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Abstract. We call a conditional model any set of statements made of condi-

tional probabilities or expectations. We take conditional models as primitive
compared to unconditional probability, in the sense that conditional state-

ments do not need to be derived from an unconditional probability. We focus

on two problems: (coherence) giving conditions to guarantee that a condi-
tional model is self-consistent; (inference) delivering methods to derive new

probabilistic statements from a self-consistent conditional model. We address

these problems in the case where the probabilistic statements can be specified
imprecisely through sets of probabilities, while restricting the attention to fi-

nite spaces of possibilities. Using Walley’s theory of coherent lower previsions,

we fully characterise the question of coherence, and specialise it for the case
of precisely specified probabilities, which is the most common case addressed

in the literature. This shows that coherent conditional models are equiva-
lent to sequences of (possibly sets of) unconditional mass functions. In turn,

this implies that the inferences from a conditional model are the limits of the

conditional inferences obtained by applying Bayes’ rule, when possible, to the
elements of the sequence. In doing so, we unveil the tight connection between

conditional models and zero-probability events. Such a connection appears to

have been overlooked by most previous works on the subject, thus preventing
so far to give a full account of coherence and inference for conditional models.

1. Introduction

Motivation. This paper deals with conditional probability models, where these
are given without having to derive them from an unconditional probability. We
investigate the rules to deal with this kind of models. Let us start with a simple
example:

Example 1. Let X1, X2 be variables taking values in {1, 2}, about which you express
the conditional probabilities P (X1 = 1|X2 = 1) = 1 = P (X1 = 2|X2 = 2) and
P (X2 = 1|X1 = 2) = 1 = P (X2 = 2|X1 = 1). Unfortunately, this amounts to code
the contradictory statements X1 = X2 and X1 6= X2. �

This shows that when working with conditional probabilities we should make
sure that they are not expressing contradictions, which may not always be as easy
to spot as in this example.

One idea is to reject conditional probabilities for which there is not a ‘compat-
ible’ joint mass function: i.e., in the example we should require the existence of
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probabilities P (X1 = x1, X2 = x2), for all x1, x2 ∈ {1, 2}, that lead to the condi-
tional ones through Bayes’ rule. It can be checked that this allows us to detect the
contradiction in the above conditional probabilities.

Although this seems to be a useful necessary consistency condition, it still leaves
room for inconsistencies; consider the following example adapted from [27, Sec-
tion 7.3.5].

Example 2. Assume now that X1, X2 take values in {1, 2, 3}. You insist in coding
the contradictory statements X1 = X2 and X1 6= X2 on {1, 2}, while assuming in
addition that X1 = 3 if and only if X2 = 3. You express this by the conditional
probabilities P (X1 = 1|X2 = 1) = 1 = P (X1 = 2|X2 = 2), P (X2 = 1|X1 = 2) =
1 = P (X2 = 2|X1 = 1), and P (X1 = 3|X2 = 3) = 1 = P (X2 = 3|X1 = 3). It can be
checked that, contrary to what happened in Example 1, in this case the conditional
probabilities are compatible with a joint mass function: the one determined by
P (X1 = 3, X2 = 3) = 1. In fact, this is the only compatible joint. �

The key of this example is that the compatible joint assigns zero probability to
the conditioning events that are involved in the inconsistency. Therefore Bayes’ rule
cannot be used just when it would be much needed to find out the contradiction.

One question at this point would be if it is worth dealing with these, let us call
them, conditional models. After all, this type of models are not in the probability
mainstream. The influential Kolmogorovian tradition is focused on unconditional
probability as the primitive notion, and conditional probability as a derived one.
This viewpoint bypasses the question of zero probabilities because it forbids to
condition on events of probability zero. Moreover, since all the conditionals are
obtained from a global model in the form of an unconditional probability, the
question of originating contradictions is virtually not met.

However, for many researchers in probability, like de Finetti, and others in artifi-
cial intelligence (AI), it has made sense to take conditional probability as a primitive
concept. Quoting [26, pp. 360–361]:

“It is important to understand that even in the special case of conditional
probabilities de Finetti was not merely interested in the Kolmogorovian set-

up where conditional probability is defined from unconditional (σ–additive)
probability. De Finetti focused on functions P (·|·) such that P (·|A) is a (finitely

additive) probability measure for any event A, P (A|A) = 1 for any A, and

P (A∩B) = P (A|B)P (B) for any A and B. Such measures had been discussed
already by Keynes [15] and appeared (later than de Finetti’s first proposals) in

various works in different research areas [6, 10]. Many AI techniques connected

to ordinal uncertainty, default reasoning and counterfactual reasoning can be
linked to such measures [1, 5, 16]. We should note that these ‘full’ conditional

measures do allow one to define conditional probability P (A|B) even when

P (B) is equal to zero.”

In the statistical literature, these models, which go under the name of condi-
tionally specified distributions, have also been the subject of considerable attention
(e.g., see [2, 3, 4, 13, 30] and the references therein). The main reasons for this
attention are that conditional models arise somewhat naturally in the context of
subjective probability or within the AI community: it often makes sense to start
with any set of probabilistic premises, whether conditional or not, in order to de-
rive probabilistic conclusions. The Kolmogorovian setup may be seen as too narrow
within these frameworks.
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Nevertheless, the use of conditional models comes with the (possibly) contradic-
tory statements that may follow from conditioning on events of zero probability.
We think that this is a problem that should be properly dealt with, for several rea-
sons. One is that zero probabilities might be hidden within a problem formulation:
one can write down a certain number of probabilistic statements without becoming
aware that they imply some other probabilities to be equal to zero. Example 2 is a
simple instance of this situation. A standpoint with more of a philosophical flavor
is that the probability of an event being equal to zero does not imply that such an
event is not going to occur.1 And thirdly, conditioning on zero-probability events
is often unavoidable when we consider conditional models which are imprecisely
specified, which means that we consider thus sets of mass functions. In that case,
it may happen that some of them give zero probability to a conditioning event
while others do not; therefore it does make sense, and it is very often necessary, to
consider probabilities conditional on such an event, because it is consistent with an
assignment of positive probability, although it could actually be given probability
zero.

When all the assessments represented in some conditional models are consistent,
it becomes also interesting to investigate which are their implications. This is an-
other area where the presence of zero probabilities may complicate matters, because
most of the approaches are focused on the notion of compatibility, even when the
models are imprecisely specified, as in [3]. We shall find proper tools within the
literature of subjective probability: specifically, in de Finetti’s theory, and, more
recently, in the theories of imprecise probability proposed by Williams [31], and
later Walley [27].

Goal. Our aim in this paper is to provide results that tell us how we should work
with conditional models, and how to relate those theories to the question of com-
patibility, which is central to the more common treatments of conditional models.
We are particularly interested in two questions:

• When is a conditional model self-consistent? This question concerns the
issue of avoiding contradictions mentioned initially and more generally of
inconsistencies other than contradictions that can arise with these models.
• How should we make inferences with a conditional model? This question

concerns the logical derivation of new probabilities from an initial set of
conditional and unconditional probabilities.

We shall provide answers to these questions in the following, quite general, setup.
We consider variables X1, . . . , Xn taking values from respective sets X1, . . . ,Xn.
We assume these sets to be finite throughout the paper. The input probabilis-
tic information is provided through a collection of lower expectation functionals
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
). For the generic term P j(XOj

|XIj
), Oj , Ij are

disjoint subsets of {1, . . . , n}, with Oj 6= ∅; the symbols XOj , XIj denote vectors
defined by XOj

:= (Xk)k∈Oj
, XIj

:= (Xk)k∈Ij
,2 and taking values from the re-

spective sets XOj
:= ×k∈Oj

Xk,XIj
:= ×k∈Ij

Xk. For some random variable f of
XOj

, and z ∈ XIj
, P j(f |XIj

= z) defines the lower expectation of f conditional on
XIj

= z. We shall show in Section 2.4 that the generic functional P j(f |XIj
= z) is

in one-to-one correspondence with a closed and convex set of joint mass functions

1This is for instance the situation in continuous sample spaces.
2We use the symbol ‘:=’ to denote a definition.
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for XOj
, conditional on XIj

= z, in such a way that P j(f |XIj
= z) is actually

the lower envelope of the expectations obtained from such a set. This is to say
that, although we find convenient to formulate the problems using lower expecta-
tion functionals, our formulation is equivalent to one made of a collection of sets of
conditional mass functions.

We use sets of mass functions instead of single mass functions because we want
our results to be valid also in the case of imprecisely specified conditional models,
such as those in [3]. Of course, also the case of precise probability is encompassed
by our formulation by taking a single mass function in each set.

Using lower expectation functionals allows us in particular to make a bridge
between (imprecisely specified) conditional models and Walley’s theory of coher-
ent lower previsions [27]. In fact, a coherent lower prevision is nothing else but a
lower expectation functional. Walley’s theory can be regarded as a generalisation
of the Bayesian theory of probability (and statistics) to manage sets of probabili-
ties,3 which are also referred to as imprecise probabilities. We give an introductory
overview of Walley’s theory in Section 2. What is particularly interesting for our
work here is that Walley’s theory is founded on a notion of self-consistency, and
moreover that it defines inferential tools that can be readily applied to conditional
models.

Results. The central notion of self-consistency within the theory of coherent lower
previsions is called joint or strong coherence. It implies a notion called weak coher-
ence. What we show in Section 4 is that weak coherence precisely characterises the
notion of compatibility, even when this is extended to deal with imprecisely speci-
fied probabilities. But we know from Example 2 that compatibility is not sufficient
to rule out all inconsistencies. We shall see that the stronger concept of coherence
is what allows one to get rid also of the inconsistencies that arise on top of zero
probabilities.

Moreover, we note that in the case of precise probabilities, weak coherence is
equivalent to a simpler notion of consistency called avoiding uniform sure loss, and
coherence to another called avoiding partial loss. This allows us to give in Section 3
(Proposition 4) a specific characterisation of self-consistency for the precise case.

Regarding the second question related to probabilistic inference, we initially focus
in Section 4 on conditional models that admit a compatible joint P (X1, . . . , Xn).
When all the mass functions in the corresponding set assign positive probability
to the chosen conditioning event, it is possible to condition each of them in order
to obtain an updated set of mass functions. We shall show that this procedure
matches a procedure in Walley’s theory that relies on weak coherence and that we
call the weak natural extension; however, such a procedure is too weak as it can
lead to inferences that are excessively conservative.

Indeed, Walley’s theory focuses on a different inferential procedure that is based
on strong coherence and is called the natural extension. The natural extension is
shown by Walley to deliver the strongest least-committal inferences that logically
follow from a conditional model.4 The final part of this paper, in Section 5, is
concerned with our most important result, that is, relating the natural extension to

3The theory is developed also for infinite spaces of possibilities, not only for the finite case. In

that case the sets are made of finitely additive probabilities.
4This is not necessarily the case if the spaces of possibilities are infinite, although this situation

lies outside the scope of this paper.
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an improved form of compatibility that we define in this paper. This is important
because the intuition behind Walley’s procedure of the natural extension does not
easily carry over to more traditional approaches to probability; relating the natural
extension to a kind of compatibility makes it instead easier to access the rationale
and the implications of the natural extension.

To illustrate our result, we need first to introduce one more notion. Consider
a closed and convex set of joint mass functions for X1, . . . , Xn such that for any
event there is at least one mass function in the set that assigns positive probability
to it (in other words, the set assigns positive upper probability to every event).
We summarise the set by the lower expectation functional P (X1, . . . , Xn). Then
the conditional models derived from P (X1, . . . , Xn) by regular extension are those
obtained by applying Bayes’ rule whenever possible (that is, whenever the condi-
tioning event has positive probability) to the mass functions in the set.

We shall prove that any conditional model P 1(XO1 |XI1), . . . , Pm(XOm |XIm) is
strongly coherent if and only if there is a sequence of lower expectation functionals
P ε(X1, . . . , Xn), ε ∈ R+, that assign positive upper probability to each event,
and with the following property: P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are the limits,

when ε goes to zero, of P ε1(XO1 |XI1), . . . , P εm(XOm
|XIm

), the conditional model
obtain from P ε(X1, . . . , Xn) by regular extension. This means that any coherent
conditional model can be regarded as the limit of the conditionals obtained from a
sequence of sets of joint mass functions. It can be shown that the need of the limit
depends on the presence of zero probabilities.

Let us now focus on the natural extension. For any choice of Om+1, Im+1, disjoint
subsets of {1, . . . , n}, with Om+1 6= ∅, the natural extension is the strongest least-
committal lower expectation functional Pm+1(XOm+1 |XIm+1) that logically follows
from the conditional model P 1(XO1 |XI1), . . . , Pm(XOm |XIm). What we prove is
that Pm+1(XOm+1 |XIm+1) is nothing else but the limit of P εm+1(XOm+1 |XIm+1)
when ε goes to zero.

A useful way to interpret these results is to regard the conditional model as
actually equivalent to the sequence P ε(X1, . . . , Xn), ε ∈ R+. In a sense, this means
that we could forget about conditional models and just focus on a more familiar
framework made of (sets of) joint mass functions, although we need to consider
limits.

We should mention that ours is not the first work in this direction. A very
interesting paper by Walley, Pelessoni and Vicig [29] has introduced these ideas
originally in a more limited setup made of lower and upper probability functionals.
This is equivalent to focusing on special types of closed and convex sets of mass
functions, as lower and upper probability functionals are not as informative as lower
and upper expectation functionals. Moreover, the sets that correspond to lower and
upper probabilities can be represented as polytopes in the space that have a finite
number of vertices. This has allowed the authors of the mentioned paper to use
duality tools from linear programming to obtain their results.

In our framework this has not been possible, because the sets we deal with may
have an infinite number of vertices. This has required us to use mathematical tools
other than those in [29], such as a separation hyperplane theorem, which has made
the technical treatment somewhat more involved. We have opted then for clarity
to gather all the proofs of the statements in this paper in an Appendix.
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2. An overview of the theory of coherent lower previsions

In this section we give an overview of the theory of coherent lower previsions in
the case of finite spaces of possibilities.5 This is a theory of probability generalised
to handle imprecisely specified probabilities through sets of mass functions. Despite
being a theory of probability, its formulation may look unusual to the reader familiar
with more traditional ways to present probability, and this can make the theory
somewhat uneasy to access. Because of this fact, we shall point out here informally
some of the differences in the formulations, in order to help the reader have a
smoother start into the theory. In the remainder of the section we shall rigorously
state all the notions introduced here. We shall also use from now on the terminology
from Walley’s theory.

Probability theory is most often defined, after Kolmogorov, using a triple made
of a sample space, a sigma algebra, and a probability function P . The functions
from the sample space into the real numbers that are measurable with respect to the
sigma algebra are called random variables. The expectation of a random variable
is defined on the basis of the probability P . Conditional probability is also defined
using P but only when the conditioning event is assigned positive probability by
P .

The theory of coherent lower previsions has its focus on expectation rather than
probability. We still have the sample space (which is usually referred to as the pos-
sibility space). We also have a set of random variables, which are called gambles:
these are bounded functions from the possibility space to the real numbers. The
set of gambles does not need to be concerned with measurability questions, that
is, it can be chosen arbitrarily. Finally, a coherent lower prevision is defined as a
functional, from the set of gambles to the real numbers, that satisfies some ratio-
nality criteria. This function is conjugate to another that is called a coherent upper
prevision. The intuition behind the notions of coherent lower and upper previsions
is that of lower and upper expectation functionals.

In the theory of coherent lower previsions, probability is a derived notion: a
coherent lower probability is a coherent lower prevision defined on a set of indicator
functions of events. The conjugate function is called a coherent upper probabil-
ity. When a coherent lower prevision coincides with its conjugate coherent upper
prevision, we call it a linear prevision. In case it is applied to a set of indicator
functions, we are back to precise probability, which is indeed a special case of co-
herent lower previsions. Moreover, it can be shown that a linear prevision is in
one-to-one correspondence with a finitely additive probability, and that a lower
prevision is in one-to-one correspondence with a set of linear previsions. In other
words, a coherent lower prevision can be equivalently regarded as a set of finitely
additive probabilities.

In the conditional framework, the differences between the theories are even more
marked. In fact, a conditional lower prevision can be defined without any reference
to an unconditional one. It can even be defined when the conditioning event has
(lower or upper) probability equal to zero. In a sense, the notion of conditional
lower prevision is the fundamental one, and the unconditional notion is regarded

5We refer to [27] for an in-depth study of the theory in the general case, and to [19] for a
survey. We can also find in these works a detailed interpretation of the different notions we shall

introduce in terms of desirable buying and selling prices.
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as a special case. This change of perspective originates an issue that is not per-
ceived in the theories that regard conditional probability as a derived notion: that
when it is specified a set of conditional lower previsions, it is not guaranteed that
those conditionals are automatically self-consistent. This needs be imposed by a
further rationality notion called joint (or strong) coherence. Strong coherence can
be regarded as the unique axiom in the theory; all the properties of coherent lower
previsions can be derived from it, included the axioms of precise probability.

It has been shown that strong coherence is especially needed to rule out the
inconsistencies that may arise on top of events of zero probability (Example 2 is
just an instance of these problems). This aspect is perhaps one of the most peculiar
of the theory of coherent lower previsions, just because in other theories it is not
allowed to condition on events of probability zero. Even more, precise-probability
theories tend to regard such events as negligible. In contrast, this view is difficult
to justify in a theory of imprecise probability. This is because, for instance, the
fact that an event has zero lower probability only means that it is consistent with
zero probability, not that is must have probability equal to zero. Therefore those
events have to be admitted in the theory, and properly dealt with, which creates
some complications.

A final remark is on notation. A coherent lower prevision is usually denoted
by P , and a linear prevision by P . This can be confusing to the readers used to
reserve the symbol P for probability. We stress that, in the theory of coherent
lower prevision, whether or not P is referring to a probability is understood by
considering the gamble to which P is applied. If it is an indicator function, then
P expresses a probability. Analogous considerations hold for lower probabilities.
Also, in order to simplify the notation we shall identify any set A with the gamble
given by its indicator function.

2.1. Conditional lower previsions. Consider variables X1, . . . , Xn, taking val-
ues in respective finite sets X1, . . . ,Xn. For any non-empty subset J ⊆ {1, . . . , n}
we shall denote by XJ the (new) variable

XJ := (Xj)j∈J ,

which takes values in the product space

XJ := ×j∈JXj .

We shall also use the notation Xn for X{1,...,n}. This is going to be our possibility
space for the rest of the paper.

Remark 1. In the present formulation the possibility space is given some structure
using smaller possibility spaces related to variables X1, . . . , Xn. It is useful to point
out that the theory of coherent lower previsions can be formulated using a possibility
space defined directly without reference to an underlying set of variables, as it is
done by Walley in his seminal book, for instance. Such a formulation is somewhat
more elegant, and also more expressive as the possibility space does not need to
be a product space. On the other hand, the formulation made of variables makes
it easier to connect the theory with the several probabilistic and statistical models
that are naturally formulated using variables (e.g., see [23, 33]), and hence can be
more easily exploited by many common models and applications. �
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For any J ⊆ {1, . . . , n}, a gamble on XJ is a bounded real-valued function on
XJ 6.

Definition 1. Let J be a subset of {1, . . . , n}, and let πJ : Xn → XJ be the so-called
projection operator, i.e., the operator that drops the elements of a vector in Xn that
do not correspond to indexes in J . A gamble f on Xn is called XJ -measurable when
for all x, y ∈ Xn, πJ(x) = πJ(y) implies that f(x) = f(y).

This notion means that the value f takes depends only on the components of
x ∈ Xn that belong to the set J . There is a one-to-one correspondence between
the gambles on Xn that are XJ -measurable and the gambles on XJ . For the aims
of this paper there is no restriction of generality in identifying a gamble on XJ
with the corresponding XJ -measurable gamble. Therefore all the gambles we shall
deal with will be defined on Xn.7 In particular, we shall denote by KJ the set of
XJ -measurable gambles.

Consider two disjoint subsets O, I of {1, . . . , n}, with O 6= ∅. A conditional
lower prevision P (XO|XI) is a functional defined on a subset HO∪I of the set of
XO∪I -measurable gambles KO∪I , such that for every gamble f ∈ HO∪I , P (f |XI)
is a mapping between XI and the reals. In particular, for every element z ∈ XI ,
P (f |XI = z) is understood as the lower expectation of f conditional on XI = z.
Note that we are not placing restrictions on the set HO∪I of gambles. We shall also
use the notations

G(f |z) := π−1
I (z)(f − P (f |z)), G(f |XI) :=

∑
z∈XI

G(f |z) = f − P (f |XI)

for all f ∈ KO∪I and all z ∈ XI . These are XO∪I -measurable gambles, too.

2.2. Consistency notions. Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be conditional
lower previsions with respective domains H1, . . . ,Hm ⊆ L(Xn), where Hj is a sub-
set of the set Kj of XOj∪Ij -measurable gambles,8 for j = 1, . . . ,m. As discussed at
the beginning of Section 2, we need to impose the requirement that these conditional
lower previsions are self-consistent.

Definition 2. P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are (strongly) coherent when for
every fkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj , and for every j0 ∈ {1, . . . ,m}, f0 ∈
Hj0 , zj0 ∈ XIj0

,

max
x∈π−1

Ij0
(zj0 )∪S(fk

j )

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)−Gj0(f0|zj0)

 (x) ≥ 0. (1)

Here, S(fkj ) := ∪mj=1 ∪
nj

k=1 Sj(f
k
j ) denotes the elements x ∈ Xn in the union of

the supports. The XI -support S(f) of a gamble f in KO∪I is given by

S(f) := {π−1
I (z) : z ∈ XI , fπ−1

I (z) 6= 0},
i.e., it is the set of conditioning events for which the restriction of f is not identically
zero.

6Since in this paper we assume that the sets XJ are finite for all J , a gamble on XJ will be
simply a real-valued function on XJ .

7This will also be the case when, by an abuse of notation, we shall consider gambles on XJ .
8We use Kj instead of KOj∪Ij

in order to alleviate the notation when no confusion is possible

about the variables involved.



CONDITIONAL MODELS: COHERENCE AND INFERENCE 9

In some cases we shall focus on the set of z ∈ XI s.t. π−1
I (z) ∈ S(f). To keep

things simple, we shall make an abuse of notation by writing them as z ∈ S(f),
despite S(f) contains subsets of Xn, not elements of XI .

The notion of coherence is the strongest consistency notion we shall use in this
paper. Detailing the motivations behind coherence is out of the scope of this paper;
we instead refer to [27, Section 7.1.4(b)] for a detailed description and justification
of this notion. As we have already mentioned, coherence can be taken as the unique
axiom in the theory of coherent lower previsions: all the more familiar properties
of probability follow from it, as well as many others. Below we list some weaker
consistency criteria implied by coherence.

In the particular case where we have only one conditional lower prevision, the
notion of strong coherence is called separate coherence:

Definition 3. A conditional lower prevision P (XO|XI) with domain HO∪I is sep-
arately coherent if for every z ∈ XI , the gamble π−1

I (z) belongs to HO∪I and
P (π−1

I (z)|z) = 1, and moreover

max
x∈π−1

I (z)

∑̀
j=1

λjG(fj |z)−G(f0|z)

 (x) ≥ 0

for every ` ∈ N, fj ∈ HO∪I , λj ≥ 0, j = 1, . . . , `, f0 ∈ HO∪I .
Theorem 1. [27, Theorem 6.2.7] When the domain HO∪I is a linear set of gambles
(i.e., closed under addition and multiplication by real numbers), separate coherence
holds if and only if the following conditions are satisfied for all z ∈ XI , f, g ∈ HO∪I ,
and λ > 0:

P (f |z) ≥ min
x∈π−1

I (z)
f(x) (SC1)

P (λf |z) = λP (f |z) (SC2)

P (f + g|z) ≥ P (f |z) + P (g|z). (SC3)

Separate coherence is necessary and sufficient to deduce that for all z ∈ XI ,
P (XO|XI = z) is in one-to-one correspondence with a set of conditional mass
functions. We detail this aspect in Section 2.4.

Remark 2. As a side comment, which is however useful for our future developments,
it is possible to deduce from Definition 3 that given a separately coherent condi-
tional lower prevision P (XO|XI), we may assume without loss of generality that its
domain HO∪I contains all the gambles λf−µ for every f ∈ HO∪I , λ ≥ 0 and µ ∈ R,
and moreover that for each z ∈ XI , fz ∈ HO∪I , also the gamble

∑
z∈XI

fzπ
−1
I (z)

belongs to HO∪I (see, for example, [27, Section 6.2.4]). We shall hold these as-
sumptions about HO∪I throughout the paper, unless stated otherwise. They imply
that the XI -measurable gambles are in HO∪I , and moreover that

• for all f ∈ HO∪I , z ∈ XI , both G(f |z) and G(f |XI) belong to HO∪I ;
• for all f ∈ HO∪I , z ∈ XI , λ ≥ 0, λG(f |z) = G(λf |z) and λG(f |XI) =
G(λf |XI).

The second point in particular will allow us to simplify the notation by removing
the λ-coefficients from many formulae. �

In general, a number of conditional lower previsions can be separately coherent
but not strongly coherent. Three intermediate consistency conditions, implied by
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strong coherence as well, are introduced in the following definition (see [27, Sec-
tion 7.1] for more details). We need these intermediate definitions in the paper
because it is through them that we shall be able to make connections between
known concepts in conditional models and coherent lower previsions.

Definition 4. Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be a number of separately co-
herent conditional lower previsions with domains Hj ⊆ Kj for j = 1, . . . ,m.

(1) They avoid uniform sure loss if for every fkj ∈ Hj , j = 1, . . . ,m, k =
1, . . . , nj ,

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)

 (x) ≥ 0.

(2) They avoid partial loss if for every fkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj
such that not all the fkj are zero gambles,

max
x∈S(fk

j )

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj )

 (x) ≥ 0,

where S(fkj ) = ∪mj=1 ∪
nj

k=1 Sj(f
k
j ), as in Definition 2.

(3) They are weakly coherent if for every fkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj ,
and for every j0 ∈ {1, . . . ,m}, f0 ∈ Hj0 , zj0 ∈ XIj0

,

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)−Gj0(f0|zj0)

 (x) ≥ 0. (2)

Condition 1 prevents one from expressing (a severe type of) contradictions using
coherent lower previsions.9 It is equivalent to the non-emptiness of a certain set
of probabilities, as shown in Proposition 2 in Section 3. Condition 2 strengthens
the previous one by taking the maximum over the union of the supports. It can
be shown that this permits excluding the contradictions that can be originated
through events of probability zero, and that are not handled properly by the previ-
ous condition. Still, a collection of conditional lower previsions may not give rise to
contradictions, and hence can avoid uniform sure loss, but be inconsistent, in the
sense that the logical implications of some of them can be used to force a change in
one of the others. This is avoided using Condition 3. However, a number of weakly
coherent conditional lower previsions can still present some forms of inconsistency
with one other. See [27, Chapter 7], [20] and [29] for some discussion. This is again
related to zero probabilities, as weak coherence inherits from avoiding uniform sure
loss the inability to cope with them effectively. To avoid also those, one needs
strong coherence.

2.3. Unconditional models. It is useful for this paper to consider the particular
case where I = ∅. We have then an (unconditional) lower prevision P (XO) on a
subset HO of the set KO of XO-measurable gambles. Separate coherence is called
in that case coherence:

9Those contradictions could in principle be exploited in a betting system to give rise to a sure
loss. This explains the origin of the condition’s name.
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Definition 5. A lower prevision P (XO) with domain HO is coherent if for every
` ∈ N, f0, f1, . . . , f` ∈ HO and λ1, . . . , λ` ≥ 0, it holds that

max
x∈Xn

∑̀
j=1

λjG(fj)−G(f0)

 (x) ≥ 0.

Theorem 2. [27, Theorem 2.5.5] When the domain HO is a linear set of gambles,
coherence holds if and only if the following conditions hold for all f, g ∈ HO, and
λ > 0:

P (f) ≥ min f (C1)

P (λf) = λP (f) (C2)

P (f + g) ≥ P (f) + P (g). (C3)

An example of a coherent lower prevision is the vacuous lower prevision P (XO)
given by P (f) := minx∈XO

f(x) for every f ∈ KO. This is a model for ignorance as
it only states that XO belongs to XO, and can indeed be shown to be equivalent to
the set of all mass functions for XO.

2.4. Linear previsions and envelope theorems. Let us focus on a very impor-
tant special case of lower previsions, that of linear previsions.

Definition 6. We say that a conditional lower prevision P (XO|XI) on the set KO∪I
10 is linear if and only if it is separately coherent and moreover P (f + g|z) =
P (f |z) + P (g|z) for all z ∈ XI and f, g ∈ KO∪I .

When a separately coherent conditional lower prevision P (XO|XI) is linear we
shall denote it by P (XO|XI); in the unconditional case, we shall use the notation
P (XO) when the domain is the set KO of XO-measurable gambles and simply P
when the domain is the set L(Xn) of all gambles.

With linear previsions, the consistency notions can be formulated entirely in
terms of losses, as we state in the following proposition.

Proposition 1. [27, Section 7.1.4] A number of conditional linear previsions are
coherent if and only if they avoid partial loss; and they are weakly coherent if and
only if they avoid uniform sure loss.

Conditional linear previsions correspond to expectations with respect to a con-
ditional probability. They are the precise models, in contradistinction with the
imprecise models represented by conditional lower previsions. In particular, an un-
conditional linear prevision P is the expectation with respect to the probability
which is the restriction of P to events. For conditional linear previsions there is no
difference between working with events (probabilities) or gambles (expectations),
as one model is uniquely determined by the other (see [27, Section 2.8]). Such an
equivalence does not hold any longer when we have conditional lower previsions,
and this is the reason why the theory is formulated in general in terms of gambles.

The following result gives a characterisation of the coherence of a linear condi-
tional and a linear unconditional prevision:

10We shall always assume for mathematical convenience in this paper that the domain of a
conditional linear prevision P (XO|XI) is the whole set KO∪I of XO∪I -measurable gambles. This

will be sufficient for the results we develop.
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Theorem 3. [27, Theorem 6.5.7] If we have a linear prevision P and a linear
conditional prevision P (XO|XI), they are coherent if and only if for all XO∪I-
measurable f , P (f) = P (P (f |XI)). This is equivalent to requiring that P (f |z) =
P(fπ−1

I (z))
P (z) for all f ∈ KO∪I and all z ∈ XI with P (z) > 0.

One of the nice features of the notion of coherence is that it can be given a
Bayesian sensitivity analysis interpretation. Given an unconditional lower prevision
P with domain H, we shall denote the set of dominating linear previsions by

M(P ) := {P : P (f) ≥ P (f) ∀f ∈ H}.
A closed11 and convex12 set of linear previsions is also called a credal set [18]; an
instance is the setM(P ), that we shall call the credal set associated to P . Given that
a linear prevision is in one-to-one correspondence with a probability mass function,
the credal setM(P ) is precisely the set of mass functions that we mentioned in the
Introduction and that is associated to P . Similarly, for a conditional lower prevision
P (XO|XI) with domain HO∪I , we define the credal set associated to P (XO|XI) as

M(P (XO|XI)) := {P (XO|XI) : P (f |z) ≥ P (f |z) ∀f ∈ HO∪I , z ∈ XI}.
The following result allows us to use lower previsions in the place of sets of mass

functions, and vice versa.

Theorem 4. [27, Theorem 3.3] An unconditional lower prevision P is coher-
ent if and only if it is the lower envelope of M(P ). A conditional lower previ-
sion P (XO|XI) is separately coherent if and only if it is the lower envelope of
M(P (XO|XI)).13

The situation when we have more than one conditional lower prevision is as
follows.

Theorem 5. [27, Theorem 8.1.10] When the referential spaces are finite and the
domains are linear spaces, coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the en-
velope of a set {Pγ(XO1 |XI1), . . . , Pγ(XOm |XIm) : γ ∈ Γ} of dominating coherent
conditional linear previsions.

In [20], a similar result was established for weak coherence. In Section 4 we shall
generalise this second property to arbitrary domains. Taking this into account, we
can see conditional lower previsions as a form of representing imprecisely specified
conditional models, by taking the lower envelopes of the set of possible models.
In the rest of this paper we shall give representations of the consistency notions
introduced in Definitions 2 and 4 in terms of sets of mass functions.

2.5. Generalised Bayes Rule and compatibility. An unconditional lower pre-
vision can be updated through a generalisation of Bayes’ rule.

Theorem 6. [27, Theorems 6.4.1 and 6.5.7] When we are given only an uncondi-
tional lower prevision P on L(Xn) and a conditional lower prevision P (XO|XI) on

11In the weak* topology, which is the smallest topology for which all the evaluation functionals

given by f(P ) := P (f), where f ∈ L(Xn), are continuous.
12That is, for all linear previsions P1, P2 in the set and all α ∈ (0, 1), the linear prevision

αP1 + (1− α)P2 also belongs to this set.
13This is a bit of an abuse of notation, since actually for every z ∈ XI the setM(P (XO|z)) is

a set of linear previsions.
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KO∪I , weak and strong coherence are equivalent, and they hold if and only if, for
all XO∪I-measurable gambles f and all z ∈ XI ,

P (G(f |z)) = 0. (GBR)

This is called the Generalised Bayes Rule (GBR). When P (z) > 0, GBR can be
used to determine the value P (f |z), as it is the unique value for which P (G(f |z)) =
P (π−1

I (z)(f − P (f |z))) = 0 holds.

GBR can be given a sensitivity analysis interpretation, thanks to the next result.

Theorem 7. [27, Theorem 6.4.2] Using GBR when P (z) > 0 to determine the value
P (f |z) is equivalent to applying Bayes’ rule to each element of M(P ) in order to
produce the set of posteriors (note that when P (z) > 0 the conditioning event has
positive probability for all the elements of M(P )).

This rule allows us to introduce the notion of compatibility of a number of
conditional models:14

Definition 7. Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be a number of separately co-
herent conditional lower previsions with domains Hj ⊆ Kj for j = 1, . . . ,m, and let
P be a coherent lower prevision on L(Xn). We say that P is a compatible joint lower
prevision (or a compatible joint, for short) for P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
when for every j ∈ {1, . . . ,m}, zj ∈ XIj s.t. P (XIj = zj) > 0 and fj ∈ Hj ,
P j(fj |zj) can be derived from P by the Generalised Bayes Rule.

It is interesting for the purposes of this paper to note that the weak coherence of
a number of conditional lower previsions is related to the existence of a compatible
joint. This matter has been investigated in [23, Section 8], and we shall come back
to this in Section 4 of this paper.

In this paper, we shall also use another possibility for defining conditional lower
previsions in a coherent way, called the regular extension.

Definition 8. Given a set M of linear previsions and disjoint O, I, O 6= ∅, the
regular extension R(XO|XI) is given by

R(f |z) := inf
{
P (fπ−1

I (z))
P (z)

: P ∈M, P (z) > 0
}

(3)

for every z ∈ XI , f ∈ KO∪I . This amounts to applying Bayes rule to the dominating
linear previsions whenever possible (i.e., disregarding the linear previsions that
assign zero probability to the conditioning event).

The regular extension has been proposed and used a number of times in the
literature as an updating rule [8, 9, 11, 14, 27, 28]. A comparison with natural
extension (and hence with GBR) in the finite case has been made in [20].

2.6. Extensions to larger domains. We focus now on extending conditional
lower previsions to larger domains using only their coherent implications.

Definition 9. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent condi-
tional lower previsions with domains Hj ⊆ Kj for j = 1, . . . ,m and avoiding partial

14This notion coincides with that anticipated in the Introduction, despite the slightly different
form.
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loss. Their natural extensions to K1, . . . ,Km are defined, for every f ∈ Kj and
every zj ∈ X j , by

Ej(f |zj) = sup{α : ∃fki ∈ Hi, i = 1, . . . ,m, k = 1, . . . , ni s.t.[
m∑
i=1

ni∑
k=1

Gi(fki |XIi
)− π−1

Ij
(zj)(f − α)

]
< 0 on S(fki ) ∪ π−1

Ij
(zj)}, (4)

where S(fkj ) = ∪mj=1 ∪
nj

k=1 Sj(f
k
j ), as usual.

Theorem 8. [21, Proposition 11] When all the conditioning spaces are finite, the
natural extensions are the smallest conditional lower previsions which are coherent
and dominate P 1(XO1 |XI1), . . . , Pm(XOm |XIm) on their domains. Moreover, they
coincide with the initial assessments if and only if P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)

are themselves coherent. Otherwise, they ‘correct’ the initial assessments taking into
account the implications of the notions of coherence.

In other words, the natural extension is a procedure that yields the strongest
least-committal implications of the original assessments that follow from consider-
ations of coherence alone. In Section 4 we shall investigate the counterpart of this
notion when we focus instead on the property of weak coherence.

3. Characterising avoiding uniform sure loss and avoiding partial
loss

At this point, we start providing results in the theory of coherent lower previ-
sions that help us connect it to conditional models. We focus initially on the two
consistency notions called avoiding uniform sure loss and avoiding partial loss.

Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent conditional lower
previsions with respective domains H1, . . . ,Hm, where Hj is a (not necessarily
linear) subset of the class Kj of XOj∪Ij

-measurable gambles.
Our first result shows that the notion of avoiding uniform sure loss is equivalent

to the existence of dominating weakly coherent linear previsions. It is an extension
of [23, Proposition 5] to arbitrary domains. This result is particularly important for
the traditional approaches to conditional models, because, as it will become clearer
when we characterise weak coherence in Section 4, it shows that avoiding uniform
sure loss is equivalent to the existence of a set of joint mass functions compatible
with the credal sets of conditional mass functions associated to the conditional
lower previsions.

Proposition 2. P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) avoid uniform sure loss if and
only if there are dominating weakly coherent conditional linear previsions with do-
mains K1, . . . ,Km.

This result will be used in Section 4 when we study the smallest dominating
weakly coherent lower previsions (which will be showed to be equivalent to the
set of joint mass functions compatible with P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)). It

follows that avoiding uniform sure loss is a necessary and sufficient condition for
the existence of such lower previsions. Since moreover we shall prove in Lemma 2
that weak coherence is preserved by taking lower envelopes when all the referential
spaces are finite (as it is always the case in this paper), we deduce that a way of
computing the smallest dominating weakly coherent lower previsions is to take the
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lower envelopes of the (non-empty) sets of weakly coherent dominating conditional
linear previsions.

We have already argued that avoiding uniform sure loss (and its counterpart,
that is, weak coherence) is not able to properly deal with all inconsistencies. For
this reason, we focus next on the stronger notion of avoiding partial loss (and hence
on the related notion of strong coherence). It follows from [27, Section 8.1] that
when all the referential spaces are finite and the domains are linear spaces, the
notion of avoiding partial loss is equivalent to the existence of dominating coherent
linear conditional previsions. For the sake of completeness, we give an explicit proof
of this result and generalise it to non-linear domains. First, we introduce a lemma.

Lemma 1. Assume that P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) avoid partial loss, and
let E1(XO1 |XI1), . . . , Em(XOm |XIm) be their natural extensions to K1, . . . ,Km.
Then E1(XO1 |XI1), . . . , Em(XOm |XIm) are coherent.

From this lemma, we deduce the following:

Proposition 3. P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) avoid partial loss if and only if
there are dominating coherent conditional linear previsions with respective domains
K1, . . . ,Km.

This result is similar in spirit to that in Proposition 2, and they both show
similar connections between their respective loss and coherence notions. On the
other hand, the connection of this result with conditional models will be made in
Section 5, where we characterise coherence through sequences of set of joint mass
functions.

We provide next another characterisation, which has more of a technical flavor,
and where we can find some of the ideas we shall use in our approximation of the
natural extension in Section 5.

Proposition 4. P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid partial loss if and only if
for any ε > 0, fkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj such that not all fkj are zero
gambles, it holds that

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj ) + εR(fkj )Sj(fkj )

 (x) > 0, (5)

where R(fkj ) := max fkj −min fkj is the range of the gamble fkj .

Hence, by introducing these ε-terms, we can replace the maximum on the union
of the supports with a maximum on Xn.

Note also that Equation (5) is equivalent to requiring that

max
x∈Xn

 m∑
j=1

nj∑
k=1

λkj (Gj(fkj |XIj
) + εR(fkj )Sj(fkj ))

 (x) > 0, (6)

for any ε > 0, fkj ∈ Hj , λkj ≥ 0, j = 1, . . . ,m, k = 1, . . . , nj such that not all λkj f
k
j

are zero gambles: it suffices to note that the gambles λkj f
k
j belong to Hj for all

j = 1, . . . ,m, k = 1, . . . , nj because of Remark 2, and that

λkj (Gj(fkj |XIj
) + εR(fkj )Sj(fkj )) = Gj(λkj f

k
j |XIj

) + εR(λkj f
k
j )Sj(λkj f

k
j )).
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Expression (6) will be useful later (to prove Proposition 10, stated in Section 5) to
relate Proposition 4 to the weak coherence of some approximations of our condi-
tional lower previsions.

4. Extensions of weakly coherent conditionals

We focus next on the notion of weak coherence of a number of conditional lower
previsions. The results in this section are particularly important to relate coherent
lower previsions to the traditional approaches to conditional models. The reason
is, as it follows from Theorem 9, that weak coherence is equivalent to the existence
of a set of joint mass functions from which the conditional mass functions can be
recovered through Generalised Bayes Rule. Moreover, using this set of joint mass
functions to make new inferences is equivalent to a procedure called weak natural
extension in Theorem 10. That this procedure is sub-optimal will be shown in
Section 5.

We begin by providing a characterisation of weak coherence and determining the
smallest (unconditional) coherent lower prevision which is weakly coherent with
a number of conditionals. This is an extension of [20, Theorem 3] to arbitrary
domains:

Theorem 9. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent condi-
tional lower previsions with domains H1, . . . ,Hm. The following are equivalent:

(WC1) They are weakly coherent.
(WC2) There is a coherent lower prevision P on L(Xn) which is weakly coherent

with them.
(WC3) There is a coherent lower prevision P on L(Xn) which is pairwise coherent

with them.

Moreover, the smallest coherent lower prevision in (WC2) and (WC3) is given by

P (f) = sup{α : ∃fkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj s.t.

max
x∈Xn

[
m∑
j=1

nj∑
k=1

G(fkj |XIj )− (f − α)](x) < 0} (7)

for any gamble f on Xn.

The connection between weak coherence and conditional models is given in this
theorem by (WC3). In fact, we know from Theorem 6 that an unconditional lower
prevision, i.e., a set of unconditional joint mass functions, is coherent with a con-
ditional one if and only if they are related to each other via the Generalised Bayes
Rule. Therefore what (WC3) is saying is that P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
are weakly coherent if and only if there is an unconditional lower prevision from
which they can be obtained through GBR. Moreover, the least-committal such a
lower prevision is given by Expression (7).

We can also give the following characterisation, which extends the envelope the-
orem in [20, Theorem 2] to arbitrary domains.

Lemma 2. P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent if and only if
they are the lower envelopes of a class of weakly coherent conditional linear previ-
sions {Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
) : λ ∈ Λ} with domains K1, . . . ,Km.
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This means that if we take a number of precise-probability conditional models,
each one admitting a compatible joint, by taking their lower envelope we obtain
an imprecise-probability conditional model that has a compatible joint. And con-
versely, an imprecise-probability conditional model that has a compatible joint,
must be the lower envelope of precise-probability conditional models that admit a
compatible joint.

We summarise the relationships between the different consistency conditions
analysed so far in the following figure.

-� Env. of SC PreciseSC

Env. of WC PreciseWC Dom. by SC PreciseAPL

Dom. by WC PreciseAUSL

-� -�

-�

/ ^

/^

Figure 1. Equivalences and implications between consistency
concepts analysed in the paper. Keys: SC = strongly coher-
ent; WC = weakly coherent; AUSL = avoiding uniform sure loss;
APL = avoiding partial loss; Env. = envelope; Dom. = dominated.

It is useful at this point to compare the functional P defined in Equation (7)
with the unconditional natural extension E of P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
),

that we should define using Equation (4). In order to do this, we should consider
Om+1 = {1, . . . , n}, Im+1 = ∅ and add P (XOm+1) to our set of gambles with the
trivial domain given by the constant gambles. For this discussion to make sense, we
are going to assume also that P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) avoid partial loss

and are weakly coherent.
We see from [21, Theorem 12] that in that case the functionals P and E coincide.

In a sense, then, weak and strong coherence lead to the same result when the
focus is on deducing an unconditional lower prevision: the unconditional natural
extension E is the smallest unconditional lower prevision which is weakly coherent
with P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
); and it is coherent with them if and only if

the initial assessments are coherent. This is stated in the following result, which
is a trivial consequence of [21, Theorem 4]; its proof is immediate and therefore
omitted.

Corollary 1. Assume that P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) avoid partial loss and
are weakly coherent. The functional P given by Equation (7) is the smallest coherent
lower prevision which is coherent with P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) if and only

if these conditional previsions are coherent.

Given P 1(XO1 |XI1), . . . , Pm(XOm |XIm) with domains K1, . . . ,Km, a sufficient
condition for their coherence is that P (zj) > 0 for all zj ∈ XIj

and for all j =
1, . . . ,m [20, Theorem 11].15 This leads to an important consideration. Sup-
pose that the unconditional lower prevision P in Expression (7) assigns positive

15On the other hand, in [20, Example 2] we can find an example of assessments which avoid
partial loss and are weakly coherent, but are not coherent.
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lower probability to every event. Then there is a unique way to deduce con-
ditionals from it through GBR. Given (WC3) in Theorem 9, this means that
P 1(XO1 |XI1), . . . , Pm(XOm |XIm) can be obtained exactly as they are through P .

In other words, in this case the credal sets of conditional mass functions associ-
ated to the conditional lower previsions are equivalent in every respect to the credal
set associated to an unconditional lower prevision. This is true even for inference,
as it follows from Theorem 10 below: the new conditional mass functions that we
can deduce applying Bayes’ rule to the credal set associated to the joint have to
coincide with those that can be obtained from the conditional model through coher-
ence. This is stated more strongly also in Proposition 11, which we shall establish
in Section 5. All of this means, in a sense, that one could forget in this case about
the sets of conditional mass functions associated to the conditional lower previsions
and just focus on the set of mass functions associated to their compatible joint.
This shows that the key difference between conditional models and models based
on joint mass functions is due to the presence of zero probabilities.

Assume that we have a number of weakly coherent conditional lower previsions
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
), and that given disjoint Om+1, Im+1, we want to

determine the smallest conditional lower prevision Pm+1(XOm+1 |XIm+1) which is
weakly coherent with the rest. Our next result shows that it suffices to go through
the unconditional lower prevision given by Equation (7):

Theorem 10. Assume that P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid partial loss
and are weakly coherent. The smallest Pm+1(XOm+1 |XIm+1) with domain Km+1

which is weakly coherent with P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) is given by

Pm+1(f |zm+1) :=

{
minx∈π−1

Im+1
(zm+1) f(x) if P (zm+1) = 0

min{P (f |zm+1) : P ∈M(P )} otherwise,
(8)

where P is the coherent lower prevision defined in Equation (7).

Recall that M(P ) is the set of linear previsions that dominate P in its do-
main (in this case, all of L(Xn)). The conditional prevision P (f |zm+1) is given

by P (f |zm+1) =
P (fπ−1

Im+1
(zm+1))

P (zm+1) : note that it is possible to do so because in that
part of Equation (8) we are assuming that P (zm+1) > 0, which guarantees that
P (zm+1) is also greater than 0 for every linear prevision P that dominates P .
We shall refer to the functional in Equation (8) as the weak natural extension of
P 1(XO1 |XI1), . . . , Pm(XOm |XIm).

Despite the apparent unfamiliar form, the weak natural extension is perhaps one
of the most used procedures for probabilistic inference. It consists in building a
joint out of a number of probabilistic assessments and updating it whenever the
conditioning event has positive (lower) probability. In case of zero probability, the
weak natural extension leads to a vacuous conditional, while it is perhaps more
common in probability to simply let the conditional be undefined. The difference
is not so much if we consider that the vacuous lower previsions is a model of
ignorance, whence what the weak natural extension states in this case is that we
have no information a posteriori. On the other hand, the vacuous model creates
conditionals that are fully within the theory of coherent lower previsions, and thus it
does not lead to undefined objects. All of this shows in particular that deducing new
conditional probabilities or expectations from conditional models through the set
of compatible joints and GBR, is basically what we call the weak natural extension.
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Our result stresses in addition that the weak coherence of a number of conditional
lower previsions can be summarised by an unconditional lower prevision.

Now, let us consider what happens if instead of deducing a new conditional
through the weak natural extension above, we use the procedure of natural exten-
sion.

Proposition 5. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be weakly coherent condi-
tional lower previsions with domains H1, . . . ,Hm, and let Em+1(XOm+1 |XIm+1) be
defined on Km+1 by Equation (4). Then

P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

), Em+1(XOm+1 |XIm+1) are weakly coherent.

In particular, if P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are coherent, it follows from
the results in [21] that Em+1(XOm+1 |XIm+1) is the smallest conditional lower pre-
vision that is coherent with them.

However, Em+1(XOm+1 |XIm+1) may be strictly greater than the conditional
lower prevision Pm+1(XOm+1 |XIm+1) derived in Equation (8). In other words,
the smallest conditional lower prevision which is weakly coherent with the initial
assessments may be strictly smaller than the smallest conditional lower prevision
which is coherent with the initial assessments. This is a crucial point: it means
that the inferences that we do from a conditional model through the set of compat-
ible joint mass functions are generally not strong enough; we can obtain stronger
conclusions, while still working on the side of least-committal inference, by the
procedure of natural extension.

In the next example we show that the natural and the weak natural extensions
may differ completely also when the initial lower previsions are coherent, and that
this may happen even when we consider linear previsions.

Example 3. Consider X1, X2 taking values in X := {1, 2}. Define linear previsions
P1(X1), P2(X2|X1) through the assessments P1(X1 = 1) := 1, P2(X2 = 1|X1 =
1) := 0.5, P2(X2 = 1|X1 = 2) := 1. These two previsions are coherent because they
satisfy the hypotheses of the Marginal Extension Theorem (see [27, Theorem 6.7.2]
and [22, Theorem 4] for its formulation in terms of variables). Moreover, it follows
from [27, Theorem 6.7.3] that there is a unique joint coherent with them: the linear
prevision P given by P := P1(P2(X2|X1)). Since in this case P1(X1), P2(X2|X1) are
weakly coherent if and only if they are coherent, we deduce that P coincides with the
functional defined in Theorem 9. This joint satisfies P (X1 = 2) = P1(X1 = 2) = 0.

As a consequence, the weak natural extension P (X2|X1 = 2) that we can derive
using Theorem 10 is the vacuous lower prevision for X2 conditional on X1 = 2.
On the other hand, it follows from the coherence of P1(X1), P2(X2|X1) that the
procedure of natural extension yields back the original linear prevision P2(X2|X1 =
2). Hence, in the former case we are left with no information at all about X2

conditional on X1 = 2. In the latter, we are certain that X2 = 1. �

Note that in this example we have the counter-intuitive property that two dif-
ferent conditional lower previsions P2(X2|X1), P (X2|X1) can be weakly coherent;
this cannot happen with the stronger notion of coherence.

This example shows on the one hand that the notion of weak coherence is indeed
too weak to fully capture the implications of our assessments, and on the other that
the natural extension cannot be derived in general from the unconditional lower
prevision P . In the following section, we get around this problem by showing: (i)
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that we can instead derive it using a sequence of unconditional lower previsions that
converges to P and (ii) that in some cases it coincides with the weakly coherent
natural extension.

5. Natural extension as a limit of regular extensions

Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent conditional lower
previsions with domains Hj ⊆ Kj for j = 1, . . . ,m. For the time being we shall
assume that they are weakly coherent and avoid partial loss, but they are not nec-
essarily coherent. Our goal in this section is to characterise their natural extension
Em+1(XOm+1 |XIm+1) to the set Km+1 of XOm+1∪Im+1-measurable gambles, given
by Equation (4) (in order to use this equation it suffices to include among the
original assessments a conditional lower prevision Pm+1(XOm+1 |XIm+1) defined on
a trivial domain, such as the set of gambles piece-wise constant on the elements
of the partition induced by the conditioning events). This is important because
we have seen in Example 3 that we need to focus on natural extensions to obtain
strongest least-committal inferences. But at present, we do not have an expression
of the natural extension in terms of a set of joint mass functions. And we need this
to tightly connect coherent lower previsions with models based on conditional mass
functions. This is what we set out to do in the following.

In particular, we shall prove that the natural extension can be computed as a
limit of regular extensions. Remember that the regular extension is the application
of Bayes’ rule, whenever possible, to the set of mass functions in the credal set
associated to the joint unconditional lower prevision. Therefore, what we are going
to prove is that the inferences done from a conditional model can always be regarded
as done through a sequence of sets of unconditional joint mass functions through
Bayes’ rule. In order to do this, we are going to consider a sequence of sets of
mass functions (credal sets) associated to conditional lower previsions that converge
pointwise to P 1(XO1 |XI1), . . . , Pm(XOm |XIm). How this is done is detailed in the
following.

5.1. Definition of the approximating sets. For every ε > 0, let M(ε) be the
set of linear previsions satisfying the constraints16

P (fj |zj) ≥ P j(fj |zj)− εR(fj) (9)

for every fj ∈ Hj , zj ∈ XIj
, j = 1, . . . ,m such that P (zj) > 0, where R(fj) :=

max fj − min fj is the range of the gamble fj . Let us also consider the set of
gambles

Vε := {f ≥
m∑
j=1

nj∑
k=1

λkj (Gj(fkj |XIj
) + εR(fkj )Sj(fkj ))

for some fkj ∈ Hj , λkj ≥ 0, j = 1, . . . ,m, k = 1, . . . , nj}, (10)

where, with a certain abuse of notation, Sj(fkj ) is used to denote also the indicator
function of the set Sj(fkj ).

16An equivalent formulation of the constraints, which we shall sometimes use in the proofs,

is the following: P (fjπ
−1
Ij

(zj)) ≥ P (zj)(P j(fj |zj) − εR(fj)) for every fj ∈ Hj , zj ∈ XIj
, j =

1, . . . ,m.
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For ε = 0 we obtain the set M(0) of linear previsions satisfying

P (fj |zj) ≥ P j(fj |zj) ∀fj ∈ Hj , zj ∈ XIj
s.t. P (zj) > 0, j = 1, . . . ,m (11)

and the set of gambles

V := {f ≥
m∑
j=1

nj∑
k=1

λkjGj(f
k
j |XIj

)

for some fkj ∈ Hj , λkj ≥ 0, j = 1, . . . ,m, k = 1, . . . , nj}.

It follows from their definition that Vε ⊆ V and M(0) ⊆ M(ε) for any ε > 0.
Since the gamble constant on 0 belongs to Vε for all ε > 0, we deduce that these
sets of gambles are non-empty. On the other hand, M(ε) is a convex set of linear
previsions for all ε > 0. M(0) (and therefore also M(ε) for all ε > 0) is non-
empty because the conditional lower previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
are weakly coherent. This follows from the following proposition, where we show
that a linear prevision P belongs to M(0) if and only if it dominates the coherent
lower prevision P given by Equation (7). Let P ε be the lower envelope of M(ε),
and P 0 the lower envelope of M(0).

Proposition 6. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be weakly coherent condi-
tional lower previsions with respective domains H1, . . . ,Hm and avoiding partial
loss.

(a) For any ε ≥ 0, M(ε) = {P : P (f) ≥ 0 ∀f ∈ Vε}.
(b) M(0) = ∩ε>0M(ε) =M(P ), where P is the coherent lower prevision given by

Equation (7).
(c) P 0 = supε>0 P ε = P .

Some comments here can clarify the situation with respect to conditional models.
We said already that the coherent lower prevision P given by Equation (7) repre-
sents the set of all joint mass functions compatible with the conditional model.
This is made clear by point (b) of the proposition, as it shows that P is just the set
of mass functions determined by the linear constraints in (11). Moreover, point (c)
shows that such a lower prevision can be obtained as a limit of the ε-approximations
P ε.

Now we focus on the ε-approximations by providing a number of technical results
that we shall need to prove our main result in Theorem 11. Let us first establish a
one-to-one correspondence between the setM(ε) of linear previsions and the closure
of the set of gambles Vε:

Proposition 7. For every ε ≥ 0, {f ∈ L(Xn) : P (f) ≥ 0 ∀P ∈ M(ε)} = {f :
f + δ ∈ Vε ∀δ > 0} = Vε, where the closure is taken in the topology of uniform
convergence.

In the particular case of precise assessments (i.e., conditional linear previsions)
we can go a bit further. In this case, and in analogy with the situation in the
unconditional case, we can show that events provide all the information we need.
Note also that in the linear case the notion of avoiding partial loss is equivalent
to coherence (and implies therefore weak coherence); this is why it is our only
requirement in the following proposition:
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Proposition 8. Let P1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be coherent conditional lin-
ear previsions with domains K1, . . . ,Km. Define M(ε),Vε by Equations (9), (10),
respectively. Let MA

ε ,VAε be the corresponding sets determined by the restrictions
of P1(XO1 |XI1), . . . , Pm(XOm

|XIm
) to events.

(1) For every ε > 0, Vε ⊆ VAε1 , where ε1 = ε
maxj |XOj

| , and as a consequence

∪εVε = ∪εVAε = ∪εVε.
(2) M(ε) ⊇MA

ε1 , whence M(0) =MA
0 .

This result will be very useful for us because it allows us to connect our re-
sults with the ones established in [29] for the particular case of conditional lower
previsions defined on events. The case of events is also interesting because the cor-
responding sets of gambles are finitely generated (i.e., they can be summarised by
a finite number of gambles), and this makes it easier to apply separation results.

5.2. Convergence result. Now that we have clarified a bit the structure of the
sets M(ε),Vε, we explore how they can be used to characterise the conditional
natural extension. A first result is given in the following proposition:

Proposition 9. Consider f ∈ Km+1 and zm+1 ∈ XIm+1 . Then

Em+1(f |zm+1) = sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ ∪εVε}

≤ sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ V}.

Now, let us define the functional that we obtain by applying the regular extension
to the generic ε-approximating credal set M(ε), with ε > 0:

P εm+1(f |zm+1) := inf{P (f |zm+1) : P ∈M(ε), P (zm+1) > 0}. (12)

What we should like to show is that the limit of these functionals when ε goes to
zero coincides with Em+1(f |zm+1). To this end, the first thing we have to prove
is that the definition of P εm+1(f |zm+1) makes sense, i.e., that for every ε > 0 and
every zm+1 ∈ XIm+1 there is some P ∈ M(ε) such that P (zm+1) > 0. This is
established in the following proposition:

Proposition 10. For every zm+1 ∈ XIm+1 and every ε > 0, there is some P ∈
M(ε) such that P (zm+1) > 0.

Since the set M(ε) does not increase as ε converges to zero, we deduce that the
conditional lower previsions P εm+1(XOm+1 |XIm+1) given by Equation (12) do not
decrease as ε goes to zero. We can thus consider

Fm+1(XOm+1 |XIm+1) := lim
ε→0

P εm+1(XOm+1 |XIm+1),

the limit of these conditional lower previsions. In analogy with Proposition 9, we
can characterise this functional in terms of sets of gambles:

Lemma 3. Fm+1(f |zm+1) = sup{µ : π−1
Im+1

(zm+1)(f−µ) ∈ ∪εVε} for every gamble
f in Km+1 and every zm+1 ∈ XIm+1 . As a consequence, F (f |zm+1) ≥ E(f |zm+1).

Since the sets Vε are not necessarily closed, we may wonder if the functional
Fm+1(XOm+1 |XIm+1) defined as a limit of regular extensions is actually more precise
that the natural extension Em+1(XOm+1 |XIm+1). In our next result, we show that
this is not the case. The proof is based on applying Proposition 8 to obtain the
result for linear previsions, and then use envelope results.
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Theorem 11. Assume that P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are weakly coherent
and avoid partial loss. Their natural extension Em+1(XOm+1 |XIm+1) coincides with
Fm+1(XOm+1 |XIm+1).

This theorem is our main result. It shows that strongest least-committal infer-
ences (i.e., natural extensions) from a conditional model can be made equivalently
through conditioning, whenever possible, the set M(ε), and taking the limit.

This result is valid in particular if P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are coher-
ent. We can also determine, as a corollary, that the conditional lower prevision
derived from an unconditional by natural extension is also the limit of conditional
lower previsions obtained by regular extension. In this particular case our sets
M(ε), ε ≥ 0 would be

M(ε) := {P : P (f) ≥ P (f)− εR(f) ∀f ∈ H}.

Note also that in this case where we have a conditional and an unconditional lower
prevision only, weak and strong coherence are equivalent, and therefore we do not
need to distinguish between the weak natural extension and the natural extension:

Corollary 2. Let P be a coherent lower prevision with domain H, and consider
disjoint O, I, with O 6= ∅. For every ε > 0, let M(ε) be given by Equation (9) and
let P ε(XO|XI) be the conditional lower prevision defined from M(ε) using regular
extension. Then limε→0 P ε(XO|XI) coincides with the conditional natural extension
E(XO|XI).

At this point we may still be wondering if going through the sets M(ε) is really
necessary, or if we could have applied the regular extension to the set M(0) given
by Equation (11) and use it to approximate Em+1(XOm+1 |XIm+1). This is not
possible in general, because Proposition 10 does not necessarily hold for ε = 0,
i.e., there may not be any P ∈ M(0) such that P (zm+1) > 0, and therefore we
may not be able to use the regular extension in that case; this is easy to see with
precise assessments. Moreover, even if we can apply regular extension in M(0),
we do not necessarily have the equality Em+1(f |zm+1) = inf{P (f |zm+1) : P ∈
M(0), P (zm+1) > 0}. This is discussed for the particular case of lower probabilities
in [29, Sections 3.7,3.8], and some illustrative examples are provided.

Hence, the inequality given in Proposition 9 is not necessarily an equality. In
the following result, we show that a sufficient condition for the equality to hold
is that the lower probability of the conditioning event is positive; see also [27,
Theorem 8.1.4]:

Proposition 11. Let P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) be weakly coherent condi-
tional lower previsions that avoid partial loss. Let P be their unconditional natu-
ral extension, given by Equation (7), and consider the conditional lower prevision
Pm+1(XOm+1 |XIm+1) given by Equation (8). If P (zm+1) > 0, then

Em+1(f |zm+1) = Pm+1(f |zm+1) = sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ V}.

Hence, in this case the natural extension is also the smallest conditional lower
prevision that is weakly coherent with the initial assessments. In particular, if
P (zm+1) > 0 for all zm+1 ∈ XIm+1 , we deduce the equality

Em+1(XOm+1 |XIm+1) = Pm+1(XOm+1 |XIm+1).
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The intuition here is that in that case P ε(zm+1) > 0 for all zm+1 ∈ XIm+1 and for ε
small enough, and then the regular extension fromM(ε) coincides with the natural
extension. From here it suffices then to apply a limit result.

This result complements the discussion we have made in Section 4 about the pos-
itivity of the conditioning events. What we have, essentially, is that the differences
between weak and strong coherence, as well as between the weak and strong natural
extensions, vanish in the case of positivity of the conditioning events involved in
the inference.

Finally, we are going to show that our results allow to derive a characterisation
of the notion of coherence for conditional lower previsions on finite spaces. In order
to this, we need to establish first the following lemma:

Lemma 4. Let {P k1(XO1 |XI1), . . . , P km(XOm
|XIm

)}k∈N be a sequence of condi-
tional lower previsions with domains H1, . . . ,Hm. Assume their pointwise limits
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) exist.

(1) If P k1(XO1 |XI1), . . . , P km(XOm
|XIm

) are weakly coherent for all k, then so
are P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

(2) If P k1(XO1 |XI1), . . . , P km(XOm
|XIm

) are coherent for all k, then so are
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

We deduce the following:

Theorem 12. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be separately coherent condi-
tional lower previsions. They are coherent if and only if they are the pointwise limits
of a sequence of coherent conditional lower previsions defined by regular extension.

Hence, in the case of finite spaces the notion of coherence, which, as we have
argued, is the central consistency notion in Walley’s theory, is equivalent to the
approximation by means of regular extensions. This result summarises the core of
our research in this paper: it states that a conditional model is strongly coherent if
and only if it can be regarded as the output of a sequence of sets of unconditional
mass functions obtained using Bayes’ rule. This, together with Theorem 11, helps
clarify the tight relationship between conditional models and the more traditional
models based on joint mass functions.

5.3. An example. It is useful to remark that the tools developed in this paper
can be used operationally to check the consistency of a conditional model. The
next example shows how this can be done in practice.

Example 4. Consider two random variables X1, X2 taking values in the finite space
X := {1, 2, 3}. We focus on a conditional model made of two sets of conditional
mass functions represented through the conditional lower previsions P (X2|X1) and
P (X1|X2).

We define such mass functions as follows. We let P (X2|X1 = 1), P (X2|X1 = 2)
be precise and respectively determined by the respective assessments P (X2 =
1|X1 = 1) := 1 and P (X2 = 3|X1 = 2) := 1. In case X1 = 3, we take P (X2|X1 = 3)
to be determined by the set of mass functions that assign probability one to the
subset {2, 3} of X . As for P (X1|X2), we let P (X1|X2 = 1) be precise and deter-
mined by P (X1 = 2|X2 = 1) := 1. Each of the remaining two cases, P (X1|X2 = 2)
and P (X1|X2 = 3), is taken to correspond to the set of all mass functions for X1.

Our goal is to check whether or not P (X2|X1) and P (X1|X2) are (strongly)
coherent. To this end, let us first re-formulate P (X2|X1) and P (X1|X2) in the
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formalism of coherent lower previsions. It is enough to write that for any gamble
f in L(X 2), we let

P (f |X1 = 1) := f(1, 1)

P (f |X1 = 2) := f(2, 3)

P (f |X1 = 3) := min{f(3, 2), f(3, 3)}
P (f |X2 = 1) := f(2, 1)

P (f |X2 = 2) := min{f(1, 2), f(2, 2), f(3, 2)}
P (f |X2 = 3) := min{f(1, 3), f(2, 3), f(3, 3)}.

Now, let us consider the unconditional lower prevision P on L(X 2) given by P (f) :=
min{f(3, 2), f(3, 3)}. This corresponds to the set of mass functions that assign prob-
ability one to the subset {(3, 2), (3, 3)} of X 2. Using Theorem 9, P , P (X1|X2) and
P (X2|X1) are weakly coherent. In other words, the lower prevision P is compatible
with P (X2|X1), P (X1|X2) through GBR.

To see that P (X1|X2) and P (X2|X1) avoid partial loss, we apply Proposition 3
and consider the dominating conditional linear previsions P (X1|X2), P (X2|X1)
given by

P (f |X1 = 1) := f(1, 1)

P (f |X1 = 2) := f(2, 3)

P (f |X1 = 3) := f(3, 3)

P (f |X2 = 1) := f(2, 1)

P (f |X2 = 2) := f(3, 2)

P (f |X2 = 3) := f(3, 3),

for any gamble f in L(X 2). It is not difficult to show that these conditional previ-
sions are coherent.

Let us use now our results to show that P (X1|X2), P (X2|X1) are not coherent.
Let f be the indicator function of {(2, 3), (3, 3)}. In order to show that E(f |X2 =
3) > P (f |X2 = 3) = 0, we are going to show that there is some ε > 0 such that
P ε(f |X2 = 3) > 0. The inequality will follow then from Theorem 11.

Consider ε := 1
4 . ThenM(ε) is the set of linear previsions satisfying the following

inequalities for every gamble g on {1, 2, 3} × {1, 2, 3}:
P (g|X1 = 1) ≥ g(1, 1)− εR(g) if P (X1 = 1) > 0

P (g|X1 = 2) ≥ g(2, 3)− εR(g) if P (X1 = 2) > 0

P (g|X1 = 3) ≥ min{g(3, 2), g(3, 3)} − εR(g) if P (X1 = 3) > 0

P (g|X2 = 1) ≥ g(2, 1)− εR(g) if P (X2 = 1) > 0

since the other constraints follow trivially from separate coherence.
Let P be an element of M(ε) satisfying P (X2 = 3) > 0. If P (f |X2 = 3) < ε,

this implies that
P (2, 3) + P (3, 3) <

ε

1− ε
P (1, 3),

whence P (1, 3) > 0. Applying the first of the above constraints to the indicator
function of (1, 1), we deduce that

P (1, 2) + P (1, 3) ≤ ε

1− ε
P (1, 1),
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whence P (1, 1) > 0. Applying the fourth of the above constraints to the indicator
function of (2, 1), we deduce that

P (1, 1) + P (3, 1) ≤ ε

1− ε
P (2, 1),

whence P (2, 1) > 0. Applying the second of the above constraints to the indicator
function of (2, 3), we deduce that

P (2, 1) + P (2, 2) ≤ ε

1− ε
P (2, 3),

whence P (2, 3) > 0. But if we consider all these inequalities altogether we observe
that

0 < P (2, 3) ≤ ε

1− ε
P (1, 3) ≤ (

ε

1− ε
)2P (1, 1) ≤ (

ε

1− ε
)3P (2, 1) ≤ (

ε

1− ε
)4P (2, 3),

whence 1 ≤ 1
81 , a contradiction. Hence, there is no P ∈ M(ε) such that P (X2 =

3) > 0, P (f |X2 = 3) < ε, and as a consequence P ε(f |X2 = 3) ≥ ε > 0 = P (f |X2 =
3). Since P ε(f |X2 = 3) is not decreasing when ε goes to zero (because M(ε)
does not increase), we deduce that P (X1|X2), P (X2|X1) do not coincide with
their natural extensions and therefore they are not coherent. Therefore, despite
P (X1|X2), P (X2|X1) admit the compatible joint P previously defined, they are
still incoherent as they cannot be regarded as the outcome of any sequence of sets
of joint mass functions obtained through Bayes’ rule. �

Note that this example also provides an instance where the natural extension
E(f |X2 = 3) does not coincide with the weak natural extension given by Equa-
tion (8), which in this case is vacuous.

6. Conclusions

In this paper, we have focused on conditional probabilistic models as an alter-
native to more traditional models based on unconditional joint mass functions. We
have expressed these models using the theory of lower previsions by Walley [27],
and employed the tools from this theory to investigate two kinds of problems.

The first one is the self-consistency of the assessments. We have approached
this problem by studying the different consistency notions for conditional lower
previsions in Walley’s theory. The most important ones are called weak coherence,
which turns out to be equivalent to the existence of a compatible joint, and the
stronger notion of coherence, which rules out some inconsistencies that can appear
because of the conditioning on sets of zero probability.

The second problem is how to make inferences from a self-consistent conditional
model. Again here we have two paths: one is to use the notion of weak coherence
and define the so-called weak natural extension, which turns out to be too conser-
vative in some cases. The other one is based on the notion of strong coherence and
produces the natural extension which is more informative.

The main result of the paper is that the notion of coherence, and its consequences,
can be related to the approximation of our model by a sequence of (possibly sets of)
unconditional mass functions: on the one hand, we have showed that the coherence
of a number of conditional lower previsions is equivalent to being the limit of a
sequence of conditional lower previsions derived applying regular extension to a
sequence of unconditional lower previsions. And moreover, this family can also
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be used to determine the natural extension of the conditional lower previsions to
bigger domains.

One important comment here is that throughout we have made no assumptions
about the domains of the conditional lower previsions, meaning that they are sets
of gambles which are not necessarily linear. Because of this, our results extend the
ones established in [29] for conditional lower probabilities, and more generally they
can be used when the domains are finite sets of gambles.

These results show that, after all, conditional models are tightly related to the
traditional view of probability based on joint mass functions, and that also in these
models it is still Bayes’ rule that plays a central role to guarantee self-consistency;
on the other, they imply that conditional models are more expressive that the latter
models, because a sequence of joint mass functions is more informative than a single
one.

With respect to future work, we should like to point out three avenues: one is the
obvious possibility to try to extend the results presented here to the case of infinite
spaces of possibilities. We envisage that most of them will not be immediately
extendable because in our proofs we have used a number of separation theorems and
envelope results that do not apply directly to the infinite case. Another aspect worth
investigating would be how the results presented here generalise in case structural
judgments, such as independence, are introduced in a model. Finally, the idea of
using a certain sequence of previsions to check coherence and compute extensions,
although different from the one presented here, is present also in other works [7, 25]
which have a common root in the work of Krauss [17]. It is an open problem to
investigate the relationship between the two types of approaches.
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Appendix: proofs

In this appendix, we have gathered the proofs of the results mentioned in the
paper, as well as an auxiliary lemma, that we proceed to establish:

Lemma 5. Let P , P (XO|XI) be coherent lower previsions with respective domains
L(Xn),HO∪I . For every P ∈ M(P ) there is some conditional linear prevision
P (XO|XI) in M(P (XO|XI)) such that P, P (XO|XI) are coherent.

Proof. Consider z ∈ XI . If P (z) = 0, we select an arbitrary P (XO|z) in the set
M(P (XO|z)) (that this set is non-empty follows from the separate coherence of
P (XO|XI)). If P (z) > 0, then we define P (XO|z) using GBR.

It follows from Theorem 3 in Section 2 that the conditional prevision P (XO|XI)
thus defined is coherent with P . Let us prove that it belongs to M(P (XO|XI)).
For this, it suffices to show that P (f |z) ≥ P (f |z) for every f ∈ HO∪I and every
z ∈ XI . This is trivial if f = 0, therefore let us consider f 6= 0. Assume ex-absurdo
that P (f |z) < P (f |z). Then

0 = P (π−1
I (z)(f −P (f |z)) ≥ P (π−1

I (z)(f −P (f |z))) ≥ P (π−1
I (z)(f −P (f |z))) = 0,
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where the first equality is due to GBR and the following inequality to the mono-
tonicity of P ; to see the last equality, apply Equation (1) twice and the coherence
of P , P (XO|XI) to deduce that

max
x∈Xn

[G(G(f |z))−G(f |z)](x) = −P (G(f |z)) ≥ 0

on the one hand, and

max
x∈Xn

[G(f |z)−G(G(f |z))](x) = P (G(f |z)) ≥ 0

on the other, where G(G(f |z)) = G(f |z) − P (G(f |z)). But this means that there
are two different values of µ such that P (π−1

I (z)(f − µ)) = 0, a contradiction with
Theorem 6. Hence, P (f |z) ≥ P (f |z) and thus P (XO|XI) ≥ P (XO|XI). �

From the proof of the lemma and the super-additivity of coherent lower previ-
sions, we deduce also the following result, whose proof is omitted:

Corollary 3. Given coherent P , P (XO|XI) with domains L(Xn),HO∪I , it holds
that

P (G(f |z)) = 0 and P (G(f |XI)) ≥ 0

for every gamble f ∈ HO∪I and every z ∈ XI .

Proof of Proposition 2. Assume there are dominating weakly coherent linear condi-
tional previsions P1(XO1 |XI1),. . . ,Pm(XOm

|XIm
), and let fkj ∈ Hj for j = 1, . . . ,m,

k = 1, . . . , nj . Then

max
x∈Xn

m∑
j=1

nj∑
k=1

(fkj − P j(fkj |XIj )) ≥ max
x∈Xn

m∑
j=1

nj∑
k=1

(fkj − Pj(fkj |XIj )) ≥ 0,

where the second inequality holds because P1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are
weakly coherent. Hence, P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) avoid uniform sure loss.

Conversely, assume that P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) avoid uniform sure
loss. Take D := {Gj(fj |XIj

) : j = 1, . . . ,m, fj ∈ Hj}. Applying [27, Lemma 3.3.2],
there is a linear prevision P s.t. P (Gj(fj |XIj

)) ≥ 0 for all fj ∈ Hj , j = 1, . . . ,m;
applying this property to gj := fjπ

−1
Ij

(zj) ∈ Hj , we deduce that P (Gj(fj |zj)) ≥ 0
for all fj ∈ Hj , zj ∈ XIj

, j = 1, . . . ,m.
Consider j ∈ {1, . . . ,m}, zj ∈ XIj , and let us prove the existence of a linear

conditional prevision Pj(XOj
|zj) dominating P j(XOj

|zj) such that P (π−1
Ij

(zj)(f −
Pj(f |zj))) = 0 for all f ∈ Kj . There are two possibilities:

• If P (zj) > 0, then Pj(XOj
|zj) is uniquely determined by P using Bayes’

rule, and it is the unique value µ such that P (π−1
Ij

(zj)(f − µ)) = 0. To
see that it dominates P j(XOj |zj), assume ex-absurdo the existence of some
gamble fj ∈ Hj for which P j(fj |zj) > Pj(fj |zj). Then it follows that

0 ≤ P (π−1
Ij

(zj)(fj − P j(fj |zj))) ≤ P (π−1
Ij

(zj)(fj − Pj(f |zj))) = 0,

where the first inequality holds because P (G(fj |zj)) ≥ 0. This is a contra-
diction with the uniqueness mentioned above.
• If P (zj) = 0 we simply consider any linear conditional prevision Pj(XOj |zj)

that dominates P j(XOj
|zj) and it automatically satisfies GBR with P .
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By doing this for every j ∈ {1, . . . ,m} and every zj ∈ XIj
, we obtain a conditional

linear prevision Pj(XOj |XIj ) that dominates P j(XOj |XIj ) and that is coherent
with P . Applying [23, Theorem 1], we deduce the existence of weakly coherent
P1(XO1 |XI1), . . . , Pm(XOm |XIm) dominating our conditional lower previsions. �

Proof of Lemma 1. If E1(XO1 |XI1), . . . , Em(XOm
|XIm

) are not coherent, there are
δ > 0, fj ∈ Kj for j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, f0 ∈ Kj0 , zj0 ∈ XIj0

such that m∑
j=1

fj − Ej(fj |XIj
)− π−1

Ij0
(zj0)(f0 − Ej0(f0|zj0))

 (x) ≤ −δ < 0

for every x ∈ S(fj)∪π−1
Ij0

(zj0). Let us assume that fj is not zero for all j = 1, . . . ,m
(otherwise it is enough to drop the terms in the sum related to the zero gambles).

By definition of natural extension (see Definition 9 in Section 2), for every j =
1, . . . ,m, and every zj ∈ Sj(fj),17 there are fki,zj

∈ Hi, i = 1, . . . ,m, k = 1, . . . , ni
s.t. [

m∑
i=1

ni∑
k=1

Gi(fki,zj
|XIi

)− π−1
Ij

(zj)
(
fj − Ej(fj |zj) +

δ

2m

)]
(x) < −δzj

< 0

for every x ∈ S(fki,zj
) ∪ π−1

Ij
(zj), and for some δzj > 0.

By making the (finite) sum on zj ∈ Sj(fj), we deduce that ∑
zj∈Sj(fj)

m∑
i=1

ni∑
k=1

Gi(fki,zj
|XIi)− (fj − Ej(fj |XIj

))

 (x)

< − min
zj∈Sj(fj)

δzj +
δ

2m
Sj(fj)(x)

for every x ∈ S(fki,zj
) ∪ Sj(fj).

It follows that m∑
j=1

∑
zj∈Sj(fj)

m∑
i=1

ni∑
k=1

Gi(fki,zj
|XIi)− π−1

Ij0
(zj0)

(
f0 − (Ej0(f0|zj0) +

δ

4
)
) (x)

=

 m∑
j=1

∑
zj∈Sj(fj)

m∑
i=1

ni∑
k=1

Gi(fki,zj
|XIi)−

m∑
j=1

fj − Ej(fj |XIj )

 (x)

+

 m∑
j=1

fj − Ej(fj |XIj )− π−1
Ij0

(zj0)
(
f0 − Ej0(f0|zj0)

) (x) +
δ

4
π−1
Ij0

(zj0)(x)

=: A(x) +B(x) +
δ

4
π−1
Ij0

(zj0)(x)

for every x ∈ Xn. Now, given x ∈ π−1
Ij0

(zj0) ∪ S(fki,zj
), there are three possibilities:

• If x ∈ S(fj), then A(x) ≤ δ
2 − minzj∈Sj(fj),j=1,...,m δzj

and B(x) ≤ −δ,
whence A(x) +B(x) + π−1

Ij0
(zj0) δ4 < −

δ
4 < 0.

17Remember that this is a bit of an abuse of notation, as explained in Section 2.2.
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• If x ∈ π−1
Ij0

(z0), x /∈ S(fj), there are two possibilities: either x belongs
to S(fki,zj

), and then A(x) ≤ −minzj∈Sj(fj),j=1,...,m δzj and B(x) ≤ −δ,
whence A(x) +B(x) +π−1

Ij0
(zj0) δ4 < −

3
4δ < 0; or it is not in S(fj)∪S(fki,zj

),

and then A(x) = 0, whence A(x) +B(x) + δ
4π
−1
Ij0

(zj0)(x) ≤ − 3
4δ < 0.

• Finally, if x ∈ S(fki,zj
), x /∈ S(fj) ∪ π−1

Ij0
(zj0), it follows that A(x) ≤

−minzj∈Sj(fj),j=1,...,m δzj
, B(x) = 0, whence A(x)+B(x)+ δ

4π
−1
Ij0

(zj0)(x) ≤
−minzj∈Sj(fj) δzj

< 0.

This means that we can increase the value of Ej0(f0|zj0) in δ
4 , which contradicts

the definition of the natural extension. Hence, E1(XO1 |XI1), . . . , Em(XOm |XIm)
are coherent. �

Proof of Proposition 3. Consider dominating coherent linear conditional previsions
P1(XO1 |XI1),. . . ,Pm(XOm |XIm), and let fkj ∈ Hj for j = 1, . . . ,m, k = 1, . . . , nj
such that not all the fkj are zero gambles. Then

max
x∈S(fk

j )

 m∑
j=1

nj∑
k=1

(fkj − P j(fkj |XIj
))

 (x)

≥ max
x∈S(fk

j )

 m∑
j=1

nj∑
k=1

(fkj − Pj(fkj |XIj
))

 (x) ≥ 0,

where the second inequality follows because P1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are
coherent. Hence, P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) avoid partial loss.

Conversely, assume that P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid partial loss.
From Lemma 1 their natural extensions E1(XO1 |XI1), . . . , Em(XOm |XIm) are co-
herent, and therefore they are the lower envelopes of the class of dominating coher-
ent linear previsions (Theorem 5). Since from Theorem 8 the natural extensions
dominate the initial assessments, we deduce the existence of dominating coherent
linear conditional previsions. �

Proof of Proposition 4. Assume Equation (6) fails. Then there are ε > 0, fkj ∈ Hj ,
j = 1, . . . ,m, k = 1, . . . , nj , such that for all x ∈ Xn, m∑

j=1

nj∑
k=1

Gj(fkj |XIj
) + εR(fkj )Sj(fkj )

 (x) ≤ 0,

and hence m∑
j=1

nj∑
k=1

Gj(fkj |XIj )

 (x) ≤ −ε

 m∑
j=1

nj∑
k=1

R(fkj )Sj(fkj )

 (x) ≤ 0

for every x ∈ Xn. Since not all the fkj are zero gambles, this implies that the
conditional previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm) incur partial loss.

Conversely, assume our conditional lower previsions incur partial loss. Then
there are δ > 0, fkj ∈ Hj , j = 1, . . . ,m, such that not all the fkj are zero gambles,
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which lead to

m∑
j=1

nj∑
k=1

Gj(fkj |XIj )(x) ≤ −δ

for all x ∈ S(fkj ). Therefore, we can define ε := δ

1+
∑m

j=1
∑nj

k=1 R(fk
j )

, and obtain that

for all x ∈ S(fkj ),

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) + εR(fkj )Sj(fkj )

 (x) =

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)

 (x) + ε

 m∑
j=1

nj∑
k=1

R(fkj )Sj(fkj )

 (x) ≤

−δ + δ ·
∑m
j=1

∑nj

k=1R(fkj )

1 +
∑m
j=1

∑nj

k=1R(fkj )
< 0.

This proves that Expression (5) fails, since
∑m
j=1

∑nj

k=1Gj(f
k
j |XIj

)+ εR(fkj )Sj(fkj )
is zero outside S(fkj ). �

Proof of Theorem 9. Let us prove that (WC1) implies (WC2). Assume the weak
coherence of P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
), and let P be given by Equation (7).

Note that P (f) is well-defined as it is bounded. In particular, it holds that
min f ≤ P (f) ≤ max f for any gamble f : given α > max f , there are no gam-
bles fkj satisfying Equation (7) or we contradict the weak coherence of the condi-
tional lower previsions P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
); and for any α < min f

we can take nj = 0 ∀j. It is also easy to see that P satisfies conditions (C1)–
(C3) from Section 2, whence it is a coherent lower prevision. Let us show that
P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent. Consider f ∈ L(Xn),
fkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj and some other gamble f0 in one of the do-
mains Hj0 , and let us show that Equation (2) holds. For every ε > 0, the definition
of P implies that there are gkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , lj , s.t.

max
x∈Xn

 m∑
j=1

lj∑
k=1

Gj(gkj |XIj
)−G(f)− ε

2

 < 0, (13)

where G(f) = f − P (f) (just consider α = P (f) − ε
2 in Equation (7)). Hence,

G(f) >
∑m
j=1

∑lj
k=1Gj(g

k
j |XIj )− ε

2 .
There are two possible cases in Equation (2): that j0 belongs to {1, . . . ,m}, i.e.,

that we focus on one of the conditional assessments (case (a) below) or that it does
not, i.e., that we focus on one of the unconditional assessments (case (b)).
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(a) Consider f0 ∈ Hj0 , zj0 ∈ XIj0
for some j0 in {1, . . . ,m}. Then, using

Equation (13) and the weak coherence of P 1(XO1 |XI1), . . . , Pm(XOm |XIm),

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +G(f)−Gj0(f0|zj0)

 (x)

≥ max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +

m∑
j=1

lj∑
k=1

Gj(gkj |XIj
)− ε

2
−Gj0(f0|zj0)

 (x) ≥ − ε
2
.

Since this holds for any ε > 0, we deduce that

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj ) +G(f)−Gj0(f0|zj0)

 (x) ≥ 0.

(b) Take f0 ∈ L(Xn). Using Equation (13),

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +G(f)−G(f0)

 (x) ≥ −ε;

otherwise, we should have

0 > max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +G(f)−G(f0) + ε

 (x)

≥ max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +

m∑
j=1

lj∑
k=1

Gj(gkj |XIj
)−G(f0) +

ε

2

 (x),

where the second inequality follows from Equation (13). But this means
that we can raise the value P (f0) by ε

2 , which contradicts the definition
of P . Since this holds for any ε > 0, maxx∈Xn [

∑m
j=1

∑nj

k=1Gj(f
k
j |XIj

) +
G(f)−G(f0)](x) ≥ 0.

Hence, P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent.
Let us show that (WC2) implies (WC3). If P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm)

are weakly coherent, then for any j = 1, . . . ,m, P , P j(XOj
|XIj

) are weakly coher-
ent, and in the case of a conditional and an unconditional lower prevision, weak
coherence is equivalent to coherence.

We prove next that (WC3) implies (WC1). Let P be pairwise coherent with
P 1(XO1 |XI1), . . . , Pm(XOm |XIm). Consider fkj ∈ Hj , j = 1, . . . ,m, k = 1, . . . , nj ,
j0 ∈ {1, . . . ,m}, f0 ∈ Hj0 , zj0 ∈ XIj0

, and let us prove that Equation (2) holds.
Since P , P j(XOj |XIj ) are coherent, Corollary 3 implies that P (Gj(fkj |XIj )) ≥ 0
for every fkj ∈ Hj , and that P (Gj0(f0|zj0)) = 0. If we let gkj := Gj(fkj |XIj

) and
g0 := Gj0(f0|zj0), we deduce that

m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)−Gj0(f0|zj0) ≥

m∑
j=1

nj∑
k=1

(gkj − P (gkj ))− (g0 − P (g0)),
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and the coherence of P implies the existence of x ∈ Xn such that m∑
j=1

nj∑
k=1

(gkj − P (gkj ))− (g0 − P (g0))

 (x) ≥ 0.

This implies that Equation (2) holds.
Finally, assume that P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are weakly coherent, and

let P be the functional given by Equation (7). Let Q be also weakly coherent with
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
), and assume that there is some gamble f such

that Q(f) = P (f)− δ for some δ > 0. It follows from the definition of P that there
are fkj ∈ Kj for j = 1, . . . ,m, k = 1, . . . , nj such that

max
x∈Xn

 m∑
j=1

nj∑
k=1

G(fkj |XIj )−
(
f − (Q(f) +

δ

2
)
) (x) < 0,

whence

max
x∈Xn

 m∑
j=1

nj∑
k=1

G(fkj |XIj
)− (f −Q(f))

 (x) < −δ
2
,

contradicting the weak coherence of Q,P 1(XO1 |XI1), . . . , Pm(XOm |XIm). Hence,
P is the smallest coherent lower prevision which is weakly coherent with the con-
ditional previsions P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
). �

Proof of Lemma 2. Assume that P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are weakly co-
herent. Since weak coherence is stronger than avoiding uniform sure loss, Proposi-
tion 2 implies that the class

J := {P1(XO1 |XI1), . . . , Pm(XOm |XIm) weakly coherent :

Pj(XOj
|XIj

) ∈M(P j(XOj
|XIj

)), j = 1, . . . ,m}

is non-empty. Let us prove that P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the lower
envelopes of this class. Consider f ∈ Hj for some j ∈ {1, . . . ,m} and zj ∈ XIj ,
and let P be the coherent lower prevision defined in Equation (7). There are two
possibilities:

(a) If P (zj) > 0, we deduce from the coherence of P and from Corollary 3
that there is some P ∈ M(P ) such that P (G(f |zj)) = P (G(f |zj)) = 0.
Since P (zj) ≥ P (zj) > 0, Pj(f |zj) is the unique real value µ such that
P (π−1

Ij
(zj)(f − µ)) = 0. As a consequence, Pj(f |zj) = P j(f |zj).

(b) If P (zj) = 0, we take P ∈ M(P ) such that P (zj) = 0, and we select
Pj(XOj

|zj) in M(P j(XOj
|zj)) such that Pj(f |zj) = P j(f |zj) (there is one

such linear prevision because P j(XOj |XIj ) is separately coherent).
Apply now Lemma 5 and define a conditional linear prevision Qi(XOi

|XIi
) which

is coherent with the linear prevision P selected above and dominates P i(XOi
|XIi

)
for every i = 1, . . . ,m. Let us define then conditional linear previsions P

′

i (XOi |XIi)
for i = 1, . . . ,m by

P
′

i (f |z′i) =


Qi(f |z′i) if i 6= j

Qj(f |z′j) if i = j, z′j 6= zj

Pj(f |zj) if i = j, z′j = zj .
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It follows from Theorem 3 that P
′

i (XOi
|XIi

) is coherent with P for i = 1, . . . ,m:
note that in case (b) above P (G(g|zj)) = 0 for every g ∈ Kj because P (zj) = 0.
Since P

′

i (XOi |XIi) dominates by construction P i(XOi |XIi) for i = 1, . . . ,m, we
deduce applying Theorem 9 that P

′

1(XO1 |XI1), . . . , P
′

m(XOm
|XIm

) belong to J .
Hence, P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) are the lower envelopes of J .

Conversely, we need to show that the lower envelopes of a class

{Pλ1 (XO1 |XI1), . . . , Pλm(XOm
|XIm

) : λ ∈ Λ}

of weakly coherent linear previsions are again weakly coherent. Consider fkj ∈ Hj
for j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, f0 ∈ Hj0 , zj0 ∈ XIj0

. Then for every ε > 0 there
is some λ ∈ Λ such that Pλj0(f0|zj0)− ε ≤ P j0(f0|zj0). As a consequence,

max
x∈Xn

 m∑
j=1

nj∑
k=1

(fkj − P j(fkj |XIj
))− π−1

Ij0
(zj0)(f0 − P j0(f0|zj0))

 (x)

≥ max
x∈Xn

 m∑
j=1

nj∑
k=1

(fkj − Pλj (fkj |XIj
))− π−1

Ij0
(zj0)(f0 − Pλj0(f0|zj0) + ε)

 (x) ≥ −ε,

using the weak coherence of Pλ1 (XO1 |XI1), . . . , Pλm(XOm |XIm). Since we can do
this for every ε > 0, we deduce that P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly
coherent. �

Proof of Theorem 10. It follows from [27, Theorem 6.8.2(c)] that the conditional
lower prevision in Equation (8) is defined from P using natural extension, and is
therefore coherent with P . Applying Theorem 9, we deduce that the conditional
previsions P 1(XO1 |XI1), . . . , Pm+1(XOm+1 |XIm+1) are weakly coherent.

Let now Q
m+1

(XOm+1 |XIm+1) be a conditional lower prevision which is weakly
coherent with P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
). From Theorem 9, there is a co-

herent lower prevision Q which is weakly coherent with the conditional previsions
P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
), Q

m+1
(XOm+1 |XIm+1). Applying the same theo-

rem, we deduce that Q(f) ≥ P (f) for any gamble f on Xn. As a consequence,
given zm+1 ∈ XIm+1 such that P (zm+1) > 0, it holds that

Q
m+1

(f |zm+1) = min{P (f |zm+1) : P ≥ Q}
≥ min{P (f |zm+1) : P ≥ P} = Pm+1(f |zm+1)

for any gamble f ∈ Km+1, where the first equality holds from Theorem 7. Since
on the other hand the separate coherence of Q

m+1
(XOm+1 |XIm+1) implies that

Q
m+1

(f |zm+1) ≥ minx∈π−1
Im+1

(zm+1) f(x) for every zm+1 ∈ XIm+1 and f ∈ Km+1,

we deduce that Q
m+1

(XOm+1 |XIm+1) dominates Pm+1(XOm+1 |XIm+1). �

Proof of Proposition 5. Consider fkj ∈ Hj for j = 1, . . . ,m, k = 1, . . . , nj . Let
fm+1 ∈ Km+1, j0 ∈ {1, . . . ,m+ 1}, z0 ∈ XIj0

, f0 ∈ Hj0 , and let us prove that

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj ) +Gm+1(fm+1|XIm+1)−Gj0(f0|z0)

 (x) ≥ 0. (14)
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For every δ > 0 and every zm+1 ∈ XIm+1 , it follows from Equation (4) that there
are gk,zm+1

j ∈ Hj such that

π−1
Im+1

(zm+1)(fm+1 − Em+1(f |zm+1) + δ) >
m∑
j=1

lj,zm+1∑
k=1

Gj(g
k,zm+1
j |XIj ),

in S(gk,zm+1
j ) ∪ π−1

Im+1
(zm+1), whence

Gm+1(fm+1|XIm+1) + δ ≥
∑

zm+1∈XIm+1

m∑
j=1

lj,zm+1∑
k=1

Gj(g
k,zm+1
j |XIj

),

and therefore

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj ) +Gm+1(fm+1|XIm+1)−Gj0(f0|z0)

 (x)

≥ max
x∈Xn

[
m∑
j=1

nj∑
k=1

Gj(fkj |XIj ) +
∑

zm+1∈XIm+1

m∑
j=1

lj,zm+1∑
k=1

Gj(g
k,zm+1
j |XIj )

−Gj0(f0|z0)](x)− δ (15)

There are two possibilities in Equation (14): either j0 ∈ {1, . . . ,m} or j0 = m+1.
If j0 ∈ {1, . . . ,m}, we deduce from the above equation that

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +Gm+1(fm+1|XIm+1)−Gj0(f0|z0)

 (x) ≥ −δ,

taking into account that P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) are weakly coherent.
Since we can do this for every δ > 0, we conclude that Equation (14) holds.

Assume now that j0 = m+ 1, and that Equation (14) does not hold. Then there
is some α > 0 such that

max
x∈Xn

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +Gm+1(fm+1|XIm+1)−Gm+1(f0|z0)

 (x) = −α < 0.

Given δ := α
2 , we can apply Equation (15) and deduce that

− α ≥ max
x∈Xn

[
m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)

+
∑

zm+1∈XIm+1

m∑
j=1

lj,zm+1∑
k=1

Gj(g
k,zm+1
j |XIj )−Gm+1(f0|z0)](x)− δ,

and this means that

max
x∈Xn

[
m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) +

∑
zm+1∈XIm+1

m∑
j=1

lj,zm+1∑
k=1

Gj(g
k,zm+1
j |XIj

)

−Gm+1(f0|z0)](x) +
α

4
< 0,



36 ENRIQUE MIRANDA AND MARCO ZAFFALON

contradicting the definition of Em+1(f0|z0) via Equation (4). Hence, Equation (14)
holds and P 1(XO1 |XI1), . . . , Pm(XOm |XIm), Em+1(XOm+1 |XIm+1) are weakly co-
herent. �

Proof of Proposition 6. (1) Consider ε ≥ 0. We begin with the direct inclusion.
Consider P ∈ M(ε), fj ∈ Hj for some j ∈ {1, . . . ,m} and zj ∈ XIj . We
can express Equation (9) as

P (π−1
Ij

(zj)(fj − P j(fj |zj) + εR(fj))) ≥ 0, (16)

whence, by making the (finite) sum over the elements zj of the class Sj(fj),

P (Gj(fj |XIj
) + εR(fj)Sj(fj)) ≥ 0.

Applying now the linearity and the monotonicity of the linear prevision P ,
we deduce that P (f) ≥ 0 for every f ∈ Vε.

Conversely, let P be a linear prevision such that P (f) ≥ 0 for all f ∈ Vε.
Consider fj ∈ Hj , zj ∈ XIj

, and let us prove that Equation (16) holds.
Since this holds trivially if P (zj) = 0, we assume therefore that P (zj) > 0;
we can also assume without loss of generality that min fj = 0, taking into
account that given gj := fj −min fj ,

π−1
Ij

(zj)(fj − P j(fj |zj) + εR(fj)) = π−1
Ij

(zj)(gj − P j(gj |zj) + εR(gj)).

Since in this paper we have assumed (by separate coherence) without loss
of generality that fjπ−1

Ij
(zj) also belongs to Hj (see Remark 2 in Section 2),

and R(fjπ−1
Ij

(zj)) ≤ R(fj) because min fj = 0,

π−1
Ij

(zj)(fj − P j(fj |zj) + εR(fj)) ≥ π−1
Ij

(zj)(fj − P j(fj |zj) + εR(fjπ−1
Ij

(zj)))

= Gj(fjπ−1
Ij

(zj)|zj) + εR(fjπ−1
Ij

(zj))π−1
Ij

(zj)

= Gj(fjπ−1
Ij

(zj)|XIj
) + εR(fjπ−1

Ij
(zj))Sj(fjπ−1

Ij
(zj)),

and therefore π−1
Ij

(zj)(fj − P j(fj |zj) + εR(fj)) belongs to Vε. As a conse-
quence, P (π−1

Ij
(zj)(fj − P j(fj |zj) + εR(fj))) ≥ 0 and from Equation (16)

we deduce that P belongs to M(ε).
(2) Since M(0) ⊆ M(ε) for any ε > 0, we deduce that M(0) ⊆ ∩ε>0M(ε).

Conversely, let P be a linear prevision in ∩ε>0M(ε). Then for any j ∈
{1, . . . ,m}, zj ∈ XIj

s.t. P (zj) > 0, fj ∈ Kj and ε > 0, P (f |zj) ≥
P j(fj |zj) − εR(fj), whence P (f |zj) ≥ P j(fj |zj) and as a consequence
P ∈M(0).

Let us prove now that M(0) = M(P ). Let P be a linear prevision
that dominates P . Consider j ∈ {1, . . . ,m}, fj ∈ Hj , and zj ∈ XIj s.t.
P (zj) > 0, and let us prove that

P (fj |zj) ≥ P j(fj |zj). (17)

This is a consequence of Lemma 5, taking into account that Pj(fj |zj) is
uniquely determined by GBR (see Theorem 6 in Section 2).

To see the converse, consider a linear prevision P in M(0), and as-
sume that P (f) < P (f) for some gamble f . For every j = 1, . . . ,m,
consider a conditional prevision P (XOj |XIj ) which is coherent with P and
dominates P j(XOj

|XIj
); we can do so because P ∈ M(0) and because
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when a conditioning event zj has probability zero any conditional previ-
sion P (XOj |zj) satisfies the Generalised Bayes Rule with P . From The-
orem 9, P, P1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent. Apply-
ing Lemma 2, the lower envelope of {P , P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
)}

and {P, P1(XO1 |XI1), . . . , Pm(XOm
|XIm

)} is again weakly coherent. But
this means that the coherent lower prevision Q := min{P, P} is weakly
coherent with P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
) and is strictly dominated

by P . This is a contradiction with the second part of Theorem 9. As a
consequence, P ∈M(P ).

(3) This is an immediate consequence of the second statement, taking into
account that the sets M(ε) form a nested sequence.

�

Proof of Proposition 7. Let us define V1
ε := {f : f+δ ∈ Vε ∀δ > 0}, and let us prove

that this set is a coherent set of almost-desirable gambles with respect to L(Xn).
For this, we are going to show that it satisfies the axioms in [27, Section 3.7.3]:

(1) Let f be a gamble such that max f < 0. Then there is some δ > 0 such
that max f + δ < 0. As a consequence, f + δ /∈ Vε, or by Proposition 4 we
contradict that P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid partial loss. This
implies that f /∈ V1

ε .
(2) Since λf ∈ Vε for every f ∈ Vε, λ ≥ 0, for every δ > 0 there is some f ∈ Vε

such that max f < δ. Since Vε includes all positive constants, this implies
that any gamble g with min g > 0 belongs to Vε, and as a consequence also
to V1

ε .
(3) Let f ∈ V1

ε , λ > 0. Then λ(f + δ) = λf + λδ belongs to Vε for every δ > 0.
As a consequence, λf ∈ V1

ε .
(4) For every f, g ∈ Vε it follows immediately that f + g ∈ Vε . As a conse-

quence, given f1, g1 ∈ V1
ε and δ > 0, f1 + g1 + δ = (f1 + δ

2 ) + (g1 + δ
2 ) ∈ Vε.

Hence, f1 + g1 ∈ V1
ε .

(5) Finally, if f + δ ∈ V1
ε for every δ > 0, we deduce that f + δ

′ ∈ Vε for all
δ
′
> 0, and as a consequence f ∈ V1

ε .
Applying [27, Theorem 3.8.5], V1

ε is equal to

{f : P (f) ≥ 0 ∀P ∈M(V1
ε )},

where

M(V1
ε ) = {P : P (f) ≥ 0 ∀f ∈ V1

ε } = {P : P (f) ≥ 0 ∀f ∈ Vε} =M(ε);

to see the second equality, consider a linear prevision P such that P (f) ≥ 0 for
all f ∈ Vε, and let f ∈ V1

ε . Then, f + δ ∈ Vε for all δ > 0, whence P (f + δ) =
P (f) + δ ≥ 0 for all δ > 0. Hence, P (f) ≥ 0. The third equality follows from the
first statement in Proposition 6.

Hence,

{f : P (f) ≥ 0 ∀P ∈M(ε)} = V1
ε = {f : f + δ ∈ Vε ∀δ > 0}.

It remains to prove that V1
ε is the closure of Vε in the topology of uniform

convergence. To see this, note that for any gamble f in V1
ε , f is the uniform limit

of the sequence {f + 1
n : n ∈ N}, and as a consequence it belongs to Vε. Conversely,

let (fn)n be a sequence of elements in V1
ε that converges uniformly to f . Then

for every δ > 0, there is some nδ ∈ N such that ‖fn − f‖ < δ ∀n ≥ nδ, whence
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f + δ ≥ fn ∀n ≥ nδ and therefore f + δ ∈ Vε. This implies that f ∈ V1
ε and as a

consequence V1
ε = Vε. �

Proof of Proposition 8. Let us begin with the first statement. It is immediate that
for every ε > 0, VAε ⊆ Vε ⊆ Vε, whence ∪εVAε ⊆ ∪εVε ⊆ ∪εVε.

Consider now ε > 0, f ∈ Vε. Then there are gambles fkj ∈ Kj , j = 1, . . . ,m, k =
1, . . . , nj s.t.

f ≥
m∑
j=1

nj∑
k=1

Gj(fkj |XIj ) + εR(fkj )Sj(fkj ).

We can assume without loss of generality that min fkj = 0 for j = 1, . . . ,m, k =
1, . . . , nj ; otherwise, it suffices to take gkj := (fkj −min fkj )Sj(fkj ), which belongs to
Hj by Remark 2 (in Section 2), and moreover satisfies Gj(gkj |XIj ) = Gj(fkj |XIj ),
R(gkj ) ≤ R(fkj ) and whose support Sj(gkj ) is included in Sj(fkj ). Then

m∑
j=1

nj∑
k=1

Gj(fkj |XIj
) + εR(fkj )Sj(fkj )

=
m∑
j=1

nj∑
k=1

 ∑
zj∈Sj(fk

j )

Gj(fkj |zj)

+ εR(fkj )Sj(fkj )

=
m∑
j=1

nj∑
k=1

 ∑
zj∈Sj(fk

j )

π−1
Ij

(zj)

 ∑
xj∈XOj

fkj (xj , zj)(π−1
Oj

(xj)− Pj(xj |zj))


+ εR(fkj )Sj(fkj )

=
m∑
j=1

nj∑
k=1

 ∑
zj∈Sj(fk

j )

∑
xj∈XOj

(
fkj (xj , zj)π−1

Ij
(zj)(π−1

Oj
(xj)− Pj(xj |zj))

)
+ εR(fkj )Sj(fkj )

=
m∑
j=1

nj∑
k=1

 ∑
zj∈Sj(fk

j )

∑
xj∈XOj

fkj (xj , zj)Gj(xj |zj)

+ εR(fkj )Sj(fkj )

=
m∑
j=1

nj∑
k=1

 ∑
zj∈Sj(fk

j )

εR(fkj )π−1
Ij

(zj) +
∑

xj∈XOj

fkj (xj , zj)Gj(xj |zj)


=

m∑
j=1

nj∑
k=1

 ∑
zj∈Sj(fk

j )

∑
xj∈XOj

(
fkj (xj , zj)Gj(xj |zj) + ε

R(fkj )π−1
Ij

(zj)

|XOj |

)
≥

m∑
j=1

nj∑
k=1

∑
zj∈Sj(fk

j )

∑
xj∈XOj

fkj (xj , zj)

(
Gj(xj |zj) +

επ−1
Ij

(zj)

|XOj
|

)
,

whence f ∈ VAε1 . To see this, consider that in the last expression fkj (xj , zj) can be
regarded as λkj in the definition of VAε1 (see (10)), and moreover that Gj(xj |zj) +
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επ−1
Ij

(zj)

|XOj
| = Gj(fj |XIj )+ ε

|XOj
|R(fj)Sj(fj), if we take fj to be the indicator function

of π−1
Oj∪Ij

({(xj , zj)}).
This implies that Vε ⊆ VAε1 , and as a consequence Vε ⊆ V

A

ε1 = VAε1 , taking into
account that the set of gambles VAε1 is closed because it is finitely generated [27,
Section 4.2.1]. As a consequence, ∪εVε ⊆ ∪εVAε ⊆ ∪εVε, and therefore the three
sets coincide.

We turn now to the second statement. Since for every ε > 0 the set VAε is
included in Vε, we deduce thatMA

ε ⊇M(ε), and as a consequenceMA
0 = ∩εMA

ε ⊇
∩εM(ε) =M(0), where the equalities follow from Proposition 6. Conversely, given
ε > 0 it follows from Proposition 7 that

M(ε) = {P : P (f) ≥ 0 ∀f ∈ Vε} ⊇ {P : P (f) ≥ 0 ∀f ∈ VAε1} =MA
ε1 ,

where the inclusion follows from the first part of the current proof. As a con-
sequence, ∩εMA

ε ⊆ ∩εM(εmaxj |XOj
|), and since M(ε) does not increase as ε

goes to zero, ∩εM(εmaxj |XOj
|) = ∩εM(ε) = M(0). We conclude then that

M(0) = ∩εM(ε) = ∩εMA
ε =MA

0 . �

Proof of Proposition 9. For every ε > 0, fkj ∈ Hj for j = 1, . . . ,m, k = 1, . . . , nj ,

π−1
Im+1

(zm+1)(f − µ) ≥
m∑
j=1

nj∑
k=1

[Gj(fkj |XIj
) + εR(fkj )Sj(fkj )]

implies that  m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)− π−1

Im+1
(zm+1)(f − µ+ δ)

 (x) < 0

for every x ∈ π−1
Im+1

(zm+1)∪S(fkj ) and every δ > 0. Hence, sup{µ : π−1
Im+1

(zm+1)(f−
µ) ∈ ∪εVε} ≤ Em+1(f |zm+1).

To see the converse, note that, if for µ ∈ R there are fkj ∈ Hj , j = 1, . . . ,m, k =
1, . . . , nj , such that

m∑
j=1

nj∑
k=1

Gj(fkj |XIj )− π−1
Im+1

(zm+1)(f − µ) < 0

on π−1
Im+1

(zm+1) ∪ S(fkj ), then there is some ε > 0 such that

m∑
j=1

nj∑
k=1

Gj(fkj |XIj )− π−1
Im+1

(zm+1)(f − µ) +
m∑
j=1

nj∑
k=1

εR(fj)Sj(fkj ) ≤ 0,

and as a consequence π−1
Im+1

(zm+1)(f − µ) ∈ Vε.
Finally, the inequality Em+1(f |zm+1) ≤ sup{µ : π−1

Im+1
(zm+1)(f−µ) ∈ V} follows

from the inclusion ∪εVε ⊆ V. �

Proof of Proposition 10. Since P 1(XO1 |XI1), . . . , Pm(XOm
|XIm

) avoid partial loss,
Proposition 3 implies that there are dominating coherent conditional linear previ-
sions Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
). Let us consider the vacuous conditional

lower prevision Pm+1(XOm+1 |XIm+1) on Km+1. It follows that the conditional pre-
visions Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
), Pm+1(XOm+1 |XIm+1) avoid partial loss.



40 ENRIQUE MIRANDA AND MARCO ZAFFALON

Let us consider the finite sets of gambles

W1 := {Gj(Aj |zj) + επ−1
Ij

(zj) : j = 1, . . . ,m+ 1, zj ∈ XIj , Aj ⊆ XOj},W2 := {0};

note that

Gj(Aj |zj) + επ−1
Ij

(zj) = Gj(fj |XIj
) + εR(fj)Sj(fj),

where fj is the indicator function of π−1
Oj∪Ij

(Aj × {zj}).
Since Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
), Pm+1(XOm+1 |XIm+1) avoid partial loss,

we can apply Proposition 4 (Equation (6)) to deduce that for every λAj ,zj ≥ 0,
Aj ⊆ XOj

, zj ∈ XIj
, j = 1, . . . ,m+ 1 such that not all the λAj ,zj

are equal to zero,

max
x∈Xn

m+1∑
j=1

∑
zj∈XIj

,Aj⊆XOj

λAj ,zj

(
Gj(Aj |zj) + επ−1

Ij
(zj)

) (x) > 0.

Hence, we can apply Gale’s theorem of the alternative ([12]; [27, p. 612]) to deduce
the existence of a continuous linear functional P such that P (v) > 0 for every
v ∈ W1 and P (0) = 0. Now, the functional Q = P

P (1) satisfies Q(1) = 1 and is
therefore a linear prevision such that Q(v) > 0 for every v ∈ W1.

If Q(zj) = 0 for some zj ∈ XIj , it follows that Q(Gj(Aj |zj) + επ−1
Ij

(zj)) = 0
for every Aj ⊆ XOj

, which is a contradiction with the previous statement. Hence,
it must be Q(zj) > 0 for every zj ∈ XIj

, j = 1, . . . ,m + 1, and in particular
Q(zm+1) > 0.

Let Vλ,Aε be defined by Equation (10) relative to the linear conditional previ-
sions Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
), once we restrict their domains to events.

Take f in Vλ,Aε . It follows from Equation (10) that there are v1, . . . , vn ∈ W1,
λ1, . . . , λn ≥ 0 such that f ≥

∑n
i=1 λivi. We deduce from this and the linearity and

monotonicity of Q that Q(f) > 0 for every f ∈ Vλ,Aε , and from the first statement
in Proposition 6 we deduce that Q belongs to the set Mλ,A

ε associated to the re-
strictions of Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
) to events. Applying Proposition 8,

Q also belongs to Mλ(εmaxj |XOj
|).

Since moreover Pλj (f |zj) ≥ P j(f |zj), we deduce that Q belongs to the set
M(εmaxj |XOj

|) associated to P 1(XO1 |XI1), . . . , Pm+1(XOm+1 |XIm+1) by Equa-
tion (9): note that, since Pm+1(XOm+1 |XIm+1) is vacuous, the set of linear pre-
visions determined by the assessments P 1(XO1 |XI1), . . . , Pm(XOm |XIm) coincides
with the one determined if we also add Pm+1(XOm+1 |XIm+1).

The above considerations show that for every ε > 0 there is P ∈M(εmaxj |XOj
|)

such that P (zm+1) > 0. Since we can do this for all ε > 0, we deduce that the
result holds. �

Proof of Lemma 3. For any ε > 0,

P εm+1(f |zm+1) = inf{P (f |zm+1) : P ∈M(ε), P (zm+1) > 0}
= sup{µ : P (f |zm+1) ≥ µ ∀P ∈M(ε), P (zm+1) > 0}
= max{µ : P (π−1

Im+1
(zm+1)f) ≥ µP (zm+1) ∀P ∈M(ε)}

= max{µ : P (π−1
Im+1

(zm+1)(f − µ)) ≥ 0 ∀P ∈M(ε)}

= max{µ : π−1
Im+1

(zm+1)(f − µ) ∈ Vε},
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where last equality follows from Proposition 7. As a consequence,

Fm+1(f |zm+1) = lim
ε→0

P εm+1(f |zm+1) = lim
ε→0

max{µ : π−1
Im+1

(zm+1)(f − µ) ∈ Vε}

= sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ ∪εVε}.

This completes the proof of the first statement. For the second, it suffices to note
that ∪εVε ⊆ ∪εVε and to apply Proposition 9. �

Proof of Theorem 11. Let us prove first of all the equality for linear assessments.
Consider thus P1(XO1 |XI1), . . . , Pm(XOm

|XIm
) avoiding partial loss (i.e., coherent)

conditional linear previsions with domains K1, . . . ,Km. Then

Em+1(XOm+1 |XIm+1) = sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ ∪εVε}

= sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ ∪εVε} = Fm+1(XOm+1 |XIm+1),

where the first equality follows from Proposition 9, the second from Proposition 8,
and the last one from Lemma 3.

Let now P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be conditional lower previsions avoid-
ing partial loss. Then they also avoid partial loss with the conditional prevision
Pm+1(XOm+1 |XIm+1) defined in the trivial way on the set of gambles which are
constant on the sets {π−1

Im+1
(zm+1) : zm+1 ∈ XIm+1}. From Lemma 1 and [21,

Corollary 16] their natural extensions E1(XO1 |XI1), . . . , Em+1(XOm+1 |XIm+1) are
coherent and are the lower envelopes of a family of coherent conditional linear
previsions

{Pλ1 (XO1 |XI1), . . . , Pλm(XOm
|XIm

), Pλm+1(XOm+1 |XIm+1) : λ ∈ Λ}.

For every λ ∈ Λ, let Vλε be the set of gambles given by Equation (10) with
respect to Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
), and derive Eλm+1(XOm+1 |XIm+1) and

Fλm+1(XOm+1 |XIm+1) from Pλ1 (XO1 |XI1), . . . , Pλm(XOm
|XIm

) by natural extension
and as a limit of regular extensions, respectively. It follows from the first part of the
proof that Eλm+1(XOm+1 |XIm+1) = Fλm+1(XOm+1 |XIm+1). Since the natural exten-
sion Eλm+1(XOm+1 |XIm+1) is the smallest conditional lower prevision which is co-
herent with Pλ1 (XO1 |XI1), . . . , Pλm(XOm

|XIm
), it follows that Eλm+1(XOm+1 |XIm+1)

is dominated by Pλm+1(XOm+1 |XIm+1), and consequently

inf
λ∈Λ

Eλm+1(XOm+1 |XIm+1) ≤ inf
λ∈Λ

Pλm+1(XOm+1 |XIm+1) = Em+1(XOm+1 |XIm+1).

Let us show that Eλm+1(XOm+1 |XIm+1) ≥ Em+1(XOm+1 |XIm+1): from Theo-
rem 5, Eλm+1(XOm+1 |XIm+1) is the lower envelope of the conditional previsions
Pm+1(XOm+1 |XIm+1) which are coherent with Pλ1 (XO1 |XI1), . . . , Pλm(XOm |XIm).
For any such Pm+1(XOm+1 |XIm+1), it follows that the conditional previsions

Pλ1 (XO1 |XI1), . . . , Pλm(XOm
|XIm

), Pm+1(XOm+1 |XIm+1)

dominate P 1(XO1 |XI1), . . . , Pm+1(XOm+1 |XIm+1) on their domains. Applying The-
orem 8, we deduce that Pm+1(XOm+1 |XIm+1) ≥ Em+1(XOm+1 |XIm+1). As a conse-
quence,

Em+1(XOm+1 |XIm+1) = inf
λ∈Λ

Eλm+1(XOm+1 |XIm+1)

= inf
λ∈Λ

Fλm+1(XOm+1 |XIm+1) ≥ Fm+1(XOm+1 |XIm+1),
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where the inequality follows because for every ε > 0 and every λ ∈ Λ, Vλε ⊇ Vε, and
as a consequence for every gamble f ∈ Km+1 and every zm+1 ∈ XIm+1 ,

Fλm+1(f |zm+1) = sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ ∪εV
λ

ε }

≥ sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ ∪εVε} = Fm+1(XOm+1 |XIm+1),

where the last equality follows from Lemma 3. Since the same lemma also shows
that Em+1(XOm+1 |XIm+1) ≤ Fm+1(XOm+1 |XIm+1), we deduce that the two are
equal. �

Proof of Proposition 11. From Proposition 6, M(P ) = {P : P (f) ≥ 0 ∀f ∈ V},
whence V ⊆ {f : P (f) ≥ 0}. If P (zm+1) > 0, there is a unique value µ∗ such that
P (π−1

Im+1
(zm+1)(f −µ∗)) = 0, and, taking into account that P (π−1

Im+1
(zm+1)(f −µ))

decreases as µ increases, we deduce that

Pm+1(f |zm+1) = µ∗ ≥ sup{µ : π−1
Im+1

(zm+1)(f − µ) ∈ V} ≥ Em+1(f |zm+1),

where the last inequality follows from Proposition 9.
Since on the other hand Proposition 5 implies that Em+1(XOm+1 |XIm+1) is

weakly coherent with P 1(XO1 |XI1), . . . , Pm(XOm |XIm), it dominates the small-
est conditional lower prevision with this property, given by Pm+1(XOm+1 |XIm+1).
Therefore Em+1(f |zm+1) = P (f |zm+1) for every f ∈ Km+1. �

Proof of Lemma 4. Let j ∈ {1, . . . ,m}, zj ∈ XIj and f ∈ Hj . Since P j(f |zj) is
the limit of Pnj (f |zj), for every ε > 0 there is some nε ∈ N such that ‖Gj(f |zj) −
Gnj (f |zj)‖ < ε for all n ≥ nε, where ‖ · ‖ denotes the supremum norm. Since XIj

is
finite, we deduce the existence of nε,1 ∈ N such that ‖Gj(f |XIj

)−Gnj (f |XIj
)‖ < ε

for all n ≥ nε,1.
Consider then fkj ∈ Hj for j = 1, . . . ,m, k = 1, . . . , nj , and j0 ∈ {1, . . . ,m}, zj0 ∈

XIj0
, f0 ∈ Kj0 . There is some nε,2 ∈ N such that∥∥∥∥∥∥

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)−Gj0(f0|zj0)

−
 m∑
j=1

nj∑
k=1

Gnj (fkj |XIj
)−Gnj0(f0|zj0)

∥∥∥∥∥∥ < ε

for all n ≥ nε,2. As a consequence, for every subset A of Xn we deduce that

max
x∈A

 m∑
j=1

nj∑
k=1

Gj(fkj |XIj
)−Gj0(f0|zj0)

 (x)

≥ max
x∈A

 m∑
j=1

nj∑
k=1

Gnj (fkj |XIj
)−Gnj0(f0|zj0)

 (x)− ε

for every n ≥ nε,2. Since we can moreover do this reasoning for any ε > 0, we
deduce that the limit of a sequence of weakly coherent (resp., coherent) conditional
lower previsions is also weakly coherent (resp., coherent). �

Proof of Theorem 12. We start with the direct implication. Consider coherent con-
ditional lower previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm). For every ε > 0, let
M(ε) be the set of linear previsions given by Equation (9). We deduce from
Proposition 10 that for every zj ∈ XIj

, j = 1, . . . ,m, there is some P ∈ M(ε)
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such that P (zj) > 0. As a consequence, we can define the conditional lower pre-
visions P ε1(XO1 |XI1), . . . , P εm(XOm |XIm) by regular extension. From [33, Theo-
rem 3], P ε1(XO1 |XI1), . . . , P εm(XOm |XIm) are coherent.

For every j ∈ {1, . . . ,m}, we can apply Theorem 11 to deduce that the nat-
ural extension Ej(XOj

|XIj
) of P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
), which coincides

with P j(XOj
|XIj

) on Hj , is equal to limε→0 P
ε
j(XOj

|XIj
). As a consequence, the

sequence of coherent conditional lower previsions

{P ε1(XO1 |XI1), . . . , P εm(XOm |XIm)}ε>0,

which are defined from M(ε) using regular extension, converges pointwise to the
initial assessments P 1(XO1 |XI1), . . . , Pm(XOm

|XIm
).

The converse implication follows immediately from Lemma 4. �
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