Belief function theory 101

Sébastien Destercke

Heudiasyc, CNRS Compiegne, France

ISIPTA 2018 School

Sébastien Destercke (CNRS)

Uncertainty theories

ISIPTA 2018 School 1 / 97

12 N A 12

Lecture goal/content

What you will find in this talk

- An overview of belief functions and how to obtain them
- Short discussion on comparing informative contents
- Discussion about conditioning and fusion
- Pointers to additional topics (statistical learning, preference handling, ...)

What you will not find in this talk

• A deep and exhaustive study of a particular topic

- Exercices along the lecture
- You are encouraged to ask questions during the lecture!

Sébastien Destercke (CNRS)

E 5 4 E

Plan

Introductory elements

- 2 Belief function: basics, links and representation
 - Less general than belief functions
 - Belief functions
 - More general than belief functions
 - Comparison, conditioning and fusion
 - Information comparison
 - The different facets of conditioning
 - Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

< 6 b

Generic vs singular quantity

A quantity of interest S can be

• Generic, when it refers to a population, or a set of situations.

Generic quantity example

The distribution of height within french population

• Singular, when it refers to an individual or a peculiar situation

Singular quantity example

My own, personal height

イロト イポト イラト イラ

Ontic and epistemic information [10]

An item of information \mathcal{I} possessed by an agent about S can be

• Ontic, if it is a faithful, perfect representation of S

Ontic information example

A set *S* representing the exact set of languages spoken by me e.g.: $S = \{French, English, Spanish\}$

• Epistemic, if it is an imperfect representation of S

Epistemic information example

A set *E* containing my mother tongue e.g., $E = \{French, English, Spanish\}$

ullet ightarrow same mathematical expression, different interpretation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Everything is possible

We can have

- Ontic information about a **singular** quantity: the hair colour of a suspect; the mother tongue of someone
- **Epistemic** information about a **singular** quantity: the result of the next dice toss; the set of possible mother tongues of someone
- Ontic information about a generic quantity: the exact distribution of pixel colours in an image
- **Epistemic** information about a **generic** quantity: an interval about the frequency of French persons higher than 1.80 m

Uncertainty definition

Uncertainty: when our information \mathcal{I} does not characterize the quantity of interest S with certainty

\rightarrow In this view, uncertainty is necessarily epistemic, as it reflect an imperfect knowledge of the agent

Can concern both:

- Singular information
 - items in a data-base, values of some logical variables, time before failure of **a** component
- Generic information
 - parameter values of classifiers/regression models/probability distributions, time before failure of components, truth of a logical sentence ("birds fly")

< 日 > < 同 > < 回 > < 回 > < □ > <

The room example

Heights of people in a room: generic quantity

- Generic question: are 90% of people in room less than 1m80?
 ⇒ No, with **full certainty**
- Specific question: is the last person who entered less than 1m80?
 ⇒ Probably, with 60% chance (uncertain answer)

Uncertainty main origins [6, Ch. 3]

• Variability of a population applied to a peculiar, singular situation

Variability example

The result of one dice throw when knowing the probability of each face

• Imprecision and incompleteness due to partial information about the quantity *S*

Imprecision example

Observing limited sample of the population, describing suspect as "young", limited sensor precision

Conflict between different sources of information (data/expert)

Conflict example

Two redundant data base entries with different information for an attribute, two sensors giving different measurements of a quantity

Sébastien Destercke (CNRS)

Handling uncertainty

Common problems in one sentence

- Learning: use singular information to estimate generic information (induction in logical sense)
- **Prediction**: interrogate model and observations to deduce information on quantity of interest (~ inference/deduction in logical sense)
- Information revision: merge new information with old one
- Information fusion: merge multiple information pieces about same quantity

Plan

Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
- Comparison, conditioning and fusion
 - Information comparison
 - The different facets of conditioning
 - Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

Section goals

- Remind basic ideas of uncertainty modelling
- Introduce main ideas about belief functions
- Provide elements linking belief functions and other approaches
- Illustrate practical representations of belief functions

4 D K 4 B K 4 B K 4 B K

Outline

Belief function: basics, links and representationLess general than belief functions

- Belief functions
- More general than belief functions
- Comparison, conditioning and fusion
 - Information comparison
 - The different facets of conditioning
 - Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

< ロ > < 同 > < 回 > < 回 >

Basic framework

Quantity *S* with possible **exclusive** states $\Omega = \{\omega_1, \dots, \omega_n\}$

▷ S: data feature, model parameter, ...

Basic tools

A confidence degree $P: 2^{\Omega} \rightarrow [0, 1]$ is such that

• P(A): confidence $S \in A$

•
$$P(\emptyset) = 0, P(\Omega) = 1$$

•
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

Uncertainty modelled by 2 degrees $\underline{P}, \overline{P}: 2^{\Omega} \rightarrow [0, 1]$:

•
$$\underline{P}(A) \leq \overline{P}(A)$$
 (monotonicity)

•
$$\underline{P}(A) = 1 - \overline{P}(A^c)$$
 (duality)

Probability

Basic tool

A probability distribution $p: \Omega \rightarrow [0, 1]$ from which

•
$$\underline{P}(A) = \overline{P}(A) = P(A) = \sum_{s \in A} p(s)$$

•
$$P(A) = 1 - P(A^c)$$
: auto-dual

Main interpretations

• Frequentist [54] : P(A)= number of times A observed in a population

▷ only applies to generic quantities (populations)

- **Subjectivist [36] :** *P*(*A*)= price for gamble giving 1 if *A* happens, 0 if not
 - > applies to both singular and generic quantities

< ロ > < 同 > < 回 > < 回 >

Sets

Basic tool

A set $E \subseteq \Omega$ with true value $S \in E$ from which

• $E \subseteq A \rightarrow \underline{P}(A) = \overline{P}(A) = 1$ (certainty truth in A)

•
$$E \cap A \neq \emptyset, E \cap A^c \neq \emptyset \rightarrow \underline{P}(A) = 0, \overline{P}(A) = 1$$
 (ignorance)

•
$$E \cap A = \emptyset \rightarrow \underline{P}(A) = \overline{P}(A) = 0$$
 (truth cannot be in A)

 $\underline{P}, \overline{P}$ are binary \rightarrow limited expressiveness

Classical use of sets:

- Interval analysis [40] (E is a subset of \mathbb{R})
- Propositional logic (E is the set of models of a KB)

Other cases: robust optimisation, decision under risk, ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Assume that it is known that pH value $E \in [4.5, 5.5]$, then

Α

In summary

Probabilities ...

- (+) very informative quantification (do we need it?)
- (-) need lots of information (do we have it?)
- (-) if not enough, requires a choice (do we want to do that?)
- use probabilistic calculus (convolution, stoch. independence, ...) Sets ...
 - (+) need very few information
 - (-) very rough quantification of uncertainty (Is it sufficient for us?)
 - use set calculus (interval analysis, Cartesian product, ...)
- \rightarrow Need for frameworks bridging these two

Possibility theory [27]

Basic tool

A distribution $\pi : \Omega \to [0, 1]$, usually with ω such that $\pi(\omega) = 1$, from which

• $\overline{P}(A) = \max_{\omega \in A} \pi(\omega)$ (Possibility measure)

•
$$\underline{P}(A) = 1 - \overline{P}(A^c) = \min_{\omega \in A^c} (1 - \pi(\omega))$$
 (Necessity measure)

Sets *E* captured by $\pi(\omega) = 1$ if $\omega \in E$, 0 otherwise

Interval/set as special case

The set *E* can be modelled by the possibility distribution π_E such that

$$\pi_{E}(\omega) = \begin{cases} 1 & \text{if } \omega \in E \\ 0 & \text{else} \end{cases}$$

э

A nice characteristic: Alpha-cut [9]

Definition

$$\mathbf{A}_{\alpha} = \{\omega \in \Omega | \pi(\omega) \ge \alpha\}$$

•
$$\underline{P}(A_{\alpha}) = 1 - \alpha$$

• If
$$\beta \leq \alpha$$
, $A_{\alpha} \subseteq A_{\beta}$

Simulation: draw $\alpha \in [0, 1]$ and associate A_{α}

 \Rightarrow Possibilistic approach ideal to model **nested structures**

Sébastien Destercke	(CNRS)
---------------------	--------

A basic distribution: simple support

- A set *E* of most plausible values A confidence degree $\alpha = P(E)$
- Two interesting cases:
 - Expert providing most plausible values *E*
 - E set of models of a formula ϕ
- Both cases extend to multiple sets E_1, \ldots, E_p :
 - confidence degrees over nested sets [49]
 - hierarchical knowledge bases
 [29]

pH value \in [4.5, 5.5] with $\alpha = 0.8$ (\sim "guite probable")

ISIPTA 2018 School 22 / 97

A basic distribution: simple support

- A set *E* of most plausible values
- A confidence degree $\alpha = \underline{P}(E)$
- Two interesting cases:
 - Expert providing most plausible values *E*
 - E set of models of a formula ϕ
- Both cases extend to multiple sets E_1, \ldots, E_p :
 - confidence degrees over nested sets [49]
 - hierarchical knowledge bases
 [29]

variables p, q $\Omega = \{pq, \neg pq, p\neg q, \neg p\neg q\}$ $\underline{P}(p \Rightarrow q) = 0.9$ (~ "almost certain") $E = \{pq, p\neg q, \neg p\neg q\}$

•
$$\pi(pq) = \pi(p\neg q) = \pi(\neg p\neg q) = 1$$

•
$$\pi(\neg pq) = 0.1$$

Nested confidence intervals: expert opinions

Expert providing nested intervals + conservative confidence degree

A pH degree

- $0.3 \le P([4.5, 5.5])$
- 0.7 ≤ *P*([4, 6])
- 1 ≤ *P*([3,7])

< A

E 5 4 E

Normalized likelihood as possibilities [24] [7]

$$\pi(\theta) = \mathcal{L}(\theta|x) / \max_{\theta \in \Theta} \mathcal{L}(\theta|x)$$

Binomial situation:

- $\theta =$ success probability
- x number of observed successes
- x = 4 succ. out of 11
- x= 20 succ. out of 55

The Sec. 74

Partially specified probabilities [3] [23]

Triangular distribution: $[\underline{P}, \overline{P}]$ encompass all probabilities with

- mode/reference value M
- support domain [a, b].

Getting back to pH

- *M* = 5
- [*a*, *b*] = [3, 7]

ISIPTA 2018 School 25 / 97

E 5 4 E

Other examples

- Statistical inequalities (e.g., Chebyshev inequality) [23]
- Linguistic information (fuzzy sets) [12]
- Approaches based on nested models

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Possibility: limitations

$$\underline{P}(A) > 0 \Rightarrow \overline{P}(A) = 1$$

 $\overline{P}(A) < 1 \Rightarrow \underline{P}(A) = 0$

 \Rightarrow interval [$\underline{P}(A)$, $\overline{P}(A)$] with one trivial bound Does not include probabilities as special case:

- \Rightarrow possibility and probability at odds
- \Rightarrow respective calculus hard (sometimes impossible?) to reconcile

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Going beyond

Extend the theory

- \Rightarrow by complementing π with a lower distribution δ ($\delta \leq \pi$) [30], [21]
- \Rightarrow by working with interval-valued possibility/necessity degrees [4]
- \Rightarrow by working with sets of possibility measures [32]

Use a more general model

⇒ Random sets and belief functions

4 D K 4 B K 4 B K 4 B K

Outline

Introductory elements

Belief function: basics, links and representation

- Less general than belief functions
- Belief functions
- More general than belief functions
- Comparison, conditioning and fusion
 - Information comparison
 - The different facets of conditioning
 - Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

< ロ > < 同 > < 回 > < 回 >

Belief functions

The history

- First used by Dempster to make statistical reasoning about imprecise observations, mostly with frequentist view
- Popularized by Shafer as a generic way to handle imprecise evidences
- Used by Smets (in TBM) with a will to not refer at all to probabilities

 \rightarrow evolved as a uncertainty theory of its own ($\exists \neq$ with IP, Possibility or p-boxes)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Random sets and belief functions

Basic tool

A positive distribution $m : 2^{\Omega} \to [0, 1]$, with $\sum_{E} m(E) = 1$ and usually $m(\emptyset) = 0$, from which

- $\overline{P}(A) = \sum_{E \cap A \neq \emptyset} m(E)$ (Plausibility measure)
- $\underline{P}(A) = \sum_{E \subseteq A} m(E) = 1 \overline{\mu}(A^c)$ (Belief measure)

$[\underline{P}, \overline{P}]$ as

subjective confidence degrees of evidence theory [50], [51], [13]

• bounds of an **ill-known probability** measure $\mu \Rightarrow \underline{P} \le \mu \le \overline{P}$

Sébastien Destercke (CNRS)

Uncertainty theories

ISIPTA 2018 School

31/97

A characterisation of belief functions

Complete monotonicity

If <u>P</u> is a belief measure if and only if it satisfies the inequality

$$\underline{P}(\cup_{i=1}^{n}A_{i}) \geq \sum_{\mathcal{A}\subseteq \{A_{1},...,A_{n}\}} (-1)^{|\mathcal{A}|+1}\underline{P}(\cap_{A_{i}\in\mathcal{A}}A_{i})$$

for any number *n*.

Simply the exclusion/inclusion principle with an equality

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

Another characterisation of belief functions

Möbius inverse: definition

Let \underline{P} be a measure on 2^{Ω} , its Möbius inverse $m_P : 2^{\Omega} \to \mathbb{R}$ is

$$m_{\underline{P}}(E) = \sum_{A \subseteq E} -1^{|E \setminus A|} \underline{P}(E).$$

It is bijective, as $\underline{P}(A) = \sum_{E \subseteq A} m(E)$, and can be applied to any set-function.

Belief characterisation

 $m_{\underline{P}}$ will be non-negative for all *E* if and only if <u>P</u> is a belief function.

Yet another characterisation: commonality functions

Definition

Given a mass function *m*, commonality function $Q : 2^{\Omega} \rightarrow [0, 1]$ defined as

$$Q(A)=\sum_{E\supseteq A}m(E)$$

and express how unsurprising it is to see A happens.

Back to m

Given Q, we have

$$m(A) = \sum_{B \supseteq A} -1^{|B \setminus A|} Q(B)$$

Some notes

- Instrumental to define "complement" of information m
- In possibility theory, equivalent to guaranteed possibility
- In imprecise probability, no equivalent (?)

Sébastien Destercke (CNRS)

Uncertainty theories

special cases

Measures $[\underline{P}, \overline{P}]$ include:

- Probability distributions: mass on atoms/singletons
- Possibility distributions: mass on nested sets

 \rightarrow "simplest" theory that includes both sets and probabilities as special cases!

< ロ > < 同 > < 回 > < 回 >

Frequencies of imprecise observations

60 % replied $\{N, F, D\} \rightarrow m(\{N, F, D\}) = 0.6$ 15 % replied "I do not know" $\{N, F, D, M, O\} \rightarrow m(S) = 0.15$ 10 % replied Murray $\{M\} \rightarrow m(\{M\}) = 0.1$ 5 % replied others $\{O\} \rightarrow m(\{O\}) = 0.05$

P-box [35]

A pair $[\underline{F}, \overline{F}]$ of cumulative distributions

Bounds over events $[-\infty, x]$

- Percentiles by experts;
- Kolmogorov-Smirnov bounds;

Can be extended to any pre-ordered space [20], [53] \Rightarrow multivariate spaces!

Expert providing percentiles

$$0 \leq P([-\infty, 12]) \leq 0.2$$

$$0.2 \leq P([-\infty, 24]) \leq 0.4$$

$$\textbf{0.6} \leq \textit{P}([-\infty, 36]) \leq 0.8$$

Other means to get random sets/belief functions

- Extending modal logic: probability of provability [52]
- Parameter estimation using pivotal quantities [43]
- Statistical confidence regions [14]
- Modify source information by its reliability [47]

Ο...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introductory elements

Belief function: basics, links and representation

- Less general than belief functions
- Belief functions

More general than belief functions

- Comparison, conditioning and fusion
 - Information comparison
 - The different facets of conditioning
 - Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

< ロ > < 同 > < 回 > < 回 >

Limits of random sets

- Not yet fully satisfactory extension of Bayesian/subjective approach
- Still some natural items of information it cannot easily model:
 - probabilistic bounds over atoms ω (imprecise histograms, ...) [11];
 - comparative assessments such as $2P(B) \le P(A)$ [45], ...

4 3 5 4 3 5 5

Imprecise probabilities

Basic tool

A set \mathcal{P} of probabilities on Ω or an equivalent representation

- $\overline{P}(A) = \sup_{P \in \mathcal{P}} P(A)$ (Upper probability)
- $\underline{P}(A) = \inf_{P \in \mathcal{P}} P(A) = 1 \overline{P}(A^c)$ (Lower probability)

Reminder: lower/upper bounds on events alone cannot model any convex $\ensuremath{\mathcal{P}}$

$[\underline{P}, \overline{P}]$ as

- subjective lower and upper betting rates [55]
- bounds of an **ill-known probability measure** $P \Rightarrow \underline{P} \leq P \leq \overline{P}$ [5] [56]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some basic properties

Avoiding sure loss and coherence

Given some bounds $\underline{P}(A)$ over every event $A \subseteq \Omega$, we say that

<u>P</u> avoids sure loss iff

$$\mathcal{P}(\underline{P}) = \{ \boldsymbol{P} : \underline{P} \leq \boldsymbol{P} \leq \overline{\boldsymbol{P}} \} \neq \emptyset$$

• <u>*P*</u> is coherent iff for any *A*, we have

$$\inf_{P\in\mathcal{P}(\underline{P})}P(A)=\underline{P}(A)$$

Sébastien Destercke (CNRS)

ISIPTA 2018 School 42 / 97

< ロ > < 同 > < 回 > < 回 >

Illustrative example

ISIPTA 2018 School 43 / 97

< A

A first exercise

(4) (5) (4) (5)

A second exercise

ISIPTA 2018 School 45 / 97

< ロ > < 同 > < 回 > < 回 >

A not completely accurate but useful picture

Sébastien Destercke (CNRS)

ISIPTA 2018 School 46 / 97

Why belief functions?

Why not?

- You need more (to model properly/not approximate your results)
- You cannot afford it (computationally)

Why?

They offer a fair compromise

- Embed precise probabilities and sets in one frame
- Can use simulation of *m* + Set computation
- Extreme points/natural extension easy to compute (Choquet Integral, ...)

Or, you want to use tools proper to BF theory.

< ロ > < 同 > < 回 > < 回 >

Plan

Introductory elements

- 2 Belief function: basics, links and representation
 - Less general than belief functions
 - Belief functions
 - More general than belief functions
 - Comparison, conditioning and fusion
 - Information comparison
 - The different facets of conditioning
 - Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

Outline

Introductory elements

- 2 Belief function: basics, links and representation
 - Less general than belief functions
 - Belief functions
 - More general than belief functions

Comparison, conditioning and fusion

- Information comparison
- The different facets of conditioning
- Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

< ロ > < 同 > < 回 > < 回 >

Introduction

Main question

Given two pieces of information $\underline{P}_1, \underline{P}_2$, is one more informative than the others? How can we answer?

Examples of use

- Least commitment principle: given multiple models satisfying given constraints, pick the most conservative one
 - Partial elicitation,
 - Revision,
 - Inverse Pignistic,
 - Natural extension, ...
- (Outer)-approximation: Pick a model <u>P</u>₂ simpler than <u>P</u>₁ (e.g., generic belief mass into possibility), ensuring that <u>P</u>₂ does not add information to <u>P</u>₁.

Information comparison

A natural notion: set inclusion

A set $A \subseteq S$ is **more informative** than $B \subseteq \Omega$ if

$A \subseteq B \Leftrightarrow A \sqsubseteq B$

- Propositional logic: A more informative if A entails B
- Intervals: A includes all values of B, is more precise than B
- \Rightarrow extends this notion to other uncertainty theories

Extensions to other models

Denoting $\underline{P}_A, \underline{P}_B$ the uncertainty models of sets A, B, we do have

$$A \sqsubseteq B \Leftrightarrow \underline{P}_{A}(C) \leq \underline{P}_{B}(C)$$
 for any $C \subseteq S$

Derivations of $\underline{P}_1 \leq \underline{P}_2$ in different frameworks

- Possibility distributions: $\pi_1 \sqsubseteq \pi_2 \Leftrightarrow \pi_1 \ge \pi_2$
- Belief functions: m₁ ⊑ m₂ ⇔ P₁ ⊑ P₂ (plausibility inclusion, there are others [25])
- Probability sets: $\underline{P}_1 \sqsubseteq \underline{P}_2 \Leftrightarrow \mathcal{P}_1 \subseteq \mathcal{P}_2$ (\underline{P}_i lower previsions)

Inclusion: interest and limitations

- +: very natural way to compare informative content
- -: only induces a partial order between information models

Example

Consider the space $\Omega = \{a, b, c\}$ and the following mass functions:

$$m_1(\{b\}) = 0.3, m_1(\{b, c\}) = 0.2, m_1(\{a, b, c\}) = 0.5$$

$$m_2(\{a\}) = 0.2, m_2(\{b\}) = 0.3, m_2(\{c\}) = 0.3, m_2(\{a, b, c\}) = 0.2$$

$$m_3(\{a,b\}) = 0.3, m_3(\{a,c\}) = 0.3, m_3(\{a\}) = 0.4$$

We have $m_2 \sqsubseteq m_1$, but m_3 incomparable with \sqsubseteq (side-exercise: show it)

 \Rightarrow ok theoretically, but not always lead to non-uniqueness of solutions

Numerical assessment of informative content [57, 1, 26]

- For probabilities, distinct μ_1 and μ_2 always incomparable by previous definition
- A solution, associate to each μ a number $I(\mu)$, i.e., entropy

$$I(\mu) = -\sum_{\omega \in \Omega} p(\omega) ln(p(\omega))$$

and declare that $\mu_1 \sqsubseteq \mu_2$ if $I(\mu_1) \le I(\mu_2)$.

This can be extended to other theories, where we can ask

$$\underline{P}_1 \leq \underline{P}_2 \Rightarrow I(\underline{P}_1) \geq I(\underline{P}_2)$$

Measure / should be consistent with inclusion

Sébastien Destercke (CNRS)

Outline

Introductory elements

- 2 Belief function: basics, links and representation
 - Less general than belief functions
 - Belief functions
 - More general than belief functions

Comparison, conditioning and fusion

- Information comparison
- The different facets of conditioning
- Information fusion
 - Basic operators
 - Rule choice:set/logical approach
 - Rule choice: performance approach

< ロ > < 同 > < 回 > < 回 >

Three use of conditional and conditioning [39, 41]

Focusing: from generic to singular

- P: generic knowledge (usually about population)
- P(|C): what we know from P in the singular context C

Revising: staying either generic or singular

- P: knowledge or belief (generic or singular)
- P(|C): we learn that C is certainly true → how should we modify our knowledge/belief

Learning: from singular to generic (not developed here)

- P: beliefs about the parameter
- P(|C): modified beliefs once we observe C (≃ multiple singular observations)

Focusing and revising in probabilities [28]

In probability, upon learning C, the revised/focused knowledge is

$$P(A|C) = rac{P(A \cap C)}{P(C)} = rac{P(A \cap C)}{P(A \cap C) + P(A^c \cap C)}$$

coming down to the use of Bayes rule of conditioning in both cases.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Focusing

- Observing C does not modify our generic knowledge/beliefs
- We may lose information → the more C is specific, the less our general knowledge applies to it (cf. dilation in IP)
- The consistency of generic knowledge/beliefs should be preserved (*C* cannot contradict it, only specify to which case it should apply)
- If we observe later A ⊆ C, we should start over from generic knowledge

Focusing in uncertainty theories [34]

Focusing with belief functions

• Given initial belief function <u>P</u>, this gives

$$\underline{P}(A||C) = \frac{\underline{P}(A \cap C)}{\underline{P}(A \cap C) + \overline{P}(A^c \cap C)}$$
$$\overline{P}(A||C) = \frac{\overline{P}(A \cap C)}{\overline{P}(A \cap C) + \underline{P}(A^c \cap C)}$$

We can have $\underline{P}(A||C) < \underline{P}(A) \le \overline{P}(A) < \overline{P}(A||C)$ ("loss" of information).

• Can be interpreted as a sensitivity analysis of Bayes rule:

$$\underline{P}(A||C) = \inf\{P(A|C) : P \in \mathcal{P}, P(C) > 0\}$$

• \simeq regular extension in imprecise probability

Revision

- Observing C modifies our knowledge and belief
- Observing *C* refines our beliefs and knowledge, that should become more precise
- If we observe later A ⊆ C, we should start from the modified knowledge (we may ask for operation to be order-insensitive)
- *C* is a new knowledge, that may be partially inconsistent with current belief/knowledge

Revision in uncertainty theories

Revising with belief functions

• Given initial plausibility function \overline{P} , this gives

$$\overline{P}(A|C) = rac{\overline{P}(A \cap C)}{\overline{P}(C)} \Rightarrow \underline{P}(A|C) = 1 - \overline{P}(A^c|C)$$

• If $\overline{P}(C) = 1$, then

- no conflict between old and new information (no incoherence)
- we necessarily have $\overline{P}(A|C) < \overline{P}(A)$ (refined information)
- Can be interpreted Bayes rule applied to most plausible situations:

$$\underline{P}(A||C) = \inf\{P(A|C) : P \in \mathcal{P}, P(C) = \overline{P}(C)\}$$

Similarly to fusion, not studied a lot within IP setting (because of incoherence?)

Revision as prioritized fusion

When $\overline{P}(C) = 1$ and C precise observation

• $\overline{P}(A|C)$ = result of conjunctive combination rule

•
$$\mathcal{P}_{|\mathcal{C}} = \mathcal{P} \cap \{\mathcal{P}: \mathcal{P}(\mathcal{C}) = 1\}$$

 \rightarrow can be interpreted as a fusion rule where *C* has priority. If $\overline{P}(C) < 1$, interpreted as new information inconsistent with the old \rightarrow conditioning as a way to restore consistency.

Case where observation C is uncertain and inconsistent with knowledge.

- Minimally change $\underline{\mu}$ to be consistent with $C \rightarrow$ in probability, Jeffrey's rule (extensions to other theories exist [42])
- Not a symmetric fusion process, new information usually has priority (≠ from usual belief fusion rules)!

A small exercice: focusing

The hotel provides the following plates for breakfast

a=Century egg, b=Rice, c=Croissant, d=Raisin Muffin

In a survey about their choices, respondents gave the reply

$$m(\{a,b\}) = \alpha, \ m(\{c,d\}) = 1 - \alpha$$

Applying focusing

We learn that customer C does not like eggs nor raisins ($C = \{b, c\}$), what can we tell about him choosing Rice?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A small exercice: revision

The hotel provides the following plates for breakfast

a=Century egg, b=Rice, c=Croissant, d=Raisin Muffin

In a survey about their choices, respondent gave the reply

$$m(\{a,b\}) = \alpha, \ m(\{c,d\}) = 1 - \alpha$$

Applying revision

We learn that suppliers no longer have eggs nor raisins ($C = \{b, c\}$), what is the proportion of rice we should buy to satisfy customers?

Outline

Introductory elements

- 2 Belief function: basics, links and representation
 - Less general than belief functions
 - Belief functions
 - More general than belief functions

Comparison, conditioning and fusion

- Information comparison
- The different facets of conditioning

Information fusion

- Basic operators
- Rule choice:set/logical approach
- Rule choice: performance approach

< ロ > < 同 > < 回 > < 回 >

An illustration of the issue

Sébastien Destercke (CNRS)

ISIPTA 2018 School 66 / 97

э

イロト イヨト イヨト イヨト

- Information on the same level
- No piece of information has priority over the other (a priori)
- Makes sense to combine multiple pieces of information at once
- Main question: "How to choose h"
 - To obtain a more reliable and informative result?
 - When items *m_i*'s disagree?

4 D K 4 B K 4 B K 4 B K

Conjunction

Main Assumption

- Information items E_1, \ldots, E_n are **all** fully reliable
- If one source consider ω impossible, then ω impossible

$$\rightarrow h(E_1,\ldots,E_n)(\omega) = \min(E_1(\omega),\ldots,E_n(\omega)) = \bigcap E_i$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conjunction

Main Assumption

- Information items E_1, \ldots, E_n are **all** fully reliable
- If one source consider ω impossible, then ω impossible

$$\rightarrow h(E_1,\ldots,E_n)(\omega) = \min(E_1(\omega),\ldots,E_n(\omega)) = \bigcap E_i$$

Pros and Cons

- +: very informative results, logically interpretable
- -: cannot deal with conflicting/unreliable information

Sébastien Destercke (CNRS)

Uncertainty theories

Disjunctive principle

Main Assumption

- At least one information item among E_1, \ldots, E_n is reliable
- ω possible as soon as one source considers it possible

$$\rightarrow h(E_1,\ldots,E_n)(\omega) = \max(E_1(\omega),\ldots,E_n(\omega)) = \bigcup E_i$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Disjunctive principle

Main Assumption

- At least one information item among E_1, \ldots, E_n is reliable
- ω possible as soon as one source considers it possible

$$\rightarrow h(E_1,\ldots,E_n)(\omega) = \max(E_1(\omega),\ldots,E_n(\omega)) = \bigcup E_i$$

Pros and Cons

- +: no conflict, logically interpretable
- -: poorly informative results

Sébastien Destercke (CNRS)

Uncertainty theories

Average

Main Assumption

Sources are statistically independent and in majority reliable

The Sec. 74

Average

Main Assumption

Sources are statistically independent and in majority reliable

Pros and Cons

- +: result not conflicting, counting process (statistics)
- -: no logical interpretation, not applicable to sets

Limits of sets in information fusion

- Very basic information (what is possible/what is impossible)
- Very basic (binary) evaluation of conflict, either:
 - present if $\bigcap E_i = \emptyset$
 - absent if $\bigcap E_i \neq \emptyset$
- Limited number of fusion operators (only logical combinations)
- Limited operation on information items to integrate reliability scores, source importance, ...
- \rightarrow how to extend fusion operators to belief functions

Extending conjunction

Consider the two following information

Sébastien Destercke (CNRS)

ISIPTA 2018 School 72 / 97

$$\begin{array}{c|c} & m_1 \\ [17, 18] = 0.6 & [15, 20] = 0.4 \\ \end{array} \\ \hline m_2 \\ [19.5, 22.5] = 0.2 \end{array}$$

Sébastien Destercke (CNRS)

ISIPTA 2018 School 73 / 97

$$\begin{array}{c|c} & m_1 \\ [17, 18] = 0.6 & [15, 20] = 0.4 \\ \end{array} \\ \hline m_2 \\ [19.5, 22.5] = 0.2 \\ \end{array} \begin{array}{c} & \emptyset \\ & & [19.5, 20] \end{array}$$

• Step 1: take intersection (sources reliable)

		<i>m</i> ₁					
		[17, 18] = 0.6	[15, 20] = 0.4				
<i>m</i> ₂	[20.5, 21.5] = 0.8	Ø 0.48	Ø 0.24				
	[19.5, 22.5] = 0.2	Ø 0.12	[19.5, 20] 0.08				

- Step 1: take intersection (sources reliable)
- Step 2: give product of masses (sources independent)

ISIPTA 2018 School 73 / 97

		<i>m</i> ₁					
		[17, 18] = 0.6	[15, 20] = 0.4				
<i>m</i> ₂	[20.5, 21.5] = 0.8	Ø 0.48	∅ 0.24				
	[19.5, 22.5] = 0.2	Ø 0.12	[19.5, 20] 0.08				

- Step 1: take intersection (sources reliable)
- Step 2: give product of masses (sources independent)

 $m(\emptyset) = 0.92 \rightarrow$ high conflict evaluation, unsatisfying

Sébastien Destercke (CNRS)

< 日 > < 同 > < 回 > < 回 > < □ > <

Extending conjunction

		<i>m</i> ₁				
		[17, 18] = 0.6	[15, 20] = 0.4			
<i>m</i> ₂	[17.5, 18.5] = 0.8	[17.5, 18] 0.48	[17.5, 18.5] 0.24			
	[16.5, 19.5] = 0.2	[17, 18] 0.12	[16.5, 19.5] 0.08			

- Step 1: take intersection (sources reliable)
- Step 2: give product of masses (sources independent)

 $m(\emptyset) = 0 \rightarrow$ no conflict, sources consistent

Sébastien Destercke (CNRS)

		[17, 18] = 0.6	[15, 20] = 0.4				
<i>m</i> ₂	[20.5, 21.5] = 0.8	[17, 18] U [20.5, 21.5]	[15, 20] U [20.5, 21.5]				
	[19.5, 22.5] = 0.2	[17, 18] U [19.5, 22.5]	[15, 22.5]				

• Step 1: take union (at least one reliable source)

イロト イポト イヨト イヨト

$$\begin{array}{c|c} m_1 \\ [17,18] = 0.6 & [15,20] = 0.4 \\ \hline & [20.5,21.5] = 0.8 \\ m_2 \\ m_2 \\ [19.5,22.5] = 0.2 \\ \end{array} \begin{array}{c} [17,18] \cup [20.5,21.5] \\ 0.48 \\ 0.24 \\ 0.25 \\ 0.12 \\ 0.12 \\ 0.08 \end{array} \begin{array}{c} m_1 \\ [15,20] \cup [20.5,21.5] \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.08 \\ \end{array} \right)$$

- Step 1: take union (at least one reliable source)
- Step 2: give product of masses (sources independent)

$$\begin{array}{c|c} m_1 \\ [17,18] = 0.6 & [15,20] = 0.4 \\ \hline & [20.5,21.5] = 0.8 \\ m_2 \\ m_2 \\ [19.5,22.5] = 0.2 \\ \end{array} \begin{array}{c} [17,18] \cup [20.5,21.5] \\ 0.48 \\ 0.24 \\ 0.25 \\ 0.12 \\ 0.12 \\ 0.08 \end{array} \begin{array}{c} m_1 \\ [15,20] \cup [20.5,21.5] \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.08 \\ \end{array} \right)$$

- Step 1: take union (at least one reliable source)
- Step 2: give product of masses (sources independent)

 $m(\emptyset) = 0 \rightarrow$ no conflict, but very imprecise result

< 日 > < 同 > < 回 > < 回 > < □ > <

More formally

- Given informations m_1, \ldots, m_n
- Conjunctive (Dempster's unnormalized) rule

$$m_{\cap}(A) = \sum_{E_1 \cap \ldots \cap E_n = A} \prod_{i=1}^n m(E_i)$$

 \rightarrow a gradual way to estimate conflict [22]

Disjunctive rule

$$m_{\cup}(A) = \sum_{E_1 \cup \ldots \cup E_n = A} \prod_{i=1}^n m(E_i)$$

Conflict management: beyond conjunction and disjunction

- \Rightarrow Conjunction poorly reliable/false
- \Rightarrow Disjunction very imprecise and inconclusive
- \rightarrow A popular solution: choose a logical combination between the two

A simple idea [19]

- Get maximal subsets M₁,..., M_ℓ of sources having non-empty intersection
- Take their intersection, then the union of those intersections

$$h(E_1,\ldots,E_n)=\cup_{M_\ell}\cap_{E_i\in M_\ell}E_i$$

An old idea ...

- In logic, to resolve knowledge base inconsistencies [31]
- In mathematical programming, to solve non-feasible problems [8]
- In interval analysis . . .

Illustrative exercice

Four sources provide you with basic items of information (sets)

- What are the maximal consistent subsets?
- What is the final result of applying the SMC rule to it?

Illustrative exercice:solution

SMC:
$$K_1 = \{E_1, E_2\}$$
 et $K_2 = \{E_2, E_3, E_4\}$

Final result: $(E_1 \cap E_2) \cup (E_2 \cap E_3 \cap E_4)$

- If all agree \rightarrow conjunction
- $\bullet\,$ if every pair is in disagreement (disjoint) $\rightarrow\,$ disjunction

Sébastien Destercke (CNRS)

★ ∃ > < ∃ >

MCS on belief: illustration

Sébastien Destercke (CNRS)

ISIPTA 2018 School 81 / 97

э

Set and logical view

Why?

- You want an interpretation to the combination
- You have relatively few information items
- You cannot "learn" your rule

Why not?

- You do not really care about interpretability
- You need to "scale up"
- You have means to learn your rule

< ロ > < 同 > < 回 > < 回 >

Learning fusion rule: rough protocol

- A set of observed values μ̂¹,..., μ̂^o
- for each $\hat{\omega}^i$, information m_1^i, \ldots, m_n^i provided by *n* sources
- a decision rule $d : \mathcal{M} \to \Omega$ mapping *m* to a decision in Ω
- from set \mathcal{H} of possible rules, choose

$$h^* = rg\max_{h \in \mathcal{H}} \sum_{i} \mathbb{I}_{d(h(m_1^i,...,m_n^i)) = \hat{\omega}^i}$$

How to choose \mathcal{H} ?

- \mathcal{H} should be easy to navigate, i.e., based on few parameters
- Maximization optimization problem should be made easy if possible (convex? Linear?)
- In particular, if mⁱ_j have peculiar forms (possibilities, Bayesian, ...), there is a better hope to find efficient methods

Two examples

- Weighted averaging rules (parameters to learn: weights)
- Denoeux T-(co)norm rules based on canonical decomposition (parameters to learn: parameters of the chosen t-norm family)

The case of averaging rule

Parameters w = (w₁,..., w_n) such that ∑_i w_i = 1 and w_i > 0
Set H = {h_w|w ∈ [0, 1]ⁿ, ∑_i w_i = 1} with

$$h_{\mathbf{w}} = \sum_{i} w_{i} m_{i}$$

Decision rule d?

$$d(m) = rg \max_{\omega \in \Omega} \overline{P}(\{\omega\})$$

maximum of plausibility

 \rightarrow use plausibility of average = average of plausibilities at your advantage, i.e.,

$$\overline{P}_{\Sigma}(\omega) = \sum w_i \overline{P}_i(\omega)$$

Exercice 7: walking dead

A zombie apocalypse has happened, and you must recognize possible threats/supports

The possibilities $\boldsymbol{\Omega}$

- Zombie (Z)
- Friendly Human (F)
- Hostile Human (H)
- Neutral Human (N)

The sources S_i

- Half-broken heat detector (S₁)
- Paranoid Watch guy 1 (S_2)
- Half-borken Motion detector (S₃)

< ロ > < 同 > < 回 > < 回 >

• Sleepy Watch guy 2 (S₄)

Exercice 7: which rule?

Given this table of contour functions, a weighted average and a decision based on maximal plausibility

	$\hat{\omega}^1 = Z$				$\hat{\omega}^2 = H$				$\hat{\omega}^3 = F$			
	Ζ	F	Н	Ν	Ζ	F	Н	Ν	Ζ	F	Н	N
<i>S</i> ₁	1	0,5	0,5	0,5	1	0,5	0,5	0,5	0,5	1	1	1
S_2	1	0,2	0,8	0,2	0	0,3	1	0,3	0	0,4	1	0,4
S_3	1	0,5	0,5	0,5	0,5	0,7	0,8	0,7	1	0,5	0,5	0,5
S_4	1	1	1	1	0,2	0,2	1	0,5	0,2	1	0,4	0,8
$\mathbf{w}_1 = (0.5, 0.5, 0, 0)$												
$\mathbf{w}_2 = (0, 0, 0.5, 0.5)$												

Choose h_{w_1} or h_{w_2} ? Given the data, can we find a strictly better weight vector?

(日)

Some on-going research topics within BF

Or what could you go for if you're interested in BF

Statistical estimation/machine learning

- Extending frequentist approaches [16]
- Embedding BF with classical ML [48, 15]
- BF for recent ML problems (ranking, multi-label) [18, 44]

Inference over large/combinatorial spaces

- Efficient handling over lattices (preferences, etc.) [17]
- Inferences over Boolean formulas [2, 38]
- BF and (discrete) Operations Research [37]

Specific fusion settings

- Decentralized fusion [33]
- Large spaces (2D/3D maps, images) [46]

Sébastien Destercke (CNRS)

Uncertainty theories

As a conclusion

Belief functions as specific IP ...

Many common points

- Specific setting including many important aspects
- May offer tools that facilitate handling/understanding to non-specialist (random set, Mobius inverse, Monte-Carlo + set computation)
- BF theory share strong similarities with IP

... but not only

Yet important differences:

- Admit incoherence when needed \rightarrow may be useful sometimes
- Important notions in BF have no equivalent in IP \rightarrow commonality function, specialisation notion, fusion rules, ...

References I

[1] J. Abellan and S. Moral. A non-specificity measure for convex sets of probability distributions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 8:357-367, 2000. [2] Felipe Aguirre, Sebastien Destercke, Didier Dubois, Mohamed Sallak, and Christelle Jacob. Inclusion-exclusion principle for belief functions. International Journal of Approximate Reasoning, 55(8):1708-1727, 2014. C Baudrit and D Dubois [3] Practical representations of incomplete probabilistic knowledge. Computational Statistics and Data Analysis, 51(1):86-108, 2006. [4] Salem Benferhat, Julien Hué, Sylvain Lagrue, and Julien Rossit. Interval-based possibilistic logic. In IJCAI, pages 750-755, 2011. [5] J. O. Berger. An overview of robust Bayesian analysis. Test. 3:5-124, 1994. With discussion Denis Bouyssou, Didier Dubois, Henri Prade, and Marc Pirlot. [6] Decision Making Process: Concepts and Methods. John Wiley & Sons. 2013. M Cattaneo

Likelihood-based statistical decisions. In Proc. 4th International Symposium on Imprecise Probabilities and Their Applications, pages 107–116, 2005.

References II

- [8] John W Chinneck and Erik W Dravnieks. Locating minimal infeasible constraint sets in linear programs. ORSA Journal on Computing, 3(2):157–168, 1991.
- [9] I. Couso, S. Montes, and P. Gil, The necessity of the strong alpha-cuts of a fuzzy set. Int. J. on Uncertainty, Fuzziness and Knowledge-Based Systems, 9:249–262, 2001.
- [10] Inés Couso and Didier Dubois. Statistical reasoning with set-valued information: Ontic vs. epistemic views. International Journal of Approximate Reasoning, 55(7):1502–1518, 2014.
- [11] L.M. de Campos, J.F. Huete, and S. Moral. Probability intervals: a tool for uncertain reasoning. I. J. of Uncertainty. Fuzziness and Knowledge-Based Systems, 2:167–196, 1994.
- [12] G. de Cooman and P. Walley. A possibilistic hierarchical model for behaviour under uncertainty. *Theory and Decision*, 52:327–374, 2002.
- [13] A.P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38:325–339, 1967.
- [14] T. Denoeux. Constructing belief functions from sample data using multinomial confidence regions. I. J. of Approximate Reasoning, 42:228–252, 2006.
- [15] Thierry Denoeux. Logistic regression, neural networks and dempster-shafer theory: a new perspective. arXiv preprint arXiv:1807.01846, 2018.

Sébastien Destercke (CNRS)

References III

- [16] Thierry Denoeux and Shoumei Li. Frequency-calibrated belief functions: Review and new insights. International Journal of Approximate Reasoning, 92:232–254, 2018.
- [17] Thierry Denœux and Marie-Hélène Masson. Evidential reasoning in large partially ordered sets. Annals of Operations Research, 195(1):135–161, 2012.
- [18] Thierry Denœux, Zoulficar Younes, and Fahed Abdallah. Representing uncertainty on set-valued variables using belief functions. *Artificial Intelligence*, 174(7-8):479–499, 2010.
- [19] S. Destercke, D. Dubois, and E. Chojnacki. Possibilistic information fusion using maximal coherent subsets. IEEE Trans. on Fuzzy Systems (in press), 2008.
- [20] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: I generalized p-boxes. Int. J. of Approximate Reasoning, 49:649–663, 2008.
- [21] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: II clouds. Int. J. of Approximate Reasoning (in press), pages 664–677, 2008.
- [22] Sébastien Destercke and Thomas Burger. Toward an axiomatic definition of conflict between belief functions. *Cybernetics, IEEE Transactions on*, 43(2):585–596, 2013.
- [23] D. Dubois, L. Foulloy, G. Mauris, and H. Prade. Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. *Reliable Computing*, 10:273–297, 2004.

References IV

- [24] D. Dubois, S. Moral, and H. Prade.
 A semantics for possibility theory based on likelihoods,. Journal of Mathematical Analysis and Applications, 205(2):359 – 380, 1997.
- [25] D. Dubois and H. Prade. A set-theoretic view on belief functions: logical operations and approximations by fuzzy sets. Int. J. of General Systems, 12:193–226, 1986.
- [26] D. Dubois and H. Prade. Properties of measures of information in evidence and possibility theory. *Fuzzy sets and systems*, 24:161–182, 1987.
- [27] D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York, 1988.
- [28] Didler Dubois and Henri Prade. Focusing vs. belief revision: A fundamental distinction when dealing with generic knowledge. In ECSOARU 97, pages 96–107. Springer, 1997.
- [29] Didier Dubois and Henri Prade. Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems, 144(1):3 – 23, 2004.
- [30] Didier Dubois and Henri Prade.

An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. *Fuzzy Sets and Systems*, 160(10):1355–1366, 2009.

[31] Didier Dubois and Henri Prade. Being consistent about inconsistency: Toward the rational fusing of inconsistent propositional logic bases. In The Road to Universal Logic, pages 565–571. Springer, 2015.

Sébastien Destercke (CNRS)

ISIPTA 2018 School 93 / 97

References V

- [32] Didier Dubois, Henri Prade, and Agnès Rico. Representing qualitative capacities as families of possibility measures. International Journal of Approximate Reasoning, 58:3–24, 2015.
- [33] Bertrand Ducourthial and Véronique Cherdaoui. Experiments with self-stabilizing distributed data fusion. In IEEE 35th Symposium on Reliable Distributed Systems (SRDS 2016), pages 289–296, 2016.
- [34] Ronald Fagin and Joseph Halpern. A new approach to updating beliefs. In P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 6, pages 347–374. North-Holland, Amsterdam, 1991.
- [35] S. Ferson, L. Ginzburg, V. Kreinovich, D.M. Myers, and K. Sentz. Constructing probability boxes and dempster-shafer structures. Technical report, Sandia National Laboratories, 2003.
- [36] B.de Finetti. Theory of probability, volume 1-2. Wiley, NY, 1974. Translation of 1970 book.
- [37] Nathalie Helal, Frédéric Pichon, Daniel Porumbel, David Mercier, and Éric Lefèvre. The capacitated vehicle routing problem with evidential demands. International Journal of Approximate Reasoning, 95:124–151, 2018.
- [38] Christelle Jacob, Didier Dubois, and Janette Cardoso. Evaluating the uncertainty of a boolean formula with belief functions. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pages 521–531. Springer, 2012.

Sébastien Destercke (CNRS)

ISIPTA 2018 School 94 / 97

References VI

- [39] Jean-Yves Jaffray. Bayesian updating and belief functions. IEEE Transactions on Systems, Man and Cybernetics, 22:1144–1152, 1992.
- [40] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. London, 2001.
- [41] Henry E. Kyburg Jr. Bayesian and non-bayesian evidential updating. *Artif. Intell.*, 31(3):271–293, 1987.
- [42] Jianbing Ma, Weiru Liu, Didier Dubois, and Henri Prade. Bridging jeffrey's rule, agm revision and dempster conditioning in the theory of evidence. International Journal on Artificial Intelligence Tools, 20(04):691–720, 2012.
- [43] Ryan Martin, Jianchun Zhang, and Chuanhai Liu. Dempster-shafer theory and statistical inference with weak beliefs. Technical report, 2008.
- [44] Marie-Hélène Masson, Sébastien Destercke, and Thierry Denoeux. Modelling and predicting partial orders from pairwise belief functions. Soft Computing, 20(3):939–950, 2016.
- [45] Enrique Miranda and Sébastien Destercke. Extreme points of the credal sets generated by comparative probabilities. *Journal of Mathematical Psychology*, 64:44–57, 2015.
- [46] Nicola Pellicanò, Sylvie Le Hégarat-Mascle, and Emanuel Aldea. 2cobel: An efficient belief function extension for two-dimensional continuous spaces. arXiv preprint arXiv:1803.08857, 2018.

Sébastien Destercke (CNRS)

References VII

- [47] Frédéric Pichon, Didier Dubois, and Thierry Denoeux. Relevance and truthfulness in information correction and fusion. Int. J. Approx. Reasoning, 53(2):159–175, 2012.
- [48] Benjamin Quost, Thierry Denœux, and Marie-Hélène Masson. Pairwise classifier combination using belief functions. Pattern Recognition Letters, 28(5):644–653, 2007.
- [49] S.A. Sandri, D. Dubois, and H.W. Kalfsbeek. Elicitation, assessment and pooling of expert judgments using possibility theory. *IEEE Trans. on Fuzzy Systems*, 3(3):313–335, August 1995.
- [50] G. Shafer. A mathematical Theory of Evidence. Princeton University Press, New Jersey, 1976.
- [51] P. Smets. The transferable belief model and other interpretations of dempster-shafer's model. In Proc. of the Sixth Annual Confernce on Uncertainty in Artifical Intelligence, pages 375–384, 1990.
- [52] Philippe Smets. Probability of provability and belief functions. Logique et Analyse, 133-134:177–195, 1991.
- [53] Matthias C. M. Troffaes and Sébastien Destercke. Probability boxes on totally preordered spaces for multivariate modelling. *Int. J. Approx. Reasoning*, 52(6):767–791, 2011.
- [54] R. von Mises. Probability, Statistics and Truth. Dover books explaining science. Dover Publications, 1981.

Sébastien Destercke (CNRS)

Uncertainty theories

ISIPTA 2018 School 96 / 97

References VIII

[55] P. Walley.

Statistical reasoning with imprecise Probabilities. Chapman and Hall, New York, 1991.

- [56] Kurt Weichselberger. The theory of interval-probability as a unifying concept for uncertainty. International Journal of Approximate Fleasoning, 24(2–3):149 – 170, 2000.
- [57] R.R. Yager. Entropy and specificity in a mathematical theory of evidence. *I. J. of Systems*, 9:249–260, 1983.