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The goal

We want to make things work but we are not sure how to do so!

The state of system depends on its environment.

Some states are desirable, some are not - those we call failures.

Assessment: Given uncertain models, what is the chance that a
system will fail?

Decision making: Given uncertain models, what is the best
possible design choice to �ensure� system functionality? (Or how to
properly balance reliability and expenses?)
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Aeging models

For many systems of interest, failures are often delayed!

Assume that:

System state X is binary - either functional or failed (X ∈ {1, 0}).
System is functional at time 0.

Once system fails, it remains in failed state.

Then, the system state process X(t) can be equivalently described by a
RV T > 0, representing the time to failure, and
Pr(X(t) = 1) = Pr(T > t).

Given some continuity assumptions, T can be uniquely described by
either of F,R, f, r : R≥0 → R≥0, the distribution, survival, probability
density, and hazard rate functions, respectively.

Distribution of T can be inferred from observations of failures.
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Classi�cation of failure laws [Barlow and Proschan 1967]

Scientists love their zoos!

The hazard rate function r(t) := lim∆→0
Pr(T∈[t;t+∆]|T>t)

∆ is e�ectively
the transition rate from functional to failed state.

Many useful properties may be derived for failure laws belonging to
speci�c classes.

T is said to be of:

Increasing Failure Rate if r(t) is increasing.

Increasing Failure Rate in Average if
∫ t

0 r(x)dx/t is increasing.

New Better than Used if R(x|t) ≤ R(x);∀x ≥ t ≥ 0.

...
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Imprecise reliability [Lai and Xie 2006]

Engineers have been doing IP since at least the 60s!

Qualitative assessments may be made, which helps us to construct
bounds on the survival function (Pr(T ≥ t)).

If T is IFR and µr its r-th general moment, then:

R(t) ≥ exp(−αt) ∀t < µ1/r
r , α = [Γ(r + 1)/µr]

1/r.

If T is IFRA and ξp its p−th quantile and α the rate of exponential
distribution with the same quantile, then:

R(t)

{
≥ exp(−αt) 0 ≤ t ≤ ξp,
≤ exp(−αt) t > ξp.

If T us NBU s.t. R(x) = α, then:

R(t)

{
≥ α1/k x

k+1 ≤ t ≤
x
k , k ∈ N,

≤ αk kx ≤ t ≤ (k + 1)x, k ∈ N.
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Complex systems

Systems are systems of systems!

Systems, we use, are composed of sub-systems, states of which
in�uence the state of the super-system.

This dependency is modelled by a reliability function
h : {p1, . . . , pn} → [0, 1], which is monotone (for reasonable
systems).

⇒ We can infer the distribution laws for the sub-systems (cheaper)
and the dependency model to assess reliability of the super-system
(also cheaper than breaking the system over and over again).
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Maintenance

If a system fails, we can repair it, or buy a new one!

There exists many maintenance scenarios.

Corrective maintenance (replacement upon discovery of failure)

Preventive maintenance (replacement upon failure and at speci�ed
time)

Partial maintenance (system is just made operational, not as good
as new)

Both for:

Systems with immediate repair - renewal process

Systems with positive repair time - alternating process

Systems with latent failures (e.g. we can observe state of the
system only at �inspection times�)

Systems with �nite amount of service personal and/or limited
resources

. . .
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Renewal process - de�nition
Let us assume that a system replaced by a new one immediately upon
its failure. We can model the replacement times as a point process:

Be {Ti; i ∈ N} positive RVs with corresponding laws Fi, Ri, fi, ri.

De�ne S0 = 0 and Sn :=
∑n

k=1 Tk with corresponding laws
Fn, Rn, fn, rn,

⇒ Fn = F ∗ Fn−1 and fn = f ∗ fn−1

The Point Process of interest is
∑∞

n=1 δSn .

Figure: A part of a point process.

The renewal process {N(t) ∈ Z≥0; t ≥ 0} models the number of
renewals in interval (0, t], i.e.:

Pr(N(t) ≥ n) = Pr(Sn ≤ t)
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Renewal process - properties

Over the years, the interest has been put on evaluating the mean of
renewal process (for expected utility purposes).
Denote M(t) := E{N(t)} (aka the renewal function).
Then:

N(t) is semi-Markov process (Markov for constant failure rate)

(N(t), SN(t)) is Markov process on Z⊗ R

M(t) =
∑∞

n=1 F
n(t) (by de�nition).

M(t) = F (t) + (F ∗M)(t) (renewal equation)

M(t) = M(Sn) +M(t− Sn) (if Ti are i.i.d, restarting property)

limt→∞
M(t)
t = 1

E{T1} (if Ti are i.i.d, Renewal theorem)
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Computation of the renewal function [Osaki 2002]

For special classes of Ti i.i.d:

Exponential with rate λ: M(t) = λt.

Phase-type distributed: M(t) = t−v(t)T−1e−1
E[T ] , dv

dt (t) = v(t)Q∗.

For special classes of Ti, M(t) may be bounded, e.g. for Ti i.i.d.:

NBUE: t
E[T ] − 1 ≤M(t) ≤ t

E[T ] .

IFR: t
E[T ] ≤M(t) ≤ tF (t)

E[T ] .

Otherwise, there is no closed solution and numerical methods have to
be employed:

Laplace inversion,

Spline approximation,

Rational function approximation.
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Renewal reward process

Take, again, the point process {Sn;n ∈ Z≥0}.
Assign with each jump time Sn a random variable Rn, the reward/cost.
(Observe that for renewal process Rn = 1 ).

De�ne R(t) =
∑N(t)

i=1 Rn.
Then:

R(t) is semi-Markov.

(R(t), SN(t)) is Markov.

limt→∞
R(t)
t = E{R1}

E{T1} (if Ti, Ri are i.i.d, Renewal reward

theorem)
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Example - optimal preventive maintenance
We replace component upon failure (corrective maintenance) OR after
prede�ned time T ∗ (preventive replacement).
Preventive replacement costs c1 and corrective replacement costs
c2 > c1.
Then mean cost per cycle (interval between two replacements) is:

c2Pr(T ≤ T ∗) + c1Pr(T > T ∗)∫ T ∗

0 R(t)dt
.

What is the optimal T ∗?

For T with decreasing failure rate (New Worse than Used), T ∗ =∞.
Generally, the solution satis�es:

r(T ∗)

∫ T ∗

0
R(t)dt− F (T ∗) =

c1

c2 − c1
.

We can do it easier with IP!!!
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Alternating process

Be:

Tn, Gn;n ∈ N respectively i.i.d. RVs. (time to failure, time to
repair, respectively)

Zn := Tn +Gn, the length of the n-th cycle.

Sn := Zn−1 + Tn, the time to n-th failure.

{X(t); t ∈ R≥0} a process of system state s.t.

X(t) :=

{
0 ; ∃n : Sn ≤ t < Zn

1 ; else

A(t) := E{X(t)}, the availability.
Then:

lim
t→∞

A(t) =
E{T1}
E{Z1}

.
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Alternating process computation

If T,G are exponential with rates λ, µ respectively,
then A(t) = λ

λ+µ (1 + exp (−(λ+ µ)t)).

Generally, U(t) := 1−A(t) satis�es recursive formula:

U(t) =

∫ t

0
fT (x)[1− FG(t− x)]dx+

∫ t

0
(fT ∗ fG)(x)U(t− x)dx.

Even more generally: Simulate.
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Multi-state systems

Sometimes it is desirable to distinguish states of partial failure.
Be X in {0, 1, . . . ,K}, s.t. 0 represents failure state, K fully functional
one and the rest partial failures.
We then have to model more general stochastic process X(t).
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Dynamic reliability

Figure: Piecewise deterministic Markov process; img. from [Labeau, Smidts,
and Swaminathan 2000]
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Conclusions

I should have stick with being an electrician - life would have been
much easier now...

But much less interesting on the other hand!

A lot of (coherent?) bounds has been discovered - possibly easily
extended for imprecise assessments.

Restarting property looks like worth exploiting.

How does it look in Laplace's world?

Can we �nd dominating processes, which are tight enough to make
reasonable assessments?

Can we simulate with imprecisely speci�ed laws??!?!?!??!??!?!
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Thank You for Your attention!

By the way...

This work is funded by the European Commission's H2020 programme,

through the UTOPIAE Marie Curie Innovative Training Network,

H2020-MSCA-ITN-2016, Grant Agreement number 722734.

(you can follow us on @ResearchGate:project UTOPIAE)
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