# Belief function theory 101 

## Sébastien Destercke

Heudiasyc, CNRS Compiegne, France
ISIPTA 2018 School

## Lecture goal/content

What you will find in this talk

- An overview of belief functions and how to obtain them
- Short discussion on comparing informative contents
- Discussion about conditioning and fusion
- Pointers to additional topics (statistical learning, preference handling, ...)

What you will not find in this talk

- A deep and exhaustive study of a particular topic


## How this will go

- Exercices along the lecture
- You are encouraged to ask questions during the lecture!


## Plan

(1) Introductory elements
(2) Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
(3) Comparison, conditioning and fusion
- Information comparison
- The different facets of conditioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Generic vs singular quantity

A quantity of interest $S$ can be

- Generic, when it refers to a population, or a set of situations.

Generic quantity example
The distribution of height within french population

- Singular, when it refers to an individual or a peculiar situation

Singular quantity example
My own, personal height

## Ontic and epistemic information [10]

An item of information $\mathcal{I}$ possessed by an agent about $S$ can be

- Ontic, if it is a faithful, perfect representation of $S$

Ontic information example
A set $S$ representing the exact set of languages spoken by me e.g.: S = \{French, English, Spanish\}

- Epistemic, if it is an imperfect representation of $S$

Epistemic information example
A set $E$ containing my mother tongue
e.g., $E=\{$ French, English, Spanish\}

- $\rightarrow$ same mathematical expression, different interpretation


## Everything is possible

We can have

- Ontic information about a singular quantity: the hair colour of a suspect; the mother tongue of someone
- Epistemic information about a singular quantity: the result of the next dice toss; the set of possible mother tongues of someone
- Ontic information about a generic quantity: the exact distribution of pixel colours in an image
- Epistemic information about a generic quantity: an interval about the frequency of French persons higher than 1.80 m


## Uncertainty definition

Uncertainty: when our information $\mathcal{I}$ does not characterize the quantity of interest $S$ with certainty
$\rightarrow$ In this view, uncertainty is necessarily epistemic, as it reflect an imperfect knowledge of the agent

Can concern both:

- Singular information
- items in a data-base, values of some logical variables, time before failure of a component
- Generic information
- parameter values of classifiers/regression models/probability distributions, time before failure of components, truth of a logical sentence ("birds fly")


## The room example

Heights of people in a room: generic quantity


- Generic question: are $90 \%$ of people in room less than 1 m 80 ? $\Rightarrow$ No, with full certainty
- Specific question: is the last person who entered less than 1 m 80 ? $\Rightarrow$ Probably, with $60 \%$ chance (uncertain answer)


## Uncertainty main origins [6, Ch. 3]

- Variability of a population applied to a peculiar, singular situation Variability example
The result of one dice throw when knowing the probability of each face
- Imprecision and incompleteness due to partial information about the quantity $S$
Imprecision example
Observing limited sample of the population, describing suspect as "young", limited sensor precision
- Conflict between different sources of information (data/expert) Conflict example Two redundant data base entries with different information for an attribute, two sensors giving different measurements of a quantity


## Handling uncertainty



Common problems in one sentence

- Learning: use singular information to estimate generic information (induction in logical sense)
- Prediction: interrogate model and observations to deduce information on quantity of interest ( $\sim$ inference/deduction in logical sense)
- Information revision: merge new information with old one
- Information fusion: merge multiple information pieces about same quantity


## Plan

## (1) Introductory elements

(2) Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
(3) Comparison, conditioning and fusion
- Information comparison
- The different facets of conclitioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Section goals

- Remind basic ideas of uncertainty modelling
- Introduce main ideas about belief functions
- Provide elements linking belief functions and other approaches
- Illustrate practical representations of belief functions


## Outline

## (1) Introductory elements

(2) Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
(3) Comparison, condititioning and fusion
- Information comparison
- The different facets of conditioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Basic framework

Quantity $S$ with possible exclusive states $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$
$\triangleright S$ : data feature, model parameter, ...
Basic tools
A confidence degree $P: 2^{\Omega} \rightarrow[0,1]$ is such that

- $P(A)$ : confidence $S \in A$
- $P(\emptyset)=0, P(\Omega)=1$
- $A \subseteq B \Rightarrow P(A) \leq P(B)$

Uncertainty modelled by 2 degrees $\underline{P}, \bar{P}: 2^{\Omega} \rightarrow[0,1]$ :

- $\underline{P}(A) \leq \bar{P}(A)$ (monotonicity)
- $\underline{P}(A)=1-\bar{P}\left(A^{c}\right)$ (duality)


## Probability

## Basic tool

A probability distribution $p: \Omega \rightarrow[0,1]$ from which

- $\underline{P}(A)=\bar{P}(A)=P(A)=\sum_{s \in A} p(s)$
- $P(A)=1-P\left(A^{C}\right)$ : auto-dual

Main interpretations

- Frequentist [54] : $P(A)=$ number of times $A$ observed in a population
$\triangleright$ only applies to generic quantities (populations)
- Subjectivist [36] : $P(A)=$ price for gamble giving 1 if $A$ happens, 0 if not
$\triangleright$ applies to both singular and generic quantities


## Sets

## Basic tool

A set $E \subseteq \Omega$ with true value $S \in E$ from which

- $E \subseteq A \rightarrow \underline{P}(A)=\bar{P}(A)=1$ (certainty truth in $A$ )
- $E \cap A \neq \emptyset, E \cap A^{c} \neq \emptyset \rightarrow \underline{P}(A)=0, \bar{P}(A)=1$ (ignorance)
- $E \cap A=\emptyset \rightarrow \underline{P}(A)=\bar{P}(A)=0$ (truth cannot be in $A$ )
$\underline{P}, \bar{P}$ are binary $\rightarrow$ limited expressiveness

Classical use of sets:

- Interval analysis [40] ( $E$ is a subset of $\mathbb{R}$ )
- Propositional logic ( $E$ is the set of models of a KB)

Other cases: robust optimisation, decision under risk, ...

## Example

Assume that it is known that pH value $E \in[4.5,5.5]$, then

- if $A=[5,6]$, then $\underline{P}(A)=0, \bar{P}(A)=1$

- if $A=[4,7]$, then $\underline{P}(A)=\bar{P}(A)=1$

- if $A=[6,9]$, then $\underline{P}(A)=\bar{P}(A)=0$



## In summary

Probabilities ...

- (+) very informative quantification (do we need it?)
- (-) need lots of information (do we have it?)
- (-) if not enough, requires a choice (do we want to do that?)
- use probabilistic calculus (convolution, stoch. independence, ...) Sets...
- (+) need very few information
- (-) very rough quantification of uncertainty (Is it sufficient for us?)
- use set calculus (interval analysis, Cartesian product, ...)
$\rightarrow$ Need for frameworks bridging these two


## Possibility theory [27]

Basic tool
A distribution $\pi: \Omega \rightarrow[0,1]$, usually with $\omega$ such that $\pi(\omega)=1$, from which

- $\bar{P}(A)=\max _{\omega \in A} \pi(\omega)$ (Possibility measure)
- $\underline{P}(A)=1-\bar{P}\left(A^{c}\right)=\min _{\omega \in A^{c}}(1-\pi(\omega))$ (Necessity measure)

Sets $E$ captured by $\pi(\omega)=1$ if $\omega \in E$, 0 otherwise

Interval/set as special case
The set $E$ can be modelled by the possibility distribution $\pi_{E}$ such that

$$
\pi_{E}(\omega)= \begin{cases}1 & \text { if } \omega \in E \\ 0 & \text { else }\end{cases}
$$

## A nice characteristic: Alpha-cut [9]

Definition

$$
A_{\alpha}=\{\omega \in \Omega \mid \pi(\omega) \geq \alpha\}
$$

- $\underline{P}\left(A_{\alpha}\right)=1-\alpha$
- If $\beta \leq \alpha, \boldsymbol{A}_{\alpha} \subseteq \boldsymbol{A}_{\beta}$

Simulation: draw $\alpha \in[0,1]$ and associate $A_{\alpha}$

$\Rightarrow$ Possibilistic approach ideal to model nested structures

## A basic distribution: simple support

A set $E$ of most plausible values
A confidence degree $\alpha=\underline{P}(E)$
Two interesting cases:

- Expert providing most plausible values $E$
- $E$ set of models of a formula $\phi$

Both cases extend to multiple sets $E_{1}, \ldots, E_{p}$ :

- confidence degrees over nested sets [49]
pH value $\in[4.5,5.5]$ with
$\alpha=0.8$ ( $\sim$ "quite probable")

- hierarchical knowledge bases [29]


## A basic distribution: simple support

A set $E$ of most plausible values
A confidence degree $\alpha=\underline{P}(E)$
Two interesting cases:

- Expert providing most plausible values $E$
- E set of models of a formula $\phi$

Both cases extend to multiple sets $E_{1}, \ldots, E_{p}$ :

- confidence degrees over nested sets [49]
- hierarchical knowledge bases [29]
variables $p, q$

$$
\begin{gathered}
\Omega=\{p q, \neg p q, p \neg q, \neg p \neg q\} \\
\underline{P}(p \Rightarrow q)=0.9 \\
(\sim \text { "almost certain" }) \\
E=\{p q, p \neg q, \neg p \neg q\}
\end{gathered}
$$

- $\pi(p q)=\pi(p \neg q)=\pi(\neg p \neg q)=1$
- $\pi(\neg p q)=0.1$



## Nested confidence intervals: expert opinions

Expert providing nested intervals + conservative confidence degree

A pH degree

- $0.3 \leq P([4.5,5.5])$
- $0.7 \leq P([4,6])$
- $1 \leq P([3,7])$



## Normalized likelihood as possibilities [24] [7]

$$
\pi(\theta)=\mathcal{L}(\theta \mid x) / \max _{\theta \in \Theta} \mathcal{L}(\theta \mid x)
$$

Binomial situation:

- $\theta=$ success probability
- $x$ number of observed successes
- $x=4$ succ. out of 11
- $x=20$ succ. out of 55



## Partially specified probabilities [3] [23]

Triangular distribution: $[\underline{P}, \bar{P}]$ encompass all probabilities with

- mode/reference value $M$
- support domain $[a, b]$.

Getting back to pH

- $M=5$
- $[a, b]=[3,7]$


## Other examples

- Statistical inequalities (e.g., Chebyshev inequality) [23]
- Linguistic information (fuzzy sets) [12]
- Approaches based on nested models


## Possibility: limitations

$$
\begin{aligned}
& \underline{P}(A)>0 \Rightarrow \bar{P}(A)=1 \\
& \bar{P}(A)<1 \Rightarrow \underline{P}(A)=0
\end{aligned}
$$

$\Rightarrow$ interval $[\underline{P}(A), \bar{P}(A)]$ with one trivial bound
Does not include probabilities as special case:
$\Rightarrow$ possibility and probability at odds
$\Rightarrow$ respective calculus hard (sometimes impossible?) to reconcile

## Going beyond

Extend the theory
$\Rightarrow$ by complementing $\pi$ with a lower distribution $\delta(\delta \leq \pi)$ [30], [21]
$\Rightarrow$ by working with interval-valued possibility/necessity degrees [4]
$\Rightarrow$ by working with sets of possibility measures [32]

Use a more general model
$\Rightarrow$ Random sets and belief functions

## Outline

## (1) Introductory elements

(2) Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions

3 Comparison, conditioning and fusion

- Information comparison
- The different facets of conditioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Belief functions

The history

- First used by Dempster to make statistical reasoning about imprecise observations, mostly with frequentist view
- Popularized by Shafer as a generic way to handle imprecise evidences
- Used by Smets (in TBM) with a will to not refer at all to probabilities
$\rightarrow$ evolved as a uncertainty theory of its own $(\exists \neq$ with IP, Possibility or p-boxes)


## Random sets and belief functions

## Basic tool

A positive distribution $m: 2^{\Omega} \rightarrow[0,1]$, with $\sum_{E} m(E)=1$ and usually $m(\emptyset)=0$, from which

- $\bar{P}(A)=\sum_{E \cap A \neq \emptyset} m(E)$ (Plausibility measure)
- $\underline{P}(A)=\sum_{E \subseteq A} m(E)=1-\bar{\mu}\left(A^{C}\right)$ (Belief measure)

$[P, \bar{P}]$ as
- subjective confidence degrees of evidence theory [50], [51], [13]
- bounds of an ill-known probability measure $\mu \Rightarrow \underline{P} \leq \mu \leq \bar{P}$


## A characterisation of belief functions

Complete monotonicity
If $\underline{P}$ is a belief measure if and only if it satisfies the inequality

$$
\underline{P}\left(\cup_{i=1}^{n} A_{i}\right) \geq \sum_{\mathcal{A} \subseteq\left\{A_{1}, \ldots, A_{n}\right\}}(-1)^{|\mathcal{A}|+1} \underline{P}\left(\cap_{A_{i} \in \mathcal{A}} A_{i}\right)
$$

for any number $n$.
Simply the exclusion/inclusion principle with an equality

## Another characterisation of belief functions

Möbius inverse: definition
Let $\underline{P}$ be a measure on $2^{\Omega}$, its Möbius inverse $m_{\underline{P}}: 2^{\Omega} \rightarrow \mathbb{R}$ is

$$
m_{\underline{P}}(E)=\sum_{A \subseteq E}-1^{|E \backslash A|} \underline{P}(E) .
$$

It is bijective, as $\underline{P}(A)=\sum_{E \subseteq A} m(E)$, and can be applied to any set-function.

Belief characterisation
$m_{\underline{P}}$ will be non-negative for all $E$ if and only if $\underline{P}$ is a belief function.

## Yet another characterisation: commonality functions

## Definition

Given a mass function $m$, commonality function $Q: 2^{\Omega} \rightarrow[0,1]$ defined as

$$
Q(A)=\sum_{E \supseteq A} m(E)
$$

and express how unsurprising it is to see $A$ happens.
Back to $m$
Given $Q$, we have

$$
m(A)=\sum_{B \supseteq A}-1^{|B \backslash \backslash|} Q(B)
$$

## Some notes

- Instrumental to define "complement" of information $m$
- In possibility theory, equivalent to guaranteed possibility
- In imprecise probability, no equivalent (?)


## special cases

Measures $[\underline{P}, \bar{P}]$ include:

- Probability distributions: mass on atoms/singletons
- Possibility distributions: mass on nested sets

$\rightarrow$ "simplest" theory that includes both sets and probabilities as special cases!


## Frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"
$\circ \mathrm{N}($ adal ) $\circ \mathrm{F}($ ederer $) \quad \circ \mathrm{D}($ jokovic) $\circ \mathrm{M}$ (urray) $\circ \mathrm{O}($ ther $)$
$60 \%$ replied $\{N, F, D\} \rightarrow m(\{N, F, D\})=0.6$
$15 \%$ replied "I do not know" $\{N, F, D, M, O\} \rightarrow m(\mathcal{S})=0.15$
10 \% replied Murray $\{M\} \rightarrow m(\{M\})=0.1$
$5 \%$ replied others $\{O\} \rightarrow m(\{O\})=0.05$

## P-box [35]

Expert providing percentiles

A pair $[\underline{F}, \bar{F}]$ of cumulative distributions

Bounds over events $[-\infty, x]$

- Percentiles by experts;
- Kolmogorov-Smirnov bounds;

Can be extended to any pre-ordered space [20], [53] $\Rightarrow$ multivariate spaces!

$$
\begin{gathered}
0 \leq P([-\infty, 12]) \leq 0.2 \\
0.2 \leq P([-\infty, 24]) \leq 0.4 \\
0.6 \leq P([-\infty, 36]) \leq 0.8
\end{gathered}
$$



6121824303642

## Other means to get random sets/belief functions

- Extending modal logic: probability of provability [52]
- Parameter estimation using pivotal quantities [43]
- Statistical confidence regions [14]
- Modify source information by its reliability [47]


## Outline

## (1) Introductory elements

(2) Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions

3 Comparison, conditioning and fusion

- Information comparison
- The different facets of conclitioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Limits of random sets

- Not yet fully satisfactory extension of Bayesian/subjective approach
- Still some natural items of information it cannot easily model:
- probabilistic bounds over atoms $\omega$ (imprecise histograms, ...) [11];
- comparative assessments such as $2 P(B) \leq P(A)[45], \ldots$



## Imprecise probabilities

Basic tool
A set $\mathcal{P}$ of probabilities on $\Omega$ or an equivalent representation

- $\bar{P}(A)=\sup _{P \in \mathcal{P}} P(A)$ (Upper probability)
- $\underline{P}(A)=\inf _{P \in \mathcal{P}} P(A)=1-\bar{P}\left(A^{c}\right)$ (Lower probability)

Reminder: lower/upper bounds on events alone cannot model any convex $\mathcal{P}$
$[\underline{P}, \bar{P}]$ as

- subjective lower and upper betting rates [55]
- bounds of an ill-known probability measure $P \Rightarrow \underline{P} \leq P \leq \bar{P}[5][56]$


## Some basic properties

Avoiding sure loss and coherence
Given some bounds $\underline{P}(A)$ over every event $A \subseteq \Omega$, we say that

- $\underline{P}$ avoids sure loss iff

$$
\mathcal{P}(\underline{P})=\{P: \underline{P} \leq P \leq \bar{P}\} \neq \emptyset
$$

- $\underline{P}$ is coherent iff for any $A$, we have

$$
\inf _{P \in \mathcal{P}(\underline{P})} P(A)=\underline{P}(A)
$$

## Illustrative example



## A first exercise


$\rightarrow$ Show that these induce a belief function


## A second exercise

$$
p\left(\omega_{1}\right) \in[0.2,0.3], p\left(\omega_{2}\right) \in[0.4,0.5], p\left(\omega_{3}\right)=[0.2,0.3]
$$

$\rightarrow$ Show that these do not induce a belief function


## A not completely accurate but useful picture

Able to model variability Incompleteness tolerant


## Why belief functions?

## Why not?

- You need more (to model properly/not approximate your results)
- You cannot afford it (computationally)

Why?
They offer a fair compromise

- Embed precise probabilities and sets in one frame
- Can use simulation of $m+$ Set computation
- Extreme points/natural extension easy to compute (Choquet Integral, ...)

Or, you want to use tools proper to BF theory.

## Plan

## (1) Introductory elements

2) Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
(3) Comparison, conditioning and fusion
- Information comparison
- The different facets of conditioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Outline

## (1) Introductory elements

2 Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
(3) Comparison, conditioning and fusion
- Information comparison
- The different facets of conditioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Introduction

## Main question

Given two pieces of information $\underline{P}_{1}, \underline{P}_{2}$, is one more informative than the others? How can we answer?

## Examples of use

- Least commitment principle: given multiple models satisfying given constraints, pick the most conservative one
- Partial elicitation,
- Revision,
- Inverse Pignistic,
- Natural extension, ...
- (Outer)-approximation: Pick a model $\underline{P}_{2}$ simpler than $\underline{P}_{1}$ (e.g., generic belief mass into possibility), ensuring that $\underline{P}_{2}$ does not add information to $\underline{P}_{1}$.


## A natural notion: set inclusion

A set $A \subseteq \mathcal{S}$ is more informative than $B \subseteq \Omega$ if

$$
A \subseteq B \Leftrightarrow A \sqsubseteq B
$$

- Propositional logic: $A$ more informative if $A$ entails $B$
- Intervals: $A$ includes all values of $B$, is more precise than $B$
$\Rightarrow$ extends this notion to other uncertainty theories


## Extensions to other models

Denoting $\underline{P}_{A}, \underline{P}_{B}$ the uncertainty models of sets $A, B$, we do have

$$
A \sqsubseteq B \Leftrightarrow \underline{P}_{A}(C) \leq \underline{P}_{B}(C) \text { for any } C \subseteq \mathcal{S}
$$

Derivations of $\underline{P}_{1} \leq \underline{P}_{2}$ in different frameworks

- Possibility distributions: $\pi_{1} \sqsubseteq \pi_{2} \Leftrightarrow \pi_{1} \geq \pi_{2}$
- Belief functions: $m_{1} \sqsubseteq m_{2} \Leftrightarrow \underline{P}_{1} \sqsubseteq \underline{P}_{2}$ (plausibility inclusion, there are others [25])
- Probability sets: $\underline{P}_{1} \sqsubseteq \underline{P}_{2} \Leftrightarrow \mathcal{P}_{1} \subseteq \mathcal{P}_{2}$ ( $\underline{P}_{i}$ lower previsions)


## Inclusion: interest and limitations

- +: very natural way to compare informative content
- -: only induces a partial order between information models


## Example

Consider the space $\Omega=\{a, b, c\}$ and the following mass functions:

$$
\begin{gathered}
m_{1}(\{b\})=0.3, m_{1}(\{b, c\})=0.2, m_{1}(\{a, b, c\})=0.5 \\
m_{2}(\{a\})=0.2, m_{2}(\{b\})=0.3, m_{2}(\{c\})=0.3, m_{2}(\{a, b, c\})=0.2 \\
m_{3}(\{a, b\})=0.3, m_{3}(\{a, c\})=0.3, m_{3}(\{a\})=0.4
\end{gathered}
$$

We have $m_{2} \sqsubseteq m_{1}$, but $m_{3}$ incomparable with $\sqsubseteq$ (side-exercise: show it)
$\Rightarrow$ ok theoretically, but not always lead to non-uniqueness of solutions

## Numerical assessment of informative content [57, 1, 26]

- For probabilities, distinct $\mu_{1}$ and $\mu_{2}$ always incomparable by previous definition
- A solution, associate to each $\mu$ a number $I(\mu)$, i.e., entropy

$$
I(\mu)=-\sum_{\omega \in \Omega} p(\omega) \ln (p(\omega))
$$

and declare that $\mu_{1} \sqsubseteq \mu_{2}$ if $I\left(\mu_{1}\right) \leq I\left(\mu_{2}\right)$.

- This can be extended to other theories, where we can ask

$$
\underline{P}_{1} \leq \underline{P}_{2} \Rightarrow I\left(\underline{P}_{1}\right) \geq I\left(\underline{P}_{2}\right)
$$

Measure / should be consistent with inclusion

## Outline

## (1) Introductory elements

(2) Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
(3) Comparison, conditioning and fusion
- Information comparison
- The different facets of conditioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## Three use of conditional and conditioning [39, 41]

Focusing: from generic to singular

- $P$ : generic knowledge (usually about population)
- $P(\mid C)$ : what we know from $P$ in the singular context $C$

Revising: staying either generic or singular

- $P$ : knowledge or belief (generic or singular)
- $P(\mid C)$ : we learn that $C$ is certainly true $\rightarrow$ how should we modify our knowledge/belief

Learning: from singular to generic (not developed here)

- P: beliefs about the parameter
- $P(\mid C)$ : modified beliefs once we observe $C(\simeq$ multiple singular observations)


## Focusing and revising in probabilities [28]

In probability, upon learning $C$, the revised/focused knowledge is

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{P(A \cap C)}{P(A \cap C)+P\left(A^{c} \cap C\right)}
$$

coming down to the use of Bayes rule of conditioning in both cases.

## Focusing

- Observing $C$ does not modify our generic knowledge/beliefs
- We may lose information $\rightarrow$ the more $C$ is specific, the less our general knowledge applies to it (cf. dilation in IP)
- The consistency of generic knowledge/beliefs should be preserved ( $C$ cannot contradict it, only specify to which case it should apply)
- If we observe later $A \subseteq C$, we should start over from generic knowledge


## Focusing in uncertainty theories [34]

## Focusing with belief functions

- Given initial belief function $\underline{P}$, this gives

$$
\begin{aligned}
& \underline{P}(A \| C)=\frac{\underline{P}(A \cap C)}{\underline{P}(A \cap C)+\bar{P}\left(A^{c} \cap C\right)} \\
& \bar{P}(A \| C)=\frac{\bar{P}(A \cap C)}{\bar{P}(A \cap C)+\underline{P}\left(A^{c} \cap C\right)}
\end{aligned}
$$

We can have $\underline{P}(A \| C)<\underline{P}(A) \leq \bar{P}(A)<\bar{P}(A \| C)$ ("loss" of information).

- Can be interpreted as a sensitivity analysis of Bayes rule:

$$
\underline{P}(A \| C)=\inf \{P(A \mid C): P \in \mathcal{P}, P(C)>0\}
$$

- $\simeq$ regular extension in imprecise probability


## Revision

- Observing $C$ modifies our knowledge and belief
- Observing $C$ refines our beliefs and knowledge, that should become more precise
- If we observe later $A \subseteq C$, we should start from the modified knowledge (we may ask for operation to be order-insensitive)
- $C$ is a new knowledge, that may be partially inconsistent with current belief/knowledge


## Revision in uncertainty theories

Revising with belief functions

- Given initial plausibility function $\bar{P}$, this gives

$$
\bar{P}(A \mid C)=\frac{\bar{P}(A \cap C)}{\bar{P}(C)} \Rightarrow \underline{P}(A \mid C)=1-\bar{P}\left(A^{C} \mid C\right)
$$

- If $\bar{P}(C)=1$, then
- no conflict between old and new information (no incoherence)
- we necessarily have $\bar{P}(A \mid C)<\bar{P}(A)$ (refined information)
- Can be interpreted Bayes rule applied to most plausible situations:

$$
\underline{P}(A \| C)=\inf \{P(A \mid C): P \in \mathcal{P}, P(C)=\bar{P}(C)\}
$$

- Similarly to fusion, not studied a lot within IP setting (because of incoherence?)


## Revision as prioritized fusion

When $\bar{P}(C)=1$ and $C$ precise observation

- $\bar{P}(A \mid C)=$ result of conjunctive combination rule
- $\mathcal{P}_{\mid C}=\mathcal{P} \cap\{P: P(C)=1\}$
$\rightarrow$ can be interpreted as a fusion rule where $C$ has priority. If
$\bar{P}(C)<1$, interpreted as new information inconsistent with the old $\rightarrow$ conditioning as a way to restore consistency.

Case where observation $C$ is uncertain and inconsistent with knowledge.

- Minimally change $\mu$ to be consistent with $C \rightarrow$ in probability, Jeffrey's rule (extensions to other theories exist [42])
- Not a symmetric fusion process, new information usually has priority ( $\neq$ from usual belief fusion rules)!


## A small exercice: focusing

The hotel provides the following plates for breakfast
a=Century egg, b=Rice, c=Croissant, d=Raisin Muffin
In a survey about their choices, respondents gave the reply

$$
m(\{a, b\})=\alpha, m(\{c, d\})=1-\alpha
$$

Applying focusing
We learn that customer $C$ does not like eggs nor raisins ( $C=\{b, c\}$ ), what can we tell about him choosing Rice?

## A small exercice: revision

The hotel provides the following plates for breakfast
$a=$ Century egg, $b=$ Rice, $c=C r o i s s a n t, d=$ Raisin Muffin
In a survey about their choices, respondent gave the reply

$$
m(\{a, b\})=\alpha, m(\{c, d\})=1-\alpha
$$

Applying revision
We learn that suppliers no longer have eggs nor raisins ( $C=\{b, c\}$ ), what is the proportion of rice we should buy to satisfy customers?

## Outline

## (1) Introductory elements

2 Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
(3) Comparison, conditioning and fusion
- Information comparison
- The different facets of conditioning
- Information fusion
- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach


## An illustration of the issue



## Information fusion



- Information on the same level
- No piece of information has priority over the other (a priori)
- Makes sense to combine multiple pieces of information at once
- Main question: "How to choose $h . .$. "
- To obtain a more reliable and informative result?
- When items mis disagree?


## Conjunction

## Main Assumption

- Information items $E_{1}, \ldots, E_{n}$ are all fully reliable
- If one source consider $\omega$ impossible, then $\omega$ impossible

$$
\rightarrow h\left(E_{1}, \ldots, E_{n}\right)(\omega)=\min \left(E_{1}(\omega), \ldots, E_{n}(\omega)\right)=\bigcap E_{i}
$$

$E_{1}=[16,19]$ and $E_{2}=[17,20]$

$E_{1}=[16,17]$ and $E_{2}=[19,20]$


## Conjunction

## Main Assumption

- Information items $E_{1}, \ldots, E_{n}$ are all fully reliable
- If one source consider $\omega$ impossible, then $\omega$ impossible

$$
\rightarrow h\left(E_{1}, \ldots, E_{n}\right)(\omega)=\min \left(E_{1}(\omega), \ldots, E_{n}(\omega)\right)=\bigcap E_{i}
$$

$E_{1}=[16,19]$ and $E_{2}=[17,20]$

$E_{1}=[16,17]$ and $E_{2}=[19,20]$


Pros and Cons

- +: very informative results, logically interpretable
- -: cannot deal with conflicting/unreliable information


## Disjunctive principle

## Main Assumption

- At least one information item among $E_{1}, \ldots, E_{n}$ is reliable
- $\omega$ possible as soon as one source considers it possible

$$
\rightarrow h\left(E_{1}, \ldots, E_{n}\right)(\omega)=\max \left(E_{1}(\omega), \ldots, E_{n}(\omega)\right)=\bigcup E_{i}
$$

$E_{1}=[16,19]$ and $E_{2}=[17,20]$

$E_{1}=[16,17]$ and $E_{2}=[19,20]$


## Disjunctive principle

## Main Assumption

- At least one information item among $E_{1}, \ldots, E_{n}$ is reliable
- $\omega$ possible as soon as one source considers it possible

$$
\rightarrow h\left(E_{1}, \ldots, E_{n}\right)(\omega)=\max \left(E_{1}(\omega), \ldots, E_{n}(\omega)\right)=\bigcup E_{i}
$$

$E_{1}=[16,19]$ and $E_{2}=[17,20]$
$E_{1}=[16,17]$ and $E_{2}=[19,20]$



Pros and Cons

- +: no conflict, logically interpretable
- -: poorly informative results


## Average

## Main Assumption

Sources are statistically independent and in majority reliable

$$
E_{1}=[16,19] \text { and } E_{2}=[17,20]
$$


$E_{1}=[16,17]$ and $E_{2}=[19,20]$


## Average

## Main Assumption

Sources are statistically independent and in majority reliable

$$
\begin{aligned}
& E_{1}=[16,19] \text { and } E_{2}=[17,20] \\
& 1 \uparrow \begin{array}{cc}
m\left(E_{1}\right)=1 / 2 & m\left(E_{2}\right)=1 / 2 \\
16 & 18 \\
\hline
\end{array}
\end{aligned}
$$

$$
E_{1}=[16,17] \text { and } E_{2}=[19,20]
$$

## Pros and Cons

- +: result not conflicting, counting process (statistics)
- -: no logical interpretation, not applicable to sets


## Limits of sets in information fusion

- Very basic information (what is possible/what is impossible)
- Very basic (binary) evaluation of conflict, either:
- present if $\bigcap E_{i}=\emptyset$
- absent if $\bigcap E_{i} \neq \emptyset$
- Limited number of fusion operators (only logical combinations)
- Limited operation on information items to integrate reliability scores, source importance, ...
$\rightarrow$ how to extend fusion operators to belief functions


## Extending conjunction

Consider the two following information


## Extending conjunction: steps

|  | $m_{1}$ |  |
| :--- | :--- | :--- |
|  | $[17,18]=0.6 \quad[15,20]=0.4$ |  |
|  | $[20.5,21.5]=0.8$ |  |
| $m_{2} \quad$ |  |  |
|  | $[19.5,22.5]=0.2$ |  |

## Extending conjunction: steps

|  | $m_{1}$ |  |  |
| :--- | :---: | :---: | :---: |
|  | $[17,18]=0.6$ | $[15,20]=0.4$ |  |
|  | $[20.5,21.5]=0.8$ | $\emptyset$ | $\emptyset$ |
| $m_{2}$ |  |  |  |
|  | $[19.5,22.5]=0.2$ | $\emptyset$ | $[19.5,20]$ |

- Step 1: take intersection (sources reliable)


## Extending conjunction: steps

|  |  | $m_{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $[17,18]=0.6$ | $[15,20]=0.4$ |
|  | $[20.5,21.5]=0.8$ | $\emptyset$ | $\emptyset$ |
| $m_{2}$ |  | 0.48 | 0.24 |
|  | $[19.5,22.5]=0.2$ | $\emptyset$ | $[19.5,20]$ |
|  | 0.12 | 0.08 |  |

- Step 1: take intersection (sources reliable)
- Step 2: give product of masses (sources independent)


## Extending conjunction: steps

|  |  | $m_{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $[17,18]=0.6$ | $[15,20]=0.4$ |
|  | $[20.5,21.5]=0.8$ | $\emptyset$ | $\emptyset$ |
| $m_{2}$ |  | 0.48 | 0.24 |
|  | $[19.5,22.5]=0.2$ |  |  |
|  |  |  |  |
|  |  |  | $[19.5,20]$ |
|  |  |  |  |

- Step 1: take intersection (sources reliable)
- Step 2: give product of masses (sources independent)
$m(\emptyset)=0.92 \rightarrow$ high conflict evaluation, unsatisfying


## Extending conjunction

|  |  | $m_{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $[17,18]=0.6$ | $[15,20]=0.4$ |
|  <br> $m_{2}$ | $[17.5,18.5]=0.8$ | $[17.5,18]$ | $[17.5,18.5]$ |
|  | 0.48 | 0.24 |  |
|  | $[16.5,19.5]=0.2$ | $[17,18]$ | $[16.5,19.5]$ |
|  | 0.12 | 0.08 |  |

- Step 1: take intersection (sources reliable)
- Step 2: give product of masses (sources independent)

$$
m(\emptyset)=0 \rightarrow \text { no conflict, sources consistent }
$$

## Extending disjunction: steps

|  |  | $m_{1}$ |  |  |
| :--- | :--- | :--- | :---: | :---: |
|  | $[17,18]=0.6$ |  |  |  |
|  | $[20.5,21.5]=0.8$ |  |  |  |
| $m_{2}$ |  |  |  |  |
|  | $[19.5,22.5]=0.2$ |  |  |  |

## Extending disjunction: steps

|  |  | $m_{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $[17,18]=0.6$ | $[15,20]=0.4$ |
|  | $[20.5,21.5]=0.8$ | $[17,18] \cup[20.5,21.5]$ | $[15,20] \cup[20.5,21.5]$ |
| $m_{2}$ |  |  |  |
|  |  | $[19.5,22.5]=0.2$ | $[17,18] \cup[19.5,22.5]$ |

- Step 1: take union (at least one reliable source)


## Extending disjunction: steps

|  |  | $m_{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $[17,18]=0.6$ | $[15,20]=0.4$ |
|  | $[20.5,21.5]=0.8$ | $[17,18] \cup[20.5,21.5]$ | $[15,20] \cup[20.5,21.5]$ |
| $m_{2}$ |  | 0.48 | 0.24 |
|  |  |  |  |
|  | $[19.5,22.5]=0.2$ | $[17,18] \cup[19.5,22.5]$ | $[15,22.5]$ |
|  | 0.12 | 0.08 |  |

- Step 1: take union (at least one reliable source)
- Step 2: give product of masses (sources independent)


## Extending disjunction: steps

|  |  | $m_{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $[17,18]=0.6$ | $[15,20]=0.4$ |
|  | $[20.5,21.5]=0.8$ | $[17,18] \cup[20.5,21.5]$ | $[15,20] \cup[20.5,21.5]$ |
| $m_{2}$ |  | 0.48 | 0.24 |
|  |  |  |  |
|  | $[19.5,22.5]=0.2$ | $[17,18] \cup[19.5,22.5]$ | $[15,22.5]$ |
|  | 0.12 | 0.08 |  |

- Step 1: take union (at least one reliable source)
- Step 2: give product of masses (sources independent)
$m(\emptyset)=0 \rightarrow$ no conflict, but very imprecise result


## More formally

Given informations $m_{1}, \ldots, m_{n}$
Conjunctive (Dempster's unnormalized) rule

$$
m_{\cap}(A)=\sum_{E_{1} \cap \ldots \cap E_{n}=A} \prod_{i=1}^{n} m\left(E_{i}\right)
$$

$\rightarrow$ a gradual way to estimate conflict [22]

Disjunctive rule

$$
m_{\cup}(A)=\sum_{E_{1} \cup \ldots \cup E_{n}=A} \prod_{i=1}^{n} m\left(E_{i}\right)
$$

## Conflict management: beyond conjunction and disjunction


$\Rightarrow$ Conjunction poorly reliable/false
$\Rightarrow$ Disjunction very imprecise and inconclusive
$\rightarrow$ A popular solution: choose a logical combination between the two

## A simple idea [19]

- Get maximal subsets $M_{1}, \ldots, M_{\ell}$ of sources having non-empty intersection
- Take their intersection, then the union of those intersections

$$
h\left(E_{1}, \ldots, E_{n}\right)=\cup_{M_{\ell}} \cap_{E_{i} \in M_{\ell}} E_{i}
$$

An old idea ...

- In logic, to resolve knowledge base inconsistencies [31]
- In mathematical programming, to solve non-feasible problems [8]
- In interval analysis ...


## Illustrative exercice

Four sources provide you with basic items of information (sets)


- What are the maximal consistent subsets?
- What is the final result of applying the SMC rule to it?


## Illustrative exercice:solution



SMC: $K_{1}=\left\{E_{1}, E_{2}\right\}$ et $K_{2}=\left\{E_{2}, E_{3}, E_{4}\right\}$
Final result: $\left(E_{1} \cap E_{2}\right) \cup\left(E_{2} \cap E_{3} \cap E_{4}\right)$

- If all agree $\rightarrow$ conjunction
- if every pair is in disagreement (disjoint) $\rightarrow$ disjunction


## MCS on belief: illustration

|  |  | $m_{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $[17,18]=0.6$ | $[15,20]=0.4$ |
|  $[20.5,21.5]=0.8$ $[17,18] \cup[20.5,21.5]$ <br> $m_{2}$  0.48 <br>   $[15,20] \cup[20.5,21.5]$ <br>  $[19.5,22.5]=0.2$ $[17,18] \cup[19.5,22.5]$ | $[15,20] \cap[19.5,22.5]$ |  |  |
|  | 0.12 | 0.24 |  |
|  |  | 0.08 |  |

## Set and logical view

## Why?

- You want an interpretation to the combination
- You have relatively few information items
- You cannot "learn" your rule

Why not?

- You do not really care about interpretability
- You need to "scale up"
- You have means to learn your rule


## Learning fusion rule: rough protocol

- A set of observed values $\hat{\omega}^{1}, \ldots, \hat{\omega}^{0}$
- for each $\hat{\omega}^{i}$, information $m_{1}^{i}, \ldots, m_{n}^{i}$ provided by $n$ sources
- a decision rule $d: \mathcal{M} \rightarrow \Omega$ mapping $m$ to a decision in $\Omega$
- from set $\mathcal{H}$ of possible rules, choose

$$
h^{*}=\arg \max _{h \in \mathcal{H}} \sum_{i} \mathbb{I}_{d\left(h\left(m_{1}^{i}, \ldots, m_{n}^{i}\right)\right)=\hat{\omega}^{i}}
$$

## How to choose $\mathcal{H}$ ?

- $\mathcal{H}$ should be easy to navigate, i.e., based on few parameters
- Maximization optimization problem should be made easy if possible (convex? Linear?)
- In particular, if $m_{j}^{i}$ have peculiar forms (possibilities, Bayesian, ...), there is a better hope to find efficient methods


## Two examples

- Weighted averaging rules (parameters to learn: weights)
- Denoeux T-(co)norm rules based on canonical decomposition (parameters to learn: parameters of the chosen t-norm family)


## The case of averaging rule

- Parameters $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ such that $\sum_{i} w_{i}=1$ and $w_{i}>0$
- Set $\mathcal{H}=\left\{h_{w} \mid w \in[0,1]^{n}, \sum_{i} w_{i}=1\right\}$ with

$$
h_{\mathbf{w}}=\sum_{i} w_{i} m_{i}
$$

- Decision rule $d$ ?

$$
d(m)=\arg \max _{\omega \in \Omega} \bar{P}(\{\omega\})
$$

- maximum of plausibility
$\rightarrow$ use plausibility of average = average of plausibilities at your advantage, i.e.,

$$
\bar{P}_{\Sigma}(\omega)=\sum w_{i} \bar{P}_{i}(\omega)
$$

## Exercice 7: walking dead

A zombie apocalypse has happened, and you must recognize possible threats/supports

The possibilities $\Omega$

- Zombie (Z)
- Friendly Human (F)
- Hostile Human (H)
- Neutral Human (N)

The sources $S_{i}$

- Half-broken heat detector $\left(S_{1}\right)$
- Paranoid Watch guy $1\left(S_{2}\right)$
- Half-borken Motion detector $\left(S_{3}\right)$
- Sleepy Watch guy $2\left(S_{4}\right)$


## Exercice 7: which rule?

Given this table of contour functions, a weighted average and a decision based on maximal plausibility

|  | $\hat{\omega}^{1}=Z$ |  |  |  |  | $\hat{\omega}^{2}=H$ |  |  |  |  | $\hat{\omega}^{3}=F$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $Z$ | $F$ | $H$ | $N$ | $Z$ | $F$ | $H$ | $N$ | $Z$ | $F$ | $H$ |  |  |  |

Choose $h_{\mathbf{w}_{1}}$ or $h_{\mathbf{w}_{2}}$ ? Given the data, can we find a strictly better weight vector?

## Some on-going research topics within BF

Or what could you go for if you're interested in BF

Statistical estimation/machine learning

- Extending frequentist approaches [16]
- Embedding BF with classical ML [48, 15]
- BF for recent ML problems (ranking, multi-label) [18, 44]

Inference over large/combinatorial spaces

- Efficient handling over lattices (preferences, etc.) [17]
- Inferences over Boolean formulas [2, 38]
- BF and (discrete) Operations Research [37]

Specific fusion settings

- Decentralized fusion [33]
- Large spaces (2D/3D maps, images) [46]


## As a conclusion

Belief functions as specific IP ...
Many common points

- Specific setting including many important aspects
- May offer tools that facilitate handling/understanding to non-specialist (random set, Mobius inverse, Monte-Carlo + set computation)
- BF theory share strong similarities with IP
. . . but not only
Yet important differences:
- Admit incoherence when needed $\rightarrow$ may be useful sometimes
- Important notions in BF have no equivalent in IP $\rightarrow$ commonality function, specialisation notion, fusion rules, ...


## References I

[1] J. Abellan and S. Moral.
A non-specificity measure for convex sets of probability distributions.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 8:357-367, 2000.
[2] Felipe Aguirre, Sebastien Destercke, Didier Dubois, Mohamed Sallak, and Christelle Jacob.
Inclusion-exclusion principle for belief functions.
International Journal of Approximate Reasoning, 55(8):1708-1727, 2014.
[3] C. Baudrit and D. Dubois.
Practical representations of incomplete probabilistic knowledge.
Computational Statistics and Data Analysis, 51(1):86-108, 2006.
[4] Salem Benferhat, Julien Hué, Sylvain Lagrue, and Julien Rossit.
Interval-based possibilistic logic.
In IJCAI, pages 750-755, 2011.
[5] J. O. Berger.
An overview of robust Bayesian analysis.
Test, 3:5-124, 1994.
With discussion.
[6] Denis Bouyssou, Didier Dubois, Henri Prade, and Marc Pirlot.
Decision Making Process: Concepts and Methods.
John Wiley \& Sons, 2013.
[7] M. Cattaneo.
Likelihood-based statistical decisions.
In Proc. 4th International Symposium on Imprecise Probabilities and Their Applications, pages 107-116, 2005.

## References II

[8] John W Chinneck and Erik W Dravnieks.
Locating minimal infeasible constraint sets in linear programs.
ORSA Journal on Computing, 3(2):157-168, 1991.
[9] I. Couso, S. Montes, and P. Gil.
The necessity of the strong alpha-cuts of a fuzzy set.
Int. J. on Uncertainty, Fuzziness and Knowledge-Based Systems, 9:249-262, 2001.
[10] Inés Couso and Didier Dubois.
Statistical reasoning with set-valued information: Ontic vs. epistemic views.
International Journal of Approximate Reasoning, 55(7):1502-1518, 2014.
[11] L.M. de Campos, J.F. Huete, and S. Moral.
Probability intervals: a tool for uncertain reasoning.
I. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 2:167-196, 1994.
[12] G. de Cooman and P. Walley.
A possibilistic hierarchical model for behaviour under uncertainty.
Theory and Decision, 52:327-374, 2002.
[13] A.P. Dempster.
Upper and lower probabilities induced by a multivalued mapping.
Annals of Mathematical Statistics, 38:325-339, 1967.
[14] T. Denoeux.
Constructing belief functions from sample data using multinomial confidence regions.
I. J. of Approximate Reasoning, 42:228-252, 2006.
[15] Thierry Denoeux.
Logistic regression, neural networks and dempster-shafer theory: a new perspective.
arXiv preprint arXiv:1807.01846, 2018.

## References III

[16] Thierry Denoeux and Shoumei Li.
Frequency-calibrated belief functions: Review and new insights.
International Journal of Approximate Reasoning, 92:232-254, 2018.
[17] Thierry Denœux and Marie-Hélène Masson.
Evidential reasoning in large partially ordered sets.
Annals of Operations Research, 195(1):135-161, 2012.
[18] Thierry Denœux, Zoulficar Younes, and Fahed Abdallah.
Representing uncertainty on set-valued variables using belief functions.
Artificial Intelligence, 174(7-8):479-499, 2010.
[19] S. Destercke, D. Dubois, and E. Chojnacki.
Possibilistic information fusion using maximal coherent subsets.
IEEE Trans. on Fuzzy Systems (in press), 2008.
[20] S. Destercke, D. Dubois, and E. Chojnacki.
Unifying practical uncertainty representations: I generalized p-boxes.
Int. J. of Approximate Reasoning, 49:649-663, 2008.
[21] S. Destercke, D. Dubois, and E. Chojnacki.
Unifying practical uncertainty representations: II clouds.
Int. J. of Approximate Reasoning (in press), pages 664-677, 2008.
[22] Sébastien Destercke and Thomas Burger.
Toward an axiomatic definition of conflict between belief functions.
Cybernetics, IEEE Transactions on, 43(2):585-596, 2013.
[23] D. Dubois, L. Foulloy, G. Mauris, and H. Prade.
Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities.
Reliable Computing, 10:273-297, 2004.

## References IV

[24] D. Dubois, S. Moral, and H. Prade.

A semantics for possibility theory based on likelihoods,. Journal of Mathematical Analysis and Applications, 205(2):359 - 380, 1997.
[25] D. Dubois and H. Prade.
A set-theoretic view on belief functions: logical operations and approximations by fuzzy sets.
Int. J. of General Systems, 12:193-226, 1986.
[26] D. Dubois and H. Prade.
Properties of measures of information in evidence and possibility theory.
Fuzzy sets and systems, 24:161-182, 1987.
[27] D. Dubois and H. Prade.
Possibility Theory: An Approach to Computerized Processing of Uncertainty.
Plenum Press, New York, 1988.
[28] Didier Dubois and Henri Prade.
Focusing vs. belief revision: A fundamental distinction when dealing with generic knowledge.
In ECSQARU 97, pages 96-107. Springer, 1997.
[29] Didier Dubois and Henri Prade.
Possibilistic logic: a retrospective and prospective view.
Fuzzy Sets and Systems, 144(1):3-23, 2004.
[30] Didier Dubois and Henri Prade.
An overview of the asymmetric bipolar representation of positive and negative information in possibility theory.
Fuzzy Sets and Systems, 160(10):1355-1366, 2009.
[31] Didier Dubois and Henri Prade.
Being consistent about inconsistency: Toward the rational fusing of inconsistent propositional logic bases.
In The Road to Universal Logic, pages 565-571. Springer, 2015.

## References V

[32] Didier Dubois, Henri Prade, and Agnès Rico.
Representing qualitative capacities as families of possibility measures.
International Journal of Approximate Reasoning, 58:3-24, 2015.
[33] Bertrand Ducourthial and Véronique Cherfaoui.
Experiments with self-stabilizing distributed data fusion.
In IEEE 35th Symposium on Reliable Distributed Systems (SRDS 2016), pages 289-296, 2016.
[34] Ronald Fagin and Joseph Halpern.
A new approach to updating beliefs.
In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 6, pages 347-374. North-Holland, Amsterdam, 1991.
[35] S. Ferson, L. Ginzburg, V. Kreinovich, D.M. Myers, and K. Sentz.
Constructing probability boxes and dempster-shafer structures.
Technical report, Sandia National Laboratories, 2003.
[36] B.de Finetti.
Theory of probability, volume 1-2.
Wiley, NY, 1974.
Translation of 1970 book.
[37] Nathalie Helal, Frédéric Pichon, Daniel Porumbel, David Mercier, and Éric Lefèvre.
The capacitated vehicle routing problem with evidential demands.
International Journal of Approximate Reasoning, 95:124-151, 2018.
[38] Christelle Jacob, Didier Dubois, and Janette Cardoso.
Evaluating the uncertainty of a boolean formula with belief functions.
In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pages 521-531. Springer, 2012.

## References VI

[^0]
## References VII

[47] Frédéric Pichon, Didier Dubois, and Thierry Denoeux.
Relevance and truthfulness in information correction and fusion.
Int. J. Approx. Reasoning, 53(2):159-175, 2012.
[48] Benjamin Quost, Thierry Denœux, and Marie-Hélène Masson.
Pairwise classifier combination using belief functions.
Pattern Recognition Letters, 28(5):644-653, 2007.
[49] S.A. Sandri, D. Dubois, and H.W. Kalfsbeek.
Elicitation, assessment and pooling of expert judgments using possibility theory. IEEE Trans. on Fuzzy Systems, 3(3):313-335, August 1995.
[50] G. Shafer.
A mathematical Theory of Evidence.
Princeton University Press, New Jersey, 1976.
[51] P. Smets.
The transferable belief model and other interpretations of dempster-shafer's model.
In Proc. of the Sixth Annual Confernce on Uncertainty in Artifical Intelligence, pages 375-384, 1990.
[52] Philippe Smets.
Probability of provability and belief functions.
Logique et Analyse, 133-134:177-195, 1991.
[53] Matthias C. M. Troffaes and Sébastien Destercke.
Probability boxes on totally preordered spaces for multivariate modelling.
Int. J. Approx. Reasoning, 52(6):767-791, 2011.
[54] R. von Mises.
Probability, Statistics and Truth.
Dover books explaining science. Dover Publications, 1981.

## References VIII

[55] P. Walley.
Statistical reasoning with imprecise Probabilities.
Chapman and Hall, New York, 1991.
[56] Kurt Weichselberger.
The theory of interval-probability as a unifying concept for uncertainty.
International Journal of Approximate Reasoning, 24(2-3):149-170, 2000.
[57] R.R. Yager.
Entropy and specificity in a mathematical theory of evidence.
I. J. of Systems, 9:249-260, 1983.


[^0]:    [39] Jean-Yves Jaffray.
    Bayesian updating and belief functions.
    IEEE Transactions on Systems, Man and Cybernetics, 22:1144-1152, 1992.
    [40] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter.
    Applied Interval Analysis.
    London, 2001.
    [41] Henry E. Kyburg Jr.
    Bayesian and non-bayesian evidential updating.
    Artif. Intell., 31(3):271-293, 1987.
    [42] Jianbing Ma, Weiru Liu, Didier Dubois, and Henri Prade.
    Bridging jeffrey's rule, agm revision and dempster conditioning in the theory of evidence.
    International Journal on Artificial Intelligence Tools, 20(04):691-720, 2012.
    [43] Ryan Martin, Jianchun Zhang, and Chuanhai Liu.
    Dempster-shafer theory and statistical inference with weak beliefs.
    Technical report, 2008.
    [44] Marie-Hélène Masson, Sébastien Destercke, and Thierry Denoeux.
    Modelling and predicting partial orders from pairwise belief functions.
    Soft Computing, 20(3):939-950, 2016.
    [45] Enrique Miranda and Sébastien Destercke.
    Extreme points of the credal sets generated by comparative probabilities.
    Journal of Mathematical Psychology, 64:44-57, 2015.
    [46] Nicola Pellicanò, Sylvie Le Hégarat-Mascle, and Emanuel Aldea. 2cobel: An efficient belief function extension for two-dimensional continuous spaces. arXiv preprint arXiv:1803.08857, 2018.

