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A p-box is a simple generalization of a distribution function, useful to study a random

number in the presence of imprecision. We propose an extension of p-boxes to cover
imprecise evaluations of pairs of random numbers and term them bivariate p-boxes. We

analyze their rather weak consistency properties, since they are at best (but generally

not) equivalent to 2-coherence. We therefore focus on the relevant subclass of coherent
p-boxes, corresponding to coherent lower probabilities on special domains. Several prop-

erties of coherent p-boxes are investigated and compared with those of (one-dimensional)
p-boxes or of bivariate distribution functions.

Keywords: p-boxes, coherent and 2-coherent lower probabilities, cumulative distribution

functions, rectangle inequalities.

1. Introduction and Preliminary Concepts

Uncertainty modelling with imprecise probabilities includes a variety of simplified

representations which are especially fit for reasoning with certain specific situations

(see for instance Augustin et al.,1 Chapter 4).

Among these, a p-box is a generalization of the cumulative distribution function

(cdf) of a random number X. The idea is relatively simple: a p-box (F , F ) is a

1
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pair of cdfs F , F , such that F ≤ F .2 Recalling that a distribution function F for

X, F (x) = P (X ≤ x), represents the probability P of the events (X ≤ x) for

any x, the p-box (F , F ) supplies a lower bound F and an upper bound F to these

probabilities. Conceptually, this is a straightforward way of imprecisely describing

a random number, which works also when X is unbounded, unlike other more

general representations with imprecise probabilities or previsions.3 Operationally,

it helps evaluating questions of the type ‘how likely it is that X exceeds a certain

threshold?’, which are essential, for instance, in (industrial or financial) risk analysis.

The literature on p-boxes appears to be limited so far, in spite of their usefulness.

P -boxes were discussed in Ferson et al. 2 , and later appeared in a few other works,

including Ferson and Tucker 4 , Troffaes and Destercke 5 , Troffaes et al. 6 , Utkin and

Destercke 7 .

In this paper we analyze the still largely unexplored generalization of a p-box in

order to jointly describe a couple of random numbers (X,Y ), i.e. what we shall call

bivariate p-box. In addition to the motivations for using (univariate) p-boxes, we

meet bivariate p-boxes when coming to a joint evaluation for (X,Y ) by combining

marginals for X and Y , with the latter given in the form of (univariate) p-boxes.

We tackle this aspect of bivariate p-boxes in the companion paper8, while focusing

here on foundational aspects that differentiate bivariate from univariate p-boxes.

A core issue is that the same distribution function F may be obtained in the

univariate case in a number of ways, which are no longer equivalent in higher

dimensions. For instance, F corresponds to the restriction of a probability defined

on a suitable set, but may be derived also from a coherent lower probability or even

a capacity (i.e. a monotone non-decreasing and normalized measure on an algebra).

Technically, this is because several different non-additive measures are characterized

in the same way on monotone families (chains), that are the sets of events evaluated

by a (univariate) distribution function. Further, the infimum and the supremum of

a set of (univariate) cdfs are again cdfs, which is not necessarily true in higher

dimensions. This suggests that a formal definition of bivariate p-box as an ordered

pair of distribution functions would be too restrictive. Actually, the first question

is precisely how to define a bivariate p-box; secondly, choosing as we are going to

do a broad definition, the question arises of identifying those bivariate p-boxes with

satisfactory properties.

Prior to this, some preliminary material is supplied. Special sets of events and

distribution functions are recalled in Section 1.1, while Section 1.2 summarizes

known facts about lower probabilities and univariate p-boxes. Then, a bivariate

p-box is defined in Section 2 as a pair of functions F , F such that F ≤ F and

satisfying some minimal properties (normalization, componentwise monotonicity).

In Section 3 we show that there is a correspondence between a bivariate p-box and

a lower probability (Definition 8), and because of this we investigate thereafter the

consistency properties of bivariate p-boxes within the theory of lower probabilities.

In Section 3.1 we prove a characterization of 2-coherence (Proposition 4), which is of
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some interest in itself, as it shows that this little investigated notion corresponds to

a sort of strengthened capacity on certain sets of events. It allows to demonstrate

that bivariate p-boxes can be associated, at best, with 2-coherent probabilities,

but may even fail this correspondence (Proposition 5). In Section 3.2 bivariate p-

boxes that avoid sure loss are defined, and characterized in terms of distribution

functions (Proposition 6); some further properties of these p-boxes are proved. The

notion of coherent bivariate p-box is defined in Section 3.3 in terms of coherence

of its associated lower probability. Coherent bivariate p-boxes are characterized as

envelopes of distribution functions in Proposition 9. Since coherent bivariate p-boxes

are essentially equivalent representations of coherent lower probabilities defined on a

suitable set, they appear to be the most prominent class of (bivariate) p-boxes. Their

properties are studied in Section 3.4. Extending the classical rectangle inequality

for distribution functions (equation (RI) in Proposition 2), it is shown that four

imprecise rectangle inequalities are all necessary for coherence (Proposition 10).

In some cases, they are also sufficient for a bivariate p-box to be coherent: the

most general result of this kind is here Theorem 3. Further properties related with

these inequalities are then discussed. Section 3.5 concerns the relationship between

coherent bivariate p-boxes and 2-monotonicity, which is shown to be less tight and

more complex than in the one-dimensional environment. Section 4 summarizes and

concludes the paper.

1.1. Distribution functions and related concepts

The basic families of events we encounter when studying p-boxes are monotone

families.

Definition 1. Given a family of events (Ax)x∈I and a strict total order ≺ in I, say

that (Ax)x∈I is monotone non-decreasing (monotone non-increasing) if ∀x, y ∈ I,

x ≺ y implies Ax ⊆ Ay (implies Ay ⊆ Ax).

In the sequel, it is always assumed that the impossible event ∅ and the sure event Ω

belong to the monotone families considered. This is not restrictive, as clearly, ∀Ax,

∅ ⊆ Ax ⊆ Ω. A convenient way to ensure this assumption is to include a minimum

and a maximum ‘value’,−∞, +∞ respectively, into I, putting A−∞ = ∅, A+∞ = Ω.

The family (Ac
x)x∈I associated with a monotone family (Ax)x∈I is also mono-

tone, non-decreasing (non-increasing) if (Ax)x∈I is non-increasing (non-decreasing).

We shall have to deal with precise probabilities defined on monotone families

or other related sets of events. We shall precisely refer to coherent probabilities in

the sense of de Finetti9, termed here dF-coherent probabilities to better distinguish

them from coherent imprecise probabilities. Probabilities that are dF-coherent are

naturally defined on arbitrary sets of events, but may be characterized on special

sets, like algebras; a dF-coherent probability on an algebra is a finitely additive

probability. On monotone families of events, the following characterization holds

(Crisma 10, Thm. 11.1.2; Denneberg 11, Prop. 2.10):
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Proposition 1. Let (Ax)x∈I be a monotone family of events. A map P : (Ax)x∈I →
[0, 1] is a dF-coherent probability on (Ax)x∈I if and only if a real function F : I →
[0, 1] can be chosen, such that

(a) F is monotone non-decreasing, i.e., x ≺ y ⇒ F (x) ≤ F (y);

(b) F (x) = 0 if Ax = ∅, F (x) = 1 if Ax = Ω;

(c) ∀x, y ∈ I, Ax = Ay implies F (x) = F (y), or equivalently, x ≺ y,Ay ∧Ac
x =

∅, implies ∆F (x; y) := F (y)− F (x) = 0,

and such that

P (Ax) = F (x),∀x ∈ I. (1)

Any real function F satisfying conditions (a)÷(c) in Proposition 1 is termed cumu-

lative distribution function, or cdf in short.

Note that the characterization above, like the subsequent one in Proposition 2,

regards dF-coherent, hence not necessarily σ-additive, probabilities. Therefore the

concept of cdf in both propositions is larger than the classical one, which corresponds

instead to σ-additive measures.

An important consequence of Proposition 1 is the following: if we define F (x) =

µ(Ax), for all x ∈ I, where µ is any monotone and normalized function on a set

including (Ax)x∈I , then the restriction of µ on (Ax)x∈I is a dF-coherent probability.

For this reason, the coherent lower probabilities or capacities we shall consider later

on cannot be distinguished from dF-coherent probabilities when we focus on their

restrictions to monotone families.

Remark 1. (Cdf of a random number.) A very common and important example is

the probabilistic description of a real-valued random number X. The domain of X is

X ⊆ R, so that X cannot take the ‘values’ −∞, +∞. Yet, here I = R, the compact

real line, and Ax is the event (X ≤ x). The very reason for taking I = R instead of

I = R is the need for guaranteeing, whatever is X, that the family (Ax)x∈R includes

∅ = A−∞ = (X ≤ −∞) and Ω = A+∞ = (X ≤ +∞) = (X < +∞). The cdf of X,

by Eq. (1), is then given by F (x) = P (X ≤ x), ∀x ∈ I.

In the case that X takes up only finitely many different values, x1 < x2 < . . . <

xn, it is customary to define again I = R. Yet, it is important to observe that by

Proposition 1, (c) we only need to know the values F (xi), i = 1, . . . , n to fully

describe F . In fact, for x ∈ (xi, xi+1), Ax = Axi
, and with this idea

F (x) =


F (xi) if x ∈ [xi, xi+1)

1 ∀x ≥ xn
0 ∀x < x1,

using (b) and (c) in Proposition 1. �

More generally, we have n-tuples of monotone families and related concepts. For

what follows it will suffice to consider the case n = 2.
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Definition 2. Let (1Ax)x∈I1 , (2Ay)y∈I2 be two monotone non-decreasing families

of events and define

A(x,y) := 1Ax ∧ 2Ay ∀x ∈ I1, y ∈ I2, (2)

D := {A(x,y) : x ∈ I1, y ∈ I2}.

Then, D is a component-wise monotone non-decreasing (bivariate) family of events.

A dF-coherent probability is characterized on D by the following result, a special

case of Thm.11.2.2 in Crisma 10.

Proposition 2. A map P : D → R is a dF-coherent probability on D if and only

if a real function F : I1 × I2 → R can be chosen, such that

(a) F is component-wise monotone non-decreasing,

(b) A(x,y) = ∅ implies F (x, y) = 0 and A(x,y) = Ω implies F (x, y) = 1,

(c) (Rectangle inequality) For every x1, x2 ∈ I1, y1, y2 ∈ I2 such that x1 ≺ x2,

y1 ≺ y2, defining

∆F (x1, x2; y1, y2) := F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1),

it is

∆F (x1, x2; y1, y2) ≥ 0, (RI)

while

(1Ax2
∧ 1A

c
x1

) ∧ (2Ay2
∧ 2A

c
y1

) = ∅ implies ∆F (x1, x2; y1, y2) = 0, (3)

and P is such that

P (A(x,y)) = F (x, y), ∀x ∈ I1,∀y ∈ I2.

Any function F satisfying conditions (a)÷(c) above characterizes a dF-coherent

probability on D by means of the previous proposition, and is thus termed bivariate

(cumulative) distribution function.

Remark 2. Condition (3) implies

A(x1,y1) = A(x2,y2) ⇒ F (x1, y1) = F (x2, y2). (4)

Let us give a sketch of the proof. From A(x1,y1) = A(x2,y2), we get

(1Ax2
∧ 1A

c
x1

) ∧ (2Ay2
∧ 2A

c
y1

) = 1A
c
x1
∧ 2A

c
y1
∧A(x1,y1) = ∅.

Since necessarily A(x1,y1) = A(x1,y2) = A(x2,y1), we get analogously

(1Ax1 ∧ 1A
c
−∞) ∧ (2Ay2 ∧ 2A

c
y1

) = A(x1,y1) ∧ 1A
c
−∞ ∧ 2A

c
y1

= ∅,

and

(2Ay1
∧ 2A

c
−∞) ∧ (1Ax2

∧ 1A
c
x1

) = A(x1,y1) ∧ 2A
c
−∞ ∧ 1A

c
x1

= ∅.
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Hence ∆F (x1, x2; y1, y2) = ∆F (−∞, x1; y1, y2) = ∆F (x1, x2;−∞, y1) = 0 by (3).

The system of these equalities implies F (x1, y1) = F (x2, y2).

However, conditions (3) and (4) are not equivalent: it may be that A(x1,y1) 6=
A(x2,y2) but (1Ax2

∧ 1A
c
x1

) ∧ (2Ay2
∧ 2A

c
y1

) = ∅. See Example 3 later on and its

footnote for an instance.a The two conditions are instead equivalent in the univariate

case, as stated in Proposition 1, c). There are instances when (3) trivially holds and

therefore has not to be checked. An important case is that of X and Y being logically

independent, as we discuss next. �

Definition 3. Two random numbers X, Y , taking values in X , Y respectively, are

logically independent iff (X = x) ∧ (Y = y) 6= ∅ ∀x ∈ X ,∀y ∈ Y.

Remark 3. (Cdf of a couple of random numbers.) As a notable example, consider

two random numbers X, Y . Then I1 × I2 = R × R and A(x,y) is the event (X ≤
x ∧ Y ≤ y). Hence F (x, y) = P (X ≤ x ∧ Y ≤ y) and condition (3) reads as

x1 < X ≤ x2 ∧ y1 < Y ≤ y2 = ∅ =⇒ P (x1 < X ≤ x2 ∧ y1 < Y ≤ y2) = 0.

Often in the sequel X, Y will be discrete random numbers. Similarly to Re-

mark 1, in that case we shall assume that the domain of F is R × R. F is deter-

mined by (4) and its values F (xi, yj), ∀(xi, yj) ∈ X × Y, where X = {x1, . . . , xn},
Y = {y1, . . . , ym} are the sets of possible values for X and Y , respectively. In fact,

∀(x, y) ∈ R× R, we have

A(x,y) = A(x′,y′),

where

x′ = max{xs ∈ X ∪ {−∞} : xs ≤ x}, y′ = max{yt ∈ Y ∪ {−∞} : yt ≤ y}, (5)

and, recalling (4),

F (x, y) = F (x′, y′).

A similar procedure applies when at least one of X , Y does not coincide with R. �

Remark 4. Recalling Remark 3, it is easy to realize that we need not check (3)

when X, Y are logically independent. In fact, if x1 < x2 ∈ X , y1 < y2 ∈ Y, the

event (x1 < X ≤ x2)∧(y1 < Y ≤ y2) includes the event (X = x2)∧(Y = y2), which

is non-impossible by logical independence; otherwise, (x1 < X ≤ x2) ∧ (y1 < Y ≤
y2) = (x′1 < X ≤ x′2) ∧ (y′1 < Y ≤ y′2) = ∅ iff x′1 = x′2 or y′1 = y′2. If this condition

occurs, ∆F (x1, x2; y1, y2) = ∆F (x′1, x
′
2; y′1, y

′
2) = 0, as can be easily checked. �

aIn the original version of Theorem 2 in Crisma 10, (4) instead of (3) is stated among the hypothe-
ses, although its proof implicitly assumes (3) (L. Crisma, personal communication).
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1.2. Lower probabilities and univariate p-boxes

The theory of dF-coherent probabilities has been extended to the imprecise case by

Williams 12 and Walley 3 . Although in Walley 3 the theory is established in terms

of bounded real-valued functions, or gambles, for the purposes of this paper we

shall consider only maps defined on events. Several other consistency concepts for

non-additive measures have been considered in the literature. We recall now those

used, at different levels, in this paper. In the relevant formulas IE is used to denote

the indicator function of the event E: the function that takes the value 1 on the

elements of E, and 0 otherwise.

Definition 4. (Walley 3) Let A be an arbitrary set of events and P a map, P :

A → R.

(a) P is a lower probability that avoids sure loss on A iff, ∀n > 0, ∀s1, . . . , sn ≥
0, ∀E1, . . . , En ∈ A, it holds that max

∑n
i=1 si(IEi

− P (Ei)) ≥ 0.

(b) P is a coherent lower probability on A iff ∀n > 0, ∀s0, . . . , sn ≥ 0, and

∀E0, . . . , En ∈ A, it holds that max{
∑n

i=1 si(IEi
− P (Ei)) − s0(IE0

−
P (E0))} ≥ 0.

(c) P is a 2-coherent lower probability on A iff, ∀E0, E1 ∈ A, ∀s0 ∈ R, ∀s1 ≥ 0,

it holds that max{s1(IE1
− P (E1)) + s0(IE0

− P (E0))} ≥ 0.

The most important of these concepts is that of coherence, which implies the other

two.

It is customary to relate lower (P ) and upper (P ) probabilities by the conjugacy

equality

P (A) = 1− P (Ac). (6)

Because of (6), one may focus on lower probabilities only, as we shall mainly do.

There is an important characterization of Definition 4, (a) and (b), in terms of

the credal set M(P ) of a lower probability P ,

M(P ) := {P : A → R, dF-coherent : P (A) ≥ P (A) ∀A ∈ A}. (7)

Theorem 1. (Walley 3, Section 3.3.4) Let P : A → R.

• P avoids sure loss if and only if M(P ) 6= ∅.
• P is coherent if and only if P (A) = min{P (A) : P ∈M(P )} ∀A ∈ A.

Consider now (Ax)x∈R. A dF-coherent probability P : A → [0, 1], where A ⊇
(Ax)x∈R, induces a cdf FP : R→ [0, 1] by means of Eq. (1),

FP (x) = P (Ax) ∀x ∈ R. (8)

As a consequence, a coherent lower probability P on the domain A induces a set of

distribution functions

F := {FP : P ∈M(P )},
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with FP given by Eq. (8). From F we can derive the functions F , F : R→ [0, 1] by

F (x) = inf{F (x) : F ∈ F}, F (x) = sup{F (x) : F ∈ F}.

It is easy to check that both F , F satisfy conditions (a)÷(c) from Proposition 1,

and are therefore distribution functions. We shall refer to (F , F ) as the p-box asso-

ciated with the coherent lower probability P . More generally, we have the following

definition:

Definition 5. (Ferson et al. 2 , Ferson and Tucker 4) A (univariate) p-box is a pair

(F , F ) where F , F : R → [0, 1] are cumulative distribution functions satisfying

F (x) ≤ F (x) for every x ∈ R.

However, two different coherent lower probabilities can be associated with the

same p-box. Given the p-box (F , F ), (Ax)x∈R, define

E0 := {Ax, A
c
x : x ∈ R}.

Then a coherent lower probability P with domain A ⊇ E0 induces the p-box (F , F )

if and only if P (Ax) = F (x) and P (Ac
x) = 1− F (x). There may be more than one

coherent lower probability on A with the same restriction to E0, and all of them

will be associated with the same p-box. This was established in the precise case by

Miranda et al. 13

The following result clarifies the correspondence between coherent lower proba-

bilities and p-boxes in the univariate case. It was stated by Walley 3 and proved by

Troffaes and Destercke 5, Troffaes and de Cooman 14.

Theorem 2. (Troffaes and de Cooman 14, Thm. 7.16; Troffaes and Destercke 5,

Sect. 3) Consider two maps F , F : R → [0, 1] and let P (F,F ) : E0 → [0, 1] be the

lower probability they induce by means of

P (F,F )(Ax) = F (x) and P (F,F )(A
c
x) = 1− F (x) ∀x ∈ R.

Consider also the restrictions PF : (Ax)x∈R → [0, 1] and PF : (Ac
x)x∈R → [0, 1] of

P (F,F ) given by

PF (Ax) = F (x) and PF (Ac
x) = 1− F (x) ∀x ∈ R.

The following are equivalent:

(a) P (F,F ) is a coherent lower probability on E0.

(b) F , F are distribution functions and F ≤ F (i.e., (F , F ) is a p-box).

(c) PF and PF are dF-coherent and F ≤ F .

2. Bivariate P -boxes

Univariate p-boxes can be used as a model of uncertainty for a real-valued random

number, when there is some imprecision in its associated cumulative distribution
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function. In this section, we shall investigate how to generalize this model to the

case where we consider the joint behaviour of two real random numbers X,Y .

Definition 6. A map F : R×R→ [0, 1] is called standardized when it is component-

wise non-decreasing and F (+∞,+∞) = 1, F (−∞, ·) = F (·,−∞) = 0.

In the univariate case, one possible interpretation of a p-box is a model for

the imprecise knowledge of a (precise) distribution function F : if we consider a

set F of possible candidates, this set can be summarized by its lower and upper

envelopes F , F , which are distribution functions themselves. As a consequence, a

univariate p-box can be seen as the set of cdfs bounded between two particular

distribution functions that determine the lower and upper bounds for the cumulative

probabilities.

Unfortunately, the situation is not so clear-cut in the bivariate case: the en-

velopes of a set of distribution functions are standardized maps, but not necessarily

distribution functions, since they do not necessarily satisfy condition (c) in Propo-

sition 2.

Proposition 3. Let F be a family of distribution functions F : R × R → [0, 1].

Their lower and upper envelopes F , F : R× R→ [0, 1], given by

F (x, y) = inf
F∈F

F (x, y) and F (x, y) = sup
F∈F

F (x, y)

for every x, y ∈ R, are standardized maps and satisfy the condition

A(x1,y1) = A(x2,y2) ⇒
{
F (x1, y1) = F (x2, y2)

F (x1, y1) = F (x2, y2)
, ∀A(x1,y1), A(x2,y2) ∈ D. (9)

Proof. It suffices to take into account that conditions (a) and (b) in Proposition 2,

as well as (4), are preserved by lower and upper envelopes.

To see that these envelopes are not necessarily distribution functions, consider

the following example, where F , F do not satisfy (RI):

Example 1. Let P1 and P2 be the probability measures associated with the fol-

lowing mass functionsb:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

P1 0.1 0.1 0 0.4 0.1 0 0 0 0.3

P2 0.4 0 0.2 0.1 0 0 0.1 0 0.2

bIt is understood in this and most of the following examples that we consider two random numbers
X, Y , taking values, respectively, in X , Y (here X = Y = {1, 2, 3}). The values (i, j) in the first
row of the tables are those of the product X × Y (here (1, 1), . . . , (3, 3)).
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Their associated distribution functions F1, F2 are determined by the following va-

lues:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

F1 0.1 0.2 0.2 0.5 0.7 0.7 0.5 0.7 1

F2 0.4 0.4 0.6 0.5 0.5 0.7 0.6 0.6 1

and extended to R×R in the manner discussed in Remark 3. Their lower and upper

envelopes are

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

F 0.1 0.2 0.2 0.5 0.5 0.7 0.5 0.6 1

F 0.4 0.4 0.6 0.5 0.7 0.7 0.6 0.7 1

Then

F (2, 2) + F (1, 1)− F (1, 2)− F (2, 1) = 0.5 + 0.1− 0.2− 0.5 = −0.1 < 0

and

F (2, 3) + F (1, 2)− F (1, 3)− F (2, 2) = 0.7 + 0.4− 0.6− 0.7 = −0.2 < 0.

As a consequence, neither F nor F are distribution functions. �

Taking this result into account, we give the following definition:

Definition 7. Let F , F : R × R → [0, 1] be two standardized functions satisfying

F (x, y) ≤ F (x, y) for every x, y ∈ R and (9). Then the pair (F , F ) is called a

bivariate p-box.

Remark 5. Definition 7 generalises Definition 5 of (univariate) p-box. In fact, let

us apply Definition 7 to univariate F , F . Then (a) and (b) of Proposition 1 hold for

them because of standardisation, while (9) ensures (c). Therefore, by Proposition

1, F and F are cdfs. Since F ≤ F , (F , F ) is a (univariate) p-box. �

Proposition 3 shows that bivariate p-boxes can be obtained in particular by means of

a set of distribution functions, taking their lower and upper envelopes. However, not

all bivariate p-boxes are of this type: if we consider for instance a map F = F that is

standardized but not a distribution function, then there is no bivariate distribution

function between F and F , and as a consequence these cannot be obtained as

envelopes of a set of distribution functions.

3. Lower Probabilities and Bivariate P -boxes

Using Eq. (2), define the sets

D := {A(x,y) : x, y ∈ R}, Dc := {Ac
(x,y) : x, y ∈ R} and E := D ∪Dc, (10)

and consider a bivariate p-box (F , F ). When an analogue of (4) holds for F , F , it

determines a lower probability on E as follows.
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Definition 8. Let (F , F ) be a bivariate p-box.

The lower probability induced by (F , F ) is the map P (F,F ) : E → [0, 1] given by:

P (F,F )(A(x,y)) = F (x, y), P (F,F )(A
c
(x,y)) = 1− F (x, y) (11)

for every x, y ∈ R.

Conversely, a lower probability P : E → [0, 1] determines a couple of functions

FP , FP by

FP (x, y) = P (A(x,y)) and FP (x, y) = 1− P (Ac
(x,y)) ∀x, y ∈ R. (12)

Remark 6. It is interesting to consider the correspondences (11), (12) in the precise

case:

• On the one hand, if F = F = F then the lower probability P (F,F ) deter-

mined by means of Eq. (11), that we shall denote PF , is uniquely determined

by additivity from its restriction on D, because PF (Ac
(x,y)) = 1−F (x, y) =

1 − PF (A(x,y)) for every x, y ∈ R. Moreover, in the particular case where

F is a distribution function, we deduce from Proposition 2 that PF is a

dF-coherent probability.

• Conversely, if P : D → [0, 1] is a dF-coherent probability, it has a unique

dF-coherent extension on E , obtained putting

P (Ac
(x,y)) = 1− P (A(x,y)).

Then P is dF-coherent on E , and its associated lower and upper distribution

functions coincide: they are both equal to

FP (x, y) = P (A(x,y)),∀x, y ∈ R, (13)

which is a bivariate distribution function. �

3.1. Bivariate p-boxes and 2-coherent probabilities

Next, we investigate the consistency properties of the lower probability P (F,F ) de-

fined by (11), i.e. by means of a bivariate p-box. We shall prove that, unlike the

univariate case, where analogous conditions on (F , F ) guarantee dF-coherence, here

we only come to 2-coherence under an assumption of logical independence.

To see how this comes about, we first establish a characterization of 2-coherence

in the next proposition. It extends an analogous result for lower probabilities defined

on algebras of events in Walley 3, Appendix B, Theorem B3(b) to sets of events

closed under complementation.

Proposition 4. Let S be a set of events that is closed under complementation, and

let P : S → R+ ∪ {0}. Then, P is 2-coherent iff it satisfies the following conditions

i) ∀E,F ∈ S, E ⊆ F implies P (E) ≤ P (F );

ii) P (E) + P (Ec) ≤ 1,∀E ∈ S;
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iii) if ∅,Ω ∈ S, P (∅) = 0, P (Ω) = 1.

Proof. Assume P satisfies i), ii), iii) above. Note that ii) and non-negativity of P

imply also P (E) ≤ 1,∀E ∈ S. For any E0, E1 ∈ A, ∀s0 ∈ R, ∀s1 ≥ 0, let us define

G2 = s1(IE1 − P (E1)) + s0(IE0 − P (E0)). The random number G2 is defined on

the partition {E0 ∧ E1, E
c
0 ∧ E1, E0 ∧ Ec

1, E
c
0 ∧ Ec

1}. In order to prove, by applying

Definition 4, (c), that maxG2 ≥ 0, we consider several cases:

a) s0 ≥ 0.

a1) If E0∧E1 6= ∅, then G2(E0∧E1) = s1(1−P (E1))+s0(1−P (E0)) ≥ 0.

a2) If E0 ∧ E1 = ∅, we have that E0 ⊆ Ec
1 and E1 ⊆ Ec

0. Assume for

instance that s1 ≥ s0 (if s1 < s0, it suffices to exchange the role of E0

and E1). By applying i), ii), we get P (E0) ≤ P (Ec
1) ≤ 1 − P (E1). If

Ec
0 ∧ E1 = E1 6= ∅, then

G2(E1) = s1(1− P (E1))− s0P (E0)

≥ s1P (E0)− s0P (E0) = (s1 − s0)P (E0) ≥ 0.

Otherwise, if Ec
0 ∧ E1 = E1 = ∅, then G2 = 0 when E0 = ∅ (by iii)),

whilst if E0 6= ∅ then G2(E0) = s0(1− P (E0)) ≥ 0.

b) s0 < 0.

b1) If Ec
0 ∧ E1 6= ∅, then G2(Ec

0 ∧ E1) = s1(1− P (E1))− s0P (E0) ≥ 0.

b2) If Ec
0 ∧E1 = ∅, we have Ec

0 ⊆ Ec
1 and E1 ⊆ E0. By i), we deduce that

P (E1) ≤ P (E0).

Assume next that s1 ≥ −s0. If E1 = E1 ∧ E0 6= ∅, then

G2(E1) = s1(1− P (E1)) + s0(1− P (E0))

≥ s1(1− P (E0)) + s0(1− P (E0))

= (s1 + s0)(1− P (E0)) ≥ 0.

Otherwise, if E1 = E1 ∧ E0 = ∅, G2 = 0 when Ec
0 = ∅, while

G2(Ec
0) = −s0P (E0) ≥ 0 when Ec

0 = Ec
0 ∧ Ec

1 6= ∅.

Finally, assume s1 < −s0.

If Ec
0 = Ec

0 ∧ Ec
1 6= ∅, then

G2(Ec
0) = −s1P (E1)− s0P (E0)

≥ −s1P (E0)− s0P (E0) = −(s1 + s0)P (E0) ≥ 0.

Otherwise, if Ec
0 = Ec

0 ∧ Ec
1 = ∅, G2 = 0 when E1 = ∅, whilst

G2(E1) = s1(1− P (E1)) ≥ 0 when E1 6= ∅.

Conversely, let P be 2-coherent. To prove that i), ii), iii) hold, we exploit the con-

dition maxG2 ≥ 0 in Definition 4, (c) for some suitable G2. In detail, we have:

i) Take s1 = −s0 = 1, E1 = E, E0 = F . Then, since E ⊆ F implies IE ≤ IF ,

0 ≤ maxG2 = max[IE −P (E)− IF +P (F ))] ≤ P (F )−P (E). This implies

P (E) ≤ P (F ).
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ii) Take s1 = s0 = 1, E1 = E, E0 = Ec in Definition 4, (c). Then

maxG2 = max[IE − P (E) + IEc − P (Ec)] = 1− P (E)− P (Ec) ≥ 0

iff P (E) + P (Ec) ≤ 1.

iii) To prove P (∅) = 0, take first s1 = 1, s0 = 0, E1 = ∅ in Definition 4, (c),

to get maxG2 = −P (∅) ≥ 0, i.e. P (∅) ≤ 0. This and non-negativity of P

imply P (∅) = 0. Analogously, by taking s1 = 0, s0 = −1, E0 = Ω, we get

P (Ω) ≥ 1, ensuring with ii) that P (Ω) = 1.

Taking account of Proposition 4, we have:

Proposition 5. Consider two random numbers X, Y , taking values in X ,Y re-

spectively, and let D, Dc, E be defined by (10), where A(x,y) = (X ≤ x ∧ Y ≤ y),

x, y ∈ R.

a) Given a 2-coherent lower probability P : E → R, the pair (FP , FP ) associ-

ated with P by means of Eq. (12) is a bivariate p-box.

b) If X, Y are logically independent, the lower probability P (F,F ) associated

with a bivariate p-box (F , F ) by means of Eq. (11) is 2-coherent on E.

Proof.

a) We start proving that FP , FP are standardized.

Let x1 ≤ x2, y1 ≤ y2 ∈ R. Then, A(x1,y1) is included in A(x2,y2). Hence

FP (x1, y1) = P (A(x1,y1)) ≤ P (A(x2,y2)) = FP (x2, y2) and

FP (x1, y1) = 1− P (Ac
(x1,y1)

) ≤ 1− P (Ac
(x2,y2)

) = FP (x2, y2)

by Proposition 4, i).

By Proposition 4, iii), we get also FP (+∞,+∞) = P (A(+∞,+∞)) =

P (Ω) = 1 and FP (−∞, ·) = P (A(−∞,·)) = FP (·,−∞) = P (A(·,−∞)) =

P (∅) = 0.

To prove that FP (x, y) ≤ FP (x, y), ∀x, y ∈ R, apply Proposition 4, ii):

FP (x, y) = P (A(x,y)) ≤ 1− P (Ac
(x,y)) = FP (x, y).

Since (9) holds trivially, the pair (FP , FP ) is a bivariate p-box.

b) We prove that P (F,F ) satisfies i), ii), iii) in Proposition 4.

Proof of i) Consider E,F ∈ E , E ⊆ F . We distinguish four cases.

• If E = A(x1,y1), F = A(x2,y2), let us define x′ = min{x1, x2}, y′ =

min{y1, y2}. Since E = E ∧ F = A(x′,y′), we get

P (F,F )(E) = P (F,F )(A(x′,y′)) = F (x′, y′) ≤ F (x2, y2) = P (F,F )(F ).

• Let E = Ac
(x1,y1)

⊆ F = Ac
(x2,y2)

or, equivalently, F c = A(x2,y2) ⊆
Ec = A(x1,y1). Again, as above, we get F c = Ec ∧ F c = A(x′,y′), i.e.

F = Ac
(x′,y′). Hence,

P (F,F )(E) = 1− F (x1, y1) ≤ 1− F (x′, y′) = P (F,F )(F ).
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• If E = A(x1,y1) ⊆ F = Ac
(x2,y2)

then, taking again x′ = min{x1, x2},
y′ = min{y1, y2}, it follows that E ∧ F c = A(x′,y′) = ∅. Logical in-

dependence of X, Y implies x′ < x ∀x ∈ X or y′ < y ∀y ∈ Y,

since, otherwise, taking x ∈ X , x ≤ x′, y ∈ Y, y ≤ y′, it would be

∅ 6= (X = x ∧ Y = y) ⊆ A(x′,y′), a contradiction. It follows easily

E = ∅ or F = Ω. Hence P (F,F )(E) ≤ P (F,F )(F ).

• Let E = Ac
(x1,y1)

⊆ F = A(x2,y2), i.e. A(x1,y1) ∨ A(x2,y2) = Ω. Logical

independence of X, Y implies that x1 ≥ x and y1 ≥ y ∀(x, y) ∈ X ×Y,

or x2 ≥ x and y2 ≥ y ∀(x, y) ∈ X × Y. To prove this fact, assume

that there exist (x∗1, y
∗
1) ∈ X × Y such that x∗1 > x1 or y∗1 > y1

and (x∗2, y
∗
2) ∈ X × Y such that x∗2 > x2 or y∗2 > y2, and define

x
′′

= max{x∗1, x∗2}, y
′′

= max{y∗1 , y∗2}. Then ∅ 6= (X = x
′′ ∧ Y =

y
′′
) * A(x1,y1) ∨A(x2,y2) = Ω, a contradiction. Again, it follows easily

E = ∅ or F = Ω, hence P (F,F )(E) ≤ P (F,F )(F ).

Proof of ii) Let E ∈ {A(x,y), A
c
(x,y)} ⊆ E . It holds that P (F,F )(E) +

P (F,F )(E
c) = F (x, y) + 1−F (x, y) ≤ 1, taking into account that F (x, y) ≤

F (x, y).

Proof of iii) Note that Ω = A(+∞,+∞),∅ = A(−∞,·) = A(·,−∞) ∈ E . There-

fore, we get P (F,F )(Ω) = F (+∞,+∞) = 1, P (F,F )(∅) = F (−∞, ·) = 0.

Remark 7. Logical independence is required in Proposition 5 to prove that the

lower probability P (F,F ) associated with a given bivariate p-box (F , F ) through

(11) is 2-coherent. To show that logical independence cannot simply be dropped in

Proposition 5, take two binary random numbers X, Y , both assuming their values

in X = Y = {1, 2}. Assume (X = 1 ∧ Y = 1) = ∅, so that X, Y are logically

dependent, and consider the bivariate p-box (F , F ) determined by the following

table:

(1, 2) (2, 1) (2, 2)

F α1 α2 1

F β1 β2 1

where 0 ≤ αi ≤ βi ≤ 1 (i = 1, 2). On non-trivial events the lower probability

associated with this bivariate p-box is given by (11):

A(1,2) A(2,1) Ac
(1,2) Ac

(2,1)

P (F,F ) α1 α2 1− β1 1− β2

Then A(1,2) = (X = 1 ∧ Y = 2) ⊆ Ac
(2,1) = (X = 1 ∧ Y = 2) ∨ (X = 2 ∧ Y = 2)

and similarly A(2,1) ⊆ Ac
(1,2). These are the only non-trivial implications among the

events in E . Hence, Proposition 4, i) holds if and only if both α1 ≤ 1 − β2 and

α2 ≤ 1− β1. �

Proposition 5 and Remark 7 show that the consistency properties of bivari-

ate p-boxes are weaker than or at best corresponding to those of 2-coherent lower
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probabilities. Logical independence is sufficient to ensure the correspondence, but

not at all necessary. This is patent from Remark 7, where the lower probability

associated with (F , F ) may or may not be 2-coherent, depending on the values of

αi, βi (i = 1, 2). But even ensuring 2-coherence seems unsatisfactory, since the prop-

erties of 2-coherent lower probabilities appear rather weak: by Proposition 4, they

are those of a capacity with the extra condition ii). We shall therefore investigate

hereafter special subsets of bivariate p-boxes, with stronger consistency properties.

3.2. Bivariate p-boxes that avoid sure loss

In this subsection and the next, we are going to study which consistency properties

of the lower probability P (F,F ) determined by a bivariate p-box (F , F ) by means of

Eq. (11) can be characterized by the lower and upper distribution functions F , F .

We begin with the property of avoiding sure loss. Recall that, by Theorem 1,

a lower probability P with domain A avoids sure loss if and only if there is a

dF-coherent probability that dominates P on A.

Lemma 1. Let (F , F ) be a bivariate p-box and P (F,F ) the lower probability it in-

duces on E by means of Eq. (11).

(a) Let P be a dF-coherent probability on E, and let FP be its associated dis-

tribution function given by (13). Then

P (A) ≥ P (F,F )(A) ∀A ∈ E ⇐⇒ F ≤ FP ≤ F .

(b) Conversely, let F be a distribution function on R × R, and let PF be its

associated dF-coherent probability on E. Then

F ≤ F ≤ F ⇐⇒ PF (A) ≥ P (F,F )(A) ∀A ∈ E .

Proof. Let us establish the first statement; the proof for the second is analogous.

On the one hand, given A(x,y) ∈ D ⊂ E , it holds that

P (A(x,y)) ≥ P (F,F )(A(x,y)) ⇐⇒ FP (x, y) ≥ F (x, y),

where FP is the distribution function associated with P by means of Eq. (13). On

the other hand, given Ac
(x,y) ∈ Dc ⊂ E , it holds that P (Ac

(x,y)) ≥ P (F,F )(A
c
(x,y)) if

and only if FP (A(x,y)) = P (A(x,y)) = 1−P (Ac
(x,y)) ≤ 1−P (F,F )(A

c
(x,y)) = F (x, y),

where the last equality follows from Eq. (11).

This allows us to conclude the following:

Proposition 6. The lower probability P (F,F ) induced by the bivariate p-box (F , F )

by means of Eq. (11) avoids sure loss if and only if there is a distribution function

F : R× R→ [0, 1] satisfying F ≤ F ≤ F .

Proof. P (F,F ) avoids sure loss iff there exists a dF-coherent probability P such

that P ≥ P (F,F ) on E . By Lemma 1 this is equivalent to the thesis.
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This motivates the following definition:

Definition 9. We shall say that (F , F ) avoids sure loss when the lower probability

P (F,F ) it induces by means of Eq. (11) does.

This notion is a minimal consistency requirement in order to interpret a bivariate

p-box as a model for the imprecise knowledge of a bivariate distribution function, as

it is equivalent to the existence of some distribution function compatible with the

available bounds. Next, we investigate to which extent the notion of avoiding sure

loss can be established in terms of F , F . By Proposition 6, a sufficient condition is

that either F or F is a distribution function. It is not difficult to show that this

condition is not necessary (simply take a distribution function F and F ≤ F ≤ F

such that neither F nor F are distribution functions). Our next result gives a

necessary condition:

Proposition 7. If (F , F ) avoids sure loss, then for every x1 ≤ x2 ∈ R and every

y1 ≤ y2 ∈ R it holds that

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI0)

Proof. Assume that (F , F ) avoids sure loss. By Proposition 6, there is a distribu-

tion function F bounded by F , F . Given x1 ≤ x2 and y1 ≤ y2 ∈ R, it follows from

Eq. (RI) that

0 ≤ F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1)

≤ F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1),

where the second inequality follows from F ≤ F ≤ F .

This necessary condition is not sufficient in general. Before showing that, we

must remark that although we consider bivariate p-boxes in R × R, we can deal

with finite sets as particular cases:

Remark 8. With respect to the verification of the conditions related to avoiding

sure loss and coherence for bivariate p-boxes, in many of the results and examples

that follow, we shall consider maps F , F related to discrete random numbers X, Y ,

whose jointly possible values are included into a finite subset X ×Y of R2. Here the

values of F , F on R×R are determined by their values on X×Y (or by normalization

at (+∞,+∞), (−∞, ·), (·,−∞)), exactly like those of F in Remark 3.

It is easy to see that it is sufficient to verify that conditions such as (I-RI0) hold

for (x, y) ∈ X × Y. In fact, given x1 ≤ x2 and y1 ≤ y2 ∈ R, they hold trivially if

either x1 or y1 is −∞; if not, for any (xi, yj) /∈ X × Y, we may define

F ∗(xi, yj) = F ∗(x′i, y
′
j) (i, j = 1, 2), (14)
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where F ∗ is either F or alternatively F and x′i, y
′
j are given by (5). As a consequence,

we obtain for instance that

F (x2, y2) + F (x1, y1)− F (x1, x2)− F (x2, y1)

= F (x′2, y
′
2) + F (x′1, y

′
1)− F (x′1, x

′
2)− F (x′2, y

′
1).

�

Example 2. Let X × Y = {1, 2, 3} × {1, 2, 3}, and F , F be given by:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

F 0 0.65 0.7 0.2 0.8 0.8 0.35 0.9 1

F 0.1 0.7 0.7 0.25 0.8 0.8 0.4 0.9 1

It is immediate to check that both these maps are standardized and that together

they satisfy Eq. (I-RI0). However, (F , F ) does not avoid sure loss: from Propo-

sition 6, it suffices to show that there is no distribution function F satisfying

F (x, y) ≤ F (x, y) ≤ F (x, y) for every x, y ∈ {1, 2, 3}. To see that this is indeed

the case, note that any distribution function F ∈ (F , F ) should satisfy

F (1, 3) = 0.7, F (2, 2) = 0.8, F (2, 3) = 0.8, F (3, 2) = 0.9 and F (3, 3) = 1.

Applying Eq. (RI) to (x1, y1) = (1, 2) and (x2, y2) = (2, 3), we deduce that F (1, 2) =

0.7. If we apply again the rectangle inequality, now to (x1, y1) = (1, 1) and (x2, y2) =

(2, 2), we deduce that

F (2, 2) + F (1, 1)− F (1, 2)− F (2, 1) = 0.8 + F (1, 1)− 0.7− F (2, 1) ≥ 0,

i.e. F (1, 1) + 0.1 ≥ F (2, 1). From this inequality and since F (1, 1) ≤ F (1, 1) = 0.1,

F (2, 1) ≥ F (2, 1) = 0.2, we get F (1, 1) = 0.1, F (2, 1) = 0.2. If we now apply

Eq. (RI) to (x1, y1) = (2, 1) and (x2, y2) = (3, 2), we deduce that

F (3, 2) + F (2, 1)− F (2, 2)− F (3, 1) = 0.9 + 0.2− 0.8− F (3, 1) ≥ 0,

i.e. F (3, 1) ≤ 0.3. But on the other hand we must have F (3, 1) ≥ F (3, 1) = 0.35, a

contradiction. Hence, (F , F ) does not avoid sure loss. �

Interestingly, (I-RI0) is a necessary and sufficient condition when F and F de-

scribe binary and logically independent random numbers:

Proposition 8. Let X, Y be binary random numbers, with domain, respectively,

X = {x1, x2} and Y = {y1, y2}. Let also (F , F ) be a bivariate p-box determined by

its values on X × Y. Then, given the following statements

(a) (F , F ) avoids sure loss;

(b) F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0;

(c) F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0;

it holds that (a) ⇒ (b) ⇒ (c). If in addition X, Y are logically independent then

(a), (b), (c) are equivalent.
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Proof. The first statement implies the second by Proposition 7. To see that the

second implies the third note that, since F , F are standardized maps and they

are determined by Eq. (14), it must be 1 = F (+∞,+∞) = F (x2, y2) and 1 =

F (+∞,+∞) = F (x2, y2).

To see that the third statement implies the first when X, Y are logically inde-

pendent, define F : {x1, x2} × {y1, y2} → [0, 1] by

F (x1, y1) = F (x1, y1) F (x1, y2) = max{F (x1, y1), F (x1, y2)}
F (x2, y1) = max{F (x1, y1), F (x2, y1)} F (x2, y2) = 1,

and let us extend it to R × R by Eq. (14). By construction, F is a standardized

map bounded by F , F . To see that it is a distribution function, use Remark 8 and

note that if either F (x1, y2) or F (x2, y1) is equal to F (x1, y1) = F (x1, y1), then it

follows from the componentwise monotonicity of F , F that

∆F (x1, x2; y1, y2) = F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

Otherwise, if F (x1, y2) = F (x1, y2) and F (x2, y1) = F (x2, y1), then

∆F (x1, x2; y1, y2) = F (x2, y2) + F (x1, y1) − F (x1, y2) − F (x2, y1) ≥ 0.

This proves that F satisfies (RI). By applying Proposition 2 and recalling also

Remark 4 we conclude that F is a distribution function. Then, (F , F ) avoids sure

loss by Proposition 6.

3.3. Coherent bivariate p-boxes

Let us turn now to coherence. We begin by establishing a result akin to Proposi-

tion 6:

Proposition 9. The lower probability P (F,F ) induced by the bivariate p-box (F , F )

by means of Eq. (11) is coherent if and only if F (resp., F ) is the lower (resp.,

upper) envelope of the set

F = {F : R× R→ [0, 1] distribution function : F ≤ F ≤ F}. (15)

Proof. Denote by M(P (F,F )) the set of dF-coherent probabilities associated with

P (F,F ) by means of Eq. (7). Assume first that F and F are the lower and upper

envelopes of F . We get

P (F,F )(A(x,y)) = F (x, y) = inf
F∈F

F (x, y)

= inf
F∈F

PF (A(x,y)) = inf
P∈M(P (F,F ))

P (A(x,y))

and

P (F,F )(A
c
(x,y)) = 1− F (x, y) = 1− sup

F∈F
F (x, y) = 1− sup

F∈F
PF (A(x,y))

= inf
F∈F

PF (Ac
(x,y)) = inf

P∈M(P (F,F ))
P (Ac

(x,y)),
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where the last equality follows in both derivations by Lemma 1. We conclude from

this that P (F,F ) is coherent. Conversely, if P (F,F ) is coherent, we get

F (x, y) = P (F,F )(A(x,y)) = inf
P∈M(P (F,F ))

P (A(x,y))

= inf
P∈M(P (F,F ))

FP (x, y) = inf
F∈F

F (x, y)

and

F (x, y) = 1− P (F,F )(A
c
(x,y)) = 1− inf

P∈M(P (F,F ))
P (Ac

(x,y)) = sup
P∈M(P (F,F ))

P (A(x,y))

= sup
P∈M(P (F,F ))

FP (x, y) = sup
F∈F

F (x, y),

again using Lemma 1 for the last equalities.

This motivates the following definition:

Definition 10. A bivariate p-box (F , F ) is coherent iff its associated lower proba-

bility P (F,F ) is.

Thus, from a sensitivity analysis point of view, only coherent bivariate p-boxes

make sense, since they are the ones that can be regarded as equivalent to a set of

bivariate distribution functions. One interesting difference with the univariate case

is that the bounds F , F of the bivariate p-box need not be distribution functions

for (F , F ) to be coherent (although if F , F are distribution functions then trivially

(F , F ) is coherent by Proposition 9, since both F , F belong to F). This can be

seen for instance with Example 1, where the lower envelope of a set of distribution

functions (which determines the lower distribution function of a coherent bivariate

p-box) is not a distribution function itself.

As for the condition of avoiding sure loss, if a bivariate p-box (F , F ) avoids sure

loss but is not coherent, then it is necessary that at least one of F , F is not a

distribution function. One instance of this is provided in Example 4 in the next

subsection.

The above remark suggests a further difference with the univariate case. Let the

p-box (F , F ) avoid sure loss, and F , F be univariate. Then, recalling Remark 5,

F , F are cdfs and, by Theorem 2, PF,F is a coherent lower probability. Hence,

by Definition 10, (F , F ) is a coherent p-box. The interesting conclusion is that the

concepts of coherence and of avoiding sure loss are distinct with bivariate p-boxes,

but undistinguishable with univariate ones.

3.4. Properties of coherent bivariate p-boxes

Comparing Propositions 1 and 2 we realize that adding one dimension, from n = 1

to n = 2, requires the additional conditions in Proposition 2 (c) in the characteriza-

tion of dF-coherent probabilities on (componentwise) monotone families of events.
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The other conditions in Proposition 2 are simple generalizations of the correspond-

ing ones of Proposition 1. When we consider lower probabilities on E , we might

wonder whether there exists some analogue of condition (c), and in particular of

the rectangle inequality (RI). As we shall see in what follows, the situation is more

complex, involving various imprecise rectangle inequalities and related properties.

As a preliminary step, we recall the following properties of coherent upper and

lower probabilities (see Walley 3, Section 2.4.7):

A ∧B = ∅⇒ P (A ∨B) ≥ P (A) + P (B). (16)

A ∧B = ∅⇒ P (A ∨B) ≥ P (A) + P (B). (17)

P (A ∨B) + P (A ∧B) ≥ P (A) + P (B). (18)

P (A ∨B) + P (A ∧B) ≥ P (A) + P (B). (19)

P (A ∨B) + P (A ∧B) ≥ P (A) + P (B). (20)

These properties are useful in obtaining imprecise rectangle inequalities as necessary

conditions for coherence of a bivariate p-box:

Proposition 10. (Imprecise Rectangle Inequalities) Let (F , F ) be a bivariate p-box

on R×R. If it is coherent, then the following conditions hold for every x1 ≤ x2 ∈ R
and y1 ≤ y2 ∈ R:

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI1)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI2)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI3)

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0. (I-RI4)

Proof. Consider (x1, y1) and (x2, y2) such that x1 ≤ x2, y1 ≤ y2 and let P (F,F ) be

the coherent lower probability induced by (F , F ) by means of Eq. (11). Recall also

in the following derivations that A(x1,y2) ∧A(x2,y1) = A(x1,y1).

[Proof of (I-RI1)]. It holds that:

P (A(x2,y2))
Eq. (16)

≥ P (A(x1,y2) ∨A(x2,y1)) + P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c)

Eq. (18)

≥ P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y1))

+ P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c).

Thus:

P (A(x2,y2))− P (A(x1,y2))− P (A(x2,y1)) + P (A(x1,y1))

≥ P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c) ≥ 0.

If we write the previous equation in terms of the maps F , F , we obtain that:

F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) ≥ 0.
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[Proof of (I-RI2)]. It holds that:

P (A(x2,y2))
Eq. (17)

≥ P (A(x1,y2) ∨A(x2,y1)) + P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c)

Eq. (19)

≥ P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y1))

+ P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c).

Then:

P (A(x2,y2)) + P (A(x1,y1))− P (A(x1,y2))− P (A(x2,y1))

≥ P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c) ≥ 0.

In terms of F , F , this means that

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

[Proof of (I-RI3) and (I-RI4)]. Analogously:

P (A(x2,y2))
Eq. (17)

≥ P (A(x1,y2) ∨A(x2,y1)) + P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c)

and, from Eq. (20), this is greater than or equal to both

P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c) + P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y1))

and

P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c) + P (A(x1,y2)) + P (A(x2,y1))− P (A(x1,y1)).

Then:

0 ≤ P (A(x2,y2) ∧ (A(x1,y2) ∨A(x2,y1))
c)

≤

{
P (A(x2,y2))− P (A(x1,y2))− P (A(x2,y1)) + P (A(x1,y1)).

P (A(x2,y2))− P (A(x1,y2))− P (A(x2,y1)) + P (A(x1,y1)).

In terms of F , F , this means that:

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0;

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1) ≥ 0.

This completes the proof.

Inequality (RI) is stated in terms of ∆F (x1, x2; y1, y2), the second order mixed

difference. It is interesting to explicit the corresponding differences

∆F (x1, x2; y1, y2) = F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1)

and

∆F (x1, x2; y1, y2) = F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1)
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in the inequalities (I-RI1)÷(I-RI4). With simple algebraic computations, we obtain

that (I-RI1) and (I-RI2) are equivalent to

∆F (x1, x2; y1, y2) + min
i=1,2
{F (xi, yi)− F (xi, yi)} ≥ 0 (21)

while (I-RI3) and (I-RI4) are equivalent to

∆F (x1, x2; y1, y2) + min
i,j=1,2,i6=j

{F (xi, yj)− F (xi, yj)} ≥ 0. (22)

We deduce from (21) that ∆F , unlike ∆F , may possibly be negative. In this case

however, the uncertainty evaluation is necessarily imprecise at the points (x1, y1),

(x2, y2). Equation (22) provides the same insight: when ∆F is negative, F is nec-

essarily greater than F at (x1, y2) and at (x2, y1).

Another difference between ∆F and ∆F or ∆F is that ∆F is the probability

of a half-open ‘rectangle’ with vertices (x1, y1), (x1, y2), (x2, y1), (x2, y2), and as

such must be 0 when there is no admissible value of X, Y in the rectangle (this is

condition (3) in Proposition 2, see also Remark 3). On the contrary, ∆F and ∆F

have no analogue meaning, and may be non-zero even when ∆F must be zero. One

key issue here is that F , F need not be distribution functions themselves for the

bivariate p-box (F , F ) to be coherent (recall again Example 1). The following simple

example illustrates this further, making use of an assumption of logical dependence:

Example 3. Let X, Y be binary random numbers, both with domain X = Y =

{1, 2}. Assume that X and Y are logically dependent, and cannot simultaneously

be equal to 2, i.e. (X = 2) ∧ (Y = 2) = ∅.

Given the following probabilities P1, P2 on X × Y:

(1, 1) (1, 2) (2, 1) (2, 2)

P1 0.25 0.50 0.25 0

P2 0.50 0.10 0.40 0

we obtain the corresponding cdfs F1, F2 and their lower (upper) envelope F (F ):

(1, 1) (1, 2) (2, 1) (2, 2)

F1 0.25 0.75 0.50 1

F2 0.50 0.60 0.90 1

F 0.25 0.60 0.50 1

F 0.50 0.75 0.90 1

Clearly, (F , F ) is a coherent bivariate p-box. Note that (X = 2) ∧ (Y = 2) =

(1 < X ≤ 2) ∧ (1 < Y ≤ 2) = ∅, and, as required by (3), we have in fact that

∆F1 = ∆F2 = 0.c As for F , F , we have instead ∆F = 1 + 0.25−0.60−0.50 = 0.15,

∆F = 1 + 0.50− 0.75− 0.90 = −0.15. �

cReferring to Remark 2, here A(1,1) = (X ≤ 1)∧ (Y ≤ 1) 6= A(2,2) = Ω, but (1A2 ∧ 1Ac
1)∧ (2A2 ∧

2Ac
1) = (1 < X ≤ 2) ∧ (1 < Y ≤ 2) = ∅.
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None of the four rectangle inequalities in Proposition 10 is implied by the remain-

ing ones. We show this for (I-RI3) and (I-RI4) in Example 4; similar examples can

be devised for the remaining inequalities. Since each inequality alone is necessary

for coherence, no subset of three or fewer such inequalities is in general sufficient

for the coherence of a bivariate p-box.

Example 4. Consider the functions F and F defined by:

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

F 0 0.3 0.45 0.3 0.6 0.75 0.45 0.8 1

F 0 0.3 0.5 0.3 0.6 0.85 0.5 0.85 1

Both F and F are standardized maps. In addition, F is a distribution function,

and consequently F and F satisfy Eqs. (I-RI1) and (I-RI2). It can be checked that

Eq. (I-RI4) is also satisfied. However, Eq. (I-RI3) is not: F (3, 3)+F (2, 2)−F (2, 3)−
F (3, 2) = 1 + 0.6− 0.85− 0.8 = −0.05 < 0.

Similarly, if we define F ∗ and F
∗

by F ∗(x, y) = F (y, x) and F
∗
(x, y) = F (y, x),

we obtain an example where Eqs. (I-RI1), (I-RI2) and (I-RI3) are satisfied but

(I-RI4) is not. �

A natural question arising at this stage is whether the rectangle inequalities

(I-RI1)÷(I-RI4) might have a role similar to inequality (RI) in Proposition 2. In

the precise case, (RI) together with standardisation is sufficient for characterizing

dF-coherence on D whenever (3) need not be checked, which happens in several

instances, including logical independence of X and Y (cf. Remark 3). We might ex-

pect that (I-RI1)÷(I-RI4) are sufficient for the coherence of a bivariate p-box under

similar conditions, for instance if X and Y are logically independent. Although it

is at present unclear whether this is true, we provide in Theorem 3 an affirmative

answer when one of the random numbers is binary. The following proposition is

preliminary to this.

Proposition 11. Let X, Y be two logically independent random numbers, jointly

taking all values in X ×Y = {x1, . . . , xn} × {y1, y2}. If their bivariate p-box (F , F )

satisfies (I-RI1)÷(I-RI4), then (F , F ) is coherent.

Proof. The proof is based on the following four statements:

(a) If (I-RI1) holds, there exists a cdf F1 such that F1(xi, y2) = F (xi, y2) (i =

1, . . . , n), and F ≤ F1 ≤ F .

(b) If (I-RI2) holds, there exists a cdf F2 such that F2(xi, y1) = F (xi, y1) (i =

1, . . . , n), and F ≤ F2 ≤ F .

(c) If (I-RI3) holds, there exists a cdf F3 such that F3(xi, y1) = F (xi, y1) (i =

1, . . . , n), and F ≤ F3 ≤ F .

(d) If (I-RI4) holds, there exists a cdf F4 such that F4(xi, y2) = F (xi, y2) (i =

1, . . . , n), and F ≤ F4 ≤ F .
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In fact, assuming for the moment that (a)÷(d) hold, F (F ) is the lower (resp.,

upper) envelope of {F1, F2} (resp., of {F3, F4}), while F ≤ Fi ≤ F , for i = 1, . . . , 4.

Therefore, recalling Definition 10 and Proposition 9, the thesis follows.

As for (a)÷(d), each of these statements can be proven with a constructive

procedure: a function Fi is obtained sequentially and it is verified that Fi is a cdf,

such that F ≤ Fi ≤ F .

The four proofs are similar in their structure, but lengthy, hence we shall report

the details for one of them.

Pseudo-Algorithm 1 Procedure defining F1

1: if ∆Ri

F ≥ 0 for all i then

2: F1 = F is a cdf;

3: else

4: Let h be the smallest positive integer such that ∆
Rn−1

F ≥ 0, . . . ,∆
Rn−h+1

F ≥ 0,

∆
Rn−h

F < 0;

5: Define F1 = F at all vertices of Rn−1, . . . , Rn−h+1.

6: Let k ≥ h be such that

∆
Rn−h

F < 0, . . . ,∆
Rn−h

F + . . .+ ∆
Rn−k

F < 0 (23)

and

either n− k = 1 or ∆
Rn−h

F + . . .+ ∆
Rn−k

F + ∆
Rn−k−1

F ≥ 0 (24)

7: for j = 0, . . . , k − h do

8: Define

F1(xn−h−j , y1) = F (xn−h−j , y1)−
j∑

s=0

∆
Rn−h−s

F (25)

and F1(·, y2) = F (·, y2) for the (·, y2) vertices of Rn−h, . . . , Rn−k.

9: end for

10: if n− k = 1 then

11: F1 is a cdf

12: else

13: Note that necessarily ∆
Rn−k−1

F > 0 (since ∆
Rn−h

F + . . . + ∆
Rn−k

F < 0,

(∆
Rn−h

F + . . .+ ∆
Rn−k

F ) + ∆
Rn−k−1

F ≥ 0)

14: Iterate the procedure with starting rectangle Rn−k−1 at the next itera-

tion, until R1 is reached.

15: end if

16: end if

In all four cases, the procedure operates with the elementary rectangles Ri,

i = 1, . . . , n − 1, with vertices (xi, y1), (xi, y2), (xi+1, y1), (xi+1, y2). We will refer
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to (xi, y1) as the South-West (SW) vertex of the rectangle Ri (and will describe

analogously the other vertices).

To shorten the notation, relabel the second order difference ∆F (xi, xi+1; y1, y2)

in terms of the rectangle Ri it refers to:

∆Ri

F := F (xi+1, y2) + F (xi, y1)− F (xi+1, y1)− F (xi, y2), (26)

while ∆Ri

F
(or more generally ∆Ri

F , F generic function) is defined replacing F with

F (with F ) in (26). The following fact will be exploited later on:

∆Ri

F +∆
Ri+1

F + . . .+∆
Ri+r

F = ∆F (xi, xi+r+1; y1, y2) for any given function F. (27)

Checking that (27) holds is immediate, as non-extreme terms cancel pairwise and

appear in exactly two contiguous rectangles in the left-hand summation.

Let us now prove statement (a).

Proof of (a). The idea is to obtain F1 by putting F1 = F when possible, and

modifying this assessment on (a subset of) the points (xi, y1) according to the values

of ∆Ri

F , for each i. This is to ensure ∆Ri

F1
≥ 0, for all i, which guarantees by (27)

that any ∆F1(xi, xi+h+1; y1, y2) is non-negative, one of the conditions for F1 to be

a cdf. We check the values ∆Ri

F sequentially, from i = n− 1 to i = 1.

Basically, this procedure (cf. Pseudo-Algorithm 1) identifies at each iteration

a sequence of non-regular rectangles (corresponding to differences ∆Ri

F < 0) and

defines F1 by means of (25) so that F1 6= F at the SW vertices of the non-regular

rectangles.

Let us check that F1 is then a cdf.

By construction F1 ≥ F . Then, it only remains to show that at a generic (xi, y1)

it holds that:

F1(xi, y1) ≤ min{F1(xi+1, y1), F1(xi, y2), F (xi, y1)} and ∆Ri

F1
≥ 0. (28)

If F1 = F at the vertices of rectangle Ri, there is nothing to prove ((28) holds for the

SW vertex (xi, y1) of Ri). We only have to check (28) for the SW vertices (xi, y1) of

each non-regular rectangle of each iteration, and (partly) for the SW vertex of the

first ‘regular’ rectangle after each sequence (Rn−k−1 at the first iteration). The latter

check is necessary because F1 6= F after the first iteration at the South-East vertex

of this rectangle (at (xn−k, y1) in the first iteration), which is the SW vertex of its

right-contiguous, and non-regular, rectangle. F1 6= F only at this vertex of the regu-

lar rectangle. Therefore, the check is partial: F1(xi, y1) ≤ min{F1(xi, y2), F (xi, y2)}
holds trivially. To keep the notation simpler, we shall illustrate this partial check

referring to Rn−k−1.

Let F1(xi, y1) 6= F (xi, y1). Note that the procedure followed in Pseudo-

Algorithm 1, Eq. (25), ensures that F1(xi, y1) = F (xi, y1)− (∆Ri

F + . . .+ ∆
Ri+r

F ) for

some r ∈ N+ (for instance, when i = n− k, r = k − h). Applying (27) we obtain

F1(xi, y1) = −F (xi+r+1, y2) + F (xi+r+1, y1) + F (xi, y2). (29)

We obtain further that:



June 24, 2015 11:36 WSPC/INSTRUCTION FILE bivariate2

26 Renato Pelessoni, Paolo Vicig, Ignacio Montes, Enrique Miranda

• F1(xi, y1) ≤ F (xi, y1): use for this inequality (I-RI1) to majorize the right-

hand term of (29).

• F1(xi, y2) − F1(xi, y1) = F (xi+r+1, y2) − F (xi+r+1, y1) ≥ 0 (using (29) at

the equality and F1(xi, y2) = F (xi, y2)), i.e. F1(xi, y1) ≤ F1(xi, y2).

• F1(xi, y1) ≤ F1(xi+1, y1). To prove this, we distinguish two cases:

1) If (xi, y1) is the SW vertex of a non-regular rectangle Ri,
d then

F1(xi+1, y1)− F1(xi, y1) = F (xi+1, y1)− (∆
Ri+1

F + . . .+ ∆
Ri+r

F )

− F (xi, y1) + ∆Ri

F + ∆
Ri+1

F + . . .+ ∆
Ri+r

F

= F (xi+1, y1)− F (xi, y1) + ∆Ri

F = F (xi+1, y2)− F (xi, y2) ≥ 0;

2) If (xi, y1) is the SW vertex of Rn−k−1 (in general, of the first regular

rectangle after an iteration), then F1(xn−k, y1) − F1(xn−k−1, y1) =

F (xn−k, y1)− (∆
Rn−h

F + . . .+ ∆
Rn−k

F )− F (xn−k−1, x1) ≥ 0, using the

monotonicity of F and (23) at the inequality.

• ∆Ri

F1
≥ 0. We distinguish two cases, like the preceding bullet.

1) If Ri is a non-regular rectanglee, then

∆Ri

F1
= F (xi+1, y2)− F (xi, y2)− F (xi+1, y1) + ∆

Ri+1

F + . . .

+∆
Ri+r

F +F (xi, y1)−(∆Ri

F +∆
Ri+1

F + . . .+∆
Ri+r

F ) = ∆Ri

F −∆Ri

F = 0;

2) If Ri = Rn−k−1, then

∆
Rn−k−1

F1
= F (xn−k, y2)−F (xn−k−1, y2)−F (xn−k, y1)+∆

Rn−h

F +. . .

+ ∆
Rn−k

F + F (xn−k−1, y1) = ∆
Rn−h

F + . . .+ ∆
Rn−k

F + ∆
Rn−k−1

F ≥ 0,

using the second condition in (24) at the inequality.

Proof of (b), (c), (d).

Similar to the proof of (a). The procedures for defining F2, F3, F4 again modify

either F or F at one vertex of each non-regular rectangle. A major difference is

whether a West or an East vertex is modified. For East vertices, the procedure

starts with R1, for West vertices with Rn−1 (like (a) - this is only the case of (c),

whose procedure modifies the North-West vertices).

The procedures starting with R1 are those for proving (b) and (d). We report

the procedure defining F2 in the proof of (b) (cf. Pseudo-Algorithm 2). It modifies,

at each iteration, the North-East vertex of each non-regular rectangle.

Proposition 11 allows us to establish the following:

d If Ri is the first non-regular rectangle of a sequence, ∆
Ri+1

F + . . . + ∆
Ri+r

F = 0 in the following

computation.
eSee footnote d.
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Pseudo-Algorithm 2 Procedure defining F2

1: if ∆Ri

F ≥ 0 for all i then

2: F2 = F is a cdf;

3: else

4: Let h ∈ N+ be such that ∆R1

F ≥ 0, . . . ,∆
Rh−1

F ≥ 0, ∆Rh

F < 0;

5: Define F2 = F at all vertices of R1, . . . , Rh−1.

6: Let k ≥ h be the smallest integer such that

∆Rh

F < 0, . . . ,∆Rh

F + . . .+ ∆Rk

F < 0

and

either k = n− 1 or ∆Rh

F + . . .+ ∆Rk

F + ∆
Rk+1

F ≥ 0

7: for j = 0, . . . , k − h do

8: Define

F2(xh+1+j , y2) = F (xh+1+j , y2)−
j∑

s=0

∆
Rh+s

F

and F2(·, y1) = F (·, y1) for the (·, y1) vertices of Rh, . . . , Rk.

9: end for

10: if k = n− 1 then

11: F2 is a cdf

12: else

13: Note that necessarily ∆
Rk+1

F > 0

14: Iterate the procedure with starting rectangle (at the second run) Rk+1,

until Rn−1 is reached.

15: end if

16: end if

Theorem 3. Let F , F : R×R→ [0, 1] be the bivariate p-box of a couple of logically

independent random numbers (X,Y ), with X arbitrary, i.e. X ⊆ R, and Y binary

(Y = {y1, y2}). Then,

(F , F ) is coherent ⇐⇒ F , F satisfy (I-RI1)÷ (I-RI4).

Proof. The direct implication has been established in Proposition 10. To prove the

converse, let us show that the lower probability P (F,F ) defined on E by Eq. (11)

is coherent. From Definition 4 (b), P (F,F ) is coherent iff ∀n, ∀s0, . . . , sn ≥ 0,

∀E0, . . . , En ∈ E , it holds that

max

[
n∑

i=1

si(IEi − P (F,F )(Ei))− s0(IE0 − P (F,F )(E0))

]
≥ 0. (30)

Now, for every Ei ∈ E (i = 0, . . . , n), there exist xi ∈ R, yj ∈ Y such that Ei ∈
{A(xi,yj), A

c
(xi,yj)

}.
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Define now X ′ = {x0, . . . , xn} and consider an auxiliary random number X ′,

taking values in X ′∩R (we assume X ′∩R 6= ∅ to avoid trivialities) and such that the

bivariate p-box (F ′, F
′
) of the couple (X ′, Y ) coincides with (F , F ) on X ′×Y. Then

F ′, F
′
satisfy conditions (I-RI1)÷(I-RI4), because they coincide with F , F on X ′×Y

and by Remark 3. By Proposition 11, (F ′, F
′
) is coherent, i.e. the lower probability

P (F ′,F
′
) associated with (F ′, F

′
) by (11) is coherent. But P (F ′,F

′
) = P (F,F ) on

the events E0, E1, . . . , En. Because of this (30) may be interpreted as a coherence

condition for P (F ′,F
′
) too, and as such it holds.

In particular, Proposition 11 also implies that conditions (I-RI1)÷(I-RI4) are

equivalent to the coherence of (F , F ) when the bivariate p-box describes a couple

of binary, logically independent random numbers, like for instance indicators of

events. With similar techniques it can be shown that the four conditions together

are equivalent to coherence when X = {x1, x2, x3} and Y = {y1, y2, y3}; the lengthy

proof is somewhat similar to that of Proposition 11.

Interestingly, we deduce from the proof of Proposition 11 that, under the con-

ditions of the result, each of (I-RI1)÷(I-RI4) is sufficient for the bivariate p-box

(F , F ) to avoid sure loss. This follows applying Proposition 6 since under each of

the four conditions we have established the existence of a distribution function F

bounded between F and F . To see that this result does not hold in general, not

even under logical independence of X and Y , note that the bivariate p-box in Ex-

ample 2 satisfies (I-RI1) although it does not avoid sure loss. It is easy to show with

appropriate examples that the other conditions are not sufficient either.

The further consistency properties of bivariate p-boxes we are about to discuss

concern also the restrictions of P (F,F ) to D and Dc, denoted PF and PF . In terms

of a p-box (F , F ) they are defined, for all x, y, by:

PF (A(x,y)) = F (x, y), PF (Ac
(x,y)) = 1− F (x, y). (31)

We shall also consider two extreme bivariate p-boxes, where the information sup-

plied by either F or F is vacuous.

Definition 11. (Vacuous p-boxes) Define F 0, F 1 by

F 0(x, y) =

{
0 if A(x,y) 6= Ω,

1 if A(x,y) = Ω
and F 1(x, y) =

{
1 if A(x,y) 6= ∅
0 if A(x,y) = ∅.

We say that a bivariate p-box (F , F ) is lower vacuous if F = F 0, and upper vacuous

if F = F 1.

Note that by (31) F 0, F 1 correspond to the vacuous lower probabilities on D and

Dc, which are well known to be coherent (see Walley 3, Section 2.9.1). It is easily

seen that F 0 is also a distribution function, unlike F 1, which may not be a cdf in

certain special cases, like the following one:
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Example 5. Let X = Y = {1, 2}, and assume that X and Y cannot take simulta-

neously the value 1. Then F 1 is not a distribution function: the rectangle inequality

(RI) gives F 1(2, 2) + F 1(1, 1)− F 1(1, 2)− F 1(2, 1) = −1 < 0. �

However, F 1 is a cdf in several common instances, in particular when it refers to

two logically independent random numbers.

The next proposition regards the consistency of the previously defined concepts.

Proposition 12. Let (F , F ) be the bivariate p-box describing two random numbers

X, Y and PF , PF the lower probabilities (on D, Dc, respectively) given by (31).

Then

(a) PF avoids sure loss.

(b) PF is coherent iff P (F 0,F ) is coherent.

If in addition X and Y are logically independent, then

(c) PF avoids sure loss.

(d) Any lower vacuous p-box (F 0, F ) is coherent.

Proof.

(a) It suffices to take into account that F 0 is a distribution function that is

dominated by F .

(b) PF is coherent if and only if for every (x, y) there is a distribution function

F ≤ F such that F (x, y) = F (x, y). The condition F ≤ F is equivalent to

F 0 ≤ F ≤ F , and on the other hand F 0 is trivially a distribution function.

We deduce from Proposition 9 that P (F 0,F ) is coherent if and only if F

is the upper envelope of the distribution functions in (F 0, F ), and as a

consequence we have the equivalence in (b).

(c) Under logical independence, F is dominated by the distribution function

F 1.

(d) Consider x, y ∈ R, and let us prove the existence of a distribution function

F such that F 0 ≤ F ≤ F and that F (x, y) = F (x, y). Let F : R×R→ [0, 1]

be defined by

F (x′, y′) =


F (x, y) if x′ ≥ x, y′ ≥ y, (x′, y′) 6= (+∞,+∞)

1 if (x′, y′) = (+∞,+∞)

0 otherwise.

Then F ≥ F 0 trivially, and since F is standardized, F ≤ F . By construction

F is monotone non-decreasing and F (x, y) = F (x, y). By Proposition 2 and

Remark 4, only the rectangle inequality (RI) still has to be checked to state

that F is a distribution function. Consider for this x1 < x2, y1 < y2 ∈ R.

There are three possibilities:
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– If x1 < x, then

F (x2, y2)+F (x1, y1)−F (x1, y2)−F (x2, y1) = F (x2, y2)−F (x2, y1) ≥ 0.

– Similarly, if y1 < y,

F (x2, y2)+F (x1, y1)−F (x1, y2)−F (x2, y1) = F (x2, y2)−F (x1, y2) ≥ 0.

– Finally, if x1 ≥ x and y1 ≥ y,

F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1)

= F (x2, y2)+F (x, y)−F (x, y)−F (x, y) = F (x2, y2)−F (x, y) ≥ 0.

Thus, F satisfies (RI) and therefore it is a distribution function.

From Proposition 12, we see that PF is not guaranteed to always avoid sure loss,

unlike PF . There is an asymmetry also between lower vacuous bivariate p-boxes,

always coherent under logical independence, and upper vacuous bivariate p-boxes,

which may not be coherent even when X and Y are logically independent. To see

this, let F be determined by the values

(1, 1) (1, 2) (2, 1) (2, 2)

F 0 0.6 0.6 1

Then (F , F 1) is not coherent, because it does not satisfy the necessary condi-

tion (I-RI2): F 1(2, 2) + F (1, 1)− F (1, 2)− F (2, 1) = −0.2 < 0.

Although Proposition 12 makes clear that there are some relationships between

bivariate p-boxes or their corresponding lower probabilities, on one hand, and the

restrictions of these lower probabilities on D or Dc, on the other, these connections

are not as tight as in the univariate case. In fact, Theorem 2 does not quite extend

to the bivariate case. Indeed, our results imply that, given a bivariate p-box (F , F ),

F , F distribution functions ⇒ P (F,F ) coherent ⇒ PF , PF coherent;

the second implication holds trivially, because restrictions (here PF , PF ) of a coher-

ent lower probability are coherent themselves. However, the converses of these two

implications do not hold in general: for the first one, it suffices to recall Example 1,

where the envelopes of a set of distribution functions are not distribution functions

themselves; for the second, use Example 4: there F is a distribution function and

we have logical independence, so both PF , PF are coherent, by Proposition 12.

However, we showed in the example that the bivariate p-box (F , F ) is not coherent.

It is also interesting to remark that in the univariate case vacuous p-boxes are

quite related to maxitive and possibility measures, as established by Troffaes et al. 6

In particular, Corollary 3.3 there establishes that the upper probability induced by

a univariate p-box is maxitive if and only if either F or F is 0–1-valued. Our results

show that such an equivalence does not hold in the bivariate case.
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3.5. Bivariate p-boxes and 2-monotonicity

In this section we explore the relationships between bivariate p-boxes and 2-

monotonicity. Recall that an uncertainty measure µ defined on a lattice of events C
is 2-monotone11 iff

µ(A ∨B) ≥ µ(A) + µ(B)− µ(A ∧B) ∀A,B ∈ C,

whilst µ is termed 2-alternating if the previous inequality is reversed.

The lower probability P (F,F ) induced by a bivariate p-box is defined on E , which

is not a lattice. Hence, in order to discuss 2-monotonicity of P (F,F ) we must refer

to an extension of P (F,F ) to some larger domain. In this section we shall consider

the natural extension E of P (F,F ) to the algebra Q generated by E . Since we have

established in Proposition 9 a correspondence between the sets M(P (F,F )) and F
given by Eqs. (7) and (15), we can apply Theorem 3.4.1 in Walley 3 to conclude

that

E := min{P ∗F : F distribution function, F ≤ F ≤ F}

where P ∗F denotes the unique extension from E to Q of the dF-coherent probability

PF defined by Eq. (13). Note that this extension is indeed unique by Thm. 11.2.2

in Crisma 10 (cf. also Denneberg 11 , Troffaes and Destercke 5 for similar results for

the univariate case), but this uniqueness does not hold beyond the algebra Q (see

Miranda et al. 13, Note 4).

In the univariate case p-boxes are tightly connected to 2-monotonicity: the na-

tural extension of P (F,F ) on Q is completely monotone, and hence also 2-monotone

(see Troffaes and Destercke 5, Thm. 17). Actually, as we know from Theorem 2,

PF , PF are even dF-coherent probabilities and F , F distribution functions. This

property is not necessarily ensured in higher dimensions, as we have seen.

In the bivariate case the natural extension of the lower probability P (F,F ) as-

sociated with the p-box (F , F ) may not be 2-monotone, even if both F , F are

distribution functions:

Example 6. Let F , F be the standardized maps for X, Y given by:

(1, 1) (1, 2) (2, 1) (2, 2)

F 0 0 0.5 1

F 0.25 0.25 0.5 1

To see that both F and F are distribution functions, note that

F (2, 2) + F (1, 1)− F (1, 2)− F (2, 1) = 0.5 > 0;

F (2, 2) + F (1, 1)− F (1, 2)− F (2, 1) = 0.5 > 0,

and that all the other possible comparisons are trivial. As a consequence, the lower

probability P (F,F ) they induce on E by Eq. (11) is coherent, and from Theorem 3.1.2

in Walley 3 , so is its natural extension E to Q. Moreover, E(C) = P (F,F )(C) for

every C ∈ E .
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Let us show that E is not 2-monotone. Denote a = (X = 1 ∧ Y = 1), b = (X =

1∧Y = 2), c = (X = 2∧Y = 1), d = (X = 2∧Y = 2) and take A = (Y = 1) = a∨c
and B = (X = 2) = c ∨ d. Then, using that A,B,A ∧B ∈ E ,

• E(A) = E(a ∨ c) = P (F,F )(a ∨ c) = F (2, 1) = 0.5.

• E(B) = E(c ∨ d) = P (F,F )(c ∨ d), which by conjugacy is equal to 1 −
P (F,F )(a ∨ b) = 1− F (1, 2) = 0.75.

On the other hand,

• E(A ∧ B) = E(c) ≤ PF (c) = 0.25, where PF is the probability induced by

the distribution function F .

• E(A∨B) = E(a∨c∨d) ≤ PF (a∨c∨d) = 0.75, where F ∈ F is the distribu-

tion function given by F (1, 1) = 0, F (1, 2) = 0.25, F (2, 1) = 0.5, F (2, 2) = 1

and PF is the probability it induces by means of Eq. (11).

As a consequence, we conclude that

E(A ∨B) + E(A ∧B) ≤ 1 < 1.25 = E(A) + E(B),

whence the lower probability induced by (F , F ) is not 2-monotone. �

Interestingly, in this example the natural extension E does not coincide with

the lower envelope of {PF , PF }: these are associated with the mass functions PF =

(0, 0, 0.5, 0.5) and PF = (0.25, 0, 0.25, 0.5), on {a, b, c, d}, whence

min{PF (A ∨B), PF (A ∨B)} = 1 > 0.75 = E(A ∨B).

This means that even if the bivariate p-box is determined by the distribution func-

tions F , F , the natural extension of its associated lower probability cannot always

be computed as the lower envelope of the probabilities PF , PF corresponding to F ,

F .

It is also interesting to proceed in the converse manner: instead of investigating

whether assessing a lower probability P (F,F ) on E , or equivalently a bivariate p-

box (F , F ), induces 2-monotonicity properties in a larger environment Q, we can

consider the effects of 2-monotonicity of a lower probability P defined in someQ ⊃ E
on its associated (F , F ). The following proposition answers this problem.

Proposition 13. Let Q be an algebra of events, Q ⊃ E. Then,

a) if P is a 2-monotone lower probability on Q, its restriction to D is a dF-

coherent probability;

b) if P is a 2-alternating upper probability on Q, its restriction to Dc is a

dF-coherent probability.

Proof. The proof of a) follows applying Corollary 7 in Scarsini 15 to our framework.

As for the proof of b), let now P be the lower probability conjugate of P , i.e.

P (E) = 1−P (Ec), ∀E ∈ Q. Since P is 2-alternating, P is 2-monotone by Prop. 2.3,
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(iii) in Denneberg 11. Hence, the restriction of P to D is a dF-coherent probability

by a). Since P is its unique dF-coherent extension to Dc, the thesis follows.

Remark 9. When the lower (upper) probability in Proposition 13 is 2-monotone

(2-alternating), its restriction to Dc (D) is not necessarily a dF-coherent proba-

bility. We prove this fact in the case of a 2-alternating upper probability with a

counterexample. Consider two random numbers X, Y , with X = Y = {1, 2, 3}.
Define first a dF-coherent P on (X = i ∧ Y = j), i, j = 1, 2, 3, and the related

F (i, j) = P (X ≤ i ∧ Y ≤ j):

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

P 0.1 0 0.15 0.2 0.2 0.05 0.15 0.1 0.05

F 0.1 0.1 0.25 0.3 0.5 0.7 0.45 0.75 1

Clearly, P is defined by additivity also on the powerset Q of {X = i ∧ Y = j :

i, j = 1, 2, 3}. Define now P (A) := min{1.25 ·P (A), 1}, ∀A ∈ Q. P is an instance of

pari-mutuel upper probability, which is well-known to be coherent and 2-alternating

(see Walley 3, Sec. 2.9.3; Pelessoni et al. 16).

The restriction of P on D is not a dF-coherent probability: if it were so, F (i, j) =

P (X ≤ i ∧ Y ≤ j) = min{1.25 · F (i, j), 1} would be a cdf, which is not. In fact F

does not satisfy the rectangle inequality (RI). Take for instance (2, 2) and (3, 3):

F (3, 3) + F (2, 2)− F (2, 3)− F (3, 2) = 1 + 0.625− 0.875− 0.9375 < 0. �

We are now in a position to comment a further difference between univariate and

bivariate p-boxes, regarding the way they may be obtained from restrictions of

functions defined on larger domains.

In the univariate case, let P be a capacity on A ⊃ E0 = {Ax, A
c
x : x ∈ R}

such that P (Ax) + P (Ac
x) ≤ 1 ∀x ∈ R. We get a couple of distribution functions

by applying Proposition 1 to F (x) = P (Ax), F (x) = 1 − P (Ac
x), while condition

P (Ax) + P (Ac
x) ≤ 1 ∀x ∈ R ensures that F ≤ F . Hence, (F , F ) is a p-box and the

restriction of P to E0 is a coherent lower probability by Theorem 2.

In the bivariate case, given a 2-coherent lower probability P on Q ⊃ E , its

restriction on E corresponds to a p-box (FP , FP ), using Eq. (12) and Proposition 5,

a). It is coherent if P is. However, even the stronger condition that P is 2-monotone

and Q is an algebra does not ensure that FP is a cdf, but only that FP is. For

this, notice that P (A(x,y)) = FP (x, y) is 2-alternating and apply Proposition 13

and Remark 9. Alternatively, a p-box can be obtained from the restriction to E
of a 2-alternating upper probability P , putting FP (x, y) := P (A(x,y)), FP (x, y) :=

1− P (Ac
(x,y)). In this way, FP is a cdf, FP not necessarily.

4. Conclusions

In this paper we have explored the extension of p-boxes to the bivariate environment,

as a way to describe couples of random numbers in the presence of imprecision in

their uncertainty evaluation.
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We have defined bivariate p-boxes (F , F ) by requiring some minimal conditions

to F , F , and have shown that this only guarantees a poor degree of consistency,

which may be equivalent to (or even weaker than) the still weak consistency notion

of 2-coherence of a lower probability. Because of this, we have focused on the more

restrictive notion of coherent bivariate p-boxes, for which we have established their

main properties. Although we exploited the correspondence with a coherent lower

probability in most of the derivations, we should remark that a p-box (F , F ) corre-

sponds also to a pair (P , P ) of lower and upper coherent probabilities. This can be

easily seen from Eq. (11) and the conjugacy relation P (A) = 1− P (Ac), and holds

for univariate p-boxes as well. One difference here is that in the univariate case P

and P are also precise dF-coherent probabilities (cf. the comment after Proposition

1 and Theorem 2, (c)). Hence, the notion of coherent bivariate p-box highlights a

consistency property which trivially holds with univariate p-boxes.

It is clear that adding a second dimension and/or allowing imprecise rather

than only precise assessments considerably raises the complexity of the properties of

coherent p-boxes. This appears in particular from the variety of results involving the

rectangle inequalities, and from the relationships with 2-monotonicity. It is unclear

at present whether a general characterization theorem for coherent bivariate p-boxes

can be found. In the paper, we prove one such theorem under the assumption of

logical independence, and when at least one of the random numbers is binary. In this

case the four imprecise rectangle inequalities, together with some mild conditions,

are sufficient for coherence. It is however patent that generally they are not. Just

think of the special case F = F : then these inequalities are all equal to the rectangle

inequality (RI) of Proposition 2, which is generally not sufficient for dF-coherence, in

this case equivalent to coherence. It seems also unlikely that an additional condition

similar to Eq. (3) may be found, given that the interpretation of ∆F or ∆F is not

alike to that of ∆F (cf. the discussion following Proposition 10). This question

remains an open problem at this stage. Other topics for future work, besides those

investigated in Montes et al. 8, are the extension of the concepts and properties

investigated here to the n-dimensional environment, and the use of bivariate p-

boxes in applications.
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