On the comonotone natural extension of marginal p-boxes

Ignacio Montes

Dep. of Statistics and O.R.- University of Oviedo

Comonotone probability measures

0. Notation

Interval notation: $[a, b]$

Interval dominance: $a \leq b$ if $a \leq b$ and $\pi \leq b$

Strict interval dominance: $a \leq b$ if $a \leq b$ and $\pi \neq b$

1. Definition [1]

$\{x, y\}, P_{X,Y}(\{(x, y)\}) > 0$ is an increasing set in \mathbb{R}^2

$P_{X,Y}$ comonotone \iff $X = h(y)$, h increasing

$F_{X,Y}(x, y) = \min\{F_X(x), F_Y(y)\} \forall (x, y)$

2. Main Property

Given X and Y characterised by their CDFs F_X and F_Y...

Existence ...there always exists a comonotone $P_{X,Y}$ with marginals F_X and F_Y

Construction ...$F_{X,Y}(x, y) = \min\{F_X(x), F_Y(y)\}$ \rightarrow $P_{X,Y}$

Uniqueness ...the joint comonotone is unique

3. Construction: Example

Step 1: marginals

F_X | 0.2 | 0.5 | 1
|---|---|---|
y_1 | 1 | 1 | 1
|---|---|---|
y_2 | 0.8 | 0.8 | 0.8
|---|---|---|
y_3 | 0.3 | 0.3 | 0.3

Step 2a: apply the min

F_X | 0.2 | 0.5 | 1
|---|---|---|
y_3 | 0.2 | 0.5 | 1
|---|---|---|
y_2 | 0.2 | 0.5 | 0.8
|---|---|---|
y_1 | 0.2 | 0.5 | 0.3

Step 3: $P_{X,Y}$

$P_{X,Y}$ | 0.2 | 0.3 | 0.5
|---|---|---|
y_1 | 0 | 0 | 0.2
|---|---|---|
y_2 | 0 | 0.2 | 0.3
|---|---|---|
y_3 | 0.2 | 0.3 | 0.3

Step 2b: apply the min

F_X | 0.2 | 0.5 | 1
|---|---|---|
y_3 | 0.2 | 0.5 | 1
|---|---|---|
y_2 | 0.2 | 0.5 | 0.8
|---|---|---|
y_1 | 0.2 | 0.5 | 0.3

$F_{X,Y}$ | x_1 | x_2 | x_3
|---|---|---|
y_1 | 0 | 0 | 0.2
|---|---|---|
y_2 | 0 | 0.2 | 0.3
|---|---|---|
y_3 | 0.2 | 0.3 | 0.3

Comonotone lower probabilities

1. Definition [2]

P comonotone $\forall P \in \mathcal{M}(P_{X,Y})$

Supp$(P_{X,Y}) = \{(x, y) \mid P_{X,Y}(\{(x, y)\}) > 0\}$ is an increasing set in \mathbb{R}^2

$P_{X,Y}$ comonotone lower probability $\iff P_{X,Y}(x, y) = \min\{P_X(x), P_Y(y)\}$

$F_{X,Y}(x, y) = \min\{F_X(x), F_Y(y)\} \forall (x, y)$

2. Aim of the paper

X and Y discrete and represented by (E_X, F_X) and (E_Y, F_Y)

Definition: $P_{X,Y}$ is comonotone extension if it is comonotone and its marginal p-boxes are (E_X, F_X) and (E_Y, F_Y)

Aim 1: existence, construction and uniqueness of the comonotone extension

Aim 2: in case of non-uniqueness, existence and construction of the comonotone natural extension

3. Existence of a comonotone extension

Theorem: the comonotone extension exists if and only if there is interval dominance between $F_X(x)$ and $F_Y(y)$ for every (x, y)

4. Construction of a comonotone extension: Example

Step 1: marginals

F_X | 0.2 | 0.4 | 1
|---|---|---|
y_1 | 0.4 | 0.8 | 1
|---|---|---|
y_2 | 0.4 | 0.8 | 1
|---|---|---|
y_3 | 0.4 | 0.8 | 1

Step 2: apply the min

y_1 | 0.2, 0.2 | 0.4, 0.4 | 0.4, 0.4
|---|---|---|
y_2 | 0.2, 0.2 | 0.4, 0.4 | 0.4, 0.4
|---|---|---|
y_3 | 0.2, 0.2 | 0.4, 0.4 | 0.4, 0.4

Step 3: set S

$S = \{(x, y) \mid F_{X,Y}(x, y) < F_X(x, y_1) \land F_{X,Y}(x, y_2) < F_X(x, y_2) \land F_{X,Y}(x, y_3) < F_X(x, y_3)\}$

\rightarrow increasing set

Step 4: correspondence

$S \leftrightarrow Z \leftrightarrow Z$

Step 5: focal events [3]

$(F_E, F_Z) \rightarrow P_Z$ belief function $\rightarrow m_Z$

E_1, \ldots, E_5 \rightarrow focal events

$F_i = g^{-1}(E_i)$, $i = 1, \ldots, 5$

\downarrow

$m_{X,Y}(F_i) = m_{X,Y}(E_i) \rightarrow E_{X,Y}$

Step 6: comonotone $P_{X,Y}$

$E_{X,Y} \rightarrow F_{X,Y}$

5. Uniqueness of the comonotone extension

Not unique!

6. Comonotone natural extension

Definition: $E_{X,Y}$ is the comonotone natural extension if it is a comonotone extension and $E_{X,Y} \leq P_{X,Y}$ for any other comonotone extension $P_{X,Y}$

Theorem: the comonotone natural extension exists if and only if for any (x, y) either there is strict interval dominance between $F_X(x)$ and $F_Y(y)$ or $F_X(x) = F_X(y) = F_Y(y)$

References

Summary

Comonotone extension

Existence Not always \times Characterization \checkmark Belief function \checkmark

Construction Simple! \checkmark

Uniqueness No \times

Comonotone natural extension

Existence Not always \times Characterization \checkmark Belief function \checkmark

Construction Simple! \checkmark

Future work...

Continuous case

Application to finance and DM

At a glance

http://bellman.ciens.unican.es/~imontes

imontes@unican.es