
2-monotone
OA

Completely
monotone OA

Other ap-
proximations

Particular
cases

OA of
coherent
lower
previsions

Inner approxi-
mations

Conclusions
and Open
Problems

Approximations of coherent lower probabilities
by 2-monotone (or completely monotone)

capacities

I. Montes
Joint work with: E. Miranda, P. Vicig

University of Oviedo, Spain
University of Trieste, Italy

WPMSIIP 2018

1 / 40



2-monotone
OA

Completely
monotone OA

Other ap-
proximations

Particular
cases

OA of
coherent
lower
previsions

Inner approxi-
mations

Conclusions
and Open
Problems

Models

Coherent

2-monotone: C2

Completely
monotone: C∞

Probability
interval: CPI

Pari Mutuel
Model: CPMM

Linear-vacuous: Cε

Possibility
measures: CΠ

P-boxes: C(F ,F )

2 / 40



2-monotone
OA

Completely
monotone OA

Other ap-
proximations

Particular
cases

OA of
coherent
lower
previsions

Inner approxi-
mations

Conclusions
and Open
Problems

Why (not) coherent lower probabilities?

I P is coherent ⇐⇒ P = minM(P ). 3

I In addition to this sensitivity analysis interpretation, coher-
ence also has a behavioural interpretation. 3

I However, the structure of M(P ) may be complex. 7

I The extension of P to gambles is not unique. 7
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Why (not) 2-monotonicity?

If P is 2-monotone:

I It has a unique extension to gambles (by means of the Cho-
quet integral). 3

I There is a simple procedure for computing the number of
extreme points of M(P ). 3

I Most particular cases in the literature are 2-monotone any-
way. 3

I But the behavioural interpretation of 2-monotonicity is not
too clear. 7
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Why (not) Completely monotonicity?

If P is completely monotone:

I Same advantages than 2-monotone ones. 3

I Interpretation in terms of the Möbius inverse. 3

I Necessity measureas and p-boxes are particular cases. 3

I Belief functions are the key notion of Evidence Theory. 3

I Sometimes too restrictive. 7
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Formulation of the problem
We look for a 2-monotone lower probability Q such that:

(a) Q does not include additional information: Q ≤ P . It is
called an outer approximation.

(b) Q is as close as possible. Q is undominated if there is no
other 2-monotone Q′ such that Q � Q′ ≤ P .

Approximation of coherent lower probabilities by 2-monotone mea-
sures. A. Bronevich, T. Augustin, ISIPTA 2009.

We consider the distance proposed by Baroni and Vicig:

d(P ,Q) =
∑
E⊆X

(P (E)−Q(E)).

An uncertainty interchange format with imprecise probabilities. P.
Baroni, P. Vicig, IJAR 2015.
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OA via linear programming
We look for a 2-monotone lower probability Q,mQ, such that Q ≤ P .

min
∑
E⊆X

(
P (E)−

∑
B⊆E

mQ(B)
)

(LP-2monot)

subject to:∑
B⊆X

mQ(B) = 1, mQ(∅) = ∅. (LP-2monot.1)

∑
{xi,xj}⊆A⊆E

mQ(A) ≥ 0, ∀E ⊆ X , ∀xi, xj ∈ E, xi 6= xj .

(LP-2monot.2)

mQ({xi}) ≥ 0, ∀xi ∈ X . (LP-2monot.3)∑
B⊆E

mQ(B) ≤ P (E) ∀E ⊆ X . (LP-2monot.4)

Some characterizations of lower probabilities and other monotone
capacities through the use of Möbius inversion. A. Chateauneuf,
J. Jaffray, MSS 1989.
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OA via linear programming

I The feasible region of (LP-2monot) is non-empty: it includes
the vacuous lower probability (m(X ) = 1).

I The optimization problem (LP-2monot) has a (possibly in-
finitely) solution(s).

I Any optimal solution is an undominated OA in C2.

I However, there may be no solution attaining the value P (A)
for a given A.

I If for a fixed A we add the restriction∑
B⊆A

mQ(B) = P (A) (LP-2monot.5)

then any optimal solution of (LP-2monot) subject to (LP-
2monot.1)–(LP-2monot.5) is an undominated OA in C2 sat-
isfying Q(A) = P (A).
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Further properties

I If we denote by (Q
i
)i∈I the optimal solutions of (LP-2monot)

subject to (LP-2monot.1)–(LP-2monot.4) or (LP-2monot.1)–
(LP-2monot.5) for a fixed A, then

P (E) = max
i∈I

Q
i
(E) ∀E ⊆ X .

I If Q is an undominated OA of P in C2, then Q({x}) =

P ({x}) and Q({x}) = P ({x}) for every x.

I There are undominated OA in C2 that cannot be obtained
via linear programming.

I Open: is the set of undominated solutions convex?
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OA via linear programming
We look for a belief function Bel, with Möbius inverse m, such
that Bel ≤ P .

min
∑
E⊆X

(
P (E)−

∑
B⊆E

m(B)
)

(LP-Bel)

subject to:∑
B⊆X

m(B) = 1, m(B) ≥ 0 ∀B ⊆ X . (LP-Bel.1)

∑
B⊆E

m(B) ≤ P (E) ∀E ⊆ X . (LP-Bel.2)

Generation, combination and extension of random set approxi-
mations to coherent lower and upper probabilities. J.W. Hall, J.
Lawry, RESS 2004.

Completely monotone outer approximations of lower probabilities
on finite possibility spaces. E.Quaeghebeur, Springer 2011.
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OA via linear programming

I The feasible region of (LP-Bel) is non-empty: it includes
the simple support function (m(A) = P (A) and m(X ) =
1− P (A)).

I The optimization problem (LP-Bel) has a (possibly infinitely)
solution(s).

I Any optimal solution is an undominated OA in C∞.

I However, there may be no solution attaining the value P (A)
for a given A.

I If for a fixed A we add the restriction∑
B⊆A

m(B) = P (A) (LP-Bel.A)

then any optimal solution of (LP-Bel) subject to (LP-Bel.1)–
(LP-Bel.3) is an undominated OA in C∞ satisfying Bel(A) =
P (A).
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Further properties

I If we denote by (Beli)i∈I the optimal solutions of (LP-Bel)
subject to (LP-Bel.1)–(LP-Bel.2) or (LP-Bel.1)–(LP-Bel.3)
for a fixed A, then

P (E) = max
i∈I

Beli(E) ∀E ⊆ X .

I If Bel is an undominated OA of P in C∞, it may not happen
that Bel({x}) = P ({x}) and Pl({x}) = P ({x}).

I There are undominated OA in C∞ that cannot be obtained
via linear programming.

I Open: is the set of undominated solutions convex?
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Quadratic programming

Instead of the distance of Baroni and Vicig, we may consider the
quadratic distance:

d̃(P ,Q) :=
∑
E⊆X

(P (E)−Q(E))2.

I The optimization problem has a unique solution in C2 and
C∞, unlike the linear programming ones.

I This solution is an undominated OA in C2 or C∞, and it may
not be a solution of any of the linear programming problems.

I Interpretation?
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Total variation distance
Given two probability measures P1 and P2, their total variation
is defined as

||P1 − P2|| = max
E⊆X

|P1(E)− P2(E)|.

This definition can be equivalently expressed as:

||P1 − P2|| =
1

2

∑
x∈X
|P1({x})− P2({x})|.

This can be extended to coherent lower probabilities in a number
of (not necessarily equivalent) ways:

d1(P 1, P 2) = max
E⊆X

|P 1(E)− P 2(E)|,

d2(P 1, P 2) =
1

2

∑
x∈X
|P 1({x})− P 2({x})|,

d3(P 1, P 2) = sup
P1∈M(P 1),P2∈M(P 2)

||P1 − P2||.
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OA via total variation

Thus, we may consider the optimization problem of obtaining an
OA of P in C2 or C∞ that minimizes one of these distances.

I None of the distances d1, d2, d3 guarantees a unique solu-
tion.

I Moreover, the solutions to the problem may not be undom-
inated!
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The Weber set

For any permutation σ of {1, . . . , n}, define Pσ by

Pσ({xσ(1), . . . , xσ(k)}) = P ({xσ(1), . . . , xσ(k)}) ∀k.

If Sn denotes the set of permutations of {1, . . . , n}, then

W (P ) = {Pσ | σ ∈ Sn}

is called the Weber set associated with P .

If P is 2-monotone, then ext(M(P )) = W (P ).

Set functions, games and capacities in decision making. M. Gra-
bisch, Springer 2016.
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OA via the Weber set

When P is a coherent lower probability, M(P ) ⊆ conv(W (P )),
and M(P ) = conv(W (P )) ⇐⇒ P 2-monotone.

Supermodularity: Applications to convex games and to the greedy
algorithm for LP. T. Ichiishi, JET 1981.

Thus, we may use the lower envelope of W (P ) to outer approx-
imate P :

Q = min conv(W (P )).

I This lower envelope may not be 2-monotone for n > 4.

I Even if it is 2-monotone, it may not be an undominated OA.
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Iterative (minimal) rescaling method

Hall & Lawry: Iterative Rescaling Method.

Quaeghebeur: Iterative Minimal Rescaling Method.

Both methods may give non undominated OA.

Generation, combination and extension of random set approxi-
mations to coherent lower and upper probabilities. J.W. Hall, J.
Lawry, RESS 2004.

Completely monotone outer approximations of lower probabilities
on finite possibility spaces. E.Quaeghebeur, Springer 2011.
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OA using probability intervals

Let P be a coherent lower probability with conjugate upper prob-
ability P . Define the probability interval I by:

I = {[li, ui] = [P ({xi}), P ({xi})] | i = 1, . . . , n},

and denote by l, u the lower and upper probability it induces.

I I is a coherent probability interval.

I l is the unique undominated OA of P in CPI.
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Pari-mutuel models

The Pari Mutuel Model (PMM) is a betting scheme originated
in horse racing. It is determined by a probability measure P0 and
a distortion factor δ > 0.
They determine a coherent lower probability by:

P (A) = max{0, (1 + δ)P0(A)− δ} ∀A ⊆ X .

Define the constant value δ > 0 and the probability P0 by:

δ =

n∑
i=1

P ({xi})− 1, P0({xi}) =
P ({xi})

1 + δ
∀i.

Let Q
δ

be the lower probability associated with the PMM (P0, δ).

I Q
δ

is the unique undominated OA of P in CPMM.
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Linear-vacuous mixtures

Given a probability measure P0 and ε ∈ (0, 1), we define the
ε-contamination model by

P (A) =

{
(1− ε)P0(A) if A 6= X .
1 if A = X .

Assume P satisfies
∑n

j=1 P ({xj}) > 0 and define:

ε = 1−
n∑
j=1

P ({xj}), P0({xi}) =
P ({xi})∑n
j=1 P ({xj})

∀i.

Let P ε be the ε-contamination model they determine.

I P ε is the unique undominated OA of P in Cε.

I If
∑n

j=1 P ({xj}) = 0, then P has no OA in Cε.
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OA using p-boxes

P-box: belief function whose focal sets are ordered intervals:

Interval: If E is focal, E = {x ∈ X | minE ≤ x ≤ maxE}.
Ordered: If E1, E2 are focals, either

minE1 ≤ minE2 and maxE1 ≤ maxE1 or

minE2 ≤ minE1 and maxE2 ≤ maxE1.

m(E1)

m(E2)

m(E3)

E1

E2

E3

x1 x2 x3 x4 x1 x2 x3 x4

1

0

F

F
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OA using p-boxes: X ordered

Proposition

There is a unique undominated OA in C(F ,F ), and it is given by:

F (xi) = P ({x1, . . . , xi}), F (xi) = P ({x1, . . . , xi}).

Then:
P (F ,F )(A) = min{P (A) | F ≤ FP ≤ F}.

Probability boxes on totally preordered spaces for multivariate
modelling. M. Troffaes, S. Destercke, IJAR 2011.
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OA using p-boxes: X not ordered

Let σ be a permutation of {1, . . . , n} and ≤σ the order given by
σ:

xσ(1) ≤σ . . . ≤σ xσ(n).

Proposition

1. Define the generalised p-box (F σ, F σ) by:

F σ(xσ(i)) = P ({xσ(1), . . . , xσ(i)}),
F σ(xσ(i)) = P ({xσ(1), . . . , xσ(i)}).

Then, (F σ, F σ) is a undominated OA in C(F ,F ).

2. All the undominated OA in C(F ,F ) are the p-boxes (F σ, F σ)
for any σ.
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OA using possibility measures

We look for a possibility Π such that P ≤ Π.

Theorem
Take σ a permutation of {1, . . . , n}. We define Π by:

Π({xσ(1)}) = P ({xσ(1)}) and

Π({xσ(i)}) = max
A∈Aσ(i)

P
(
A ∪ {xσ(i)}

)
, where

Aσ(i) =

{
A ⊆ {xσ(1), . . . , xσ(i−1)} | P

(
A ∪ {xσ(i)}

)
> max

x∈A
Π({x})

}
,

and let Π(A) = maxx∈A Π({x}) for any other A ⊆ X . Then:

1. Π is a possibility measure.

2. Π is a undominated OA of P .

3. All the undominated OA of P are of the form Πσ.
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Dubois & Prade approach

For any permutation σ, define:

Eσ0 = ∅.
Eσj = {xσ(1), . . . , xσ(j)} for j = 1, . . . , n.

πDP
σ (xσ(j)) = 1− P (Eσj−1) for j = 1, . . . , n.

ΠDP
σ (A) = maxx∈A π

DP
σ (x).

However...

ΠDP
σ could be dominated!

ΠDP
σ ≥ Πσ, where σ = (xσ(n), xσ(n−1), . . . , xσ(1)).

Fuzzy sets and statistical data. D. Dubois, H. Prade, EJOR 1986.

When upper probabilities are possibility measures. D. Dubois,
H. Prade, FSS 1992.
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Example

A P (A) P (A)
{x1} 0.1 0.4
{x2} 0 0.3
{x3} 0 0.4
{x4} 0.3 0.5
{x1, x2} 0.1 0.6
{x1, x3} 0.3 0.6
{x1, x4} 0.6 0.7
{x2, x3} 0.3 0.4
{x2, x4} 0.4 0.7
{x3, x4} 0.4 0.9
{x1, x2, x3} 0.5 0.7
{x1, x2, x4} 0.6 1
{x1, x3, x4} 0.7 1
{x2, x3, x4} 0.6 0.9

X 1 1

Take σ = (3, 2, 1, 4) and
σ = (4, 1, 2, 3):

Πσ ΠDP
σ

x3 0.4 0.4
x2 0.3 0.4
x1 0.7 0.7
x4 1 1
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OA of coherent lower previsions

P ′ coherent
lower probability

Q′ undominated

outer approximation
in C2 or C∞

P coherent
lower prevision

Q undominated

outer approximation
in C2 or C∞

P ′(A) = P (IA)

Q′(A) = Q(IA)

Q(f) = (C)

∫
fdQ′
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Inner approximations

We can repeat the same arguments to look for inner approx-
imations.

Using a linear programming approach, we just need to sub-
stitute (LP-2monot.4) or (LP-bel.2) by:∑

B⊆E
mQ(B) ≥ P (E) ∀E ⊆ X .

However...

The existence of an inner approximation in Cε and CPMM is
not guaranteed, and when it exists, it may not be unique.
The existence is neither guaranteed in CΠ.

An inner approximation adds new information to the model!!!
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Summary and open problem

The optimal Characterization Coincide

OA in the Unique OAs of the optimal with P , P
class C optimal OA? retrieve P? OA? on {xi}?
C2 NO YES Open problem YES
C∞ NO YES Open problem NO
CPI YES NO YES YES
CPMM YES NO YES Partially
Cε YES NO YES Partially
C(F,F ) YES NO YES NO

C∗
(F,F )

NO YES YES NO

CΠ NO YES YES NO

Elicitation of an undominated OA?

Using divergences instead of distances?
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