generalized to the case where the initial space is an interval [c, d] and we
consider the probability measure λ[c,d]

d−c on β[c,d]. It would be interesting to study
if they can be further generalized to the case of an arbitrary non-atomic space,
using that in this last case there exists a uniformly distributed random variable
V : Ω → [0, 1].

We start showing that P (Γ) and M(P ∗) coincide when the extremes A,B of
the random closed interval are increasing. A random closed interval of increas-
ing extremes can be used for instance when we know that U0 is an increasing
mapping. Then, given ω1 ≤ ω2, it will be U0(ω2) ≥ U0(ω1) ≥ A(ω1), whence,
if A(ω2) is the most precise lower bound of U0(ω2) we can give, it must be
A(ω2) ≥ A(ω1). Similarly, it is B(ω2) ≥ U0(ω2) ≥ U0(ω1), whence, if B(ω1) is
the most precise upper bound of U0(ω1) we can give, it is B(ω1) ≤ B(ω2). This
means that, when U0 is increasing, we may assume without loss of generality
that A and B are also increasing.

Proposition 4.1. Consider the probability space ([0, 1], β[0,1], λ[0,1]), and let
A,B : [0, 1] → R be increasing random variables. For the random closed interval
Γ = [A,B], P (Γ) = M(P ∗).

Proof: It is clear that P (Γ) ⊆ M(P ∗). Conversely, consider Q ∈ M(P ∗),
and let us show that there exists U ∈ S(Γ) such that PU = Q. Let

V : (0, 1) → R

ω ↪→ inf{y | ω ≤ Q((−∞, y])}

be the quantile function ([3]) of Q. It is an increasing function (and, as a con-
sequence, measurable) and satisfies the equality PV = Q when the probability
measure considered on the initial space is λ(0,1). Taking into account that A is
increasing, we deduce that there is a countable number of elements ω ∈ (0, 1)
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such that A(ω) > supω′<ω A(ω′). Let N be the set of these points, and define

V ′ : [0, 1] → R

ω ↪→
{

V (ω) if ω ∈ (0, 1) \N

A(ω) otherwise.

Let us show that V ′ is a selection of Γ. Given ω ∈ {0, 1} ∪ N , it is V ′(ω) =
A(ω) ∈ Γ(ω). Consider then ω ∈ (0, 1) \N .

• V ′(ω) = V (ω) = inf{y | ω ≤ Q((−∞, y])} ≥ inf{y | ω ≤ P ∗((−∞, y])} =
inf{y | ω ≤ FA(y)}, where the first inequality holds because Q ∈ M(P ∗).
Let us prove that inf{y | ω ≤ FA(y)} ≥ A(ω): consider y ∈ R s.t.
FA(y) ≥ ω. Taking into account that A is increasing, it must be [0, ω) ⊆
A−1((−∞, y]). On the other hand, A(ω) = supω′<ω A(ω′) ≤ y, because
ω /∈ N . We deduce that inf{y | ω ≤ FA(y)} ≥ A(ω) and as a consequence
V ′(ω) ≥ A(ω).

• On the other hand, V ′(ω) = V (ω) = inf{y | ω ≤ Q((−∞, y])} ≤ inf{y |
ω ≤ P∗((−∞, y])} = inf{y | ω ≤ FB(y)} ≤ B(ω), where the inequality
follows from Q ∈ M(P ∗) and the second, from B being increasing.

Moreover, taking into account that the mappings V and A are measurable and
that the sets {0, 1} ∪ N and (0, 1) \ N belong to β[0,1], we deduce that V ′ is
measurable. Finally, the restriction of V ′ to the interval (0, 1) coincides with V

except for the null set N . As a consequence, the probability distributions of V

and V ′ coincide and PV ′ = PV = Q. We deduce that M(P ∗) = P (Γ). ¥

We can easily see that the equality between P (Γ) and M(P ∗) also holds
when the random variables A,B : [0, 1] → R are increasing except for a null
subset of [0, 1]. It also seems easy to show that P (Γ) and M(P ∗) coincide when
the variables A,B determining the random interval are decreasing functions.
Such a random interval can be used when we know that U0 is a decreasing
function; following a reasoning similar to the one prior to Proposition 4.1, it
can be checked that in that case the variables A and B can be assumed to be
decreasing, too.

In some cases, a random closed interval can be transformed into a random
closed interval with increasing extremes without modifying the upper probabil-
ity. We will prove that in some of those situations the sets of probabilities P (Γ)
and M(P ∗) coincide. We need to establish the following lemma:
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Lemma 4.2. Consider the probability space ([0, 1], β[0,1], λ[0,1]) and a measur-
able mapping U : [0, 1] → R. Let us define h : [0, 1] → [0, 1] by

h(ω) = FU (U(ω)−) + λ[0,1]([0, ω] ∩ U−1({U(ω)})) ∀ω.

1. h(ω) ≤ FU (U(ω)) ∀ω.

2. h is measurable and uniformly distributed on [0, 1].

3. If V is the quantile function of PU , there exists a null set N ∈ Nλ[0,1] s.t.
(V ◦ h)(ω) = U(ω) for any ω /∈ N .

Proof: Let us remark first that if U(ω) is a continuity point of the distrib-
ution function FU , it is h(ω) = FU (U(ω)−) = FU (U(ω)).

1. Consider ω ∈ [0, 1]; then,

h(ω) = FU (U(ω)−) + λ[0,1]([0, ω] ∩ U−1({U(ω)}))
≤ FU (U(ω)−) + λ[0,1](U−1({U(ω)})) = FU (U(ω)).

Hence, h ≤ FU ◦ U .

2. Let us show that h is a uniformly distributed random variable. Consider
x ∈ [0, 1].

• Assume first that there is some ω0 ∈ [0, 1] s.t. FU (U(ω0)−) ≤
x < FU (U(ω0)), and define C = U−1({U(ω0)}) ∩ h−1([0, x]). Given
ω1 ∈ C, it is [0, ω1] ∩ U−1({U(ω0)}) ⊆ C, because the restric-
tion of h to U−1({U(ω0)}) is increasing. Let ω2 = supC . Then,
C = [0, ω2]∩U−1(U(ω0)) measurable. It is clear that supω∈C h(ω) ≤
x. If supω∈C h(ω) < x, then there would exist some ω′ such that
supω∈C < h(ω′) < x, because λ[0,1] is continuous and moreover
supω∈U−1({U(ω0)}) h(ω) = FU (U(ω0)) > x. But then ω′ would be-
long to C, a contradiction. Now,

h−1([0, x])

= {ω | h(ω) ≤ FU (U(ω0)−)} ∪ {ω | FU (U(ω0)−) < h(ω) ≤ x}
= {ω | FU (U(ω)) ≤ FU (U(ω0)−)} ∪ ([0, ω2] ∩ U−1({U(ω0)})),

is measurable, and consequently

Ph([0, x]) = λ[0,1]({ω | FU (U(ω)) < FU (U(ω0))}) + λ[0,1](C)

= FU (U(ω0)−) + λ[0,1]([0, ω2] ∩ U−1({U(ω0)})) = sup
ω∈C

h(ω) = x.
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• If there is not any ω0 under the conditions of the previous point, then
there exists ω1 ∈ [0, 1] such that x = FU (U(ω1)). Then, h−1([0, x]) =
{ω|FU (U(ω)) ≤ x} ∈ β[0,1] and Ph([0, x]) = FU (U(ω1)) = x, taking
into account that {ω | U(ω) > U(ω1), FU (U(ω)) = FU (U(ω1))} is a
null set.

3. Let V : (0, 1) → R be the quantile function associated to PU , given by
V (ω) = inf{y | ω ≤ PU ((−∞, y])}, and let us define V (0) = V (1) = 0, to
make the composition V ◦h possible. We are going to show that V ◦h = U

except for a null subset of [0, 1]. Consider x ∈ R.

• Assume that x is a discontinuity of FU , and let us define the measur-
able set Nx = U−1({x})∩h−1({FU (x)−}). Then, taking into account
that h is uniformly distributed, we deduce that Nx is null. Moreover,
for any ω ∈ U−1({x}) \ Nx, it is FU (x−) < h(ω) ≤ FU (x). As a
consequence, V (h(ω)) = inf{y | h(ω) ≤ FU (y)} = x = U(ω). Let
us define N1 = ∪{Nx | x discontinuity of FU}. This is a null subset
of [0, 1], because every Nx is null and FU has at most a countable
number of discontinuities.

• Let us assume now that x is a continuity point of FU . If FU (x− ε) <

FU (x) for all ε > 0 then, given ω ∈ U−1({x}),

V (h(ω)) = V (FU (U(ω))) = V (FU (x))

= inf{y | FU (x) ≤ FU (y)} = x = U(ω).

If, on the contrary, there exists ε > 0 such that FU (x−ε) = FU (x), let
εx be the greatest ε under these conditions, and δx ≥ 0 the greatest
real number such that FU (x) = FU (x+δx). Consider Nx = U−1((x−
εx, x + δx]) ∈ β[0,1]. Then, the equality FU (x + δx) = FU (x − εx)
implies that Nx is null.

There exists a countable number of disjoint intervals (x− εx, x + δx]
of this type, because any two different intervals are disjoint (each of
them corresponds to a different value of FU ), and all the intervals
have positive Lebesgue measure. As a consequence, the union N2 of
the inverse sets Nx of these intervals by U is a null subset of [0, 1].

Now, the measurable set N = N1 ∪ N2 ∪ {0, 1} is null, and given ω ∈
[0, 1] \N , it is V (h(ω)) = U(ω). This completes the proof. ¥
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Next, we are going to use this lemma to prove that the equality P (Γ) =
M(P ∗) holds when the random variable determining the lower bound is con-
stant. This type of random closed intervals can be used when, due to the avail-
able information, we can only modify the upper bounds of the values U0(ω),
while the lower bound is invariably the minimum value that U0 can achieve.
Although we prove our result for random closed intervals of the type Γ = [0, B],
it can easily be generalized for random closed intervals of the type Γ = [k, B],
with k ∈ R and B : [0, 1] → [k,∞) measurable.

Theorem 4.3. Consider the probability space ([0, 1], β[0,1], λ[0,1]) and a random
variable B : [0, 1] → [0,∞). For the random closed interval Γ = [0, B], P (Γ) =
M(P ∗).

Proof: Let V denote the quantile function of FB , and let us extend it to
[0, 1] with V (0) = V (1) = 0. Consider the random closed interval Γ′ = [0, V ].
The upper probabilities of Γ and Γ′ coincide: given C ∈ βR, it is P ∗Γ(C) =
λ[0,1]({ω | [0, B(ω)] ∩ C 6= ∅}) =

{
PB((infC∩[0,∞),∞)) if infC∩[0,∞) /∈ C

PB([infC∩[0,∞),∞)) if infC∩[0,∞) ∈ C

Similarly, P ∗Γ′(C) =
{

PV ((infC∩[0,∞),∞)) if infC∩[0,∞) /∈ C

PV ([infC∩[0,∞),∞)) if infC∩[0,∞) ∈ C

Taking into account that PB = PV , we deduce that P ∗Γ(C) = P ∗Γ′(C) ∀C ∈ βR.
The mapping V : [0, 1] → [0,∞) is increasing on [0, 1). Applying Proposition
4.1, we deduce that M(P ∗Γ) = M(P ∗Γ′) = P (Γ′). Consider Q ∈ M(P ∗Γ). Then,
there exists U ∈ S(Γ′) s.t. PU = Q. On the other hand, Lemma 4.2 implies
the existence of a uniformly distributed random variable h : [0, 1] → [0, 1] s.t.
h ≤ FB ◦B, and a null set N ∈ β[0,1] with V (h(ω)) = B(ω) ∀ω /∈ N . Define

U1 : [0, 1] −→ R

ω ↪→
{

U(h(ω)) if ω ∈ [0, 1] \N

0 otherwise

• Let us show that U1 is a selection of Γ. Given ω ∈ N , U1(ω) = 0 ∈
Γ(ω). Consider now ω /∈ N . Then, U1(ω) = U(h(ω)) ≥ 0, and U1(ω) =
U(h(ω)) ≤ V (h(ω)) = B(ω).

• Taking into account that U and h are measurable and N ∈ β[0,1], we
deduce that U1 is measurable.
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• Given C ∈ βR,

PU1(C) = λ[0,1](U−1
1 (C)) = λ[0,1](h−1(U−1(C)))

= λ[0,1](U−1(C)) = PU (C) = Q(C),

because h is uniformly distributed on [0, 1] and N is a null set. Hence, U1

is a measurable selection of Γ and PU1 = Q. ¥

We think that it could be proven similarly that P (Γ) = M(P ∗) when
Γ = [A, k], with k ∈ R and A : [0, 1] → (−∞, k] measurable. This would
mean that whenever one of the bounds is constant, the upper probability keeps
all the information about the probability distribution of the original random
variable. On the other hand, we want to stress that, contrary to what might
be expected, there is no relationship between the probabilistic information of a
random interval Γ1 = [A, B] and that of Γ2 = [0, B−A], in the sense that in this
last case P (Γ2) = M(P ∗Γ2

), and, as Example 3.3 shows, P (Γ1) does not coincide
with M(P ∗Γ1

) in general. Next, we consider the case where the functions A,B

determining the random closed interval increase or decrease simultaneously. We
call this type of functions strictly comonotonic 5.

Definition 4.1. Two functions A,B : [0, 1] → R are said to be strictly
comonotonic if and only if for every ω1, ω2 ∈ [0, 1], A(ω1) ≤ A(ω2) ⇔ B(ω1) ≤
B(ω2).

Random closed intervals with strictly comonotonic extremes can be used
rather intuitively as a model of the imprecise observation of a random variable.
If the observation made on ω1 is greater than the one made on ω2, the upper
and lower bounds for the value U0(ω1) should intuitively be greater than those
for U0(ω2). In particular, the following types of random closed intervals have
strictly comonotonic extremes:

• Random closed intervals of fixed length, Γ = [U − ε, U + ε], where the
margin for imprecision is the same in all the observations. These can be
used for instance when we observe the life time of some components, and
we check their state (on/off) in intervals of 2ε units of time.

• Random closed intervals where the margin of imprecision increases with
the lower bound, so A(ω1) ≤ A(ω2) yields B(ω1) − A(ω1) ≤ B(ω2) −

5Denneberg ([10]) calls two functions A, B comonotonic when they satisfy (A(ω2) −
A(ω1))(B(ω2)−B(ω1)) ≥ 0 ∀ω1, ω2. The same concept is used by Dellacherie in [7]. For our
next result, we need to introduce the following definition, which is slightly stronger.
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A(ω2). As a particular case, this model contains the intervals of the type
[(1−δ)U, (1+δ)U ], where U(ω) is the observed value in the element ω and
δ ∈ (0, 1). In these cases, if the observed value U(ω) increases, so does the
margin of error. Random closed intervals whose extreme functions satisfy
the relationship B = k1 ·A + k2, with k1 ≥ 1, k2 ≥ 0 are also of this type.

On the other hand, the extremes of the random intervals considered in
Proposition 4.1 and Theorem 4.3 are not strictly comonotonic in general: two
increasing functions A,B : [0, 1] → R are strictly comonotonic if and only if
A(ω1) = A(ω2) ⇔ B(ω1) = B(ω2) for any ω1, ω2 ∈ [0, 1], and a non-negative
random variable B : [0, 1] → [0,∞) is not strictly comonotonic with 0 unless B

is constant.
For the purposes of this paper, the main advantage of random closed in-

tervals with strictly comonotonic extremes is that there exists a random closed
interval with increasing extremes with the same upper probability, which, from
Proposition 4.1, satisfies P (Γ) = M(P ∗). In order to prove this, we need to
establish first the following lemma:

Lemma 4.4. Consider the probability space ([0, 1], β[0,1], λ[0,1]), and let A,B :
[0, 1] → R be two strictly comonotonic random variables. Then, for any ω ∈
[0, 1], FA(A(ω)) = FB(B(ω)) and FA(A(ω)−) = FB(B(ω)−).

Proof: Take ω ∈ [0, 1]. Then, FA(A(ω)) = λ[0,1]({ω′ ∈ [0, 1] | A(ω′) ≤
A(ω)}) = λ[0,1]({ω′ ∈ [0, 1] | B(ω′) ≤ B(ω)}) = FB(B(ω)). On the other hand,
FA(A(ω)−) = λ[0,1]({ω′ ∈ [0, 1] | A(ω′) < A(ω)}) = λ[0,1]({ω′ ∈ [0, 1] | B(ω′) <

B(ω)}) = FB(B(ω)−). ¥

This lemma has an important consequence: if hA, hB denote the random
variables defined applying Lemma 4.2 respect to A,B, we have hA = hB . This
fact, together with Proposition 4.1, will allow us to prove the equality P (Γ) =
M(P ∗) for random closed intervals of strictly comonotonic extremes.

Theorem 4.5. Consider the probability space ([0, 1], β[0,1], λ[0,1]), and let A,B :
[0, 1] → R be two strictly comonotonic random variables. For the random closed
interval Γ = [A,B], P (Γ) = M(P ∗).

Proof: Let V and W denote the quantile functions of FA, FB , and let
us define V = A,W = B in {0, 1}. Then, V,W : [0, 1] → R are increasing
functions (except for the null set {0, 1}, which does not affect the result), and
satisfy FV = FA, FW = FB . Let us define the random interval Γ′ = [V, W ].
Since A ≤ B ⇒ FA ≥ FB , we deduce that V ≤ W and Γ′ is well-defined. Let
h : [0, 1] → [0, 1] be the uniformly distributed random variable satisfying h ≤
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FA ◦A = FB ◦B defined on Lemma 4.2. Then, there exist two null sets N1, N2

such that V (h(ω)) = A(ω) ∀ω ∈ [0, 1]\N1 and W (h(ω)) = B(ω) ∀ω ∈ [0, 1]\N2.
Consider N = N1 ∪N2, and let us show that P ∗Γ = P ∗Γ′ .

From Theorem 3.2, it suffices to prove that P ∗Γ(G) = P ∗Γ′(G) for every G

open, and, taking into account that P ∗ is continuous for increasing sequences,
it suffices to show the equality for finite unions of open intervals. Consider
C = (a1, b1) ∪ · · · ∪ (an, bn), with bi ≤ ai+1 for all i = 1, . . . , n − 1, and let us
show that P ∗Γ(C) = P ∗Γ′(C). We have

P ∗Γ(C) = λ[0,1](Γ∗(C)) = λ[0,1](A−1(C))

+ λ[0,1](A−1((−∞, a1]) ∩B−1((a1,∞)))

+
n−1∑

i=1

λ[0,1](A−1([bi, ai+1]) ∩B−1((ai+1,∞))).

Similarly,

P ∗Γ′(C) = λ[0,1](Γ
′∗(C)) = λ[0,1](V −1(C))

+ λ[0,1](V −1((−∞, a1]) ∩W−1((a1,∞)))

+
n−1∑

i=1

λ[0,1](V −1([bi, ai+1]) ∩W−1((ai+1,∞))).

From the equality FV = FA, we deduce that λ[0,1](V −1(C)) = λ[0,1](A−1(C)).
Consider now i ∈ {1, . . . , n− 1}. From Lemma 4.2, it is λ[0,1](A−1([bi, ai+1]) ∩
B−1((ai+1,∞))) = λ[0,1](h−1[V −1([bi, ai+1]) ∩W−1((ai+1,∞))]). Taking into
account that h is uniformly distributed,

λ[0,1](h−1[V −1([bi, ai+1]) ∩W−1((ai+1,∞))])

= λ[0,1](V −1([bi, ai+1]) ∩W−1((ai+1,∞))).

Similarly,

λ[0,1](A−1((−∞, a1]) ∩B−1((a1,∞)))

= λ[0,1](h−1[V −1((−∞, a1]) ∩W−1((a1,∞))])

= λ[0,1](V −1((−∞, a1]) ∩W−1((a1,∞))).

As a consequence, P ∗Γ(C) = P ∗Γ′(C), and this implies that P ∗Γ = P ∗Γ′ . We proceed
now to prove that P (Γ) = M(P ∗Γ). From Proposition 4.1, it is M(P ∗Γ′) = P (Γ′),
because V and W are increasing except on a null subset of [0, 1]. Consider

23



Q ∈ M(P ∗Γ) = M(P ∗Γ′). Then, there exists U ∈ S(Γ′) s.t. PU = Q. Let us
define

U1 := (U ◦ h)I[0,1]\N + AIN .

• Given ω ∈ N , U(ω) = A(ω) ∈ Γ(ω). Consider now ω ∈ [0, 1] \N . Then,
U1(ω) = U(h(ω)) ∈ [V (h(ω)),W (h(ω))] = [A(ω), B(ω)]. Hence, U(ω) ∈
Γ(ω) ∀ω.

• Taking into account that h,U and A are measurable mappings and N ∈
β[0,1], we deduce that U1 is measurable.

• Finally, let us see that PU1 = Q. Given C ∈ βR,

PU1(C) = λ[0,1](U−1
1 (C)) = λ[0,1](U−1

1 (C) ∩N c)

= λ[0,1](h−1(U−1(C)) ∩N c) = λ[0,1](h−1(U−1(C)))

= λ[0,1](U−1(C)) = Q(C),

where the third and the fifth equalities hold because h is uniformly dis-
tributed. Hence, U1 is a measurable selection of Γ and satisfies PU1 = Q.
Therefore, P (Γ) = M(P ∗). ¥

We conclude that, even if a random closed interval Γ does not satisfy in
general the equality P (Γ) = M(P ∗), there are a number of interesting situations
where the upper probability keeps all the information about the probability
distribution of the original random variable.

4.2 Conditions on random open intervals

We focus now on random open intervals. We are going to establish neces-
sary and sufficient conditions for the equality P (Γ) = M(P ∗). We start prov-
ing a relationship between the upper inverses of a set by the random intervals
(A, B), [A,B), (A,B] and [A,B].

Proposition 4.6. Let (Ω,A, P ) be a probability space, A,B : Ω → R two
random variables s.t. A(ω) < B(ω) ∀ω, and let us denote Γ = [A,B],Γ1 =
(A, B), Γ2 = [A, B) and Γ3 = (A,B]. Then, for any C ∈ βR there exists D ⊆ C

countable s.t. Γ∗(C) = Γ∗1(C) ∪ A−1(D) ∪ B−1(D), Γ∗2(C) = Γ∗1(C) ∪ A−1(D)
and Γ∗3(C) = Γ∗1(C) ∪B−1(D).

Proof: Consider C ∈ βR, and let us denote E1 = Γ∗2(C) \ Γ∗1(C). We
are going to show first that there exists a countable set D ⊆ C such that
E1 ⊆ A−1(D). Take ω1 ∈ E1, and let D1 := A(ω1) = Γ2(ω1) ∩ C. If E1 ⊆
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A−1(D1), then Γ∗2(C) = Γ∗1(C) ∪ E1 ⊆ Γ∗1(C) ∪ A−1(D1) ⊆ Γ∗1(C) ∪ Γ∗2(D1) ⊆
Γ∗2(C), and the result holds. Assume then that there exists ω2 ∈ E1 \A−1(D1),
and denote D2 = A(ω2) = Γ2(ω2) ∩ C. Then, D2 ∩ D1 = ∅, because ω2 /∈
A−1(D1). Moreover, D2 ∩ Γ1(ω1) = ∅: otherwise, ω1 ∈ Γ∗1(D2) ⊆ Γ∗1(C), a
contradiction. Hence, D2 ∩ Γ2(ω1) = ∅, and as a consequence there is some
ε > 0 s.t. [A(ω2), A(ω2) + ε) ⊆ Γ2(ω1)c. This implies that λ(Γ2(ω2) \Γ2(ω1)) ≥
λ(Γ2(ω2) ∩ [A(ω2), A(ω2) + ε)) > 0, whence λ(Γ2(ω1) ∪ Γ2(ω2)) > λ(Γ2(ω1)).
Again, if E1 ⊆ A−1(D1 ∪D2), we deduce that Γ∗2(C) = Γ∗1(C)∪A−1(D1 ∪D2),
and the result holds because D1 ∪ D2 is finite. Otherwise, we take ω3 ∈ E1 \
A−1(D1 ∪ D2) and repeat the process. This can be done at most a countable
number of times, because λ(∪n

i=1Γ2(ωi)) > λ(∪n−1
i=1 Γ2(ωi))∀n ≥ 2. Hence, there

exists D = ∪nDn ⊆ C such that E1 ⊆ A−1(D), whence Γ∗2(C) = Γ∗1(C) ∪
A−1(D). Besides, the set D is countable, because Dn = {A(ωn)} for all n.

Consider now E2 = Γ∗3(C) \ Γ∗1(C). Following a similar reasoning, we can
deduce the existence of D′ ⊆ C countable such that E2 ⊆ B−1(D′), and as a
consequence Γ∗3(C) = Γ∗1(C) ∪ B−1(D′). Finally, if we consider the countable
set D′′ = D∪D′, it is Γ∗(C) = Γ∗1(C)∪E1∪E2 = Γ∗1(C)∪A−1(D)∪B−1(D′) ⊆
Γ∗1(C)∪A−1(D′′)∪B−1(D′′) ⊆ Γ∗(C). In particular, Γ∗2(C) = Γ∗1(C)∪A−1(D′′)
and Γ∗3(C) = Γ∗1(C) ∪B−1(D′′). ¥

Using this result, we can establish a relationship between the upper proba-
bilities induced by the random intervals (A,B), [A,B), (A, B] and [A, B].

Corollary 4.7. Consider a probability space (Ω,A, P ), and let A,B : Ω → R be
two random variables such that A(ω) < B(ω) ∀ω. Let us denote Γ = [A,B], Γ1 =
(A, B), Γ2 = [A, B) and Γ3 = (A,B]. Then,

1. If FA is continuous, then P ∗Γ1
= P ∗Γ2

.

2. If FB is continuous, then P ∗Γ1
= P ∗Γ3

.

3. If FA and FB are continuous, then P ∗Γ = P ∗Γ1
= P ∗Γ2

= P ∗Γ3
.

Proof: Consider C ∈ βR. From the previous proposition, there exists a
countable set D ⊆ C such that Γ∗(C) = Γ∗1(C) ∪ A−1(D) ∪ B−1(D), Γ∗2(C) =
Γ∗1(C) ∩A−1(D), Γ∗3(C) = Γ∗1(C) ∪B−1(D).

1. If FA is continuous, then P ∗Γ2
(C) ≤ P ∗Γ1

(C) + PA(D) = P ∗Γ1
(C) ≤ P ∗Γ2

(C),
whence P ∗Γ1

= P ∗Γ2
.

2. If FB is continuous, then P ∗Γ3
(C) ≤ P ∗Γ1

(C)+PB(D) = P ∗Γ1
(C) ≤ P ∗Γ3

(C),
whence P ∗Γ1

= P ∗Γ3
.
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3. If FA and FB are continuous, then P ∗Γ(C) ≤ P ∗Γ1
(C) + PA(D) + PB(D) =

P ∗Γ1
(C) ≤ P ∗Γ(C), whence P ∗Γ = P ∗Γ1

, and taking into account that P ∗Γ1
≤

P ∗Γ2
≤ P ∗Γ and P ∗Γ1

≤ P ∗Γ3
≤ P ∗Γ , it is P ∗Γ = P ∗Γ1

= P ∗Γ2
= P ∗Γ3

. ¥

In [9], Dempster claimed that the upper probabilities of the random intervals
(A, B) and [A,B] coincide when the joint distribution of A and B is absolutely
continuous. Our corollary shows that it is only necessary that the (marginal)
distribution functions of A and B are continuous.

We can use this result to prove that the sets of probabilities P (Γ) and M(P ∗)
associated to a random open interval do not coincide when either of the distri-
bution functions of A and B is continuous. Hence, in those cases the use of the
upper and lower probabilities will cause a loss of precision respect to the class
of the probability distributions of the measurable selections.

Theorem 4.8. Let (Ω,A, P ) be a probability space, A, B : Ω → R two random
variables with A(ω) < B(ω) ∀ω. Let us denote Γ1 = (A,B). If FA or FB is
continuous, then P (Γ1) (M(P ∗).

Proof: Assume for instance that the distribution function FA is continuous
(the proof when FB is continuous is analogous). If we denote Γ2 = [A,B), then,
applying the previous corollary, it is P ∗Γ1

= P ∗Γ2
. The random variable A is a

measurable selection of Γ2, whence PA ∈ P (Γ2) ⊆ M(P ∗Γ2
) = M(P ∗Γ1

). Let
us show that PA does not belong to P (Γ1). Assume ex-absurdo that U is a
measurable selection of Γ1 satisfying PU = PA. Then, given Cn := {ω ∈ Ω |
U(ω) − A(ω) ≥ 1

n}, it is Ω = ∪nCn, because U(ω) > A(ω) ∀ω. Take x ∈ R.
Then,

P (U > x) = P (A > x) + P (A ≤ x, U > x)

≥ P (A > x) + P

(
x− 1

n
≤ A ≤ x,U −A >

1
n

)

= P (A > x) + P

(
A−1

([
x− 1

n
, x

])
∩ Cn

)

⇒ P

(
A−1

([
x− 1

n
, x

])
∩ Cn

)
= 0 ∀x,

whence P (Cn) = 0 for all n. But then it is P (Ω) = P (∪nCn) = 0, a contradic-
tion. We conclude that PA does not belong to P (Γ1), and as a consequence this
set does not coincide with M(P ∗). ¥

Note that, if either of the distribution functions FA, FB is continuous, the
initial probability space must be non-atomic. As we said before, when the initial
space has atoms, P (Γ) will not coincide with M(P ∗) except for very particular
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situations. Hence, it remains to see if these two sets of probabilities coincide
when the initial probability space is non-atomic and the variables A and B are
discrete. In that respect, we have proven that P (Γ) = M(P ∗) whenever the
random variables A and B are simple. Our proof requires the following lemma:

Lemma 4.9. [5] Let (Ω,A, P ) be a non-atomic probability space, (X,P(X))
a measurable space, with |X| finite, and Γ : Ω → P(X) a random set. Then,
P (Γ) = M(P ∗).

Let us show the aforementioned result.

Theorem 4.10. Let (Ω,A, P ) be a non-atomic probability space, and let Γ :
Ω → P(R) be a simple random open interval. Then, P (Γ) = M(P ∗).

Proof: We will prove first that the result holds when Γ is constant, and
then we will use this fact, together with a relationship between simple random
intervals and random sets on finite spaces to prove the general result.

• Assume first that Γ is a random set constant on some B ∈ βR. Then,
M(P ∗) = {Q ∈ PβR | Q(B) = 1}. Consider Q ∈ M(P ∗), and let U :
(0, 1) → R be its quantile function. Then, PU = Q, whence PU (B) =
1. We can modify U in the null set U−1(B)c so that U(ω) ∈ B ∀ω ∈
(0, 1), and without affecting the measurability of U . On the other hand, if
(Ω,A, P ) is non-atomic, there is a uniformly distributed random variable
g : Ω → [0, 1] (see for instance [15]). Consider x ∈ B, and let us define

V : Ω → P(R)

ω ↪→
{

U(g(ω)) if g(ω) ∈ (0, 1)
x otherwise

– Given ω ∈ Ω, V (ω) ∈ B = Γ(ω), because U(ω) ∈ B ∀ω ∈ [0, 1] and
x ∈ B.

– V is measurable, because U and g are measurable.

– Taking into account that g is uniformly distributed and {0, 1} is a
null set, we deduce that PV = PU = Q.

We conclude that P (Γ) = M(P ∗).

• Consider now the case where Γ is a simple random open interval. Then,
Γ can be expressed in the form Γ :=

∑n
i=1(ai, bi)ICi , with {C1, . . . , Cn}

a partition of Ω. We can deduce from the strong measurability of Γ that
Ci ∈ A ∀i = 1, . . . , n. Let us define the class D := {H1 ∩ · · · ∩Hn | Hi ∈
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{(ai, bi), (ai, bi)c} ∀i} = {E1, . . . , Em}. This is a finite and measurable
partition of R, and any interval (ai, bi) is a (finite) union of elements from
D. Let us define the bijection f : D → {1, . . . ,m} by f(Ei) = i ∀i and
consider Γ′ = f ◦ Γ : Ω → P({1, . . . , m}).

– Given I ⊆ {1, . . . ,m},

Γ′∗({i ∈ I}) = Γ∗(∪i∈IEi) = ∪i∈I ∪Ei⊆(aj ,bj) Cj ∈ A (3)

Hence, Γ′ is strongly measurable.

– Γ′ is defined between a non-atomic probability space and a finite
space. Applying Lemma 4.9, M(P ∗Γ′) = P (Γ′).

Consider Q ∈ M(P ∗Γ), and let us define Q′ = Q ◦ f−1 : P({1, . . . , m}) →
[0, 1]. Then, Q′ is a finitely additive probability. Besides, given I ⊆
{1, . . . , m},

Q′(I) = Q(f−1(I)) = Q(∪i∈IEi) ≤ P ∗Γ(∪i∈IEi)

=
∑

(aj ,bj)∩(∪i∈IEi)6=∅
P (Cj) = P ∗Γ′(I),

also using Eq.(3). We deduce that Q′ ∈ M(P ∗Γ′) = P (Γ′), and as a
consequence there exists a measurable selection of Γ′, U1 : Ω → {1, . . . , m},
such that PU1 = Q′. Denote Fi = U−1

1 ({i}) ∈ A for i = 1, . . . ,m, and let
us define the multi-valued mapping

Γi : Ω → P(R)

ω ↪→
{

Ei if ω ∈ Fi

∅ otherwise.

Consider the measure Qi : βR → [0, 1] given by Qi(A) = Q(A ∩ Ei) for
all A ∈ βR. Then, Qi(A) ≤ P (Γ∗i (A)) ∀A ∈ βEi , because Q(Ei) = P (Fi)
for all i. We can easily modify the first part of the proof 6 to show the
existence of Wi ∈ S(Γi) such that PWi coincides with Qi. Let us define

W : Ω → R

ω ↪→ Wi(ω) if ω ∈ Fi.

Let us show that W is a measurable selection of Γ and that PW = Q.
6It would suffice to consider the quantile function of the finite measure Qi, define Wi(ω) = ∅

for all ω /∈ Fi, and proceed as in the first point of the proof.
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– The class {F1, . . . , Fm} = {U−1
1 ({1}), . . . , U−1

1 ({m})} is a partition
of Ω. Besides, Γi(ω) 6= ∅ ∀ω ∈ Fi, whence W is well-defined.

– Consider ω ∈ Fi for some arbitrary i = 1, . . . , n. Then,

W (ω) = Wi(ω) ∈ Γi(ω) = Ei = f−1({i}) = f−1({U1(ω)})
∈ f−1(Γ′(ω)) = {Ej | Ej ⊆ Γ(ω)} ⇒ W (ω) ∈ Γ(ω).

– Given G ∈ βR, W−1(G) = ∪m
i=1(W

−1
i (G) ∩ Fi) ∈ A, taking into

account that Wi is measurable for all i and U1 is measurable. Hence,
W is a measurable selection of Γ.

– Given A ∈ βR,

PW (A) =
m∑

i=1

P (W−1(A) ∩ Fi) =
m∑

i=1

P (W−1
i (A) ∩ Fi)

=
m∑

i=1

Qi(A) =
m∑

i=1

Q(A ∩ Ei) = Q(A).

Hence, PW = Q and as a consequence M(P ∗) is equal to P (Γ). ¥

We conclude that if the random variables A and B are simple and the ini-
tial probability space is non-atomic, the upper probability of the random open
interval (A,B) keeps all the available information about the probability distrib-
ution of the original random variable. Taking into account that, from Theorem
3.3, this upper probability is determined by its values on the finite sets, these
values would suffice to summarize all the information about PU0 . Note also that
the equality between P (Γ) and M(P ∗) does not hold in general when we drop
the hypothesis of non-atomicity from the initial probability space: to see this, it
suffices to consider a probability space with only one element, ω0, and the multi-
valued mapping Γ(ω0) = (0, 1). Then, it is P (Γ) = {δx | x ∈ (0, 1)}, and this
class does not coincide with M(P ∗) = {Q : βR → [0, 1] prob. | Q((0, 1)) = 1}.

An open problem from this paper would be to determine whether P (Γ)
and M(P ∗) coincide when the random variables A and B are discrete but not
simple. We conjecture that, if the initial probability space is non-atomic, we
have P (Γ) = M(P ∗): in the same way that many results for random sets on
finite spaces that can be extended to random sets on (N,P(N)), it might be
possible to extend the result from the previous theorem (where Γ is simple)
to the case of A,B discrete random variables (where, as a consequence, Γ has
countable range except for a null subset of the initial space).

29



Remark 4.1. In some situations, it may be useful to consider random intervals
with one extreme open and the other one closed, such as Γ2 = [A,B) or Γ3 =
(A, B] for some A,B : Ω → R with A < B (see for instance [24]). Using the
results from this paper, or straightforward adaptations of their proofs, we observe
the following:

• M(P ∗Γ2
) is the closed convex hull of P (Γ2) and, if the initial probability

space is non-atomic, then M(P ∗Γ2
) = P (Γ2).

• If FA is continuous, P (Γ2) is a proper subset of M(P ∗Γ2
).

• If A and B are simple random variables and the initial probability space
is non-atomic, P (Γ2) = M(P ∗Γ2

).

We can similarly derive properties for random intervals of the type (A, B], with
A,B : Ω → R and A < B. ¨

5 The connection with fuzzy numbers

As pointed our by several authors ([5, 26, 35]), random sets can be regarded
as a special case of fuzzy random variables, that is, measurable mappings
that point any element of the initial space to a fuzzy subset of the final space.
Such mappings can be also interpreted as a model of the imprecise observation
of a random variable. However, it is worth noting that particular instances of
random intervals have also been connected to fuzzy numbers. A fuzzy number
([12]) is a normal fuzzy set X̃ : R→ [0, 1] whose α-cuts are compact and convex
subsets of the real line. Remember that these α-cuts are given by X̃α = {x ∈
R : X̃(x) ≥ α}.

The connection between fuzzy numbers and random intervals is two-fold.
On the one hand, it is easy to see ([11, 12]) that if X̃ is a fuzzy number,
the multi-valued mapping Γ : [0, 1] → P(R) given by Γ(α) = X̃α is a fuzzy
(closed) interval. It satisfies moreover P ∗Γ({x}) = X̃(x), i.e., the one-point
coverage function of Γ on x coincides with its image by the fuzzy number. This
relationship has been studied further by Goodman ([14, 16]) and Gil ([13]).
In particular, in [13] it is proven that, given a fuzzy number X̃ and a fixed
probability space (Ω,A, P ), there exists a random interval on Ω whose one-
point coverage function coincides with X̃.

Conversely, we may also study whether we can define a fuzzy number from
a random interval. For instance, given an antitone random interval Γ : [0, 1] →
P(R) (i.e., such that ω1 ≤ ω2 ⇒ Γ(ω1) ⊇ Γ(ω2)), the fuzzy set X̃ : R → [0, 1]
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given by X̃(x) = P ∗({x}) is a fuzzy number. This was extended by Dubois
and Prade ([11]) to the case where the initial space is ([a, b], β[a,b],

λ[a,b]

b−a ). The
next result shows that something similar holds if Γ is defined on an arbitrary
probability space and is consonant, that is, if Γ(ω1) ⊆ Γ(ω2) or viceversa for
any ω1, ω2 in the initial space.

Proposition 5.1. Let (Ω,A, P ) be a probability space and consider a consonant
random interval Γ := [A,B]. Let us define X̃ : R → [0, 1] by X̃(x) = P ∗Γ({x}).
Then, X̃ is a fuzzy number.

Proof: Let us show that the α-cuts of X̃ are compact subsets of R.

• Consider x1 < x2 in X̃α. Then, min{P ∗({x1}), P ∗({x2})} ≥ α. Since
Γ is consonant, it is either {x1}∗ ⊆ {x2}∗ or viceversa. Then, given
ω ∈ {x1}∗∩{x2}∗, both x1, x2 belong to Γ(ω). Hence, [x1, x2] ∈ Γ(ω) and
consequently {x1}∗ ∩ {x2}∗ ⊆ {x}∗ for all x ∈ [x1, x2]. Hence, [x1, x2] ⊆
X̃α and the α-cuts are convex.

• Let us prove now that these α-cuts are bounded. Assume for instance that
sup X̃α = ∞. From the previous point, we deduce that it is P ∗({x}) ≥
α ∀x ≥ k for some k. But this means that given B = ∩n≥k,n∈N{n}∗, it is
P (B) = P (∩n≥k{n}∗) ≥ α > 0, because the consonancy of Γ implies that
the class {{x}∗ : x ∈ R} is totally ordered by set inclusion.

Now, any ω ∈ B satisfies x ∈ Γ(ω) ∀x ≥ k, whence [k, +∞) ⊆ Γ(ω), a
contradiction. Since the same can be done respect to inf X̃α, we deduce
that this set is bounded.

• Let us show finally that these α-cuts are closed. Consider for instance a
sequence (xn)n in X̃α s.t. xn ↓ x. Given ω ∈ ∩n{xn}∗ it is A(ω) ≤ xn ≤
B(ω) ∀n. Hence, it is A(ω) ≤ x ≤ B(ω), whence ∩n{xn}∗ ⊆ {x}∗. Hence,
P ∗({x}) ≥ P (∩n{xn}∗) ≥ α, using again that {{x}∗ : x ∈ R} is totally
ordered. Since the same can be done respect to increasing sequences, we
deduce that X̃α is closed.

It remains to be proven only that the fuzzy set X̃ is normal: since P ∗Γ is a
possibility measure ([32]), it is supx∈R P ∗({x}) = 1. Now, {X̃α : α ∈ (0, 1)} is
class of compact sets with the finite intersection property, whence there exists
some x0 ∈ ∩α∈(0,1)X̃α = X̃1, and then it must be P ∗({x0}) = 1. ¥

The interpretation of this result would be the following: since the member-
ship function of this fuzzy number coincides with the one-point coverage function
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of Γ, X̃(x) = P ∗Γ({x}) would be the plausibility we give to the proposition ‘x is
the image of a point ω by the original random variable U0’.

Since the upper probability of a consonant (in the sense defined above) ran-
dom interval is a possibility measure7, it is characterised by its one-point cover-
age function. Taking into account the duality between the upper and lower prob-
abilities induced by a random set, we see that X̃ allows us to recover P ∗Γ , P∗Γ.
On the other hand, since Theorem 3.2 guarantees that P ∗Γ(A) = max P (Γ)(A)
and P∗Γ = min P (Γ)(A) ∀A ∈ βR, we see that X̃ contains all the information
about the values taken by PU0

8.
Unfortunately, from the point of view of the results established in this pa-

per, consonant random intervals are not specially interesting: if we look at the
sufficient conditions for the equality P (Γ) = M(P ∗) in Section 4, it is easy to
check that a consonant random interval Γ : [0, 1] → P(R) does not satisfy any
of them unless one of the extreme random variables A, B is constant.

If, on the other hand, we do not assume Γ to be consonant, we cannot assure
the α-cuts of X̃ to be compact subsets of R: it suffices to make Γ = {U} for
some simple random variable U : Ω → X. Then, the α-cuts of the fuzzy set X̃

defined in Proposition 5.1 would be finite sets (whence not necessarily convex).
Moreover, for non-consonant random sets the upper probability will not be in
general a possibility measure, whence a representation of its one-point coverage
function in terms of a fuzzy set will produce in general a loss of information
about the distribution of the original random variable.

6 Conclusions

In this paper, we have compared two different models of the probabilistic infor-
mation of a random interval, interpreting this one as the result of the imprecise
observation of a random variable. We have studied whether the class of the
probability distributions of the measurable selections coincides with the class of
probabilities bounded by the upper probability. This last set is easier to handle
than the former, but it is less precise in general. We have focused our attention
on random closed intervals and random open intervals. We have proven that the
closures, in the topology of the weak convergence, of M(P ∗) and of P (Γ) coin-
cide when the initial probability space is non-atomic. Nevertheless, P (Γ) can be
a strict subset of M(P ∗). This means that, although the sets P (Γ) and M(P ∗)
are strongly related, the upper probability can cause a loss of precision respect to

7See a more complete study on this subject in [32].
8It is P (Γ)(A) = [P∗(A), P ∗(A)] ∀A ∈ βR whenever the initial probability space is non-

atomic; see [29].
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the class of probabilities induced by the measurable selections. Because of this,
we have investigated if additional hypotheses on the random variables A and B

determining the random interval guarantee the equality P (Γ) = M(P ∗). In the
case of random closed intervals, we have obtained some sufficient conditions in
terms of the relationships between the values of A and B. Concerning random
open intervals, we have proven that if both these extremes are simple random
variables and the initial probability space is non-atomic, then P (Γ) = M(P ∗).
On the other hand, we have also shown that P (Γ) is a proper subset of M(P ∗)
when either of the distribution functions of the extremes of the random interval
is continuous. All the conditions we have established for the equality between
P (Γ) and M(P ∗) require the initial probability space to be non-atomic. As
we have already said, this hypothesis is not too strict, and holds for instance
when we know that the probability distribution of the original random variable
is absolutely continuous. On the other hand, when the initial probability space
has atoms, we think that P (Γ) does not coincide with M(P ∗) except in very
particular cases.

These results lead us to conclude that the sets of probabilities P (Γ) and
M(P ∗) have a stronger relationship in the case of random intervals than in
other types of random sets: in general, a random set does not necessarily
have measurable selections, and even if it has, it may not satisfy the equal-
ities P ∗(A) = max P (Γ)(A) for all A in the final σ-field ([29]). Among the
open problems from this paper, we want to point out the study of the prop-
erties of random rectangles (that is, random sets Γ : Ω → P(Rn) defined as
Γ(ω) = [A1(ω), B1(ω)] × · · · × [An(ω), Bn(ω)] for Ai, Bi : Ω → R, Ai ≤ Bi ∀i).
This type of random sets could be of interest when we are observing several
characteristics of the elements of the same space. Concerning the connection
between random intervals and fuzzy sets, we would like to study the relationship
between random open intervals and fuzzy sets (not necessarily fuzzy numbers).
This would give a different perspective to the problem studied.
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In Séminaire de Probabilités 1969/1970, Strasbourg, volume 191 of Lecture
Notes in Mathematics, pages 77–81. Springer, Berlin, 1971.

[8] A. P. Dempster. Upper and lower probabilities induced by a multivalued
mapping. Annals of Mathematical Statistics, 38:325–339, 1967.

[9] A. P. Dempster. Upper and lower probabilities generated by a random
closed interval. Annals of Mathematical Statistics, 39:957–966, 1968.

[10] D. Denneberg. Non-additive measure and integral. Kluwer Academic Pub-
lishers, Dordrecht, 1994.

[11] D. Dubois and H. Prade. The mean value of a fuzzy number. Fuzzy Sets
and Systems, 24(3):279–300, 1987.

[12] D. Dubois and H. Prade. Fuzzy numbers: an overview. In J.C. Bezdek,
editor, Analysis of Fuzzy Information, Vol.1, pages 3–39. CRC Press, Boca
Raton, 1987.

[13] M. A. Gil. A note on the connection between fuzzy numbers and random
intervals. Statistics and Probability Letters, 13(4):311-319, 1992.

34



[14] I. R. Goodman. Fuzzy sets as equivalence classes of random sets. In R.R.
Yager, editor, Fuzzy Set and Possibility Theory: Recent Development, pages
327–343. Pergamon, Oxford, 1982.

[15] I. R. Goodman. Some new results concerning random sets and fuzzy sets.
Information Sciences, 34(2):93–113, 1984.

[16] I. R. Goodman and H. T. Nguyen. Uncertainty models for knowledge-based
systems. North-Holland, Amsterdam, 1985.

[17] M. Grabisch, H. T. Nguyen, and E. A. Walker. Fundamentals of uncertainty
calculi with applications to fuzzy inference. Kluwer Academic Publishers,
Dordrecht, 1995.
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