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Lecture goal/content

What you will find in this talk

An overview of belief functions and how to obtain them

Short discussion on comparing informative contents

Discussion about conditioning and fusion

Pointers to additional topics (statistical learning, preference handling,
. . . )

What you will not find in this talk

A deep and exhaustive study of a particular topic
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How this will go

Exercices along the lecture
You are encouraged to ask questions during the lecture!
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Introductory elements

Plan

1 Introductory elements

2 Belief function: basics, links and representation
Less general than belief functions
Belief functions
More general than belief functions

3 Comparison, conditioning and fusion
Information comparison
The different facets of conditioning
Information fusion

Basic operators
Rule choice:set/logical approach
Rule choice: performance approach
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Introductory elements

Generic vs singular quantity

A quantity of interest S can be
Generic, when it refers to a population, or a set of situations.

Generic quantity example
The distribution of height within french population

Singular, when it refers to an individual or a peculiar situation

Singular quantity example
My own, personal height
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Introductory elements

Ontic and epistemic information [10]

An item of information I possessed by an agent about S can be
Ontic, if it is a faithful, perfect representation of S

Ontic information example
A set S representing the exact set of languages spoken by me
e.g.: S = {French,English,Spanish}

Epistemic, if it is an imperfect representation of S

Epistemic information example
A set E containing my mother tongue
e.g., E = {French,English,Spanish}

→ same mathematical expression, different interpretation
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Introductory elements

Everything is possible

We can have
Ontic information about a singular quantity: the hair colour of a
suspect; the mother tongue of someone
Epistemic information about a singular quantity: the result of the
next dice toss; the set of possible mother tongues of someone
Ontic information about a generic quantity: the exact distribution
of pixel colours in an image
Epistemic information about a generic quantity: an interval about
the frequency of French persons higher than 1.80 m
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Introductory elements

Uncertainty definition

Uncertainty: when our information I does not characterize the quantity
of interest S with certainty

→ In this view, uncertainty is necessarily epistemic, as it reflect
an imperfect knowledge of the agent

Can concern both:
Singular information

items in a data-base, values of some logical variables, time before
failure of a component

Generic information
parameter values of classifiers/regression models/probability
distributions, time before failure of components, truth of a logical
sentence ("birds fly")
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Introductory elements

The room example

Heights of people in a room: generic quantity

1m60 1m70 1m80 1m90 2m

20%

40%

Generic question: are 90% of people in room less than 1m80?
⇒ No, with full certainty
Specific question: is the last person who entered less than 1m80?
⇒ Probably, with 60% chance (uncertain answer)

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 9 / 97



Introductory elements

Uncertainty main origins [6, Ch. 3]

Variability of a population applied to a peculiar, singular situation

Variability example
The result of one dice throw when knowing the probability of each face

Imprecision and incompleteness due to partial information
about the quantity S

Imprecision example
Observing limited sample of the population, describing suspect as
"young", limited sensor precision

Conflict between different sources of information (data/expert)

Conflict example
Two redundant data base entries with different information for an
attribute, two sensors giving different measurements of a quantity
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Introductory elements

Handling uncertainty

singular

generic Model

data,
observations

Learning

Beliefs,
predictions

Deducting, predicting

Common problems in one sentence

Learning: use singular information to estimate generic information
(induction in logical sense)
Prediction: interrogate model and observations to deduce information
on quantity of interest (∼ inference/deduction in logical sense)
Information revision: merge new information with old one
Information fusion: merge multiple information pieces about same
quantity
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Belief function: basics, links and representation
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Belief function: basics, links and representation

Section goals

Remind basic ideas of uncertainty modelling
Introduce main ideas about belief functions
Provide elements linking belief functions and other approaches
Illustrate practical representations of belief functions
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Belief function: basics, links and representation Less general than belief functions

Outline
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Belief function: basics, links and representation Less general than belief functions

Basic framework

Quantity S with possible exclusive states Ω = {ω1, . . . , ωn}
B S: data feature, model parameter, . . .

Basic tools

A confidence degree P : 2Ω → [0,1] is such that
P(A): confidence S ∈ A
P(∅) = 0, P(Ω) = 1
A ⊆ B ⇒ P(A) ≤ P(B)

Uncertainty modelled by 2 degrees P,P : 2Ω → [0,1]:
P(A) ≤ P(A) (monotonicity)
P(A) = 1− P(Ac) (duality)
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Belief function: basics, links and representation Less general than belief functions

Probability

Basic tool
A probability distribution p : Ω→ [0,1] from which

P(A) = P(A) = P(A) =
∑

s∈A p(s)

P(A) = 1− P(Ac): auto-dual

Main interpretations

Frequentist [54] : P(A)= number of times A observed in a
population
B only applies to generic quantities (populations)

Subjectivist [36] : P(A)= price for gamble giving 1 if A happens,
0 if not
B applies to both singular and generic quantities
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Belief function: basics, links and representation Less general than belief functions

Sets

Basic tool
A set E ⊆ Ω with true value S ∈ E from which

E ⊆ A→ P(A) = P(A) = 1 (certainty truth in A)
E ∩ A 6= ∅,E ∩ Ac 6= ∅ → P(A) = 0,P(A) = 1 (ignorance)
E ∩ A = ∅ → P(A) = P(A) = 0 (truth cannot be in A)

P,P are binary→ limited expressiveness

Classical use of sets:
Interval analysis [40] (E is a subset of R)
Propositional logic (E is the set of models of a KB)

Other cases: robust optimisation, decision under risk, . . .
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Belief function: basics, links and representation Less general than belief functions

Example

Assume that it is known that pH value E ∈ [4.5,5.5], then
if A = [5,6], then P(A) = 0,P(A) = 1

E

A

if A = [4,7], then P(A) = P(A) = 1

E

A

if A = [6,9], then P(A) = P(A) = 0

E

A
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Belief function: basics, links and representation Less general than belief functions

In summary

Probabilities . . .
(+) very informative quantification (do we need it?)
(-) need lots of information (do we have it?)
(-) if not enough, requires a choice (do we want to do that?)
use probabilistic calculus (convolution, stoch. independence, . . . )

Sets . . .
(+) need very few information
(-) very rough quantification of uncertainty (Is it sufficient for us?)
use set calculus (interval analysis, Cartesian product, . . . )

→ Need for frameworks bridging these two
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Belief function: basics, links and representation Less general than belief functions

Possibility theory [27]

Basic tool
A distribution π : Ω→ [0,1], usually with ω such that π(ω) = 1, from
which

P(A) = maxω∈A π(ω) (Possibility measure)
P(A) = 1− P(Ac) = minω∈Ac (1− π(ω)) (Necessity measure)

Sets E captured by π(ω) = 1 if ω ∈ E , 0 otherwise

Interval/set as special case
The set E can be modelled by the possibility distribution πE such that

πE (ω) =

{
1 if ω ∈ E
0 else
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Belief function: basics, links and representation Less general than belief functions

A nice characteristic: Alpha-cut [9]

Definition

Aα = {ω ∈ Ω|π(ω) ≥ α}
P(Aα) = 1− α

If β ≤ α, Aα ⊆ Aβ

Simulation: draw α ∈ [0,1] and associate Aα

1

S

π

β
Aβ

α
Aα

⇒ Possibilistic approach ideal to model nested structures
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Belief function: basics, links and representation Less general than belief functions

A basic distribution: simple support

A set E of most plausible values
A confidence degree α = P(E)

Two interesting cases:
Expert providing most
plausible values E
E set of models of a formula φ

Both cases extend to multiple
sets E1, . . . ,Ep:

confidence degrees over
nested sets [49]
hierarchical knowledge bases
[29]

pH value ∈ [4.5,5.5] with

α = 0.8 (∼ "quite probable")

π

3 4 4.5 5.5 6 7
0

0.2
0.4
0.6
0.8
1.0
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Belief function: basics, links and representation Less general than belief functions

A basic distribution: simple support

A set E of most plausible values
A confidence degree α = P(E)

Two interesting cases:
Expert providing most
plausible values E
E set of models of a formula φ

Both cases extend to multiple
sets E1, . . . ,Ep:

confidence degrees over
nested sets [49]
hierarchical knowledge bases
[29]

variables p,q
Ω = {pq,¬pq,p¬q,¬p¬q}

P(p ⇒ q) = 0.9
(∼ "almost certain")

E = {pq,p¬q,¬p¬q}

π(pq) = π(p¬q) = π(¬p¬q) = 1

π(¬pq) = 0.1

pq p¬q ¬pq ¬p¬q
0

0.2
0.4
0.6
0.8
1.0
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Belief function: basics, links and representation Less general than belief functions

Nested confidence intervals: expert opinions

Expert providing nested
intervals + conservative
confidence degree

A pH degree
0.3 ≤ P([4.5,5.5])

0.7 ≤ P([4,6])

1 ≤ P([3,7])

π

3 4 4.5 5.5 6 7
0

0.2
0.4
0.6
0.8
1.0
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Belief function: basics, links and representation Less general than belief functions

Normalized likelihood as possibilities [24] [7]

π(θ) = L(θ|x)/maxθ∈Θ L(θ|x)

Binomial situation:
θ = success probability
x number of observed
successes

x= 4 succ. out of 11
x= 20 succ. out of 55

θ

1
π

4/11
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Belief function: basics, links and representation Less general than belief functions

Partially specified probabilities [3] [23]

Triangular distribution: [P,P]
encompass all probabilities with

mode/reference value M
support domain [a,b].

Getting back to pH
M = 5
[a,b] = [3,7]

1

pH

π

5 73
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Belief function: basics, links and representation Less general than belief functions

Other examples

Statistical inequalities (e.g., Chebyshev inequality) [23]
Linguistic information (fuzzy sets) [12]
Approaches based on nested models

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 26 / 97



Belief function: basics, links and representation Less general than belief functions

Possibility: limitations

P(A) > 0⇒ P(A) = 1

P(A) < 1⇒ P(A) = 0

⇒ interval [P(A),P(A)] with one trivial bound

Does not include probabilities as special case:

⇒ possibility and probability at odds
⇒ respective calculus hard (sometimes impossible?) to reconcile
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Belief function: basics, links and representation Less general than belief functions

Going beyond

Extend the theory
⇒ by complementing π with a lower distribution δ (δ ≤ π ) [30], [21]
⇒ by working with interval-valued possibility/necessity degrees [4]
⇒ by working with sets of possibility measures [32]

Use a more general model
⇒ Random sets and belief functions
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Belief function: basics, links and representation Belief functions
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Belief function: basics, links and representation Belief functions

Belief functions

The history
First used by Dempster to make statistical reasoning about
imprecise observations, mostly with frequentist view
Popularized by Shafer as a generic way to handle imprecise
evidences
Used by Smets (in TBM) with a will to not refer at all to
probabilities

→ evolved as a uncertainty theory of its own (∃ 6= with IP, Possibility or
p-boxes)
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Belief function: basics, links and representation Belief functions

Random sets and belief functions

Basic tool

A positive distribution m : 2Ω → [0,1], with
∑

E m(E) = 1 and usually
m(∅) = 0, from which

P(A) =
∑

E∩A6=∅m(E) (Plausibility measure)
P(A) =

∑
E⊆A m(E) = 1− µ(Ac) (Belief measure)

m(E1)

m(E2)

m(E3)

m(E4)

m(E5)

A

P(A) = m(E1) + m(E2)

P(A) = m(E1) + m(E2) +

m(E3) + m(E5)

[P,P] as
subjective confidence degrees of evidence theory [50], [51], [13]
bounds of an ill-known probability measure µ⇒ P ≤ µ ≤ P
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Belief function: basics, links and representation Belief functions

A characterisation of belief functions

Complete monotonicity
If P is a belief measure if and only if it satisfies the inequality

P(∪n
i=1Ai) ≥

∑
A⊆{A1,...,An}

(−1)|A|+1P(∩Ai∈AAi)

for any number n.

Simply the exclusion/inclusion principle with an equality
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Belief function: basics, links and representation Belief functions

Another characterisation of belief functions

Möbius inverse: definition

Let P be a measure on 2Ω, its Möbius inverse mP : 2Ω → R is

mP(E) =
∑
A⊆E

−1|E\A|P(E).

It is bijective, as P(A) =
∑

E⊆A m(E), and can be applied to any
set-function.

Belief characterisation
mP will be non-negative for all E if and only if P is a belief function.
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Belief function: basics, links and representation Belief functions

Yet another characterisation: commonality functions

Definition
Given a mass function m, commonality function Q : 2Ω → [0,1] defined as

Q(A) =
∑
E⊇A

m(E)

and express how unsurprising it is to see A happens.

Back to m
Given Q, we have

m(A) =
∑
B⊇A

−1|B\A|Q(B)

Some notes

Instrumental to define "complement" of information m

In possibility theory, equivalent to guaranteed possibility

In imprecise probability, no equivalent (?)
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Belief function: basics, links and representation Belief functions

special cases

Measures [P,P] include:
Probability distributions: mass on atoms/singletons
Possibility distributions: mass on nested sets

E1

E2

E3

E4

→ "simplest" theory that includes both sets and probabilities as special
cases!
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Belief function: basics, links and representation Belief functions

Frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"
N(adal) F(ederer) D(jokovic) M(urray) O(ther)

60 % replied {N,F ,D} → m({N,F ,D}) = 0.6
15 % replied "I do not know" {N,F ,D,M,O} → m(S) = 0.15
10 % replied Murray {M} → m({M}) = 0.1
5 % replied others {O} → m({O}) = 0.05
. . .
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Belief function: basics, links and representation Belief functions

P-box [35]

A pair [F ,F ] of cumulative
distributions

Bounds over events [−∞, x ]

Percentiles by experts;
Kolmogorov-Smirnov bounds;

Can be extended to any
pre-ordered space [20], [53]⇒
multivariate spaces!

Expert providing percentiles

0 ≤ P([−∞,12]) ≤ 0.2

0.2 ≤ P([−∞,24]) ≤ 0.4

0.6 ≤ P([−∞,36]) ≤ 0.8

0.5

1.0

6 12 18 24 30 36 42
E1

E2

E3

E4

E5
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Belief function: basics, links and representation Belief functions

Other means to get random sets/belief functions

Extending modal logic: probability of provability [52]
Parameter estimation using pivotal quantities [43]
Statistical confidence regions [14]
Modify source information by its reliability [47]
. . .
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Belief function: basics, links and representation More general than belief functions

Outline
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Belief function: basics, links and representation More general than belief functions

Limits of random sets

Not yet fully satisfactory extension of Bayesian/subjective
approach
Still some natural items of information it cannot easily model:

probabilistic bounds over atoms ω (imprecise histograms, . . . ) [11] ;
comparative assessments such as 2P(B) ≤ P(A) [45], . . .

6 12 18 24 30 36 42
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Belief function: basics, links and representation More general than belief functions

Imprecise probabilities

Basic tool
A set P of probabilities on Ω or an equivalent representation

P(A) = supP∈P P(A) (Upper probability)

P(A) = infP∈P P(A) = 1− P(Ac) (Lower probability)

Reminder: lower/upper bounds on events alone cannot model any
convex P

[P,P] as
subjective lower and upper betting rates [55]
bounds of an ill-known probability measure
P ⇒ P ≤ P ≤ P [5] [56]
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Belief function: basics, links and representation More general than belief functions

Some basic properties

Avoiding sure loss and coherence

Given some bounds P(A) over every event A ⊆ Ω, we say that
P avoids sure loss iff

P(P) = {P : P ≤ P ≤ P} 6= ∅

P is coherent iff for any A, we have

inf
P∈P(P)

P(A) = P(A)
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Belief function: basics, links and representation More general than belief functions

Illustrative example

p(ω1) = 0.2, p(ω2) = 0.5, p(ω3) = 0.3

p(ω3)

p(ω1)

p(ω2)

1
1

1

p(ω2)

p(ω3) p(ω1)

∝ p(ω
1 )

∝
p

(ω
2

)

∝
p(ω 3)
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Belief function: basics, links and representation More general than belief functions

A first exercise

p(ω1) ∈ [0.1,0.3], p(ω2) ∈ [0.4,0.7], p(ω3) = [0.1,0.5]

p(ω2)

p(ω3) p(ω1)

→ Show that these induce a belief function

{ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3}
P
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Belief function: basics, links and representation More general than belief functions

A second exercise

p(ω1) ∈ [0.2,0.3], p(ω2) ∈ [0.4,0.5], p(ω3) = [0.2,0.3]

p(ω2)

p(ω3) p(ω1)

→ Show that these do not induce a belief function

{ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3}
P
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Belief function: basics, links and representation More general than belief functions

A not completely accurate but useful picture

Imprecise
probability

Random
sets/Belief
functions

Possibility

Sets

Probability

Incompleteness tolerantAble to model variability

E
xp

re
ss

iv
ity

/fl
ex

ib
ili

ty

G
eneraltractability(scalability)
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Belief function: basics, links and representation More general than belief functions

Why belief functions?

Why not?
You need more (to model properly/not approximate your results)
You cannot afford it (computationally)

Why?
They offer a fair compromise

Embed precise probabilities and sets in one frame
Can use simulation of m + Set computation
Extreme points/natural extension easy to compute (Choquet
Integral, . . . )

Or, you want to use tools proper to BF theory.
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Comparison, conditioning and fusion
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Comparison, conditioning and fusion Information comparison
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Comparison, conditioning and fusion Information comparison

Introduction

Main question
Given two pieces of information P1,P2, is one more informative than
the others? How can we answer?

Examples of use
Least commitment principle: given multiple models satisfying
given constraints, pick the most conservative one

Partial elicitation,
Revision,
Inverse Pignistic,
Natural extension, . . .

(Outer)-approximation: Pick a model P2 simpler than P1 (e.g.,
generic belief mass into possibility), ensuring that P2 does not add
information to P1.
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Comparison, conditioning and fusion Information comparison

A natural notion: set inclusion

A set A ⊆ S is more informative than B ⊆ Ω if

A ⊆ B ⇔ A v B

Propositional logic: A more informative if A entails B
Intervals: A includes all values of B, is more precise than B

⇒ extends this notion to other uncertainty theories
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Comparison, conditioning and fusion Information comparison

Extensions to other models

Denoting PA,PB the uncertainty models of sets A,B, we do have

A v B ⇔ PA(C) ≤ PB(C) for any C ⊆ S

Derivations of P1 ≤ P2 in different frameworks

Possibility distributions: π1 v π2 ⇔ π1 ≥ π2

Belief functions: m1 v m2 ⇔ P1 v P2 (plausibility inclusion, there
are others [25])
Probability sets: P1 v P2 ⇔ P1 ⊆ P2 (P i lower previsions)
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Comparison, conditioning and fusion Information comparison

Inclusion: interest and limitations

+: very natural way to compare informative content
-: only induces a partial order between information models

Example

Consider the space Ω = {a,b, c} and the following mass functions:

m1({b}) = 0.3,m1({b, c}) = 0.2,m1({a,b, c}) = 0.5

m2({a}) = 0.2,m2({b}) = 0.3,m2({c}) = 0.3,m2({a,b, c}) = 0.2

m3({a,b}) = 0.3,m3({a, c}) = 0.3,m3({a}) = 0.4

We have m2 v m1, but m3 incomparable with v (side-exercise: show
it)

⇒ ok theoretically, but not always lead to non-uniqueness of solutions
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Comparison, conditioning and fusion Information comparison

Numerical assessment of informative
content [57, 1, 26]

For probabilities, distinct µ1 and µ2 always incomparable by
previous definition
A solution, associate to each µ a number I(µ), i.e., entropy

I(µ) = −
∑
ω∈Ω

p(ω)ln(p(ω))

and declare that µ1 v µ2 if I(µ1) ≤ I(µ2).
This can be extended to other theories, where we can ask

P1 ≤ P2 ⇒ I(P1) ≥ I(P2)

Measure I should be consistent with inclusion
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Comparison, conditioning and fusion The different facets of conditioning

Outline

1 Introductory elements

2 Belief function: basics, links and representation
Less general than belief functions
Belief functions
More general than belief functions

3 Comparison, conditioning and fusion
Information comparison
The different facets of conditioning
Information fusion

Basic operators
Rule choice:set/logical approach
Rule choice: performance approach
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Comparison, conditioning and fusion The different facets of conditioning

Three use of conditional and conditioning [39, 41]

Focusing: from generic to singular

P: generic knowledge (usually about population)
P(|C): what we know from P in the singular context C

Revising: staying either generic or singular

P: knowledge or belief (generic or singular)
P(|C): we learn that C is certainly true→ how should we modify
our knowledge/belief

Learning: from singular to generic (not developed here)

P: beliefs about the parameter
P(|C): modified beliefs once we observe C (' multiple singular
observations)
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Comparison, conditioning and fusion The different facets of conditioning

Focusing and revising in probabilities [28]

In probability, upon learning C, the revised/focused knowledge is

P(A|C) =
P(A ∩ C)

P(C)
=

P(A ∩ C)

P(A ∩ C) + P(Ac ∩ C)

coming down to the use of Bayes rule of conditioning in both cases.
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Comparison, conditioning and fusion The different facets of conditioning

Focusing

Observing C does not modify our generic knowledge/beliefs
We may lose information→ the more C is specific, the less our
general knowledge applies to it (cf. dilation in IP)
The consistency of generic knowledge/beliefs should be
preserved (C cannot contradict it, only specify to which case it
should apply)
If we observe later A ⊆ C, we should start over from generic
knowledge
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Comparison, conditioning and fusion The different facets of conditioning

Focusing in uncertainty theories [34]

Focusing with belief functions

Given initial belief function P, this gives

P(A||C) =
P(A ∩ C)

P(A ∩ C) + P(Ac ∩ C)

P(A||C) =
P(A ∩ C)

P(A ∩ C) + P(Ac ∩ C)

We can have P(A||C) < P(A) ≤ P(A) < P(A||C) ("loss" of
information).
Can be interpreted as a sensitivity analysis of Bayes rule:

P(A||C) = inf{P(A|C) : P ∈ P,P(C) > 0}

' regular extension in imprecise probability
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Comparison, conditioning and fusion The different facets of conditioning

Revision

Observing C modifies our knowledge and belief
Observing C refines our beliefs and knowledge, that should
become more precise
If we observe later A ⊆ C, we should start from the modified
knowledge (we may ask for operation to be order-insensitive)
C is a new knowledge, that may be partially inconsistent with
current belief/knowledge
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Comparison, conditioning and fusion The different facets of conditioning

Revision in uncertainty theories

Revising with belief functions

Given initial plausibility function P, this gives

P(A|C) =
P(A ∩ C)

P(C)
⇒ P(A|C) = 1− P(Ac |C)

If P(C) = 1, then
no conflict between old and new information (no incoherence)
we necessarily have P(A|C) < P(A) (refined information)

Can be interpreted Bayes rule applied to most plausible situations:

P(A||C) = inf{P(A|C) : P ∈ P,P(C) = P(C)}

Similarly to fusion, not studied a lot within IP setting (because of
incoherence?)
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Comparison, conditioning and fusion The different facets of conditioning

Revision as prioritized fusion

When P(C) = 1 and C precise observation

P(A|C)= result of conjunctive combination rule
P|C = P ∩ {P : P(C) = 1}

→ can be interpreted as a fusion rule where C has priority. If
P(C) < 1, interpreted as new information inconsistent with the old→
conditioning as a way to restore consistency.

Case where observation C is uncertain and inconsistent with
knowledge.

Minimally change µ to be consistent with C → in probability,
Jeffrey’s rule (extensions to other theories exist [42])
Not a symmetric fusion process, new information usually has
priority (6= from usual belief fusion rules)!
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Comparison, conditioning and fusion The different facets of conditioning

A small exercice: focusing

The hotel provides the following plates for breakfast

a=Century egg, b=Rice, c=Croissant, d=Raisin Muffin

In a survey about their choices, respondents gave the reply

m({a,b}) = α, m({c,d}) = 1− α

Applying focusing

We learn that customer C does not like eggs nor raisins (C = {b, c}),
what can we tell about him choosing Rice?
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Comparison, conditioning and fusion The different facets of conditioning

A small exercice: revision

The hotel provides the following plates for breakfast

a=Century egg, b=Rice, c=Croissant, d=Raisin Muffin

In a survey about their choices, respondent gave the reply

m({a,b}) = α, m({c,d}) = 1− α

Applying revision

We learn that suppliers no longer have eggs nor raisins (C = {b, c}),
what is the proportion of rice we should buy to satisfy customers?
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Comparison, conditioning and fusion Information fusion

Outline

1 Introductory elements

2 Belief function: basics, links and representation
Less general than belief functions
Belief functions
More general than belief functions

3 Comparison, conditioning and fusion
Information comparison
The different facets of conditioning
Information fusion

Basic operators
Rule choice:set/logical approach
Rule choice: performance approach
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Comparison, conditioning and fusion Information fusion

An illustration of the issue
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Comparison, conditioning and fusion Information fusion

Information fusion

m1 m2 m3 m4 m5

m∗ = h(m1,m2,m3,m4,m5)

Information on the same level
No piece of information has priority over the other (a priori)
Makes sense to combine multiple pieces of information at once
Main question: "How to choose h . . . "

To obtain a more reliable and informative result?
When items mi ’s disagree?
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Comparison, conditioning and fusion Information fusion

Conjunction

Main Assumption
Information items E1, . . . ,En are all fully reliable
If one source consider ω impossible, then ω impossible

→ h(E1, . . . ,En)(ω) = min(E1(ω), . . . ,En(ω)) =
⋂

Ei

E1 = [16,19] and E2 = [17,20]

1

16 18 20

E1 E2

E1 = [16,17] and E2 = [19,20]

1

16 18 20

E1 E2

?

Pros and Cons
+: very informative results, logically interpretable
-: cannot deal with conflicting/unreliable information
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Comparison, conditioning and fusion Information fusion

Disjunctive principle

Main Assumption
At least one information item among E1, . . . ,En is reliable
ω possible as soon as one source considers it possible

→ h(E1, . . . ,En)(ω) = max(E1(ω), . . . ,En(ω)) =
⋃

Ei

E1 = [16,19] and E2 = [17,20]

1

16 18 20

E1 E2

E1 = [16,17] and E2 = [19,20]

1

16 18 20

E1 E2

Pros and Cons
+: no conflict, logically interpretable
-: poorly informative results
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Comparison, conditioning and fusion Information fusion

Average

Main Assumption
Sources are statistically independent and in majority reliable

E1 = [16,19] and E2 = [17,20]

1

16 18 20

E1 E2

m(E1) = 1/2 m(E2) = 1/2

E1 = [16,17] and E2 = [19,20]

1

16 18 20

E1 E2

m(E1) = 1/2 m(E2) = 1/2

Pros and Cons
+: result not conflicting, counting process (statistics)
-: no logical interpretation, not applicable to sets
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Comparison, conditioning and fusion Information fusion

Limits of sets in information fusion

Very basic information (what is possible/what is impossible)
Very basic (binary) evaluation of conflict, either:

present if
⋂

Ei = ∅
absent if

⋂
Ei 6= ∅

Limited number of fusion operators (only logical combinations)
Limited operation on information items to integrate reliability
scores, source importance, . . .

→ how to extend fusion operators to belief functions
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Comparison, conditioning and fusion Information fusion

Extending conjunction

Consider the two following information

15 16 17 18 19 20 21 22 23
0

0.2
0.4
0.6
0.8
1.0

m1([17,18]) = 0.6

m1([15,20]) = 0.4

Cautious source

15 16 17 18 19 20 21 22 23
0

0.2
0.4
0.6
0.8
1.0

m2([20.5,21.5]) = 0.8

m2([19.5,22.5]) = 0.2

Bold source
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Comparison, conditioning and fusion Information fusion

Extending conjunction: steps

m1
[17,18] = 0.6 [15,20] = 0.4

[20.5,21.5] = 0.8

∅
0.48

∅
0.24

m2

[19.5,22.5] = 0.2

∅
0.12

[19.5,20]
0.08

Step 1: take intersection (sources reliable)
Step 2: give product of masses (sources independent)

m(∅) = 0.92→ high conflict evaluation, unsatisfying
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Comparison, conditioning and fusion Information fusion

Extending conjunction

m1
[17,18] = 0.6 [15,20] = 0.4

[17.5,18.5] = 0.8
[17.5,18]

0.48
[17.5,18.5]

0.24
m2

[16.5,19.5] = 0.2
[17,18]

0.12
[16.5,19.5]

0.08

Step 1: take intersection (sources reliable)
Step 2: give product of masses (sources independent)

m(∅) = 0→ no conflict, sources consistent
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Comparison, conditioning and fusion Information fusion

Extending disjunction: steps

m1
[17,18] = 0.6 [15,20] = 0.4

[20.5,21.5] = 0.8

[17,18] ∪ [20.5,21.5]
0.48

[15,20] ∪ [20.5,21.5]
0.24

m2

[19.5,22.5] = 0.2

[17,18] ∪ [19.5,22.5]
0.12

[15,22.5]
0.08

Step 1: take union (at least one reliable source)
Step 2: give product of masses (sources independent)

m(∅) = 0→ no conflict, but very imprecise result
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Comparison, conditioning and fusion Information fusion

More formally

Given informations m1, . . . ,mn

Conjunctive (Dempster’s unnormalized) rule

m∩(A) =
∑

E1∩...∩En=A

n∏
i=1

m(Ei)

→ a gradual way to estimate conflict [22]

Disjunctive rule

m∪(A) =
∑

E1∪...∪En=A

n∏
i=1

m(Ei)
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Comparison, conditioning and fusion Information fusion

Conflict management: beyond conjunction and
disjunction

E1

E2

E3

E4

Conjunction result: ∅

Disjunction result:

⇒ Conjunction poorly reliable/false
⇒ Disjunction very imprecise and inconclusive
→ A popular solution: choose a logical combination between the two
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Comparison, conditioning and fusion Information fusion

A simple idea [19]

Get maximal subsets M1, . . . ,M` of sources having non-empty
intersection
Take their intersection, then the union of those intersections

h(E1, . . . ,En) = ∪M` ∩Ei∈M` Ei

An old idea . . .
In logic, to resolve knowledge base inconsistencies [31]
In mathematical programming, to solve non-feasible problems [8]
In interval analysis . . .
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Comparison, conditioning and fusion Information fusion

Illustrative exercice

Four sources provide you with basic items of information (sets)

E1

E2

E3

E4

What are the maximal consistent subsets?
What is the final result of applying the SMC rule to it?
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Comparison, conditioning and fusion Information fusion

Illustrative exercice:solution

E1

E2

E3

E4

E1 ∩ E2 E2 ∩ E3 ∩ E4

SMC: K1 = {E1,E2} et K2 = {E2,E3,E4}

Final result: (E1 ∩ E2) ∪ (E2 ∩ E3 ∩ E4)

If all agree→ conjunction
if every pair is in disagreement (disjoint)→ disjunction
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Comparison, conditioning and fusion Information fusion

MCS on belief: illustration

m1
[17,18] = 0.6 [15,20] = 0.4

[20.5,21.5] = 0.8
[17,18] ∪ [20.5,21.5]

0.48
[15,20] ∪ [20.5,21.5]

0.24
m2

[19.5,22.5] = 0.2
[17,18] ∪ [19.5,22.5]

0.12
[15,20] ∩ [19.5,22.5]

0.08
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Comparison, conditioning and fusion Information fusion

Set and logical view

Why?
You want an interpretation to the combination
You have relatively few information items
You cannot "learn" your rule

Why not?
You do not really care about interpretability
You need to "scale up"
You have means to learn your rule
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Comparison, conditioning and fusion Information fusion

Learning fusion rule: rough protocol

A set of observed values ω̂1, . . . , ω̂o

for each ω̂i , information mi
1, . . . ,m

i
n provided by n sources

a decision rule d :M→ Ω mapping m to a decision in Ω

from set H of possible rules, choose

h∗ = arg max
h∈H

∑
i

Id(h(mi
1,...,m

i
n))=ω̂i

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 83 / 97



Comparison, conditioning and fusion Information fusion

How to choose H?

H should be easy to navigate, i.e., based on few parameters
Maximization optimization problem should be made easy if
possible (convex? Linear?)
In particular, if mi

j have peculiar forms (possibilities, Bayesian,
. . . ), there is a better hope to find efficient methods

Two examples
Weighted averaging rules (parameters to learn: weights)
Denoeux T-(co)norm rules based on canonical decomposition
(parameters to learn: parameters of the chosen t-norm family)
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Comparison, conditioning and fusion Information fusion

The case of averaging rule

Parameters w = (w1, . . . ,wn) such that
∑

i wi = 1 and wi > 0
Set H = {hw|w ∈ [0,1]n,

∑
i wi = 1} with

hw =
∑

i

wimi

Decision rule d?
d(m) = arg max

ω∈Ω
P({ω})

maximum of plausibility
→ use plausibility of average = average of plausibilities at your
advantage, i.e.,

PΣ(ω) =
∑

wiP i(ω)
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Comparison, conditioning and fusion Information fusion

Exercice 7: walking dead

A zombie apocalypse has happened, and you must recognize possible
threats/supports

The possibilities Ω

Zombie (Z )
Friendly Human (F )
Hostile Human (H)
Neutral Human (N)

The sources Si

Half-broken heat detector (S1)
Paranoid Watch guy 1 (S2)
Half-borken Motion detector (S3)
Sleepy Watch guy 2 (S4)

Sébastien Destercke (CNRS) Uncertainty theories ISIPTA 2018 School 86 / 97



Comparison, conditioning and fusion Information fusion

Exercice 7: which rule?

Given this table of contour functions, a weighted average and a
decision based on maximal plausibility

ω̂1 = Z ω̂2 = H ω̂3 = F
Z F H N Z F H N Z F H N

S1 1 0, 5 0, 5 0, 5 1 0, 5 0, 5 0, 5 0, 5 1 1 1
S2 1 0, 2 0, 8 0, 2 0 0, 3 1 0, 3 0 0, 4 1 0, 4
S3 1 0, 5 0, 5 0, 5 0, 5 0, 7 0, 8 0, 7 1 0, 5 0, 5 0, 5
S4 1 1 1 1 0, 2 0, 2 1 0, 5 0, 2 1 0, 4 0, 8

w1 = (0.5, 0.5, 0, 0)
w2 = (0, 0, 0.5, 0.5)

Choose hw1 or hw2? Given the data, can we find a strictly better weight
vector?
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Some on-going research topics within BF
Or what could you go for if you’re interested in BF

Statistical estimation/machine learning

Extending frequentist approaches [16]
Embedding BF with classical ML [48, 15]
BF for recent ML problems (ranking, multi-label) [18, 44]

Inference over large/combinatorial spaces

Efficient handling over lattices (preferences, etc.) [17]
Inferences over Boolean formulas [2, 38]
BF and (discrete) Operations Research [37]

Specific fusion settings

Decentralized fusion [33]
Large spaces (2D/3D maps, images) [46]
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As a conclusion

Belief functions as specific IP . . .
Many common points

Specific setting including many important aspects
May offer tools that facilitate handling/understanding to
non-specialist (random set, Mobius inverse, Monte-Carlo + set
computation)
BF theory share strong similarities with IP

. . . but not only
Yet important differences:

Admit incoherence when needed→ may be useful sometimes
Important notions in BF have no equivalent in IP→ commonality
function, specialisation notion, fusion rules, . . .
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