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Abstract

We contrast Williams’ and Walley’s theories of coherent lower previsions in the light of conglomerability. These are
two of the most credited approaches to a behavioural theory of imprecise probability. Conglomerability is the notion
that distinguishes them the most: Williams’ theory does not consider it, while Walley aims at embedding it in his theory.
This question is important, as conglomerability is a major point of disagreement at the foundations of probability, since
it was first defined by de Finetti in 1930. We show that Walley’s notion of joint coherence (which is the single axiom
of his theory) for conditional lower previsions does not take all the implications of conglomerability into account.
Considered also some previous results in the literature, we deduce that Williams’ theory should be the one to use when
conglomerability is not required; for the opposite case, we define the new theory of conglomerably coherent lower
previsions, which is arguably the one to use, and of which Walley’s theory can be understood as an approximation.
We show that this approximation is exact in two important cases: when all conditioning events have positive lower
probability, and when conditioning partitions are nested.

Keywords: Conglomerability, Williams’ and Walley’s theories of coherent lower previsions, sets of desirable gambles,
coherence, conglomerable natural extension, infinite conditioning partitions.

1. Introduction

Theories of coherent lower previsions

Recent years have witnessed a considerable amount of research devoted to model uncertainty using sets of
probabilities, which is sometimes referred to as imprecise probability. A leading approach in this line of research is
Peter Walley’s behavioural theory of coherent lower previsions [16]. A coherent lower prevision P is a lower expectation
functional: it is the lower envelope of the expectations obtained through a set of finitely additive probabilities. A
conditional coherent lower prevision P (·|B) is defined similarly: it can be understood as a set of conditional lower
expectation functionals P (·|B) relative to the events B in a partition B of the possibility space Ω. Walley’s core
modelling unit is, however, not a single conditional coherent lower prevision but a collection of them, such as
P (·|B1), . . . , P (·|Bm), which is obtained by considering m partitions of Ω.

These conditional lower previsions are not assumed to be derived from a single ‘joint’ model, as it is often the case
in traditional, precise, probability. The theory takes them as given, while providing tools to check whether they express
rational assessments, and otherwise to extend them in a least-committal way to a rational model—provided that there is
one. The former is done by checking whether the conditional lower previsions are jointly coherent. The latter is done
by a procedure of natural extension, which delivers the extended conditional lower previsions.

Joint coherence and natural extension are in fact the two pillars of Walley’s theory. From a purely logical point of
view, we can think of them respectively as the (single) axiom of the theory and its (single) inferential method.
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Walley developed his theory based on the earlier theory by Peter Williams [19] (these two theories are introduced
in some detail in Section 2.1) who, in turn, was influenced by de Finetti [3]. In fact, Williams was the first to lay down
the foundations for many of the concepts used nowadays, such as coherent lower previsions (that he called imprecise
previsions), joint coherence and natural extension, among others. In addition, and as a matter of fact, Williams’ theory
is still very lively, and some researchers argue that it should be Williams’ theory to be taken as the foundation for a
behavioural theory of imprecise probability rather than Walley’s (e.g., see [14]).

What are then the differences between these two theories? One is that Williams’ notion of coherence is based on
the combination of a finite number of conditional gambles, and the conditioning events are not required to be elements
of a partition. In this sense, Williams’ theory can be regarded as structure-free, unlike Walley’s. Most importantly,
if we formulate Williams’ theory under Walley’s terminology (that is, using partitions of conditioning events) the
difference that remains—a fundamental one—arises when some of the above partitions Bi (i = 1, . . . ,m) are infinite.
An important consequence is that the two theories coincide in case the space of possibilities Ω is finite. In a sense, we
could say that something as important as formalising a self-consistent behavioural theory of imprecise probability for
the finite case has been settled by Williams as long as 38 years ago, even though this has gone largely unnoticed outside
the community of imprecise probability so far.

When Ω (and in particular some partition Bi) is not finite, as it is very often the case in statistics, then we face a
dilemma. To better understand the terms of the question, we need to dig a bit more in some detail, as the question has
to do with the notion of conglomerability.

It was de Finetti that in 1930 [1] discovered a puzzling phenomenon related to finitely, but not countably, additive
probabilities. Denote by P a linear prevision, that is, the expectation taken with respect to a finitely additive probability,
and by P (·|B) a linear prevision conditional on an infinite partition B; this is defined in an analogous way. Let also f
denote a bounded random variable (we call it a gamble). De Finetti discovered that even if P, P (·|B) can be argued to
be a rational model (that is, two jointly coherent previsions in the sense of de Finetti and Williams), they may still lead
to the following relation:

P (f) /∈
[

inf
B∈B

P (f |B), sup
B∈B

P (f |B)

]
,

which obviously prevents P (f) from being understood as a mixture of the conditional expectations. De Finetti called
conglomerable a linear prevision P that cannot incur the previous situation.

The failure of conglomerability creates questionable, and controversial, situations (e.g., see [15, Section 2.2], [16,
Example 6.8.5]). The controversy has originated the two most important schools of behavioural imprecise probabilities
in the literature: on one side we find researchers like de Finetti who reject that conglomerability should be imposed as a
rationality axiom, and whose work is at the core of Williams’ approach to the imprecise case; on the other, we can find
Walley, for instance, who instead endorses such a practice (see [16, Sections 6.3.3 and 6.8.4] for a detailed view). The
consequence is that we now have two behavioural theories of imprecise probability, Williams’ and Walley’s, that differ
in the way they deal with conglomerability.1 The difference is not without importance: the conclusions these theories
may lead to can be very different on the same problem. Even more important, this has brought the quest for a standard
behavioural theory of coherent lower previsions to a standstill.

This state of affairs has recently been revived by two new insights about the long-standing question of conglomera-
bility. The first is an original justification of conglomerability through considerations of ‘(strong) temporal coherence’2

[20]: loosely speaking, the idea is that conglomerability should indeed be a rationality axiom whenever one assumes,
right from the start, that conditional beliefs will be used to determine his future behaviour. Here, given a conditioning
event B, by conditional beliefs we refer to the uncertain transactions, such as the offer of a gamble, that are called off
unless B occurs and that we would accept now (according to our current set of beliefs); it can be proven that if we use
these conditional beliefs as models of our future behaviour when later some element B in a partition is observed, then
if we do not require conglomerability the present and future behaviour can be clearly inconsistent with each other (in
spite of depending on beliefs established at the same time). This gives support to Walley’s theory—under the mentioned

1Note that requiring conglomerability makes also necessary to work with partitions of conditioning events, like in Walley’s theory. Hence,
the additional flexibility of Williams’ theory, given by its being structure-free, can be exploited only if one is willing, or allowed, to neglect
conglomerability.

2This notion of temporal coherence should not be confused with the one considered by Michael Goldstein in [5, 6].
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assumption—while going to the detriment of Williams’.3 On the other hand, the second insight tells us that Walley’s
procedure of natural extension does not fully take into account the implications of conglomerability [13]: this means
that a basic procedure to construct rational models in Walley’s theory is not always yielding models that comply with
Walley’s own rationality criteria.

Theories of coherent sets of desirable gambles
In order to better understand the last claim, we need to step back from coherent lower previsions to sets of desirable

gambles. This is also a behavioural theory of imprecise probability; a theory that is more general and more fundamental
than coherent lower previsions (and arguably also easier to deal with).

Unsurprisingly, there are two theories of coherent sets of desirable gambles (they are introduced in Section 2.2). In
fact, it was again Williams who introduced sets of desirable gambles, and defined the axioms they should satisfy to
express rational assessments: a set that satisfies these axioms is called coherent. In addition, and again not surprisingly
at this point, there is also a procedure of natural extension for sets of desirable gambles that extends in a least-committal
way an incoherent set to a coherent one, provided there is one.

Coherent sets of desirable gambles are the counterpart of Williams’ theory of coherent lower previsions in terms
of sets of gambles, in the sense that Williams’ theory of coherent lower previsions can mathematically be derived
from them.4 This is not the case of Walley’s theory, because Williams’ axioms for sets of desirable gambles do not
include any axiom of conglomerability. It was Walley in [16, Appendix F1], who showed that conglomerability can be
expressed in a very natural and general way as a further axiom of desirability.5 For this reason, we can say that Walley
settled the problem of formalising a behavioural theory of imprecise probability for sets of desirable gambles based on
conglomerability.

However, Walley did not investigate the rational extension of a set of desirable gambles under the further requirement
of conglomerability. This has been done recently in [13]: it is called the conglomerable natural extension of a set.

At this point one might expect that, as in the case of Williams’ theory, Walley’s theory of coherent lower previsions
can mathematically be derived from the theory of conglomerably coherent sets of desirable gambles. But this is
not the case: for Walley’s procedure of natural extension for coherent lower previsions can only be regarded as an
approximation to the actual procedure that follows from the conglomerable natural extension [13], and hence, as we
have mentioned already, it is not fully consistent with conglomerability.

A new theory of conglomerably coherent lower previsions
If we take all these insights seriously into account, what we should deduce is that whenever one takes for granted

that conditional beliefs will be used to determine future behaviour, (i) Williams’ theory of coherent lower previsions
is not the one we are after because it does not require conglomerability; and (ii) Walley’s theory of coherent lower
previsions does not seem to be such a theory either, in this case because conglomerability is not fully accounted for.

Which is the actual theory we should consider then? The answer follows directly from the previous discussion: the
theory of conglomerably coherent lower previsions that can be derived from conglomerably coherent sets of desirable
gambles. We define the basic notions of this new theory in Section 2.3: in particular, we define P (·|B1), . . . , P (·|Bm)
as conglomerably coherent when there is a set of desirable gambles that induces them and is conglomerably coherent;
and we say that these conditional lower previsions avoid conglomerable partial loss when they can be extended to
conglomerably coherent conditional lower previsions.

This is not the end of the story, however, and for two reasons:

(i) We have not investigated Walley’s notion of joint coherence in the light of conglomerability yet: for even if
Walley’s natural extension has a problem with conglomerability, it could still be the case that Walley’s definition
of joint coherence is the appropriate notion to use under conglomerability; or, in other words, that Walley’s joint
coherence coincides with conglomerable coherence.

3Note that the justification of conglomerability in [20], although somewhat related, is different from the one used by Walley in [16, Section 6.3.3]
(which is based on his updating and conglomerative principles), mainly because Walley’s work is not focused on temporal considerations.

4This has been detailed for the case of finite partitions, where Williams’ and Walley’s agree, in [11].
5Actually Walley formalised ‘full conglomerability’, that is, conglomerability with respect to all the possible partitions of Ω. This is a more

questionable concept than the weaker B-conglomerability, that is, conglomerability with respect to a given partition. For the time being, we are
neglecting these subtleties that will be better detailed later on.

3



(ii) Conglomerability is difficult to work with, as it has been made clear in [13]: the conglomerable natural extension
needs limits to be computed, so it is hardly going to give rise to closed formulas in general. If Walley’s coherence
agreed with conglomerable coherence, then we would have a case where conglomerability is instead easier to
deal with.

In order to analyse these questions, we need tools to convert P (·|B1), . . . , P (·|Bm) into a set of desirable gambles
R. This is described in Section 2.4.

We start our actual investigation in Section 3. We show that P (·|B1), . . . , P (·|Bm) avoid conglomerable partial loss
if and only if the conglomerable natural extension F ofR exists. Moreover, we show that P (·|B1), . . . , P (·|Bm) are
conglomerably coherent if and only if F not only exists but also induces them. We show also that the conglomerable
coherence of P (·|B1), . . . , P (·|Bm) implies their joint coherence in Walley’s sense.

We prove analogous results, for completeness, in the case of Williams’ theory. In this context the former role of
the conglomerable natural extension F is taken by the (simpler) natural extension E of R. In addition, we consider
what happens when we start with a set of desirable gambles rather than conditional lower previsions: we prove that a
coherent set of desirable gambles induces Williams-coherent conditional lower previsions P (·|B1), . . . , P (·|Bm); if
such a set is also conglomerable with respect to all the partitions B1, . . . ,Bm (we say that it is B1:m-conglomerable),
then P (·|B1), . . . , P (·|Bm) are jointly coherent in Walley’s sense.

However, we do not know yet whether conglomerable coherence and Walley’s joint coherence coincide or not.
We settle this problem in Example 1, which is the most important outcome of this paper: we illustrate a case where
the conditional lower previsions P (·|B1), . . . , P (·|Bm) are jointly coherent in Walley’s sense, but not conglomerably
coherent. The significance of this result is much related to the impact it has on Walley’s theory of coherent lower
previsions: it shows that also the second pillar of this theory, besides the natural extension, does not take all the
implications of conglomerability into account. It tells us that there are two behavioural theories of imprecise probability
that one should consider at this point: Williams’ theory for the case when conglomerability can be neglected, and the
new theory for the case when it cannot.

What is the role of Walley’s theory then? We show that it may be understood as an approximation to the actual theory
based on conglomerability: if the conditional lower previsions P (·|B1), . . . , P (·|Bm) are jointly coherent in Walley’s
sense, then they are induced by a set that satisfies a condition which is related to, but weaker than, conglomerability.

This approximation becomes exact in some important cases. In Section 4, we consider weakly coherent conditional
lower previsions P (·|B1), . . . , P (·|Bm). This notion is equivalent to the existence of an unconditional lower prevision
P on L(Ω) that is compatible with them (in a way that will be detailed later). Under the assumption that P assigns
positive probability to all events in ∪mi=1Bi, it turns out (see Theorem 13) that P (·|B1), . . . , P (·|Bm) are not only jointly
coherent in Walley’s sense, but also conglomerably coherent. This tells us that Walley’s coherence can break down only
when some conditioning event is given zero lower probability. Apart from clarifying the scope of the technical issues
originated by conglomerability, this result has practically useful consequences: whenever zero probabilities are not
originated in a problem, in the sense that all the conditioning events have positive lower probability, we can live with
Walley’s simpler notion of coherence, as it will be equivalent to conglomerable coherence.

In Section 5, we focus on another important special case: when the partitions are nested, that is, finer and finer.
This situation is common in some applications of probability. Under these conditions, and through quite an involved
proof, we show again that Walley’s joint coherence is equivalent to conglomerable coherence; in addition we provide
the explicit expression for the conglomerable natural extension of setR.

Our concluding comments are in Section 6, and all the proofs can be found in the Appendix.

2. Behavioural theories of imprecise probability: basic notions

In this section we introduce several concepts needed for later developments. In particular, we give a brief introduction
to coherent lower previsions in Section 2.1 and to the more general model of sets of desirable gambles in Section 2.2.
In these sections, we describe together both the theories of Walley and Williams (which can both be discussed either
at the level of coherent lower previsions or at that of desirable gambles). We do this because these two theories are
formally very similar, although they differ with respect to the notion of conglomerability. In Section 2.3 we define
a new uncertainty theory based on conditional lower previsions and conglomerability. In Section 2.4 we give some
notation and preliminary results.
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We refer the interested reader to [16] for an in-depth study of Walley’s theory (see [7] for a survey), and to [14, 19]
for Williams’ theory.

2.1. Coherent lower previsions
2.1.1. The behavioural interpretation

Given a possibility space Ω, a gamble f is a bounded real-valued function on Ω. This function represents a random
reward f(ω), which depends on the a priori unknown value ω of Ω. We shall denote by L(Ω) the set of all gambles on
Ω, or by L when there is no confusion about the possibility space we are dealing with (or because we want to write
a statement independently of a specific possibility space), and by L+(Ω) (or just L+) the set of so-called positive
gambles: {f ∈ L : f 
 0}.6 A lower prevision P is a real functional defined on some set of gambles; throughout this
paper, we shall only deal with the case of full domains, where the lower previsions are always defined on the entire set
L. A lower prevision is used to represent a subject’s supremum acceptable buying prices for these gambles, in the sense
that for all ε > 0 and all f in L the subject is disposed to accept the uncertain reward f − P (f) + ε, or, in other words,
he desires to buy the gamble f in exchange of P (f)− ε.

From any lower prevision P we can define an upper prevision P using conjugacy: P (f) := −P (−f). P (f) can be
interpreted as the infimum acceptable selling price for the gamble f . Because of this relationship, it will suffice for the
purposes of this paper to concentrate on lower previsions for the most part.

We can also consider the supremum buying prices for a gamble, conditional on an element of a partition B of
Ω. Given such a set B ∈ B and a gamble f on Ω, the lower prevision P (f |B) represents the subject’s supremum
acceptable buying price for the gamble f , provided he later comes to know that the unknown value ω belongs to
B, and nothing else. Equivalently, it can also be seen as the supremum value of ε for which our subject is disposed
to accept the transaction given by the gamble B(f − ε),7 where to simplify the notation we use B to denote also
the indicator function IB of the set B. If we consider a partition B of Ω (for instance a set of categories), then we
shall represent by P (f |B) the gamble on Ω that takes the value P (f |B) if and only if ω belongs to the element B
of the partition B. The functional P (·|B) that maps any gamble f on its domain into the gamble P (f |B) is called a
conditional lower prevision. To any conditional lower prevision P (·|B) we can associate a conditional upper prevision
P (·|B) by P (f |B) := −P (−f |B). It will represent the infimum acceptable selling price for the gamble f contingent
on the element of the partition B that we observe.

A gamble f on Ω is called B-measurable when it is constant over the elements of B. This is for instance the case of
the conditional lower prevision P (f |B).

We shall also use the notations

G(f |B) := B(f − P (f |B)), G(f |B) :=
∑
B∈B

G(f |B) = f − P (f |B)

for all f ∈ L and all B ∈ B. By G(f |B) we represent the transaction where the gamble f is bought at price P (f |B)
under the assumption that B happens, and which is called off otherwise. By definition of conditional lower prevision,
G(f |B) + εB is desirable for our subject for all ε > 0: we say that G(f |B) is an almost-desirable gamble, in the
sense that shall be detailed in Section 2.2. Moreover, G(f |B) + ε =

∑
B∈B(G(f |B) + εB) is desirable according

to Walley, given that it is defined piece-wise on a partition of Ω by means of desirable gambles. Since this holds for
all ε > 0, then also G(f |B) is almost-desirable for Walley. The situation is different in the case of Williams, because
he assumes that sums of desirable gambles are desirable only when these sums are finite. In other words, G(f |B) is
almost-desirable for Williams if B is finite. This is in fact the crucial difference in the theories by Williams and Walley:
Williams’ theory is entirely finitary in this respect, while Walley’s is not. This difference is tightly related to Walley’s
acceptance (and Williams’ neglect) of the notion of conglomerability introduced later on.

In the case of an unconditional lower prevision P , we shall let G(f) := f − P (f) for any gamble f in its
domain. This is equivalent to have a conditional lower prevision P (·|B) with B = {Ω}. Moreover, in this case
G(f |{Ω}) = G(f).

6In this paper we shall use f < g to denote that f(ω) < g(ω) for all ω ∈ Ω, and f ≤ g when f(ω) ≤ g(ω) for all ω ∈ Ω. The notation f � g
(often adopted when either f = 0 or g = 0) is used in the case f ≤ g, f 6= g, and similarly f 
 g means that f ≥ g, f 6= g.

7These are called the updated and contingent interpretations of the conditional lower prevision, and represent our subject’s beliefs at the present
time, even if they take into account future scenarios.
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These assessments modelled by a conditional lower prevision P (·|B) can be made for many different partitions of
Ω, and therefore it is not uncommon to model a subject’s beliefs using a finite number of different conditional lower
previsions. We should verify then that all the assessments modelled by these conditional lower previsions are coherent
with one another. In this section we review the different consistency criteria.

2.1.2. Separate coherence
The first requirement we make is that for any partition B, the conditional lower prevision P (·|B) defined on L

should be separately coherent.

Definition 1 (Separate coherence). A conditional lower prevision P (·|B) with domain L is separately coherent if for
all B ∈ B, f, g ∈ L, and λ > 0:

P (f |B) ≥ inf
B
f, (SC1)

P (λf |B) = λP (f |B), (SC2)
P (f + g|B) ≥ P (f |B) + P (g|B). (SC3)

Separate coherence implies that, contingent on B, a subject’s supremum acceptable buying price for a gamble f cannot
be raised by taking into account his other acceptable transactions, and also that he should be prepared to bet on B at all
odds after having observed it.

It is also useful for this paper to explicitly consider the particular case where B = {Ω}, that is, when we have
unconditional information. We have then a(n unconditional) lower prevision P on L. Separate coherence is simply
called then coherence:

Definition 2 (Coherence for a lower prevision). An unconditional lower prevision P with domain L is coherent if for
all f, g ∈ L, and λ > 0:

P (f) ≥ inf f, (C1)
P (λf) = λP (f), (C2)
P (f + g) ≥ P (f) + P (g). (C3)

Its interpretation is similar to that of separate coherence, now with B = Ω. Equivalently, P is coherent if and only if
for every f0, f1, . . . , fn in L, it holds that

sup
Ω

[
n∑
i=1

G(fi)−G(f0)

]
≥ 0.

2.1.3. (Williams-)Avoiding partial loss
Let B1, . . . ,Bm be partitions of Ω and let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower previsions

on L. With each partition Bi, i ∈ {1, . . . ,m}, and gamble f ∈ L, we associate the notion of support:

Definition 3 (Support). Define the Bi-support Si(f) of a gamble f ∈ L as

Si(f) := {Bi ∈ Bi : Bif 6= 0},

i.e., it is the set of elements of the partition where f is not identically equal to the zero gamble.

Definition 4 (Williams-avoiding partial loss for lower previsions). We say that P (·|B1), . . . , P (·|Bm) Williams-
avoid partial loss8 if for all f1, . . . , fm ∈ L with finite supports, and not all of them equal to the zero gamble, there is
some B ∈ ∪mj=1Sj(fj) such that

sup
B

 m∑
j=1

G(fj |Bj)

 ≥ 0.

8Although Williams’ conditions are not usually expressed in terms of partitions [18], we have opted for uniformity to use a similar notation as in
Walley’s work.
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Observe that the requirement that f1, . . . , fm ∈ L have finite supports implies that the generic term G(fj |Bj) is
equivalent to a finite sum:

G(fj |Bj) =
∑
Bj∈Bj

G(fj |Bj) =
∑

Bj∈Sj(fj)

G(fj |Bj),

considered that G(0|Bj) = 0 because of separate coherence. As we have discussed already, this implies that G(fj |Bj)
is almost-desirable under Williams’ theory. In this light, we can see that the intuition behind the above definition is that
for every combination of transactions that are almost-desirable to our subject, there should be an event B where the
transactions are not trivial (i.e., not all equal to zero), conditional on which the subject cannot lose utiles for all the
possible outcomes of the experiment.

The counterpart of this notion in the case of Walley’s theory is the following:
Definition 5 (Avoiding partial loss for lower previsions). Let P (·|B1), . . . , P (·|Bm) be conditional lower previsions.
They are said to avoid partial loss if for all f1, . . . , fm ∈ L, not all of them equal to the zero gamble, there is some
B ∈ ∪mj=1Sj(fj) such that

sup
B

 m∑
j=1

G(fj |Bj)

 ≥ 0.

The intuition here is the same as before. Yet, by dropping the requirement that the supports be finite, Walley implicitly
assumes that the generic term G(fj |Bj) must be almost-desirable even when it is equal to an infinite sum of almost-
desirable gambles.

2.1.4. Weak and strong coherence
We next give two notions that generalise the concept of separate coherence to multiple conditional lower previsions:

Definition 6 (Weak coherence). Let P (·|B1), . . . , P (·|Bm) be conditional lower previsions. We say that they are
weakly coherent if for all f0, f1, . . . , fm ∈ L and B0 ∈ Bj for some j ∈ {1, . . . ,m}, it holds that

sup
Ω

[
m∑
i=1

G(fi|Bi)−G(f0|B0)

]
≥ 0. (1)

With this condition we require that our subject should not be able to raise his supremum acceptable buying price
P (f0|B0) for a gamble f0 contingent on B0 by taking into account the implications of other conditional assessments:
if Eq. (1) does not hold and the supremum is strictly negative then we can deduce that there is some ε > 0 such
that G(f0|B0) − ε is also a desirable gamble, which means that P (f0|B0) + ε is an acceptable buying price for f0

contingent on B0.
The following lemma rephrases, for the case of partitions, a characterisation of weak coherence given in [9,

Theorem 1] in terms of variables.

Lemma 1. P (·|B1), . . . , P (·|Bm) are weakly coherent if and only if there is some coherent lower prevision P on L
such that for all j = 1, . . . ,m, it holds that

P (G(f |Bj)) = 0 and P (G(f |Bj)) ≥ 0 (2)

for all f ∈ L and Bj ∈ Bj .

However, under the behavioural interpretation, weakly coherent conditional lower previsions can still present some
forms of inconsistency with one another. See [16, Chapter 7], [10] and [17] for some discussion. On the other hand,
weak coherence neither implies nor is implied by the notion of avoiding partial loss. Because of these two facts, we
consider another notion which is stronger than both, and which is called (joint or strong) coherence:
Definition 7 (Coherence for lower previsions). Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower
previsions on L. We say that they are coherent9 if for all f0, f1, . . . , fm ∈ L, and for every B0 ∈ Bj for some

9The distinction between (joint) coherence and the unconditional notion of coherence from Definition 2 will always be clear from the context. It
is also useful to note that the latter is a special case of Eq. (3) obtained when m = 1 and B1 = {Ω}. More generally, when m = 1, Eq. (3) can be
used as a characterisation of separate coherence.
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j ∈ {1, . . . ,m}, there is some B ∈ {B0}
⋃
∪mj=1Sj(fj) such that

sup
B

 m∑
j=1

G(fj |Bj)−G(f0|B0)

 ≥ 0. (3)

The coherence of a collection of conditional lower previsions implies their weak coherence; although the converse
does not hold in general, it does in the particular case when we only have a conditional and an unconditional lower
prevision P , P (·|B). To see this, it is enough to reconsider Lemma 1 in the light of the following result by Walley:

Theorem 1 ([16, Theorem 6.5.3]). Consider an unconditional coherent lower prevision P on L and a separately
coherent conditional lower prevision P (·|B) on L. P , P (·|B) are coherent if and only if for all f ∈ L and all B ∈ B it
holds that

P (G(f |B)) = 0 (GBR)
P (G(f |B)) ≥ 0. (CNG)

Condition (GBR) is called the Generalised Bayes Rule. When P (B) > 0, (GBR) can be used to determine the
value P (f |B): it is then the unique value µ ∈ R for which P (B(f − µ)) = 0 holds.

On the other hand, (CNG) represents a condition of conglomerability of P with respect to the conditional lower
prevision P (·|B). More generally speaking, we have the following definition:

Definition 8 (Conglomerability for lower previsions). Let P be a coherent lower prevision on L, and B a partition of
Ω. We say that P is B-conglomerable if whenever f ∈ L and B1, B2, . . . , are distinct sets in B such that P (Bn) > 0
and P (Bnf) ≥ 0 for all n ≥ 1, it holds that P (

∑∞
n=1Bnf) ≥ 0.

Note that P is trivially B-conglomerable when B is finite, because of the super-additivity (C3) of coherent lower
previsions. On the other hand, the assumption of P (Bn) > 0, which effectively allows us to deal with countable
partitions only, is related to the relationship of conglomerability with sets of strictly desirable gambles; see [16,
Section 6.8] and Section 2.2 for more information.

Conglomerability and coherence are connected through the following:

Theorem 2 ([16, Theorem 6.8.2]). Let P be a coherent lower prevision on L. Then P is B-conglomerable if and
only if there is a separately coherent conditional lower prevision P (·|B) coherent with P , that is, such that (GBR)
and (CNG) hold.

This result helps to see more clearly the connection between this definition of conglomerability for coherent lower
previsions and that of the precise case we have recalled in the first part of the Introduction (see also [4]). The latter is
equivalent to the equality

P (f) = P (P (f |B)) (4)

for every gamble f , or, in other words, to P (f − P (f |B)) = 0. When we extend this to the imprecise case, we require
that P (f − P (f |B)) ≥ 0 (i.e., condition (CNG)) and moreover that P (B(f − P (f |B))) = 0 for every B (GBR).
Conglomerability in the precise case means that P satisfies (4) with respect to some conditional linear prevision P (·|B);
it can be checked that if we want a similar property in the imprecise case we must require the inequality in Eq. (CNG).
On the other hand, since P only determines P (·|B) uniquely by means of (GBR) when P (B) > 0, if we want to give
a condition in terms of the unconditional model only we must focus on the conditioning events with positive lower
probability. This is another reason for the condition in Definition 8.

The situation is more complicated when we consider two conditional lower previsions. Yet, we can still provide
a relatively simple link between coherence and weak coherence, provided that we make some further assumption of
positivity (the following result is related to [8, Theorem 11]):

Proposition 1. Let B1,B2 be two partitions of Ω, and let P (·|B1), P (·|B2) be two separately coherent conditional
lower previsions. Assume they are weakly coherent with some coherent lower prevision P satisfying P (B) > 0 for all
B ∈ B1 ∪ B2 except for one B. Then P (·|B1), P (·|B2) are coherent.
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Let us finally give the notion of coherence corresponding to Williams’ theory, which can be obtained from Walley’s
notion by restricting the attention to finite supports (and hence sums):

Definition 9 (Williams-coherence for lower previsions). Consider separately coherent conditional lower previsions
P (·|B1), . . . , P (·|Bm) on L. We say that they are Williams-coherent if for all f0, f1, . . . , fm with finite supports, and
for every B0 ∈ Bj for some j ∈ {1, . . . ,m}, there is some B ∈ {B0}

⋃
∪mj=1Sj(fj) such that

sup
B

 m∑
j=1

G(fj |Bj)−G(f0|B0)

 ≥ 0. (5)

An equivalent formulation of the previous definition is the following:

Theorem 3. Consider separately coherent P (·|B1), . . . , P (·|Bm) on L. They are Williams-coherent if and only if for
all g0, . . . , gn ∈ L, Bi ∈ ∪mj=1Bj , i = 0, . . . , n, it holds that

sup
B

[
n∑
i=1

G(Bigi|Bj(i))−G(B0g0|Bj(0))

]
≥ 0, (6)

where B := ∪ni=0Bi and j(i) denotes an element of {1, . . . ,m} for which Bi ∈ Bj(i).

2.1.5. Linear previsions
Given a conditional lower prevision P (·|B) with domain L, we define its conjugate conditional upper prevision

by P (f |B) := −P (−f |B) for every f ∈ L. As we said at the beginning of the section, the value P (f |B) can be
interpreted as the infimum acceptable selling price for the gamble f contingent on B. When the supremum acceptable
buying price for a gamble coincides with the infimum acceptable selling price, we obtain the so-called conditional
linear previsions.

Definition 10 (Linear conditional previsions). We say that a conditional lower prevision P (·|B) with domain L is
linear if and only if it is separately coherent and moreover P (f + g|B) = P (f |B) + P (g|B) for all B ∈ B and
f, g ∈ L.

When a separately coherent conditional lower prevision P (·|B) is linear we shall denote it by P (·|B); in the
unconditional case, we shall use the notation P . It can be checked that for conditional linear previsions Definitions 5
and 7 are equivalent: they are coherent if and only if they avoid partial loss.

Conditional linear previsions correspond to conditional expectations with respect to a probability. In particular,
an unconditional linear prevision P is the expectation with respect to the finitely additive probability which is the
restriction of P to events.

2.1.6. Extension of conditional lower previsions
We next show how to determine the behavioural consequences of the assessments modelled by some conditional

lower previsions.

Definition 11 (Natural extension for lower previsions). Consider separately coherent conditional lower previsions
P (·|B1), . . . , P (·|Bm) on L that avoid partial loss. Their natural extensions are defined, for every gamble f and every
B0 ∈ Bk, with k ∈ {1, . . . ,m} by

E(f |B0) := sup

α : ∃f1, . . . , fm ∈ L, B ∈ {B0}
⋃
∪mj=1Sj(fj) s.t. sup

B

 m∑
j=1

G(fj |Bj)−B0(f − α)

 < 0

 .

(7)

The natural extensions are conditional lower previsions that ‘correct’ the initial assessments by taking into account
the implications of Walley’s notion of coherence (and as a consequence—but only partly—conglomerability). For this
reason, they dominate P (·|B1), . . . , P (·|Bm), and moreover coincide with them if and only if P (·|B1), . . . , P (·|Bm)
are coherent. More in general, they constitute a lower bound of any coherent lower previsions Q(·|B1), . . . , Q(·|Bm)
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that dominate P (·|B1), . . . , P (·|Bm), even if they may not provide the smallest dominating coherent conditional lower
previsions [16, Example 8.1.3]. This contrasts with Williams’ notion of coherence, for which we can determine the
smallest dominating Williams’ coherent conditional lower previsions; see [18, Section 4] and Theorem 7 later on.

We can also use the notion of natural extension to define an unconditional coherent lower prevision E out of
P (·|B1), . . . , P (·|Bm). To this end, it is enough to take B0 equal to Ω and to apply (7). This will create the so-
called unconditional natural extension E of P (·|B1), . . . , P (·|Bm), i.e., a lower prevision on L that embodies the
coherent implications of P (·|B1), . . . , P (·|Bm) on unconditional assessments. The form of the unconditional natural
extension can be seen in the proof of Lemma 1 in the Appendix (Eq. (A.1)). When the conditional lower previsions
P (·|B1), . . . , P (·|Bm) are coherent, E is the smallest coherent lower prevision that is coherent with them.

2.2. Sets of desirable gambles

The above theories can be generalised using sets of desirable gambles. In the theory of sets of desirable gambles, it
is assumed that we evaluate the gambles in a set Q ⊆ L(Ω), coming up with a subsetR ⊆ Q of those that represent
acceptable transactions for us, i.e., the gambles that we desire. In case Q = L(Ω), the rationality of our desirability
assessments is characterised by four axioms.

Definition 12 (Coherence for gambles). LetR be a set of gambles. We consider the following rationality axioms for
desirability:

D1. L+ ⊆ R.

D2. 0 /∈ R.

D3. f ∈ R, λ > 0⇒ λf ∈ R.

D4. f, g ∈ R ⇒ f + g ∈ R.

A set of desirable gambles satisfying these four axioms is called coherent relative to L(Ω), or simply coherent.

These axioms are actually derived from a more primitive definition of coherence for R [11, Definition 12] that
holds for any subset Q of L(Ω). A set that satisfies such a definition is called coherent relative to Q. In the following
we shall mostly focus on sets of gambles coherent relative to L(Ω), although on some occasions we shall consider the
remaining situation. We shall point out when this is the case.

Given a set of desirable gamblesR, we define

posi(R) :=

{
n∑
k=1

λkfk : fk ∈ R, λk > 0, n ≥ 1

}
.

We call R a convex cone if it is closed under positive linear combinations, meaning that posi(R) = R. This is
equivalent toR satisfying conditions D3 and D4. Therefore we see that coherent sets of gambles are convex cones that
include all the positive gambles, thanks to D1, and exclude all f ≤ 0; the latter is a consequence of D1, D2 and D4 (see
[11, Corollary 2]).

It may happen thatR is not coherent; in this case, it is important that it can at least be extended into a coherent set.
We formalise this property by the following definition:

Definition 13 (Avoiding partial loss for gambles). LetR be a set of gambles. We say thatR avoids partial loss if it
is included in a coherent set.

In fact, in this case (and only then) it is possible to extend R into a coherent set. The way to do it exploits the
natural extension:

Definition 14 (Natural extension for gambles). LetR be a set of gambles. The set posi(R∪L+) is called the natural
extension ofR, and corresponds to its smallest coherent superset—providedR avoids partial loss.

A set of desirable gamblesR avoids partial loss if and only if its natural extension does not include the zero gamble
(and hence all f ≤ 0) [11, Proposition 3(d)]. Equivalently,R avoids partial loss if and only if there is no gamble f ≤ 0
in posi(R).
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The description done so far about sets of desirable gambles can be understood as a synthetic overview of the
foundations of Williams’ theory. This theory is finitary, as we have mentioned already, in particular because axiom D4,
once we use it recursively, says that a finite sum of desirable gambles is desirable.

This limitation to finite sums may however be perceived as too restrictive in some cases, for example when we
consider special gambles like Bf , where B is an element of a partition B of Ω. Bf should better be understood as a
conditional gamble: in fact it rewards our subject with f in case B happens, and the transaction is instead zero (i.e., it
is called-off) when B does not.10

Now, say that our subject desires gamble Bf for all B ∈ B. Should we deduce from this that he desires f? Of
course we should do it when B is finite, because this is entailed by D4, but what about the case of an infinite B? Here
the situation is controversial: Williams does not assume that such an f should be desirable in the infinite case, while
Walley does (and this is the key difference between Definitions 7 and 9). In order to do so, Walley introduces a further
axiom in his theory, besides D1– D4, which is an axiom of conglomerability:

Definition 15 (Conglomerability for gambles). LetR be a coherent set of desirable gambles and B a partition of Ω.
R is called B-conglomerable when it satisfies the following axiom:

D5. f ∈ L, Bf ∈ R ∪ {0} for all B ∈ B ⇒ f ∈ R ∪ {0}.

Observe that D5 is a consequence of D4 when B is finite. This notion can be used to define a special type of natural
extension [13]:

Definition 16 (Conglomerable natural extension for gambles). Given a set of desirable gamblesR and a partition B
of Ω, the B-conglomerable natural extension ofR, if it exists, is the smallest set F that containsR and satisfies D1–D5.

Walley’s idea for a general theory of uncertainty is then summarised by axioms D1–D5 that we can find for example
in [16, Appendix F1], with an important difference however: Walley requires D5 with respect to all the possible
partitions of Ω, which is sometimes referred to as ‘full conglomerability’. Throughout this paper instead, we stick to
the weaker notion of ‘partial conglomerability’ where conglomerability is required only with respect to the collection
of partitions under consideration. This difference is important and yet it is a relatively minor point in the context of this
paper. For this reason, in the following we shall sometimes neglect the difference and just say that Walley’s theory is
based on axioms D1–D5.

Now we proceed to establish the relations between the different concepts of conglomerability for lower previsions
and for sets of desirable gambles. In order to do this, we introduce two additional concepts for sets of desirable gambles.

Definition 17 (Strict and almost desirability). A setR is called a coherent set of strictly desirable gambles when it is
coherent and moreover

∀f ∈ R \ L+ ∃ ε > 0 : f − ε ∈ R,

and it is called a set of almost-desirable gambles when it satisfies axiom

D0′. f + ε ∈ R ∀ε > 0⇒ f ∈ R,

the following modified versions of axioms D1 and D2:

D1′. inf f > 0⇒ f ∈ R,

D2′. sup f < 0⇒ f /∈ R,

as well as axioms D3 and D4.

Note that a set of almost-desirable gambles is not a coherent set of desirable gambles: axioms D0′–D1′ imply that any
set of almost-desirable gambles includes the zero gamble, and as a consequence it violates D2.

Given a coherent lower prevision P , we define its associated coherent set of strictly desirable gambles by

R := L+ ∪ {f ∈ L : P (f) > 0} , (8)

10It is useful to observe that the ‘conditional’ gamble Bf ∈ L(Ω) can be represented also through the gamble fB ∈ L(B) defined by
fB(ω) := f(ω) for all ω ∈ B. At the same time, one should keep in mind that Bf and fB are two logically different objects, because the gamble
Bf is defined for all ω ∈ Ω, while fB is not defined outside B.
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and its associated set of almost-desirable gambles by

R := {f ∈ L : P (f) ≥ 0} . (9)

Moreover,R ⊆ R, andR contains all non-negative gambles and is closed under dominance.
Conversely, given a coherent set of desirable gamblesR, we can define a lower prevision by

P (f) := sup {µ : f − µ ∈ R} for all f ∈ L. (10)

It follows from [11, Theorem 6] that P is a coherent lower prevision. Moreover, if we consider the setsR andR given
by Eqs. (8) and (9), it follows from [16, Theorem 3.8.1] that

sup {µ : f − µ ∈ R} = P (f) = sup
{
µ : f − µ ∈ R

}
.

As a consequence, any set R such that R ⊆ R ⊆ R induces the same lower prevision P by means of (10) [16,
Theorem 3.8.1].

The set R is the closure of R (and as a consequence also of any R ⊆ R ⊆ R) in the topology of uniform
convergence [11, Proposition 4]:

R = {f ∈ L : f + ε ∈ R for all ε > 0} ,

and on the other hand:
R = L+ ∪ {f ∈ R : f − ε ∈ R for some ε > 0} ,

for anyR ⊆ R ⊆ R.
Hence, any coherent lower prevision is in correspondence with an infinite class of coherent sets of desirable

gambles: all the coherentR such thatR ⊆ R ⊆ R.
We can finally use the notion of strict desirability in order to define a variant of the notion of conglomerability for

sets of desirable gambles:

Definition 18 (Weak conglomerability). A set of desirable gamblesR is called weakly B-conglomerable if and only
ifR is B-conglomerable.

It follows that for a set of strictly desirable gambles, conglomerability and weak conglomerability coincide. We have
the following characterisation of weak conglomerability:

Theorem 4 ([13, Theorem 2]). LetR be a coherent set of desirable gambles. ThenR is weakly B-conglomerable if
and only if

f ∈ L, Bf ∈ R ∪ {0} for all B ∈ B ⇒ f ∈ R.

Moreover, weak conglomerability turns out to be a bridge between the conglomerability properties of sets of desirable
gambles and lower previsions:

Theorem 5 ([13, Theorem 3]). LetR be a coherent set of desirable gambles, and let P be the coherent lower prevision
it induces by means of Eq. (10). Then P is B-conglomerable if and only ifR is weakly B-conglomerable.

This result, together with Theorem 4, implies that a coherent lower prevision P is B-conglomerable if and only
if its associated set of strictly desirable gambles is B-conglomerable. In addition, this shows that the notion of
conglomerability for sets of desirable gambles, given by D5, is stronger (more restrictive) than the one for coherent
lower previsions, given in Definition 8.

2.3. New concepts for a theory of conglomerably coherent lower previsions
One aim of this paper is to study how the requirement of conglomerability shapes a theory of coherent lower

previsions. In fact, if the focus is on desirable gambles we know that axioms D1–D5 already make up the foundations
of such a theory. With coherent lower previsions the situation is less clear, because the link with conglomerability has
been only partly explored so far. In particular, we know that Williams’ lower previsions do not take conglomerability
into account by definition. We know also that Walley’s lower previsions are instead related to conglomerability, but
we do not know precisely to which extent. The crucial point here is that we do not know how the conglomerability
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of Walley’s lower previsions is related to the conglomerability of sets of desirable gambles: since Walley’s theory
(as well as Williams’) is implicitly derived from the theory of desirable gambles, which is in fact more primitive and
fundamental, we expect that the conglomerability properties of coherent lower previsions should be obtained, and
especially justified, from sets of desirable gambles.

For the time being, we start by detailing how we understand that the conglomerable properties of coherent lower
previsions should be in fact related to those of desirable gambles. We start with a property that concerns only sets of
desirable gambles and is a variant of avoiding partial loss. Remember that the original definition of avoiding partial loss
for a set of desirable gambles is equivalent to having the possibility to extend it to a coherent set. When we focus on
conglomerability, one desirable property would be to be able to extend our assessments to a greater set while preserving
conglomerability:
Definition 19 (Avoiding B-conglomerable partial loss for sets). LetR be a set of desirable gambles and B a partition
of Ω. We say that it avoids B-conglomerable partial loss if it has a B-conglomerably coherent superset.

Now we focus on a collection of conditional lower previsions P (·|B1), . . . , P (·|Bm), where B1, . . . ,Bm are
partitions of Ω. A set of desirable gamblesR induces a conditional lower prevision P (·|Bi) on L(Ω) by means of the
formula

P (f |Bi) := sup{µ : Bi(f − µ) ∈ R}, (11)

whenever f ∈ L(Ω) and Bi ∈ Bi.11 In particular, in the unconditional case (that is, when B = {Ω}) we recover
Eq. (10).

We introduce the following notation, for short: when a set of gambles is conglomerable with respect to all the
partitions B1, . . . ,Bm, we write that it is B1:m-conglomerable; we shall use this notation also more generally when
we want to refer simultaneously to the conglomerability with respect to all the partitions. Now we are ready to define
the new notion of joint coherence for conditional lower previsions, obtained taking conglomerability explicitly into
account:
Definition 20 (Conglomerable coherence for lower previsions). Let P (·|B1), . . . , P (·|Bm) be conditional lower
previsions. They are called conglomerably coherent if there is a B1:m-conglomerable coherent set of desirable gambles
that induces them by means of (11).

Now that conglomerable coherence is defined, it is a small step to define also a notion of avoiding partial loss for
conditional lower previsions so as to take conglomerability into account:
Definition 21 (Avoiding conglomerable partial loss for lower previsions). Let P (·|B1), . . . , P (·|Bm) be conditional
lower previsions. We say that they avoid conglomerable partial loss if they have dominating conglomerably coherent
extensions.
Remark 1. One could wonder whether or not conglomerably coherent conditional lower previsions can be characterised
as lower envelopes of conglomerably coherent conditional linear previsions. Envelope characterisations (or ‘envelope
theorems’) are useful in that they often help both for theoretical developments and applications. It is well known that
conditional lower previsions coherent in Williams’ sense are in one-to-one relation with envelopes of conditional linear
previsions coherent in Williams’ (or, which is the same, de Finetti’s) sense. It is also known that this holds only in one
direction in the case of Walley’s: an envelope of coherent conditional linear previsions originates coherent conditional
lower previsions, but the converse is not true in general.

It turns out that the situation for conglomerably coherent lower previsions is similar to Walley’s. If we focus
on the special case made by one unconditional lower prevision P and one conditional lower prevision P (·|B), we
know from [13, Theorem 25] that they are coherent if and only if they are conglomerably coherent; and in [16,
Sections 6.6.9–6.6.10] there are examples of a coherent pair P , P (·|B) that is not dominated by any coherent linear
pair P, P (·|B). What we can show, however, is that taking the lower envelope of conglomerably coherent conditional
lower previsions originates again conglomerably coherent conditional lower previsions: to see this, it suffices to use
that the intersection of a family of conglomerably coherent sets of gambles Fλ (with λ in some index-set Λ) is again
conglomerably coherent (see [13, Proposition 5]), and it induces the lower envelope of the conditional lower previsions
originated by Fλ, λ ∈ Λ. �

11Observe that whenR is coherent, then Bi(f − (P (f |Bi)− ε)) belongs toR for all ε > 0: from (11), there must be a positive ε′ < ε such
that Bi(f − (P (f |Bi)− ε′)) ∈ R, and since Bi(f − (P (f |Bi)− ε)) ≥ Bi(f − (P (f |Bi)− ε′)), we have that Bi(f − (P (f |Bi)− ε)) ∈ R
becauseR is coherent.
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2.4. Some final notation and preliminary results
Formula (11) has shown to us how to create a conditional lower prevision from a set of desirable gambles. In the

following we shall often need to follow the converse path and induce a set of desirable gambles from one or more
conditional lower previsions. We shall use the following formulas and notational conventions:

• A separately coherent conditional lower prevision P (·|Bi) on L induces a coherent set of strictly desirable
gambles on Bi for each conditioning event Bi ∈ Bi:

RicBi := {g ∈ L(Bi) : P (g|Bi) > 0 or g 
 0};

this follows from [16, Theorem 3.8.1]. We represent this set equivalently by gambles on the entire possibility
space Ω as follows:

Ri|Bi := {G(f |Bi) + εBi : f ∈ L(Ω), ε > 0} ∪ {f ∈ L(Ω) : f = Bif 
 0}, (12)

using the equivalence: P (Big|Bi) > 0 if and only if Big = G(f |Bi) + εBi for some ε > 0. It is not difficult
to see that Ri|Bi satisfies axioms D2–D4, and that it is coherent relative to Q := {f ∈ L(Ω) : f = Bif}
(in the sense of [11, Definition 12]). Any gamble in Ri|Bi is a gamble on Ω that is zero outside Bi, and as a
consequence there is a one-to-one correspondence betweenRi|Bi andRicBi.
The natural extension of the setsRi|Bi (Bi ∈ Bi) is given by

Ei := posi(L+(Ω) ∪ (∪Bi∈Bi
Ri|Bi)). (13)

• From [20, Proposition 1], their Bi-conglomerable natural extension is instead

Fi :=

{
f ∈ L : 0 6= f =

∑
Bi∈Bi

Bifi, Bifi ∈ Ri|Bi ∪ {0}

}
. (14)

This is the smallest Bi-conglomerably coherent set of desirable gambles that extends the originating sets.
Obviously, it need not be Bj-conglomerable for another partition Bj , and actually we can show the following:

Proposition 2. Fi is Bj-conglomerable if and only ifRi|Bi is Bj-conglomerable for all Bi ∈ Bi.

• Similarly, the collection of separately coherent conditional lower previsions P (·|B1), . . . , P (·|Bm) induces the
overall set of desirable gambles ∪mi=1 ∪Bi∈Bi

Ri|Bi, whose natural extension is given by

E := posi(L+ ∪ (∪mi=1 ∪Bi∈Bi Ri|Bi)) = posi(∪mi=1Ei), (15)

where Ei is given by Eq. (13). We shall also consider the natural extension of the sets F1, . . . ,Fm, which is
equal to

F1 ⊕ · · · ⊕ Fm :=

{
f ∈ L : 0 6= f =

m∑
i=1

fi, fi ∈ Fi ∪ {0}

}
,

taking into account that these sets are coherent. Note, however, that this is not necessarily a coherent set, because
it may be that ∪mi=1Fi incurs partial loss; it will only be the smallest coherent superset of ∪mi=1Fi when one such
superset exists.

• Finally, we shall often denote by F the B1:m-conglomerable natural extension of ∪mi=1 ∪Bi∈Bi
Ri|Bi, provided

that it exists. Note that F is also the B1:m-conglomerable natural extension of ∪mi=1Fi, because any B1:m-
conglomerable superset of ∪mi=1∪Bi∈Bi

Ri|Bi must include in particular the Bi-conglomerable natural extension
of ∪Bi∈Bi

Ri|Bi, and this for i = 1, . . . ,m.

Using some of these notations we can re-formulate one of Williams’ basic results in our language, where lower
previsions are conditional on partitions:

Proposition 3. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower previsions. Let E be the natural
extension of the desirable gambles they induce, given by Eq. (15). It follows that:

1. If P (·|B1), . . . , P (·|Bm) are Williams-coherent, then E is coherent.

2. Moreover, E induces the conditional lower previsions P (·|B1), . . . , P (·|Bm) by means of (11).
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3. Fundamental relationships about consistency notions

3.1. Avoiding (conglomerable) partial loss

Let us start by illustrating the relationships that exist between the notions of avoiding (conglomerable) partial loss
for desirable gambles and coherent conditional lower previsions.

Theorem 6. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower previsions, and let

R := ∪mi=1 ∪Bi∈Bi
Ri|Bi, (16)

where the sets of gamblesRi|Bi are determined by Eq. (12). Then

1. If P (·|B1), . . . , P (·|Bm) avoid partial loss, thenR avoids partial loss.

2. P (·|B1), . . . , P (·|Bm) avoid conglomerable partial loss if and only if the B1:m-conglomerable natural extension
F ofR exists.

3. The smallest dominating conglomerably coherent extensions are induced by the B1:m-conglomerable natural
extension F ofR.

We can do something similar with respect to Williams-avoiding partial loss.

Theorem 7. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower previsions, and letR be given by (16).
Then

1. If P (·|B1), . . . , P (·|Bm) Williams-avoid partial loss, thenR avoids partial loss.

2. If P (·|B1), . . . , P (·|Bm) Williams-avoid partial loss, then the smallest dominating Williams-coherent extensions
are those induced by the natural extension E ofR.

3.2. Coherence, Williams-coherence, and conglomerable coherence

Now we move on to characterise the different forms of coherence. We start by a preliminary result: we detail how
the coherence properties of a set of desirable gambles affect those of the conditional lower previsions it induces.

Theorem 8. LetR be a coherent set of desirable gambles, and for every i = 1, . . . ,m, Bi ∈ Bi, let P (·|Bi) denote
the conditional lower prevision on L it induces by (11). Then:

1. P (·|Bi) is separately coherent for all i = 1, . . . ,m.

2. P (·|B1), . . . , P (·|Bm) are Williams-coherent.

3. IfR is in addition B1:m-conglomerable, then P (·|B1), . . . , P (·|Bm) are coherent.12

From Theorem 8 and Proposition 3, a finite collection of conditional lower previsions P (·|B1), . . . , P (·|Bm) are
Williams’ coherent if and only if they are induced by a coherent set of desirable gambles. In the remainder of this
section, we shall show that when we let conglomerability enter the picture, Walley’s notion of coherence is not
equivalent to conglomerable coherence, and therefore it is not true in general that a finite set of conditional lower
previsions P (·|B1), . . . , P (·|Bm) are coherent if and only if they are induced by a conglomerably coherent set of
desirable gambles: conglomerable coherence is sufficient, but not necessary, for (Walley’s) coherence.

Theorem 9. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower previsions. For all i = 1, . . . ,m, let
Fi be the Bi-conglomerable natural extension of ∪Bi∈Bi

Ri|Bi, as given by (14). Then

12This last statement has already been mentioned in [16, Appendix F3] and proved within [16, Sections 7.1.2 and 7.1.4].
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1. P (·|B1), . . . , P (·|Bm) are conglomerably coherent if and only if the B1:m-conglomerable natural extension F
of ∪mi=1Fi exists and it induces them by means of Eq. (11). In the case of linear conditional previsions for the
equivalence it suffices that the B1:m-conglomerable natural extension F exists.

2. If P (·|B1), . . . , P (·|Bm) are conglomerably coherent, then Fi is Bj-conglomerable for all i, j in {1, . . . ,m}.

3. If P (·|B1), . . . , P (·|Bm) are conglomerably coherent, then they are coherent.

Remark 2. Note that if P (·|B1), P (·|B2) are coherent and we take their associated sets of desirable gambles F1,F2

(which are coherent and conglomerable), it can be that F1 ∪ F2 is not coherent: consider Ω := {1, 2, 3, 4}, B1 :=

{{1, 2}, {3, 4}}, P (f |{1, 2}) := f(1)+f(2)
2 , P (f |{3, 4}) := f(3), B2 := {{1, 3}, {2, 4}}, P (f |{1, 3}) := f(1)+f(3)

2 ,
P (f |{2, 4}) := f(2). Then these are the conditional previsions induced by the mass function ( 1

3 ,
1
3 ,

1
3 , 0), which

moreover satisfies P (B) > 0 for all B ∈ B1 ∪ B2. Applying [8, Theorem 5], P (·|B1), P (·|B2) are coherent. On the
other hand, the gamble f := (3,−2, 1, 0) ∈ F1 and g := (3, 1,−2, 0) ∈ F2, but f + g = (6,−1,−1, 0) /∈ F1 ∪ F2,
so this union is not coherent.

This is why in Theorem 9 we must consider a natural extension of the set∪mi=1Fi (and in particular its conglomerable
natural extension F). �

At this point we have characterised some important relationships between coherence and conglomerable coherence.
Yet, we have not addressed the most important issue: whether or not these two notions are equivalent. The next example
settles the problem showing that they are not, and hence—using Theorem 9(3)—that conglomerable coherence is
indeed stronger than coherence.

Example 1. Let Ω be the set of natural numbers (without zero), and a coherent lower prevision P on L(Ω) which is not
B-conglomerable for some partition B of Ω but such that there exists a dominating B-conglomerable linear prevision
with P (B) > 0 for all B ∈ B (one such P is given in [13, Example 5]).

Let us define Ω1 := Ω ∪ −Ω, and the partitions of Ω1

B1 := {Ω,−Ω}, and B2 := {B ∪ −B : B ∈ B}.

Define P (·|B1) on L(Ω1) by P (f |Ω) := P (f+) and P (f | − Ω) := P (f−), where

f+ : Ω→ R
ω ↪→ f(ω)

and
f− : Ω→ R

ω ↪→ f(−ω).
(17)

It follows from the coherence of P that P (·|B1) is separately coherent.
From the linear prevision P on L considered above we can derive a linear prevision P1 on L(Ω1) by P1(f) :=

P (f+), where f+ is given by Eq. (17). Then P1 is a linear prevision satisfying P1(B ∪ −B) = P (B) > 0 for any
B ∈ B, and moreover P1(Ω) = 1. Define P1(·|B2) by (GBR). Then for any gamble f on Ω1 it holds that

P1(G1(f |B2)) = P1(IΩG1(f |B2)) = P (G(f |B)) ≥ 0,

where: G(f |B) = f −P (f |B) and P (f |B) is obtained by P through Bayes’ rule (remember that we can do so because
P (B) > 0 for all B ∈ B); and using in the last passage that P is B-conglomerable by assumption. This means that
P1, P1(·|B2) are coherent.

On the other hand, if we consider the conditional lower prevision P 1(·|−Ω) := P (·|−Ω), it holds that P1(G1(f |−
Ω)) = 0 because P1(−Ω) = 0, where G1(f | − Ω) = I−Ω(f − P (f | − Ω)). Define P1(·|Ω) =: P 1(·|Ω) from
P1 by (GBR). Then we deduce that P1, P 1(·|B1) satisfy (GBR), and since B1 is finite, Theorem 1 implies that
P1, P 1(·|B1) are coherent. Hence, P1, P 1(·|B1), P1(·|B2) are weakly coherent, and applying Proposition 1 we deduce
that P 1(·|B1), P1(·|B2) are coherent.

Similarly, if we consider the linear prevision P2 on L(Ω1) given by P2(f) := P (f−), we can repeat the above
reasoning and define P2(·|B2) and P2(·| − Ω) =: P 2(·| − Ω) by (GBR), and let P 2(·|Ω) be equal to P (·|Ω) and
we conclude that P 2(·|B1), P2(·|B2) are coherent. By taking lower envelopes, we obtain coherent Q(·|B1), Q(·|B2)
(see [16, Theorem 7.1.6]), and the above construction implies that Q(·|B1) = P (·|B1), taking into account that

P 1(f |Ω) = P1(f |Ω) = P (f+) ≥ P (f+) = P (f |Ω) = P 2(f |Ω)
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and
P 2(f | − Ω) = P2(f | − Ω) = P (f−) ≥ P (f−) = P (f | − Ω) = P 1(f | − Ω)

for any gamble f .
Now, assume ex-absurdo that P (·|B1), Q(·|B2) are conglomerably coherent. Then Theorem 9(2) implies that the

set F1 induced by P (·|B1) is B2-conglomerable, and Proposition 2 implies then thatR1|Ω is B2-conglomerable. But

R1|Ω = {G(f |Ω) + εΩ : f ∈ L(Ω1), ε > 0} ∪ {f ∈ L(Ω1) : f = IΩf 
 0}

is in a one-to-one correspondence with the set R1cΩ, which coincides with the set of strictly desirable gambles
induced by P . From Theorem 5, since P is not B-conglomerable, its associated set of strictly desirable gambles is not
B-conglomerable, whence there is some 0 6= f ∈ L(Ω) such that

P (Bf) > 0 or Bf ≥ 0 for all B ∈ B, (18)

while f is not strictly desirable with respect to P , meaning that f � 0 and P (f) ≤ 0. This means that if we consider
the gamble 0 6= IΩf ∈ L(Ω1), it holds that IΩf � 0, P (IΩf |Ω) = P (f) ≤ 0, so IΩf does not belong toR1|Ω, while

(P (B2IΩf |Ω) > 0 or B2IΩf ≥ 0)∀B2 ∈ B2 ⇒ B2IΩf ∈ R1|Ω ∪ {0} ∀B2 ∈ B2,

using Eq. (18). Hence,R1|Ω is not B2-conglomerable, whence neither is F1 and as a consequence P (·|B1), Q(·|B2)
cannot be conglomerably coherent. �

This finding is important because it tells us that Walley’s notion of coherence does not take into account all the
implications of conglomerability, a requirement Walley himself had been arguing in favor of. In this light, the state
of affairs with respect to the different coherence notions can be summarised as follows: Williams-coherence is the
fundamental coherence notion for the case where conglomerability is not required; conglomerable coherence, on the
other hand, should be the notion used in the opposite case.

It remains to understand what is the role of Walley’s notion. We can be helped in this by the following theorem.

Theorem 10. Let P (·|B1), . . . , P (·|Bm) be coherent conditional lower previsions on L, and let us define the sets of
gambles F1, . . . ,Fm by Eq. (14). Let F ′ := F1 ⊕ · · · ⊕ Fm be the natural extension of F1, . . . ,Fm. Then:

1. F ′ induces the conditional lower previsions P (·|B1), . . . , P (·|Bm).

2. F ′ is weakly B1:m-conglomerable.

Hence, coherent conditional lower previsions P (·|B1), . . . , P (·|Bm) are always weakly conglomerably coherent, in
the sense that they are always induced by a coherent set of desirable gambles which is weakly B1:m-conglomerable.
However, they are not conglomerably coherent in general, as Example 1 points out. In addition, our next example
shows also that the coherence of conditional lower previsions is not necessarily equivalent to being induced by a weakly
conglomerable set:

Example 2. Let Ω be the set of natural numbers (without zero), B := {{2n− 1, 2n} : n ∈ Ω}, and letR be the set of
gambles {

f : (∃n ∈ Ω)fI{n,n+1,... } ∈ L+ and (∀n ∈ Ω)(min{f(2n) + f(2n− 1), f(2n)} ≥ 0)
}
.

Examples 2 and 3 in [13] show that this is a coherent set of desirable gambles that is weakly B-conglomerable but not
B-conglomerable. Moreover, it is trivially B′-conglomerable if we consider the partition B′ := {Ω}. Let P , P (·|B) be
the lower previsions it induces. To see that they are not coherent, consider the gamble f := I{2n:n∈Ω} − I{2n−1:n∈Ω}.
Then

P (f |{2n− 1, 2n}) = 0 ∀n ∈ Ω⇒ f = G(f |B),

and
P (G(f |B)) = P (f) = sup{µ : f − µ ∈ R} = −1,

as showed in [13, Example 4]. Hence, P , P (·|B) are not coherent. �
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Figure 1: Relationships between the coherence conditions.

We summarise the relationships among the different coherence conditions in Figure 1.
Overall, we obtain that from Walley’s notion of coherence we can only deduce that the conditional lower previsions

are weakly conglomerably coherent, and more broadly speaking, that such a notion can only be regarded as an
approximation to conglomerable coherence. Such an approximation, however, matches conglomerable coherence in
some important cases. This is detailed in the next sections.

4. Weak coherence and positivity

From Lemma 1, if the conditional lower previsions P (·|B1), . . . , P (·|Bm) are weakly coherent, then there is an
unconditional lower prevision P on L (their unconditional natural extension) that is pairwise coherent with them. We
can use this property to show that there is a direct connection between weak coherence and conglomerability:

Theorem 11. P (·|B1), . . . , P (·|Bm) are weakly coherent if and only if there are coherent sets R,F1, . . . ,Fm and
a coherent lower prevision P such that for all i = 1, . . . ,m R ∪ Fi is Bi-conglomerably coherent and it induces
P , P (·|Bi).

However, since the coherence of P (·|B1), . . . , P (·|Bm) is a stronger notion that their weak coherence, we conclude
that conglomerable coherence implies weak coherence but the converse is not true.

It is possible to create a stronger link between weak coherence and conglomerability by assuming that a further
condition of positivity holds. In order to show this, we first need a lemma.

Lemma 2. Let P (·|B1), P (·|B2) be coherent conditional lower previsions. Consider B1 ∈ B1, B2 ∈ B2, f ∈ L. Then
P (B1f |B2) > 0 implies that P (B2f |B1) ≥ 0.

Example 3. We may have P (B1f |B2) > 0 and P (B2f |B1) = 0. To see this, let Ω be the set of natural numbers
(without zero), Bn := {2n− 1, 2n}, B1 := {Bn : n ∈ Ω}, B2 := {Ω} and P (·|B1), P be the vacuous conditional and
unconditional lower previsions. From [16, Section 6.6.1], P (·|B1), P are coherent. If we let f be the indicator function
of Bn, then P (f |Bn) = 1 > 0, while P (Bnf) = 0. �

At this point, we can start proving a preliminary result that exploits the positivity we mentioned.

Theorem 12. Let P , P (·|B1), . . . , P (·|Bm) be coherent lower previsions. For any i = 1, . . . ,m, Bi ∈ Bi, if P (Bi) >
0 thenRi|Bi is Bj-conglomerable for all j = 1, . . . ,m.

Now, if the unconditional lower prevision P satisfies P (B) > 0 for all B ∈ ∪mi=1Bi, we finally deduce that
P (·|B1), . . . , P (·|Bm) are conglomerably coherent:

Theorem 13. Let P (·|B1), . . . , P (·|Bm) be separately coherent conditional lower previsions on L which are weakly
coherent with some coherent lower prevision P satisfying that P (B) > 0 for all B ∈ B1 ∪ · · · ∪ Bm. Then:
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1. Fi is Bj-conglomerable for i, j = 1, . . . ,m.

2. F1 ⊕ · · · ⊕ Fm is B1:m-conglomerable.

3. P (·|B1), . . . , P (·|Bm) are conglomerably coherent.

Note that the hypothesis that all the sets in a partition have positive lower probability implies that such a partition is
necessarily countable.

5. Nested partitions

Next, we focus on another important setup where coherence implies conglomerable coherence. Such a setup is
characterised by partitions that are nested, that is, finer and finer. This situation is common in some applications of
probability. For example, developing a knowledge-based system often means to create a joint probabilistic model over
some variables of interest; this joint model, which we can think of as a coherent lower prevision P on L, is then queried
by computing a lower prevision conditional on the observation of some of the variables, which we can represent by
P (·|B1) (the elements of B1 correspond in this case to the elements of the variables that are observed). When more
and more variables become observed, by querying the system accordingly, we create a sequence of conditional lower
previsions P (·|Bi), i = 1, . . . ,m related to the sequence of observations, with the property that their corresponding
partitions are finer and finer: this happens because observations accumulate, that is, because we keep on adding variables
after the conditioning bar without ever removing any of them.

In order to study the case of nested partitions we first focus on a technical result: we deduce some coherence
conditions similar to those in Theorem 1, but this time we establish them in the case of two conditional lower previsions.

Lemma 3. Let B1,B2 be two partitions of Ω, and assume that B2 is finer than B1. For every B1 ∈ B1, denote
by B2(B1) the partition of B1 given by {B2 ∈ B2 : B2 ⊆ B1}. Let P (·|B1), P (·|B2) be two separately coherent
conditional lower previsions on L. If P (·|B1), P (·|B2) are coherent, then

P (G(f |B2)|B1) = 0 and P (G(f |B2)|B1) ≥ 0

for all f ∈ L, B1 ∈ B1, B2 ∈ B2(B1).

Now we move on to the general case made of partitions B1, . . . ,Bm of Ω with the property that Bj is finer than
Bj−1 for all j = 2, . . . ,m. Consider the corresponding separately coherent P (·|B1), . . . , P (·|Bm) on L. For every
j = 1, . . . ,m− 1, Bj ∈ Bj and j′ > j, we define the following partition of Bj :

Bj′(Bj) := {Bj′ ∈ Bj′ : Bj′ ⊆ Bj}.

Since this is a partition of Bj , it makes sense to study if a subset of L(Bj) is Bj′(Bj)-conglomerable, i.e., if it
satisfies D5. Let us also define the sets of gambles F1, . . . ,Fm by Eq. (14).

The next theorem settles the case for nested partitions:

Theorem 14. 1. P (·|B1), . . . , P (·|Bm) are coherent if and only if for all f ∈ L, Bi ∈ Bi, i = 1, . . . ,m − 1,
Bj ∈ Bj(Bi), j > i, it holds that

P (G(f |Bj)|Bi) = 0 (19)
P (G(f |Bj)|Bi) ≥ 0. (20)

2. If P (·|B1), . . . , P (·|Bm) are coherent, thenRicBi is Bj(Bi)-conglomerable andRi|Bi is Bj-conglomerable
for all Bi ∈ Bi, i = 1, . . . ,m, j > i.

3. If P (·|B1), . . . , P (·|Bm) are coherent, then Fi is Bj-conglomerable for all i, j = 1, . . . ,m.

4. If P (·|B1), . . . , P (·|Bm) are coherent, then F1 ⊕ · · · ⊕ Fm is B1:m-conglomerable.

5. If P (·|B1), . . . , P (·|Bm) are coherent, then they are conglomerably coherent.
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This implies in particular that the notions of coherence and of conglomerable coherence are equivalent when
we consider an unconditional lower prevision P and a conditional lower prevision P (·|B) on L. Hence, this result
generalises [13, Theorem 25(1)].

On the other hand, the first point of Theorem 14 can actually be simplified as for it to hold it suffices to focus on
consecutive partitions:

Corollary 1. Let B1, . . . ,Bm be partitions of Ω such that Bj is finer than Bj−1 for all j = 2, . . . ,m. Consider
separately coherent conditional lower previsions P (·|B1), . . . , P (·|Bm) onL. Then P (·|B1), . . . , P (·|Bm) are coherent
if and only if for all gambles f ∈ L, Bj−1 ∈ Bj−1, Bj ∈ Bj , it holds that

P (G(f |Bj)|Bj−1) = 0 (21)
P (G(f |Bj)|Bj−1) ≥ 0. (22)

6. Conclusions

When we restrict the attention to finite possibility spaces, the quest for a well-founded behavioural theory of
coherent lower previsions was solved by Williams in 1975 [19]. Not long ago, the situation was not so clear for the
more general case of infinite spaces (and in particular of infinite partitions), because of the controversy originated by
conglomerability: there was uncertainty as to whether Williams’ or Walley’s theory should be opted for in that case.

This paper, together with some other recent work, seems to allow us to say a few conclusive words on this question:
now we know in which cases conglomerability is justified from the behavioural point of view, based on considerations
of consistency between present and future attitudes to gambles [20]; and we know that Walley’s theory of coherent
lower previsions does not consider all the implications of conglomerability. This has been initially shown in a recent
paper [13] with respect to Walley’s procedure of natural extension, and in this paper with regard to Walley’s axiom of
joint coherence, which is at the heart of this theory. These are important findings, which tell us that Walley’s should be
understood as an approximation to the theory of conglomerably coherent lower previsions described in the present
paper.

We have showed that in two special cases we can use Walley’s theory obtaining the same outcomes as with
conglomerable coherence: when the coherent conditional lower previsions have a compatible lower prevision that
assigns positive lower probability to all the conditioning events, and when the conditioning partitions are nested. Both
cases are important in the applications of probability.

These results have implications also for the foundations of precise probability, because the question of conglomera-
bility was pending in that case too: similarly to the imprecise case, before these recent contributions it was not clear to
us which was the joint coherence condition to adopt in the case of linear conditional previsions. This problem is now
solved by Theorem 9. The importance of this point should not be overlooked, since joint coherence can be regarded as
the founding axiom for a behavioural theory of probability; therefore Theorem 9 contributes to give firmer foundations
to probability theory in the case that conglomerability has to be accounted for.

In our view, now the most important next step to do is to try to make the new theory of practical use in general, not
only in the cases already addressed in this paper. To this end, there is a main obstacle to overcome: the computation of
the conglomerable natural extension of a set of desirable gambles. We know from [13] that we can approximate it by a
sequence of sets and, from [12], that such a sequence may be made of infinitely many distinct elements. What we do
not know yet is whether or not the conglomerable natural extension is always attained as the limit of the sequence. This
is the main challenge that has to be faced in future work.
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Appendix A. Proofs of results

Proof of Lemma 1. Assume that P (·|B1), . . . , P (·|Bm) are weakly coherent. Let us consider the following lower
prevision:

P (f) := sup

{
α : ∃f1, . . . , fm ∈ L s.t. sup

Ω

[
m∑
i=1

G(fi|Bi)− (f − α)

]
< 0

}
. (A.1)

To see that P is well defined, it suffices to note that sup f ≥ P (f) ≥ inf f for any gamble f : given α > sup f , there
are no gambles f1, . . . , fm satisfying the above equation or we contradict the weak coherence of the conditional lower
previsions P (·|B1), . . . , P (·|Bm); and for any α < inf f we can take f1 := · · · := fm := 0. It is also easy to see that
P satisfies conditions (C1)–(C3), and as a consequence it is a coherent lower prevision.

To see that P satisfies Eq. (2) with respect to P (·|Bj) for j = 1, . . . ,m, note that from Eq. (A.1) P (G(f |Bj)) ≥ 0
for any gamble f and any j = 1, . . . ,m, simply by considering fj := f , fi := 0 for all i 6= j and α < 0. As
a consequence, we also have that P (G(f |Bj)) = P (G(Bjf |Bj)) ≥ 0 for all Bj ∈ Bj , j ∈ {1, . . . ,m}. Assume
ex-absurdo that P (G(f |Bj)) > 0; then there are gambles f1, . . . , fm ∈ L and α > 0 such that

sup
Ω

[
m∑
i=1

G(fi|Bi)− (G(f |Bj)− α)

]
< 0,

whence in particular

sup
Ω

[
m∑
i=1

G(fi|Bi)−G(f |Bj)

]
< 0,

a contradiction with the weak coherence of P (·|B1), . . . , P (·|Bm). We conclude that P (G(f |Bj)) = 0 for every
gamble f and every Bj ∈ Bj , and as a consequence Eq. (2) holds.

Let us prove now the converse implication. Let us take f0, f1, . . . , fm ∈ L, B0 ∈ Bj for some j ∈ {1, . . . ,m},
and let us show that Eq. (1) holds. Let gi := G(fi|Bi), i = 1, . . . ,m, g0 := G(f0|B0). Then we deduce from the
assumption that P (gi) ≥ 0 for i = 1, . . . ,m, and P (g0) = 0, whence gi = G(fi|Bi) ≥ G(gi) for i = 1, . . . ,m and
g0 = G(f0|B0) = G(g0). As a consequence,

sup
Ω

[
m∑
i=1

G(fi|Bi)−G(f0|B0)

]
≥ sup

Ω

[
m∑
i=1

G(gi)−G(g0)

]
≥ 0,

where the second inequality follows from the coherence of P . We deduce that P (·|B1), . . . , P (·|Bm) are weakly
coherent.

Proof of Proposition 1. Assume without loss of generality that the set B ∈ B1 ∪B2 for which P (B) = 0 is B = B′1 ∈
B1. Consider gambles f, g, h on Ω, B ∈ B1 ∪ B2, and let us show that

sup
B′

[G(f |B1) +G(g|B2)−G(h|B)] ≥ 0 (A.2)

for some B′ ∈ S1(f) ∪ S2(g) ∪ {B}. Assume ex-absurdo that Eq. (A.2) does not hold. If there is some B′ ∈
S1(f) ∪ S2(g) ∪ {B} different from B′1, this means that there is some δ > 0 such that

[G(f |B1) +G(g|B2)−G(h|B) + δB′](ω) ≤ 0

for all ω ∈ Ω (remember that if Eq. (A.2) fails, then [G(f |B1) +G(g|B2)−G(h|B)](ω) ≤ 0 for all ω ∈ Ω), whence

G(f |B1) +G(g|B2) ≤ G(h|B)− δB′.

As a consequence,

P (G(f |B1)+G(g|B2)) ≤ P (G(h|B)−δB′) ≤ P (G(h|B))+P (−δB′) = P (G(h|B))−P (δB′) = −δP (B′) < 0,
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where the second inequality follows from coherence [16, Theorem 2.6.1(e)] and the last equality from (C2) and
Theorem 1. On the other hand, (C3) and the weak coherence of P with P (·|B1), P (·|B2) implies via Lemma 1 that

P (G(f |B1) +G(g|B2)) ≥ P (G(f |B1)) + P (G(f |B2)) ≥ 0,

a contradiction.
Finally, if there is no B′ ∈ S1(f) ∪ S2(g) ∪ {B} different from B′1, then it must be S1(f) ⊆ B′1, S2(g) = ∅ and

B = B′1, so Eq. (A.2) becomes
sup
B′1

[G(f |B′1)−G(h|B′1)] ≥ 0,

which follows from the separate coherence of P (·|B1). We conclude that Eq. (A.2) holds and as a consequence the
conditional lower previsions P (·|B1), P (·|B2) are coherent.

Proof of Theorem 3. Let us see how the sums in (5) and (6) can be mapped into each other. To avoid ambiguities, in
the following we use subscripts in the G-gambles to make it clear which are the lower previsions they refer to.

Consider gambles f0, . . . , fm in L with finite supports, and let B0 ∈ Bj0 for some j0 ∈ {1, . . . ,m}. Then

m∑
j=1

Gj(fj |Bj)−Gj0(f0|B0) =

m∑
j=1

∑
Bj∈Sj(fj)

Gj(Bjfj |Bj)−Gj0(f0|B0)

=

n∑
i=1

Gj(i)(Bigi|Bj(i))−Gj(0)(B0g0|Bj(0)),

where n denotes the number of elements in the double sum, gi := fj , with fj denoting the gamble in the i-th element
in the same double sum, Bi := Bj , j(i) := j, j(0) := j0, and g0 := f0. In the other direction, given gambles
g0, . . . , gn ∈ L, Bi ∈ ∪mj=1Bj , i = 0, . . . , n, it holds that

n∑
i=1

Gj(i)(Bigi|Bj(i))−Gj(0)(B0g0|Bj(0)) =

n∑
i=1

Gj(i)(Bigi|Bi)−Gj(0)(B0g0|B0)

=

m∑
j=1

∑
i:j(i)=j

Gj(Bigi|Bi)−Gj(0)(B0g0|B0) =

m∑
j=1

Gj(fj |Bj)−Gj(0)(f0|B0),

where, for every j = i, . . . ,m, we have defined fj :=
∑
i:j(i)=j Bigi, which has obviously a finite support, and

f0 := B0g0.
On the other hand, we may assume without loss of generality that all the fj- and gi-gambles in the previous sums

are different from zero, because a G-gamble equals zero when it is evaluated in zero. Taking into account that the
support of the generic gamble Bigi is just Bi, we see that {B0}

⋃
∪mj=1Sj(fj) = ∪ni=0{Bi}.

From the above discussion, it follows that after mapping one sum into the other, the only difference left between
formulae (5) and (6) is concerned with the way the supremum is taken: in the first case, it is over a set from the
collection ∪ni=0{Bi}, while in the second it is over the union ∪ni=0Bi. This makes it clear that if the supremum in (5) is
non-negative then so must be that in (6). That the opposite is also true follows because set B in (6) is the union of the
finitely many sets B0, . . . , Bn, and hence the supremum must be attained in one of them.

Proof of Proposition 2. Let us first re-write the condition of Bj-conglomerability forRi|Bi:

Bif ∈ L, BjBif ∈ Ri|Bi ∪ {0} for all Bj ∈ Bj ⇒ Bif ∈ Ri|Bi ∪ {0}. (A.3)

To see that this condition is equivalent to the usual condition of conglomerability, namely

f ∈ L, Bjf ∈ Ri|Bi ∪ {0} for all Bj ∈ Bj ⇒ f ∈ Ri|Bi ∪ {0},

it suffices to consider that any gamble g that belongs toRi|Bi is such that g = Big.
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Now, let us show that if (A.3) holds for all Bi ∈ Bi, then Fi is Bj-conglomerable. Take f ∈ L such that
Bjf ∈ Fi ∪ {0} for all Bj ∈ Bj . This means that Bjf =

∑
Bi∈Bi

Bifi, with Bifi ∈ Ri|Bi ∪ {0}, whence
BjBif = Bifi ∈ Ri|Bi ∪ {0}. This holds for all Bj ∈ Bj , and applying (A.3) we see that Bif ∈ Ri|Bi ∪ {0}. By
assumption, this holds for all Bi ∈ Bi, so that f ∈ Fi ∪ {0} by definition of Fi.

Conversely, let us show that (A.3) holds for all Bi ∈ Bi if Fi is Bj-conglomerable. Consider a gamble f such
that BjBif ∈ Ri|Bi ∪ {0} for all Bj ∈ Bj . Since Ri|Bi ⊆ Fi, we have that BjBif ∈ Fi ∪ {0} for all Bj ∈ Bj ,
whence Bif ∈ Fi ∪ {0} given that this set is Bj-conglomerable by assumption; this implies, by definition of Fi, that
Bif ∈ Ri|Bi ∪ {0}.

Proof of Proposition 3. Let us start by showing that ∪mi=1 ∪Bi∈Bi
Ri|Bi avoids partial loss. Assume this is not the

case. Then E contains the zero gamble. Since each set Ri|Bi satisfies D3–D4, any positive linear combination of
elements ofRi|Bi can be replaced by just one element ofRi|Bi. We deduce that if ∪mi=1 ∪Bi∈Bi Ri|Bi incurs partial
loss, then there is a non-empty set of indexes I ⊆ {1, . . . ,m} and non-empty finite sets B′i ⊆ Bi, i ∈ I , and gambles
g ∈ L+(Ω) ∪ {0}, fi,Bi

∈ L(Ω), as well as positive constants εi,Bi
, for all Bi ∈ B′i, i ∈ I , such that

g +
∑
i∈I

∑
Bi∈B′i

G(fi,Bi
|Bi) + εi,Bi

Bi = 0.

We can assume without loss of generality that for allBi ∈ B′i, i ∈ I , it isBifi,Bi 6= 0, because otherwiseG(fi,Bi |Bi)+
εi,Bi

Bi = εi,Bi
Bi 
 0, and we could represent this positive contribution through g. We obtain that∑

i∈I

∑
Bi∈B′i

G(fi,Bi |Bi) ≤ −
∑
i∈I

∑
Bi∈B′i

εi,BiBi.

Let fi :=
∑
Bi∈B′i

Bifi,Bi
and εi := minBi∈Si(fi) εi,Bi

for all i ∈ I , and also ε :=
∑
i∈I εi. Then∑

i∈I
G(fi|Bi) ≤ −εI∪i∈ISi(fi)

or, in other words, that sup∪i∈ISi(fi)

∑
i∈I G(fi|Bi) < 0, which contradicts that P (·|B1), . . . , P (·|Bm) are Williams-

coherent. Therefore ∪mi=1 ∪Bi∈Bi
Ri|Bi avoids partial loss, and hence E is coherent.

Now, let Q(·|B1), . . . , Q(·|Bm) be the Williams-coherent conditional lower previsions induced by E . It follows
that Q(·|B1), . . . , Q(·|Bm) dominate P (·|B1), . . . , P (·|Bm): in fact, for every i = 1, . . . ,m, Bi ∈ Bi and f ∈ L,
P (f |Bi) = sup{µ : Bi(f − µ) ∈ Ri|Bi} ≤ sup{µ : Bi(f − µ) ∈ E} = Q(f |Bi).

Assume that there is B0 in one of the partitions B1, . . . ,Bm and a gamble f0 such that P (f0|B0) < Q(f0|B0).
Then there is some δ > 0 such that

G(f0|B0)− δB0 ∈ E .
Reasoning as at the beginning of the proof, there is a non-empty set of indexes I ⊆ {1, . . . ,m} and non-empty finite
sets B′i ⊆ Bi, i ∈ I , and gambles g ∈ L+(Ω) ∪ {0}, fi,Bi

∈ L(Ω), s.t. Bifi,Bi
6= 0, for all Bi ∈ B′i, i ∈ I , which lead

to
G(f0|B0)− δB0 = g +

∑
i∈I

∑
Bi∈B′i

G(fi,Bi
|Bi) + εi,Bi

Bi.

Using again the same line of reasoning, we deduce that there are gambles fi, i ∈ I , with finite supports and ε > 0 such
that ∑

i∈I
G(fi|Bi)−G(f0|B0) ≤ −δB0 − εI∪i∈ISi(fi)

or, in other words, that for all B ∈ B0

⋃
∪i∈ISi(fi),

sup
B

[∑
i∈I

G(fi|Bi)−G(f0|B0)

]
< 0,

which contradicts that P (·|B1), . . . , P (·|Bm) are Williams-coherent. It follows that P (·|Bi) = Q(·|Bi) for all i =
1, . . . ,m.
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Proof of Theorem 6. 1. Assume thatR incurs partial loss. This means that there is a positive linear combination of
gambles inR that is less than or equal to zero.

Since for every i = 1, . . . ,m and every Bi ∈ B the setRi|Bi satisfies D3–D4, any positive linear combination
of elements ofRi|Bi can be replaced by just one element ofRi|Bi. We deduce that ifR incurs partial loss, then
there is a non-empty set of indexes I ⊆ {1, . . . ,m}, and gambles fi ∈ L with finite support (so that we make a
finite combination of gambles fromR), εBi > 0, i ∈ I , Bi ∈ Si(fi) such that∑

i∈I

∑
Bi∈Si(fi)

G(fi|Bi) + εBi
Bi ≤ 0,

which we can equivalently re-write as∑
i∈I

G(fi|Bi) +
∑
i∈I

∑
Bi∈Si(fi)

εBiBi ≤ 0.

Whence, by choosing any Bj ∈ Sj(fj), for some j ∈ I , we obtain that

sup
Bj

[∑
i∈I

G(fi|Bi)

]
≤ −εBj

,

and this implies that P (·|B1), . . . , P (·|Bm) incur partial loss.

2. Consider first the direct implication. Let F (·|B1), . . . , F (·|Bm) be the dominating conglomerably coherent
extensions. Then they are induced by a conglomerably coherent set F . This set F includes in particular the
conglomerable natural extension of R̃ := ∪mi=1 ∪Bi∈Bi R̃i|Bi, where R̃i|Bi is induced by F (·|Bi) by Eq. (12),
because it induces F (·|B1), . . . , F (·|Bm). Since F (·|Bi) ≥ P (·|Bi) for all i = 1, . . . ,m, it follows thatR ⊆ R̃,
and therefore F is a conglomerably coherent set that includesR. Hence, the conglomerable natural extension of
R exists.

Consider now the converse implication, that is, assume that the conglomerable natural extension F ofR exists.
Let F (·|B1), . . . , F (·|Bm) be the conditional lower previsions it induces. It follows by definition that these
conditional lower previsions are conglomerably coherent. Since R ⊆ F and R induces conditional lower
previsions that dominate P (·|B1), . . . , P (·|Bm), we deduce that F (·|Bi) ≥ P (·|Bi) for all i = 1, . . . ,m.

3. Let Q(·|B1), . . . , Q(·|Bm) be conglomerably coherent extensions of P (·|B1), . . . , P (·|Bm) that are dominated
by the conditional lower previsions induced by F , that we denote F (·|B1), . . . , F (·|Bm). Since the conditional
lower previsions Q(·|B1), . . . , Q(·|Bm) are conglomerably coherent, they are induced by a conglomerably
coherent set F ′; since they dominate P (·|B1), . . . , P (·|Bm), it must be the case that F ′ ⊇ R and hence F ′ ⊇ F ;
but then the conditional lower previsions induced by F ′ must dominate those induced by F , and as a consequence
we must have Q(·|Bi) = F (·|Bi) for all i = 1, . . . ,m.

Proof of Theorem 7. 1. From Theorem 6(1), if R incurs partial loss there is a non-empty set of indexes I ⊆
{1, . . . ,m}, and gambles fi ∈ L with finite support, εBi > 0, i ∈ I , Bi ∈ Si(fi) such that∑

i∈I
G(fi|Bi) +

∑
i∈I

∑
Bi∈Si(fi)

εBi
Bi ≤ 0;

we deduce that

sup
∪j∈I∪Bj∈Sj(fj)

Bj

[∑
i∈I

G(fi|Bi)

]
≤ − min

Bj∈Sj(f):j∈I
εBj

,

and this contradicts that P (·|B1), . . . , P (·|Bm) Williams-avoid partial loss.
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2. Assume that P (·|B1), . . . , P (·|Bm) Williams-avoid partial loss, and let E be the natural extension of R. E is
coherent becauseR avoids partial loss thanks to point 1, and hence the conditional lower previsions it induces,
E(·|B1), . . . , E(·|Bm), are Williams-coherent.13 SinceR ⊆ E , andR induces conditional lower previsions that
dominate P (·|B1), . . . , P (·|Bm), we deduce that E induces dominating Williams-coherent conditional lower
previsions.

To see that they are the smallest ones, denote by Q(·|B1), . . . , Q(·|Bm) the smallest dominating Williams-
coherent conditional lower previsions. We have shown in Proposition 3 that Q(·|B1), . . . , Q(·|Bm) are induced
by the natural extension Ẽ of R̃ := ∪mi=1 ∪Bi∈Bi R̃i|Bi, where the sets R̃i|Bi are derived from Q(·|Bi) by
means of Eq. (12). Since Q(·|Bi) ≥ P (·|Bi), we deduce that R̃i|Bi ⊇ Ri|Bi, whence R̃ ⊇ R. This implies
E ⊆ Ẽ and therefore E(·|Bi) ≤ Q(·|Bi) for all i = 1, . . . ,m. Hence, E(·|Bi) = Q(·|Bi) for all i = 1, . . . ,m,
and we conclude that these are the smallest Williams-coherent extensions.

Proof of Theorem 8. 1. Let us show that (SC1)–(SC3) hold.

(SC1) Given µ < infBi f , it holds that Bi(f −µ) 
 0, whence Bi(f −µ) ∈ R and therefore P (f |Bi) ≥ infBi f .

(SC2) Given f ∈ L and λ > 0, P (λf |Bi) = sup{µ : Bi(λf − µ) ∈ R} = sup{µ : Bi(f − µ
λ ) ∈ R} =

λ sup{µ′ : Bi(f − µ′) ∈ R} = λP (f |Bi), where the second passage is due to the coherence ofR.

(SC3) Given f, g ∈ L and ε > 0, it holds that Bi(f − P (f |Bi) + ε
2 ), Bi(g − P (g|Bi) + ε

2 ) ∈ R, whence
Bi(f + g − P (f |Bi)− P (g|Bi) + ε) ∈ R and therefore P (f + g|Bi) ≥ P (f |Bi) + P (g|Bi)− ε for all
ε > 0. This implies that P (f + g|Bi) ≥ P (f |Bi) + P (g|Bi).

2. We use the equivalent formulation of Williams-coherence given in Theorem 3. Consider f0, . . . , fn ∈ L,
Bi ∈ ∪mj=1Bj for i = 0, . . . , n, and let j(i) denote an element of {1, . . . ,m} for which Bi ∈ Bj(i). Let us show
that

sup
B

[
n∑
i=1

G(Bifi|Bj(i))−G(B0f0|Bj(0))

]
≥ 0,

with B := ∪ni=0Bi. If this is not the case, then there is some δ > 0 such that

G(B0f0|Bj(0))−
δ

2
B ≥

n∑
i=1

G(Bifi|Bj(i)) +
δ

2
B.

By definition, G(Bifi|Bj(i)) + δ
2nBi belongs to R for all i = 1, . . . , n, whence

∑n
i=1G(Bifi|Bj(i)) + δ

2B

belongs toR and therefore G(B0f0|Bj(0))− δ
2B ∈ R. As a consequence, also G(B0f0|Bj(0))− δ

2B0 ∈ R, but
this means that we can increase the value P (B0f0|Bj(0)) by δ

2 . This contradicts the definition of P (B0f0|Bj(0)).

3. Consider f0, . . . , fm ∈ L, and let us show that there is B ∈ {B0}
⋃
∪mi=1Si(fi) such that

sup
B

[
m∑
i=1

G(fi|Bi)−G(f0|B0)

]
≥ 0. (A.4)

We can assume without loss of generality that f1, . . . , fm, m ≥ 1, are all different from the zero gamble: in fact,
if they are all equal to the zero gamble, then (A.4) holds by the separate coherence of P (·|B0), which follows
from point 1; and if not all of them are equal to zero, it is sufficient to drop all the gambles in f1, . . . , fm that are
identically equal to zero.

Assume ex-absurdo that (A.4) fails. Let g :=
∑m
i=1G(fi|Bi)−G(f0|B0); observe that g ≤ 0. Define δ(B) :=

− supB g
m+1 for all B ∈ {B0}

⋃
∪mi=1Si(fi), so that δ(B) > 0. It follows that

Bδ(B) ≤ − g

m+ 1
B. (A.5)

13This is essentially a result by Williams; we reproduce it in our language in Theorem 8(2).
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By definition, G(fi|Bi) +Biδ(Bi) belongs toR for all Bi ∈ Si(fi). Using the Bi-conglomerability ofR, we
get that G(fi|Bi) +

∑
Bi∈Si(fi)

Biδ(Bi) ∈ R, and eventually that

f +

m∑
i=1

∑
Bi∈Si(fi)

Biδ(Bi) ∈ R, (A.6)

where f :=
∑m
i=1G(fi|Bi).

Now, if ω ∈ B for some B ∈ Si(fi), then [
∑
Bi∈Si(fi)

Biδ(Bi)](ω) = δ(B) ≤ − g(ω)
m+1 by (A.5). Conversely,

if ω ∈ B for some B /∈ Si(fi), then [
∑
Bi∈Si(fi)

Biδ(Bi)](ω) = 0 ≤ − g(ω)
m+1 , recalling that g ≤ 0. We deduce

that ∑
Bi∈Si(fi)

Biδ(Bi) ≤ −
g

m+ 1
. (A.7)

As a consequence,

f +

 m∑
i=1

∑
Bi∈Si(fi)

Biδ(Bi)

−G(f0|B0) +B0δ(B0) = g +

 m∑
i=1

∑
Bi∈Si(fi)

Biδ(Bi)

+B0δ(B0)

≤ g

m+ 1
+B0δ(B0) ≤ 0;

here, the one-but-last inequality follows from (A.7) and the last one holds trivially outside B0 (recall that g ≤ 0),
and in B0 it follows by (A.5).

Overall, we obtain that f +
∑m
i=1

∑
Bi∈Si(fi)

Biδ(Bi) ≤ G(f0|B0) − B0δ(B0) and, through (A.6), that
G(f0|B0) − B0δ(B0) belongs to R. This means that we can increase the value P (f0|B0) by δ(B0), which
contradicts the definition of P (f0|B0).

Proof of Theorem 9. 1. We consider the direct implication, as the converse is trivial. Let us first show that any
Bi-conglomerable set F ′ inducing P (·|Bi) must include Fi. Consider f ∈ Fi. Then f =

∑
Bi∈Si(f)Bifi, with

Bifi ∈ Ri|Bi and Si(f) 6= ∅. For the generic term in the sum, it can either hold that Bifi 
 0, and hence,
trivially, Bifi ∈ F ′; or that P (fi|Bi) > 0, and also in this case Bifi = Bi(fi−P (fi|Bi)) +BiP (fi|Bi) ∈ F ′,
recalling that F ′ induces P (·|Bi). Since F ′ is Bi-conglomerable, we obtain that f ∈ F ′. This shows that
Fi ⊆ F ′.
Now, if P (·|B1), . . . , P (·|Bm) are conglomerably coherent, then there is a B1:m-conglomerably coherent set F ′
that induces them. We know that F ′ must include ∪mi=1Fi, and this makes sure that the B1:m-conglomerable
natural extensionF of ∪mi=1Fi exists, given that taking the intersection of conglomerable sets preserves conglome-
rability. The conditional lower previsions induced by F must dominate P (·|B1), . . . , P (·|Bm) because Fi ⊆ F ,
for all i = 1, . . . ,m, and at the same time be dominated by P (·|B1), . . . , P (·|Bm), because F ⊆ F ′. This means
that F induces P (·|B1), . . . , P (·|Bm).

Let us consider the second part of the proof, where we have linear conditional previsions P (·|B1), . . . , P (·|Bm).
From the first part, we know that P (·|B1), . . . , P (·|Bm) are conglomerably coherent if and only if the conglome-
rable natural extension of ∪mi=1Fi exists and induces them. But if this conglomerable natural extension exists it
induces conditional lower previsions that must dominate, and therefore coincide with (because they are linear)
P (·|B1), . . . , P (·|Bm). Hence, this second condition is redundant in the linear case.

2. Consider i 6= j in {1, . . . ,m}, and assume ex-absurdo that Fi is not Bj-conglomerable. If it does not have a
Bj-conglomerable natural extension, then we deduce that ∪mi=1Fi does not have a Bj-conglomerable natural
extension and applying point 1 we deduce that P (·|B1), . . . , P (·|Bm) cannot be conglomerably coherent, a
contradiction.

On the other hand, ifFi is not Bj-conglomerable but it has a Bj-conglomerable natural extension, we deduce from
Proposition 2 that there is some Bi ∈ Bi such thatRi|Bi is not Bj-conglomerable but has a Bj-conglomerable
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natural extension F̃ . We also deduce thatRicBi is not BiBj-conglomerable, where BiBj is the partition of Bi
given by

BiBj := {BjBi : Bj ∈ Bj and BjBi 6= 0}.

Given its associated conditional lower prevision P (·|Bi), it follows from Theorems 2 and 5 that there is no
conditional lower prevision P (·|BiBj) on L(Bi) which is coherent with it.

From the Bj-conglomerable natural extension F̃ ofRi|Bi we can induce a conditional lower prevision P ′(·|Bi)
on L(Bi) and another conditional lower prevision P ′(·|BiBj); since F̃ is Bj-conglomerable, and this trivially
implies that it is BiBj-conglomerable, we deduce from Theorem 8 that P ′(·|Bi), P ′(·|BiBj) are coherent. As a
consequence, P ′(·|Bi) does not coincide with P (·|Bi), and therefore the Bj-conglomerable superset of ∪mi=1Fi
does not induce P (·|Bi) either. Applying point 1 we deduce that P (·|B1), . . . , P (·|Bm) are not conglomerably
coherent, a contradiction.

3. This follows at once from point 1 and Theorem 8(3).

Proof of Theorem 10. Note first of all that the set F ′ := F1 ⊕ · · · ⊕ Fm is indeed a coherent of gambles: if there were
fi ∈ Fi ∪ {0}, i = 1, . . . ,m, not all of them equal to zero, such that

∑m
i=1 fi ≤ 0, then given gi := fiI∪Bi:Bifi�0 we

would deduce that supω∈B
∑m
i=1G(gi|Bi) < 0 for every B ∈ ∪mi=1Si(gi), a contradiction with the coherence of the

conditional lower previsions P (·|B1), . . . , P (·|Bm).

1. Consider i ∈ {1, . . . ,m}, and let Q(·|Bi) be the conditional lower prevision induced by F ′. If it does not
coincide with P (·|Bi), this means that there is a gamble f on Ω and Bi ∈ Bi such that Q(f |Bi) > P (f |Bi),
whence there is some δ > 0 such thatBi(f− (P (f |Bi)+δ)) = G(f |Bi)−δBi belongs to F ′. Note, in addition,
that G(f |Bi) − δBi � 0 because otherwise we would obtain P (f |Bi) < infBi f , contradicting the separate
coherence of P (·|Bi).

Hence, there are gambles fj ∈ Fj , fj � 0, j ∈ J ⊆ {1, . . . ,m}, J 6= ∅, such that

G(f |Bi)− δBi ≥
∑
j∈J

fj ,

where the inequality follows by considering the possible exclusion of positive gambles. For every fj ∈ Fj , fj � 0,
there are gambles gj on Ω and positive Bj-measurable hj such that fj = G(gj |Bj) + hjSj(gj), whence

G(f |Bi)− δBi ≥
∑
j∈J

G(gj |Bj) + hjSj(gj),

or, equivalently, ∑
j∈J

G(gj |Bj)−G(f |Bi) ≤ −δBi −
∑
j∈J

hjSj(gj),

which means that

sup
ω∈B

∑
j∈J

G(gj |Bj)−G(f |Bi)

 (ω) < 0

for any B ∈ ∪j∈JSj(gj) ∪ {Bi}. This is a contradiction with the coherence of P (·|B1), . . . , P (·|Bm). As a
consequence, these conditional lower previsions are induced by F ′.

2. Let P be the lower prevision induced by F ′, and let us show that it coincides with the unconditional natural
extension E of P (·|B1), . . . , P (·|Bm), given by

E(f) := sup

{
µ : f − µ ≥

m∑
i=1

G(fi|Bi) for some f1, . . . , fm ∈ L

}
.
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Consider a gamble f , and take µ < P (f). Then there are gambles fi ∈ Fi ∪ {0}, i = 1, . . . ,m, such that
f − µ ≥ f1 + · · ·+ fm. Since fi ∈ Fi ∪ {0} implies that P (fi|Bi) ≥ 0, it follows that fi ≥ G(fi|Bi), and thus
f − µ ≥

∑m
i=1G(fi|Bi). Hence, E(f) ≥ µ and from this we deduce that E(f) ≥ P (f).

Conversely, given µ < E(f), there are gambles f1, . . . , fm such that f − µ ≥
∑m
i=1G(fi|Bi), whence for any

ε > 0,

f − µ+ ε ≥
m∑
i=1

[
G(fi|Bi) +

ε

m

]
≥

m∑
i=1

[
G(fi|Bi) +

ε

m
Si(fi)

]
;

since G(fi|Bi) + ε
mSi(fi) belongs to Fi for all i = 1, . . . ,m, we conclude that P (f) ≥ µ − ε for all

ε > 0, µ < E(f), whence P (f) ≥ E(f) and as a consequence P (f) = E(f) for every f .

From [16, Theorem 8.1.8], E,P (·|B1), . . . , P (·|Bm) are coherent, which implies that E is B1:m-conglomerable.
Since E = P is induced by F ′, we deduce from Theorem 5 that F ′ is weakly B1:m-conglomerable.

Proof of Theorem 11. From Lemma 1, P (·|B1), . . . , P (·|Bm) are weakly coherent if and only if there is a coherent
lower prevision P that is pairwise coherent with them. The equivalence follows now from [13, Theorem 25(1)].

Proof of Lemma 2. It follows from the coherence of P (·|B1), P (·|B2) that

sup
B1∪B2

[G(B1B2f |B2)−G(B2f |B1)] ≥ 0.

Now,

[G(B1B2f |B2)−G(B2f |B1)](ω) =


−P (B1f |B2) + P (B2f |B1) if ω ∈ B1 ∩B2,

P (B2f |B1) if ω ∈ B1 \B2,

−P (B1f |B2) < 0 if ω ∈ B2 \B1,

and for this supremum to be non-negative it must be P (B2f |B1) ≥ 0.

Proof of Theorem 12. Consider j ∈ {1, . . . ,m}, and let f be a gamble such that Bjf ∈ Ri|Bi ∪ {0} for every
Bj ∈ Bj ; equivalently, the restriction of Bjf to Bi belongs toRicBi ∪ {0} for every Bj ∈ Bj .

We may assume without loss of generality that j 6= i, since triviallyRi|Bi is Bi-conglomerable. For any Bj ∈ Bj
such that P (Bjf |Bi) > 0, it follows from Lemma 2 that P (Bif |Bj) ≥ 0. On the other hand, if BjBif ≥ 0 then we
also have P (Bif |Bj) ≥ 0. Hence, Bif ≥ G(Bif |Bj), whence P (Bif) ≥ P (G(Bif |Bj)) ≥ 0. Since P (Bi) > 0,
this means that P (f |Bi) ≥ 0.

As a consequence, the restriction of f to Bi belongs to the closure of the set of strictly desirable gamblesRicBi.
This means that RicBi is weakly Bj-conglomerable, and since it is a coherent set of strictly desirable gambles, it
follows from Theorem 4 that it is also Bj-conglomerable. Hence, the restriction of f to Bi belongs toRicBi and as a
consequence Bif belongs toRi|Bi, from which we conclude that this set is Bj-conglomerable.

Proof of Theorem 13. From [8, Theorem 11], under these conditions P (·|B1), . . . , P (·|Bm) are coherent, and applying
[16, Theorem 7.1.5], P , P (·|B1), . . . , P (·|Bm) are coherent. This implies that F1 ⊕ · · · ⊕ Fm is coherent (see
Theorem 10).

1. Consider i, j ∈ {1, . . . ,m}, and let us show for instance that Fi is Bj-conglomerable. Note that it suffices to
show this for j 6= i. From Proposition 2, this is equivalent to Ri|Bi being Bj-conglomerable for all Bi ∈ Bi;
and thatRi|Bi is Bj-conglomerable follows from Theorem 12.

2. Consider i ∈ {1, . . . ,m}, and let us show that F1 ⊕ · · · ⊕ Fm is Bi-conglomerable. Consider a gamble f such
that Bif ∈ F1⊕ · · · ⊕Fm ∪ {0} for all Bi ∈ Bi. Then if Bif 6= 0 there are gj ∈ Fj ∪ {0}, j = 1, . . . ,m, such
that Bif =

∑m
j=1 gj .

If gj ≥ 0 for all j = 1, . . . ,m, then Bif ≥ 0 and since it is non-zero we deduce that Bif ∈ Fi; on the other
hand, if there is some j ∈ {1, . . . ,m} such that gj � 0, then there must be some gamble hj and a positive
Bj-measurable gamble h′j such that gj = G(hj |Bj) + h′jSj(hj), whence

P (gj) = P (G(hj |Bj) + h′jSj(hj)) ≥ P (G(hj |Bj)) + P (h′jSj(hj)) > 0,
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where the last inequality follows because P (G(hj |Bj)) ≥ 0, thanks to the coherence of P , P (·|Bj), and
P (h′jSj(hj)) > 0. To see the latter, take Bj ∈ Sj(hj) so that h′j equals a positive constant α over Bj ; then
h′jSj(hj) ≥ Bjα and hence P (h′jSj(hj)) ≥ αP (Bj) > 0, using that P (Bj) > 0 for all Bj ∈ Bj .
Since P (gk|Bk) ≥ 0 for all gk ∈ Fk ∪ {0}, k = 1, . . . ,m, we have that P (gk) ≥ P (G(gk|Bk)) ≥ 0, thanks to
the coherence of P , P (·|Bk); we deduce that

P (Bif) ≥
m∑
j=1

P (gj) > 0,

whence there is some positive δ such that 0 < P (Bif − δ) ≤ P (Bi(f − δ)). If we now take into account that
P (f |Bi) is uniquely determined by (GBR) becauseP (Bi) > 0, we see thatP (f |Bi) ≥ sup{µ : P (Bi(f−µ)) >
0} ≥ δ > 0. Therefore, Bif ∈ Ri|Bi ⊆ Fi. We deduce that

f =
∑
Bif 6=0

Bif ∈ Fi ⊆ F1 ⊕ · · · ⊕ Fm,

using that Fi is Bi-conglomerable.

3. It suffices to use that F1⊕· · ·⊕Fm induces P (·|B1), . . . , P (·|Bm) from Theorem 10, and that from the previous
point it is B1:m-conglomerable.

Proof of Lemma 3. Given f ∈ L, it must be P (G(f |B2)|B1) = P (G(B1f |B2)|B1), because of [16, Lemma 6.2.4]
and the fact that B2 is finer than B1. Since P 1(·|B1), P 1(·|B2) are coherent, we have then that

sup
B1

[G(B1f |B2)−G(G(B1f |B2)|B1)] ≥ 0,

or, equivalently,
sup
B1

[G(B1f |B2)−G(B1f |B2) + P (G(B1f |B2)|B1)] ≥ 0,

which implies that P (G(B1f |B2)|B1) ≥ 0 and in particular P (G(f |B2)|B1) ≥ 0 for any B2 ⊆ B1. On the other
hand, given B2 ⊆ B1,

sup
B1

[G(G(f |B2)|B1)−G(f |B2)] ≥ 0,

and for any ω ∈ B1, this sum is equal to{
G(f |B2)− P (G(f |B2)|B1)−G(f |B2) if ω ∈ B2

0− P (G(f |B2)|B1)− 0 if ω /∈ B2,

so it must be that P (G(f |B2)|B1) ≤ 0. As a consequence, P (G(f |B2)|B1) = 0.

Proof of Theorem 14. 1. Assume that P (·|B1), . . . , P (·|Bm) are coherent, and consider i, j ∈ {1, . . . ,m}, i < j.
Then from Lemma 3 P (G(f |Bj)|Bi) = 0 and P (G(f |Bj)|Bi) ≥ 0 for all f ∈ L, Bi ∈ Bi, Bj ∈ Bj(Bi).

Conversely, consider gambles f1, . . . , fm in L, take i ∈ {1, . . . ,m}, Bi ∈ Bi, f0 ∈ L, and let us prove that
there is B ∈ {Bi}

⋃
∪mj=1Sj(fj) such that

sup
B

 m∑
j=1

G(fj |Bj)−G(f0|Bi)

 ≥ 0.

If this is not the case, we consider the smallest k, if it exists, such that there is some Bk ∈ Sk(fk) with Bi ⊆ Bk;
in case it does not exist we set k equal to i. Then k ≤ i and

sup
Bk

 m∑
j=1

G(fj |Bj)−G(f0|Bi)

 = sup
Bk

 m∑
j=k

G(fj |Bj)−G(f0|Bi)

 .
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If this is negative, then there is some δ > 0 such that on Bk it holds
∑m
j=kG(fj |Bj)−G(f0|Bi) + δBk ≤ 0,

whence

BkG(f0|Bi)− δBk ≥ Bk
m∑
j=k

G(fj |Bj). (A.8)

As a consequence,

−δ (19)
= P (G(f0|Bi)|Bk)− δ = P (G(f0|Bi)− δBk|Bk)

(A.8)
≥ P

 m∑
j=k

G(fj |Bj)|Bk

 ≥ m∑
j=k

P (G(fj |Bj)|Bk)
(20)
≥ 0,

which is a contradiction (observe that when i = k or j = k the above passages are trivially based on separate
coherence).

2. Consider a gamble f such that Bif 6= 0 and Bjf ∈ RicBi ∪ {0} for every Bj ∈ Bj(Bi). Let us focus on the
generic Bj ∈ Bj(Bi) for which Bjf 6≥ 0. Then Bjf = G(h|Bi) + εBi for some gamble h 6= 0 and ε > 0.
Hence,

P (Bjf |Bi) = P (G(h|Bi)|Bi) + ε = ε > 0,

where last equality follows from separate coherence. From this we deduce that P (f |Bj) > 0: if we had
P (f |Bj) ≤ 0, then it would be

0
(19)
= P (G(f |Bj)|Bi) = P (Bj(f − P (f |Bj))|Bi) ≥ P (Bjf |Bi) > 0,

a contradiction. Since this happens for every Bj ∈ Bj(Bi), Bjf 6≥ 0, we deduce that given the gamble
f ′ :=

∑
Bj∈Bj(Bi):Bjf 6≥0Bjf , it holds that

Bif ≥
∑

Bj∈Bj(Bi):Bjf 6≥0

Bjf ≥
∑

Bj∈Bj(Bi):Bjf 6≥0

G(f |Bj) = G(f ′|Bj),

so that

P (f |Bi) ≥ P (G(f ′|Bj)|Bi)
(20)
≥ 0

and consequently Bif belongs to the closure ofRicBi. But since for strictly desirable gambles conglomerability
and weak conglomerability are equivalent by Theorem 4, we conclude that Bif ∈ RicBi. Hence, this set is
Bj(Bi)-conglomerable.

The second part follows from the first, taking into account the one-to-one correspondence betweenRicBi and
Ri|Bi.

3. Consider i, j ∈ {1, . . . ,m}, j 6= i, and a gamble f � 0 (as the opposite would lead to trivial cases) such that
Bjf ∈ Fi ∪ {0} for all Bj ∈ Bj . There are two possibilities:

• If j > i, it follows from Proposition 2 and the second statement that f ∈ Fi.
• If j < i, thenBjf ∈ Fi∪{0} implies thatBjf must be a sum of gambles fromRi|Bi∪{0},Bi ∈ Bi(Bj).

In other words, this means that

Bjf ≥
∑

Bi∈Bi:BjBif�0

BjBif = G(g|Bi) + hSi(g)

for some g ∈ L and non-negative Bi(Bj)-measurable gamble h, which is strictly positive on the Bi(Bj)-
support of g (note that if there is no Bi ∈ Bi s.t. BjBif � 0, the inequality holds with g = 0). As a
consequence, given Bi ∈ Bi(Bj), it holds that

Bif = BiBjf ≥ G(g|Bi) + hBiISi(g),

whence Eq. (12) implies that Bif ∈ Ri|Bi ∪ {0} for all Bi ∈ Bi, and therefore f ∈ Fi, using Eq. (14).
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It follows that Fi is B1:m-conglomerable for all i = 1, . . . ,m.

4. Fix j ∈ {1, . . . ,m}, and let us show that F1 ⊕ · · · ⊕ Fm is Bj-conglomerable. Consider a gamble f 6≥ 0
(otherwise the situation is trivial) such that Bjf ∈ F1⊕ · · ·⊕Fm ∪{0} for all Bj ∈ Bj . Then there are gambles
g1, . . . , gm such that gi ∈ Fi ∪ {0} for all i = 1, . . . ,m and Bjf = g1 + · · ·+ gm.

We focus on the case Bjf 6≥ 0, and consider the smallest index i for which there is Bi ∈ Si(gi), with
Bi ∩ Bj 6= 0, such that Bigi 6≥ 0. We may assume without loss of generality that gk = 0 for all k < i by
renaming gi := g1 + · · ·+ gi. There are two cases.

(a) If i ≤ j, we consider the mentioned Bi ∈ Bi (which in this case includes Bj), for which it must be
P (gi|Bi) > 0 because Bigi 6≥ 0. Moreover, it follows from coherence that P (gk|Bi) ≥ 0 for all k > i:
by definition of Fk it holds that P (gk|Bk) ≥ 0 for all gk ∈ Fk, whence gk ≥ G(gk|Bk), and applying
Eq. (20) P (gk|Bi) ≥ P (G(gk|Bk)|Bi) ≥ 0. As a consequence,

P (Bjf |Bi) ≥ P (gi|Bi)︸ ︷︷ ︸
>0

+P (gi+1|Bi)︸ ︷︷ ︸
≥0

+ · · ·+ P (gm|Bi)︸ ︷︷ ︸
≥0

> 0,

whence
BjBif = Bjf ∈ Ri|Bi ⊆ Fi, (A.9)

where the equality holds because Bj ⊆ Bi.
(b) The other possibility is that i > j. In this case, consider any k ≥ i and Bk ∈ Bk such that Bk ⊆ Bj ,

Bkgk 6≥ 0 and ∀l = 1, . . . , k − 1, s.t. Bk ⊆ Bl, Bl /∈ Sl(gl); we obtain that

P (Bjf |Bk) = P (f |Bk) ≥ P (gk|Bk)︸ ︷︷ ︸
>0

+P (gk+1|Bk)︸ ︷︷ ︸
≥0

+ · · ·+ P (gm|Bk)︸ ︷︷ ︸
≥0

> 0,

whence
BjBkf = Bkf ∈ Rk|Bk, (A.10)

using for the equality that Bk ⊆ Bj . Now we would like to represent Bjf as a sum of elements Bkf 6≥ 0,
collected for some k ≥ i, where Bk belongs to Sk(gk) and Bk ⊆ Bj . To this end, it is convenient in
particular to exclude the elements Bkf ≥ 0 from consideration: therefore, we assume without loss of
generality that for all k = i, . . . ,m− 1, Bk ∈ Sk(gk) implies that P (gk|Bk) > 0; otherwise, if Bkgk 
 0,
we add Bkgk to gm. Then we define

Hk(Bj) := {Bk ∈ Sk(gk) : Bk ⊆ Bj and ∀l < k s.t. Bk ⊆ Bl, Bl /∈ Sl(gl)}.

The idea here is simpler to understand if we reason progressively from i to m. In the first case, Hi(Bj)
contains all the events of Bi where gi is not zero. For all events Bi on which gi is instead zero, we consider
the events Bi+1 of Bi+1 that are included in Bi and such that gi+1 is not zero. If these events Bi+1 do not
cover Bi completely, then this means that there are some events in Bi+1, included in Bi, on which gi+1 is
zero. In this case we move on to Bi+2, in a recursive fashion, up to Bm. We can also understand the above
reasoning by noting that if f(ω) 6= 0 for some ω ∈ Bj , there must be some k ≥ j such that gk(ω) 6= 0;
and we choose the smallest such k and the set Bk ∈ Bk that includes ω.
All the events that are considered in this way are collected in the setsHi(Bj), . . . ,Hm(Bj) (note also that
these events are all disjoint). This allows us to write

Bjf =
∑

Bi∈Hi(Bj)

∈Ri|Bi︷︸︸︷
Bif +

∑
Bi∈Hi+1(Bj)

∈Ri+1|Bi+1︷ ︸︸ ︷
Bi+1f + · · ·+

∑
Bm∈Hm(Bj)

∈Rm|Bm︷ ︸︸ ︷
Bmf , (A.11)

where the generic Bkf belongs toRk|Bk thanks to (A.10).
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At this point we split Bj in two subsets: Bi≤jj , which contains the events Bj that are in case (a), and Bi>jj , which
contains the remaining events, those that are in case (b). We obtain that∑

Bj∈Bi≤j
j

Bjf ∈ F1 ⊕ · · · ⊕ Fm

because each of those Bjf belongs to a certain Fi, as it follows from (A.9), and considering that set Fi is
Bj-conglomerable for all i, thanks to the third statement. On the other hand,

∑
Bj∈Bi>j

j

Bjf =

∈Fi︷ ︸︸ ︷∑
Bj∈Bi>j

j

∑
Bi∈Hi(Bj)

Bif +

∈Fi+1︷ ︸︸ ︷∑
Bj∈Bi>j

j

∑
Bi+1∈Hi+1(Bj)

Bi+1f + · · ·+

∈Fm︷ ︸︸ ︷∑
Bj∈Bi>j

j

∑
Bm∈Hm(Bj)

Bmf,

thanks to (A.11), and where the generic sum
∑
Bj∈Bi>j

j

∑
Bk∈Hk(Bj)Bkf belongs to Fk because this set is

Bk-conglomerable. As a consequence,

f ≥
∑

Bj∈Bi≤j
j

Bjf +
∑

Bj∈Bi>j
j

Bjf ∈ F1 ⊕ · · · ⊕ Fm,

(where the inequality follows because at the beginning of the proof we have only focused on terms Bjf 6≥ 0) so
that we finally deduce that f ∈ F1 ⊕ · · · ⊕ Fm.

5. This is a consequence of the previous point and of Theorem 10.

Proof of Corollary 1. The direct implication follows from Theorem 14(1). For the converse one, consider i, j ∈
{1, . . . ,m}, j > i, and Bj ∈ Bj , Bi ∈ Bi and f ∈ L.

Let us start by showing that P (G(f |Bj)|Bi) = 0. In case Bj * Bi, this is trivial because P (G(f |Bj)|Bi) =
P (0|Bi) = 0. If on the other handBj ⊆ Bi, then given hj := G(f |Bj) ∈ L, it follows from (21) that P (hj |Bj−1) = 0,
whence hj = G(hj |Bj−1); then, given Bj−2 ⊇ Bj−1, we have that P (G(hj |Bj−1)|Bj−2) = P (hj |Bj−2) = 0,
whence hj = G(hj |Bj−2); repeating this argument, we obtain hj = G(hj |Bi+1), whence P (G(f |Bj)|Bi) =
P (hj |Bi) = P (G(hj |Bi+1)|Bi) = 0.

Let us now show that P (G(f |Bj)|Bi) ≥ 0. Given hj := G(f |Bj), it follows from (22) that P (hj |Bj−1) ≥ 0 for
all Bj−1 ∈ Bj−1, whence hj ≥ G(hj |Bj−1) =: hj−1; then P (hj−1|Bj−2) ≥ 0 for all Bj−2 ∈ Bj−2, whence hj−1 ≥
G(hj−1|Bj−2) =: hj−2; by repeating this argument, we obtain that P (G(f |Bj)|Bi) = P (hj |Bi) ≥ P (hj−1|Bi) ≥
· · · ≥ P (hi+1|Bi) ≥ 0, because hi+1 = G(hi+2|Bi+1), with hi+2 ∈ L.

Using Theorem 14(1), we conclude that P (·|B1), . . . , P (·|Bm) are coherent.
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