Dynamic Classifier Selection Based on Imprecise Probabilities

Meizhu Li Ghent University

Co-work: Jasper De Bock, Gert de Cooman

Dynamic classifier selection

Outline

Strategy of selection

Experiment results

Motivation

- in a classification task.
- However, a classifier may only performs good on parts of instances.

Normally, one classifier is used for all the instances of the data set

instances, whereas another classifier performs better on other

Dynamic Classifier Selection

- For each instance, select the classifier that is most likely to classify it correctly
- Use the result of the selected classifier to predict the class of that instance
- •The combined classifier is expected to outperform each of the individual classifiers they select from.

Dynamic Classifier Selection

- •For each instance, select the classifier that is most likely to classify it correctly
- •Use the result of the selected classifier to predict the class of that instance
- •The combined classifier is expected to outperform each of the individual classifiers they select from.

How to select an appropriate classifier for each instance?

Strategy of selection - Robustness measure \mathbf{C} F_2 F_m F_1 •••

Fig.1 Example of a Naive Bayes Classifier

- Let us denote C as the class variable, taking values c in finite set \mathscr{C} .
- For each $c \in \mathscr{C}$, $\mathscr{P}(c)$ denotes a set of probability mass function P(c).

$$P(c) = \frac{n(c) + 1}{N + |\mathscr{C}|}$$

Strategy of selection - Robustness measure c in finite set \mathscr{C} . \mathbf{C} F_2 F_m F_1 •••

Fig.1 Example of a Naive Bayes Classifier

- Let us denote C as the class variable, taking values
- For each $c \in \mathscr{C}$, $\mathscr{P}(c)$ denotes a set of probability mass function P(c).

$$P(c) = \frac{n(c) + 1}{N + |\mathscr{C}|}$$

$$\downarrow$$

$$P(c) = \frac{n(c) + 1 + st(c)}{N + |\mathscr{C}| + s} \text{, for all } c \in \mathscr{C}$$

where s is a fixed hyperparameter that determines the degree of imprecision, t is any probability mass functions on c.

Strategy of selection - Robustness measure c in finite set \mathscr{C} . \mathbf{C} mass function P(c). F_2 F_m F_1 •••

Fig.1 Example of a Naive Bayes Classifier

Threshold: the largest value of s that does not induce a change of prediction result.

- Let us denote C as the class variable, taking values
- For each $c \in \mathscr{C}$, $\mathscr{P}(c)$ denotes a set of probability

$$P(c) = \frac{n(c) + 1}{N + |\mathscr{C}|}$$

$$\downarrow$$

$$P(c) = \frac{n(c) + 1 + st(c)}{N + |\mathscr{C}| + s} \text{, for all } c \in \mathscr{C}$$

where s is a fixed hyperparameter that determines the degree of imprecision, t is any probability mass functions on c.

Strategy of selection - for the thresholds

- Reference [1] provides an algorithm to calculate the thresholds by global sensitivity analysis for MAP inference in graphical models.
- Reference [1] also shows that instances with similar thresholds have a similar chance of being classified correctly.
- For every new test instance that is to be classified, we start by searching the training set that have a similar pair of thresholds.

[1] De Bock, J., De Campos, C.P., Antonucci, A.: Global sensitivity analysis for MAP inference in graphical models. Advances in Neural Information Processing Systems 27 (Proceedings of NIPS 2014), 2690–2698. (2014)

Strategy of selection:

Strategy of selection:

Strategy of selection: distance between two instances

Thresholds	Classifier 1
Testing instance	<i>a</i> ₁
 Training instance 1 	x_1
 Training instance 2 	x_2
• •	• • •
 Training instance n 	X_n

Classifier 2

Strategy of selection - illustration

Threshold in Classifier 1

Fig. 1: Illustration of the chosen k-nearest instances, using a fictituous data set with fifty training points, and for k = 10 and two different distance measures

Testing Instance

Experiments - Setting

- Five data sets from UCI repository[1].
- Feature selection: Sequential Forward Selection (SFS) method Classifier 1 (C1) and Classifier 2 (C2)
- Data with missing values were ignored. Continuous variables were discretized by their median Table 1: Description of data sets

Name	# Data	# Class values	# Features	Features C1	Features C2
Balloons	76	2	4	(1, 2, 3, 4)	(1, 3, 4)
BCW	699	2	9	$\left(1,2,5,6,8\right)$	(1, 2, 6, 8)
ACA	690	2	14	(3, 4, 6, 13)	(1, 3, 4, 6, 7)
MPG	398	2	8	(1, 5, 6)	(1, 4, 5, 6)
TIC	958	2	9	(1, 5, 7, 8)	$\left(1,2,5,7,8 ight)$

[1] UCI Homepage, <u>http://mlr.cs.umass.edu/ml/index.html</u>.

Experiment result 1: Accuracy with different k value

Fig. 2: The achieved accuracy as a function of the parameter k, for four different classifiers: the two original ones (which do not depend on k) and two combined classifiers (one for each of the considered distance measures)

Experiment result 2: with optimal k value

on the training set.

Table 2: A comparison of all four classifiers

Data Set	AC_{C1}	AC_{C2}	AC_{eu}	AC_{ch}
Balloons	0.776502	0.746948	0.781039	0.781970
BCW	0.974221	0.972496	0.974710	0.974710
ACA	0.723675	0.723190	0.724884	0.724884
MPG	0.920696	0.917610	0.921039	0.920697
TIC	0.724366	0.724363	0.733661	0.732731

For each run, an optimal value of k was determined through cross validation

- Our combined classifiers outperform the individual ones on which they are based.
- The choice of distance measure seems to have very little effect.

Summary

• The imprecise-probabilistic robustness measures can be used to develop dynamic classifier selection methods that outperform the individual classifiers they select from.

Future work

- Deepen the study of the case of the Naive Bayes Classifier. •
- Other strategy of selection: weighted counting... •
- Compare our methods with other classifiers such as Lazy Naive Credal • Classifier.

Thank you!

meizhu.Li@ugent.be

