Exercises for the 8th SIPTA Summer School

July 24th - July 28th, 2018

1 Exercises

1. Consider the probability/credal set described by the constraints

$$
p\left(\omega_{1}\right) \in[0.1,0.3], p\left(\omega_{2}\right) \in[0.4,0.7], p\left(\omega_{3}\right)=[0.1,0.5]
$$

Show that these induce a belief function, e.g., by computing the lower probabilities and showing that the Möbius inverse is non-negative.

| | $\left\{\omega_{1}\right\}$ | $\left\{\omega_{2}\right\}$ | $\left\{\omega_{3}\right\}$ | $\left\{\omega_{1}, \omega_{2}\right\}$ | $\left\{\omega_{1}, \omega_{3}\right\}$ | $\left\{\omega_{2}, \omega_{3}\right\}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \Omega$

2. Consider the probability/credal set described by the constraints

$$
p\left(\omega_{1}\right) \in[0.2,0.3], p\left(\omega_{2}\right) \in[0.4,0.5], p\left(\omega_{3}\right)=[0.2,0.3]
$$

Show that these do not induce a belief function, e.g., by computing the lower probabilities and showing that the Möbius inverse is negative for some set (hint: focus on big ones), or by showing that it is not 3 -monotone.

| $\left\{\omega_{1}\right\}$ | $\left\{\omega_{2}\right\}$ | $\left\{\omega_{3}\right\}$ | $\left\{\omega_{1}, \omega_{2}\right\}$ | $\left\{\omega_{1}, \omega_{3}\right\}$ | $\left\{\omega_{2}, \omega_{3}\right\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$\quad \Omega$

3. Consider the space $\Omega=\{a, b, c\}$ and the following mass functions:

$$
\begin{gathered}
m_{1}(\{b\})=0.3, m_{1}(\{b, c\})=0.2, m_{1}(\{a, b, c\})=0.5 \\
m_{2}(\{a\})=0.2, m_{2}(\{b\})=0.3, m_{2}(\{c\})=0.3, m_{2}(\{a, b, c\})=0.2 \\
m_{3}(\{a, b\})=0.3, m_{3}(\{a, c\})=0.3, m_{3}(\{a\})=0.4
\end{gathered}
$$

Build the partial order \sqsubseteq between m_{1}, m_{2}, m_{3}, reminding that

$$
m_{i} \sqsubseteq m_{j} \text { iff } \underline{P}_{i}(A) \geq \underline{P}_{j}(A) \text { for all } A
$$

4. The hotel provides the following plates for breakfast

$$
a=\text { Century egg, } b=\text { Rice, } c=\text { Croissant, } d=\text { Raisin Muffin }
$$

In a survey about their choices, respondents gave the reply

$$
m(\{a, b\})=\alpha, m(\{c, d\})=1-\alpha
$$

We learn that customer C does not like eggs nor raisins $(C=\{b, c\})$, what can we tell about him choosing Rice by applying the focusing operation?
5. The hotel provides the following plates for breakfast

$$
a=\text { Century egg, } b=\text { Rice, } c=\text { Croissant, } d=\text { Raisin Muffin }
$$

In a survey about their choices, respondent gave the reply

$$
m(\{a, b\})=\alpha, m(\{c, d\})=1-\alpha
$$

We learn that suppliers no longer have eggs nor raisins $(C=\{b, c\})$, what is the proportion of rice we should buy to satisfy customers by applying the revision operation?
6. A zombie apocalypse has happened, and you must recognize possible threats/supports

The possibilities Ω are

- Zombie (Z)
- Friendly Human (F)
- Hostile Human (H)
- Neutral Human (N)

The sources S_{i} are

- Half-broken heat detector $\left(S_{1}\right)$
- Paranoid watch guy $1\left(S_{2}\right)$
- Half-broken Motion detector $\left(S_{3}\right)$
- Sleepy watch guy $2\left(S_{4}\right)$

Given this table of contour functions, a weighted average and a decision based on maximal plausibility

	$\hat{\omega}^{1}=Z$				$\hat{\omega}^{2}=H$				$\hat{\omega}^{3}=F$			
	Z	F	H	N	Z	F	H	N	Z	F	H	N
S_{1}	1	0,5	0,5	0,5	1	0,5	0,5	0,5	0,5	1	1	1
S_{2}	1	0,2	0, 8	0,2	0	0, 3	1	0, 3	0	0, 4	1	0, 4
S_{3}	1	0, 5	0, 5	0,5	0, 5	0, 7	0, 8	0,7	1	0, 5	0, 5	0,5
S_{4}	1	1	1	1	0,2	0,2	1	0,5	0,2	1	0,4	0,8
$\begin{aligned} & \mathbf{w}_{1}=(0.5,0.5,0,0) \\ & \mathbf{w}_{2}=(0,0,0.5,0.5) \end{aligned}$												

Choose $h_{\mathbf{w}_{1}}$ or $h_{\mathbf{w}_{2}}$? Given the data, can we find a strictly better weight vector?

