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disintegrability is reviewed. Both the precise and the imprecise cases are con-
cerned.
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1. Introduction

In time, conglomerability and disintegrability have been investigated by var-
ious authors, in different frameworks and under different assumptions. This
produced a slightly chaotic situation with risk of misunderstandings. As a re-
sult, conglomerability/disintegrability may look much more involved than they
are.

For instance, it is not always clear whether or not conglomerability implies
disintegrability; see e.g. [1, page 206]. Instead, this issue is quite simple: It
depends on the class of random variables where the various probability eval-
uations are defined. Or else, sometimes, one speaks about “conglomerability
according to X” and “conglomerability according to Y ”, where X and Y are
different authors, raising the doubt of the existence of more than one notion of
conglomerability. There is only one notion, instead, which is merely applied in
different settings. (The situation is more involved in the so called “imprecise
case”, introduced below).

This paper does not include new results but aims to bring out and make
precise the basic ideas underlying conglomerability and disintegrability. We
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focus on the general (mathematical) theory more than on results concerning
specific problems.

So far, we referred to the so called precise case. Roughly speaking, “precise”
means that probability evaluations are (at least) finitely additive. Recently,
however, there is a growing interest on the imprecise case, where finite additivity
is not required and weaker types of probability evaluations come into play.
Accordingly, in the second part of this paper, conglomerability/disintegrability
are discussed in the imprecise case. There is however a notable difference with
the precise case. Indeed, the general theory of conglomerability/disintegrability
is essentially understood in the precise case, while it is still in progress in the
imprecise case.

To deal with conglomerability/disintegrability implies some choices about
the ingredients of the problem. In this paper, for the reasons explained in
Subsection 2.1, we restrict to bounded random variables. At least in the precise
case, probability measures are finitely additive and conditioning is based on de
Finetti’s coherence principle. Finally, integrals are meant in Dunford-Schwartz’s
sense [2]; see Subsection 2.1 again.

2. Basics

2.1. Integral and notational conventions

Throughout, Ω is a non-empty set and Π a partition of Ω. For any set I, we
let P(I) denote the power set of I and l∞(I) the class of real bounded functions
on I. Moreover, the abbreviation f.a.p. stands for finitely additive probability.

A random variable is a real function on Ω (no measurability constraints
are required). In this paper, for convenience, we restrict to bounded random
variables. The main reason for that is the integral representation. In fact, a
coherent function on a classD of bounded random variables can be written as the
integral with respect to a finitely additive probability, but this useful fact is no
longer true if D includes unbounded random variables; see [3], [4] and references
therein. It should be stressed, however, that conglomerability/disintegrability
can be developed for unbounded random variables as well. It suffices to broaden
the notion of integral; see [4] again.

Since we restrict to bounded integrands, and since any bounded function
is the uniform limit of simple functions, integrals with respect to f.a.p.’s are
meant in the obvious way; see e.g. [2]. Fix in fact X ∈ l∞(Ω) and a f.a.p.
µ on the σ-field generated by X. If X is simple, say X =

∑
i ai 1Ai

, then∫
Ω
X dµ =

∑
i ai µ(Ai). Otherwise,

∫
Ω
X dµ = limn

∫
Ω
Xn dµ where Xn is a

sequence of simple functions such that Xn → X uniformly.
We always denote by D ⊂ l∞(Ω) a class of bounded random variables. In

addition, three notational conventions are adopted. First, a set and its indicator
are denoted by the same symbol. Thus, if A ⊂ Ω, then A also designates the
indicator function of the set A. Second, if A is a collection of subsets of Ω, we
write D = A (or D ⊃ A) to mean that D coincides with (or D includes) the
class of indicators of the members of A. Third, for each S ⊂ Π, we let S∗ denote
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the subset of Ω obtained as union of the elements of S, namely, S∗ =
⋃
H∈S H.

Roughly speaking, S and S∗ are essentially the same set, but S is a subset of
Π while S∗ a subset of Ω.

2.2. Coherent conditional probabilities

Some claims in this subsection are without proofs. We refer to [5] and [6]
for the latter.

A conditional bounded random variable, X|H, is the restriction of X ∈
l∞(Ω) to a (non-empty) subset H ⊂ Ω. As usual, if H = Ω, we write X instead
of X|Ω. Let C be any class of conditional bounded random variables and let P
be a real function on C. Then, P is coherent if, for all n ≥ 1, c1, . . . , cn ∈ R and
X1|H1, . . . , Xn|Hn ∈ C, one obtains

supG|H ≥ 0

where

G =

n∑
i=1

ciHi

{
Xi − P (Xi|Hi)

}
and H =

n⋃
i=1

Hi. (1)

This is de Finetti’s coherence principle. Indeed, for an arbitrary class C of
conditional bounded random variables, de Finetti’s ideas have been realized by
various authors independently; see [5], [6], [7] and references therein.

Some more remarks are in order.
A coherent function P is also called a prevision. It is called a conditional

probability when each element of C is of the form A|H, with A, H ⊂ Ω and
H 6= ∅.

Since c1, . . . , cn are arbitrary constants, one also obtains

inf G|H = − sup −G|H ≤ 0

whenever P is coherent and G and H are given by (1).
If P is coherent, the map X 7→ P (X|H) is a linear positive functional

supported by H. More precisely, fix a non empty subset H ⊂ Ω and define
CH = {X ∈ l∞(Ω) : X|H ∈ C}. Then,

supX|H ≥ P (X|H) ≥ inf X|H and P
(
aX+bY |H

)
= aP (X|H)+b P (Y |H)

whenever a, b ∈ R and X, Y, aX + bY belong to CH . In particular,

P (H|H) = 1 provided H ∈ CH .

Coherence of P admits various characterizations under some assumptions on
C. We just mention three cases. Let A be a field of subsets of Ω. Then,

(i) If C = A, then P is coherent if and only if it is a f.a.p. on A;

(ii) If C = D, where D ⊂ l∞(Ω) is a linear space including the constants, P is
coherent if and only if it is a linear positive functional on D such that P (Ω) = 1;
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(iii) If C = {A|H : A, H ∈ A, H 6= ∅}, then P is coherent if and only if
− P (·|H) is a f.a.p. on A and P (H|H) = 1 for every H ∈ A \ {∅}, and
− P (A ∩B|C) = P (A|B ∩ C)P (B|C) for all A, B, C ∈ A with B ∩ C 6= ∅.

In case (iii), following Dubins [8], a coherent function P is also called a full
conditional probability.

Let C̃ = {X|H : X ∈ l∞(Ω), ∅ 6= H ⊂ Ω} be the class of all conditional
bounded random variables. If P is coherent, then P can be coherently extended
to C̃.

One consequence of such extension theorem is the integral representation.
Suppose in fact P is coherent and C = D for some D ⊂ l∞(Ω). Take a coherent
extension Q of P to l∞(Ω) and define µ(A) = Q(A) for all A ⊂ Ω. Then, µ is a
f.a.p. on P(Ω) and it is straightforward to see that

P (X) =

∫
Ω

X dµ for all X ∈ D.

Finally, de Finetti’s coherence principle admits a (nice) betting interpreta-
tion. A bet on X|H with stake c ∈ R can be thought of as follows. Let ω ∈ Ω. If
ω /∈ H, the bet is called off. Otherwise, if ω ∈ H, one pays the price c P (X|H)
to receive cX(ω). Suppose now that P describes your feelings on the elements
of C. If you bet on X1|H1, . . . , Xn|Hn with stakes c1, . . . , cn, your gain is G|H
where G and H are given by (1) (recall that all bets are called off on Hc). If
you are not coherent, supG|H < 0 for some choice of X1|H1, . . . , Xn|Hn and
c1, . . . , cn. Thus, if you are not coherent, a bookie can find a finite combination
of bets which makes you a sure loser.

2.3. Conglomerability and disintegrability

In this subsection, D is an arbitrary subclass of l∞(Ω), Π a partition of Ω
and P a coherent function on

C =
{
X|H : X ∈ D, H ∈ Π or H = Ω

}
.

As usual, we write P (X) instead of P (X|Ω) whenever X ∈ D.

(C) P is Π-conglomerable (or simply conglomerable) if

inf
H∈Π

P (X|H) ≤ P (X) ≤ sup
H∈Π

P (X|H) for each X ∈ D.

Condition (C) was first discussed by de Finetti in [9]. It is not hard to find
examples where (C) fails. The following is a classical one.

Example 1. (P. Lévy). Let Ω = N× N, D = P(Ω) and

Gn = {n} × N, Hn = N× {n}, A = {(i, j) : i ≤ j}.
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Take a f.a.p. Q on P(Ω) such that Q{ω} = 0, Q(Gn) > 0 and Q(Hn) > 0 for
all ω ∈ Ω and n ∈ N. If P is a coherent extension of Q, then

P (A|Gn) = Q(A ∩Gn)/Q(Gn) = 1 and P (A|Hn) = Q(A ∩Hn)/Q(Hn) = 0

for all n. Hence, P fails to be conglomerable in at least one of the partitions
{Gn : n ∈ N} and {Hn : n ∈ N}. �

We next turn to disintegrability.

(D) P is Π-disintegrable (or simply disintegrable) if there is a f.a.p. µ on P(Π)
such that

P (X) =

∫
Π

P (X|H)µ(dH) for each X ∈ D.

Condition (D) trivially holds if Π is finite (the so called theorem of total
probability) and it is quite natural to investigate it for an arbitrary partition Π.

It is quite obvious that (D) implies (C). Under the present conditions (recall
that D is arbitrary) the converse is not true. As discussed in Section 3, however,
(C) implies (D) whenever D is a linear space.

Two other points are to be stressed.

(i) The role played by µ. Roughly speaking, (D) means that P (X) can
be reconstructed as a weighted mean of the conditional expectations P (X|H).
For doing this, however, the maps H 7→ P (X|H) are to be integrated for every
X ∈ D. Let S be the σ-field on Π generated by H 7→ P (X|H) for all X ∈ D.
Suppose P is disintegrable and

S∗ ∈ D for all S ∈ S. (2)

Given S ∈ S and H ∈ Π, either S∗ ∩H = ∅ and P (S∗|H) = 0 or S∗ ∩H = H
and P (S∗|H) = 1. It follows that

µ(S) =

∫
Π

P (S∗|H)µ(dH) = P (S∗).

In other terms, if (2) holds, µ agrees with P on S and, with a slight abuse of
notation, P can be regarded as a f.a.p. on S. Thus, the maps H 7→ P (X|H)
are P -integrable and (D) reduces to

P (X) =

∫
Π

P (X|H)P (dH) for each X ∈ D.

To summarize, under (2), there is no need to involve µ in condition (D). But in
general condition (2) does not hold, and this is why µ comes into play.

(ii) Conglomerability/disintegrability for a coherent function Q on
D. As defined above, (C)-(D) require a coherent function P on C. Sometimes,
however, we are not given P but only a coherent function Q on D. In that case,
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Q is said to be conglomerable or disintegrable provided it admits a coherent
extension P to C that is conglomerable or disintegrable. To develop this point
further, a definition is needed.

A Π-strategy is a coherent function σ on D×Π. Equivalently, if H, XH ∈ D
whenever H ∈ Π and X ∈ D (as assumed in the rest of this subsection), a
Π-strategy is a map σ : D × Π → R such that σ(H|H) = 1 and σ(·|H) is a
coherent function on D for every H ∈ Π.

Let Q be a coherent function on D. To investigate conglomerability/disinte-
grability of Q, the first step is to select a Π-strategy σ and to define

Pσ(X) = Q(X) and Pσ(X|H) = σ(X|H) for all X ∈ D and H ∈ Π.

Such a Pσ is an extension of Q to C. Thus, to proceed further, coherence of Pσ
is to be checked. Due to the simple structure of C, it is an easy consequence of
de Finetti’s coherence principle that Pσ is coherent if and only if

Q(XH) = σ(X|H)Q(H) for all X ∈ D and H ∈ Π;

see e.g. [10, Corollary 1.3] and [11, Corollary 2.6]. This fact has (at least) two
consequences. First, if Q(H) > 0 for all H ∈ Π, the only choice of σ that makes
Pσ coherent is σ(X|H) = Q(XH)/Q(H). On the other hand, if Q(H) = 0 for
all H ∈ Π, then Pσ is coherent for each Π-strategy σ. Second, Pσ is coherent
if Q(X) =

∫
Π
σ(X|H)µ(dH), X ∈ D, for some f.a.p. µ on P(Π). Hence, after

selecting σ, the checking of coherence of Pσ can be skipped if one aims to Π-
disintegrability of Q. In fact, coherence of Pσ is automatic if one is able to prove
that Q(X) =

∫
Π
σ(X|H)µ(dH). Instead, the checking of coherence can not be

eluded if one aims to Π-conglomerability of Q. In fact, it may be that Pσ is not
coherent (so that Π-conglomerability of Pσ does not make sense) and yet

inf
H∈Π

σ(X|H) ≤ Q(X) ≤ sup
H∈Π

σ(X|H) for each X ∈ D;

see Example 3.2 of [12].
Π-disintegrability of Q has been investigated in various papers for various

partitions Π; see e.g. [13], [14], [15] and references therein. A related open
problem is mentioned in Section 6.

2.4. Classical conditional probabilities

Classical (Kolmogorovian) conditional probabilities may fail to be coherent.
This is quite expected, for classical conditional probabilities are essentially ar-
bitrary on a null set. However, under some assumptions, classical conditional
probabilities can be made coherent. In that case, they are also countably ad-
ditive and Π-disintegrable, where Π is the partition in the atoms of the condi-
tioning σ-field. In a nutshell, this is the heart of the matter.

A seminal paper on classical conditional probabilities is [16]. Further in-
formation can be drawn from [13], [17], [18], [19]. Here, we just give a quick
summary of the issue.

Let G ⊂ A be σ-fields on Ω and Q a countably additive probability on A. A
regular conditional distribution (for Q given G) is a map K on Ω×A such that
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− K(ω, ·) is a countably additive probability on A for fixed ω ∈ Ω,

− ω 7→ K(ω,A) is G-measurable for fixed A ∈ A,

− Q(A ∩B) =
∫
B
K(ω,A)Q(dω) for A ∈ A and B ∈ G.

A regular conditional distribution K is proper if there is a set B0 ∈ G such that
Q(B0) = 1 and

K(ω,B) = δω(B) for all ω ∈ B0 and B ∈ G

where δω denotes the unit mass at ω.
A regular conditional distribution can fail to exist and can fail to be proper

whenever it exists. However, suppose Q admits a proper regular conditional
distribution K. Suppose also that Π ⊂ G where Π is the partition of Ω in the
atoms of G. For each H ∈ Π, select a point ωH ∈ H and define

P (A) = Q(A) and P (A|H) =

{
K(ωH , A) if ωH ∈ B0,

δωH
(A) if ωH /∈ B0,

where A ∈ A and H ∈ Π.
Then, P is coherent, Π-disintegrable, and P (·|H) is countably additive for

all H ∈ Π ∪ {Ω}.

3. Conglomerability versus disintegrability

Let P : C → R be coherent, where C =
{
X|H : X ∈ D, H ∈ Π or H = Ω

}
with D ⊂ l∞(Ω) and Π a partition of Ω.

If D is a linear space, then (C) implies (D). This fact was firstly proved by
Dubins [8, Theorem 1] when D = l∞(Ω) and subsequently in [11, Theorem 3.1]
for an arbitrary linear space D. See also [4] for the case of unbounded random
variables. Here, we report a short proof of [11, Theorem 3.1]. Such a proof
highlights that the result is nothing but a consequence of de Finetti’s coherence
principle. The following (obvious) remark may help: If Y ⊂ l∞(Π) is a linear
space, the null functional on Y is coherent if and only if supY ≥ 0 for each
Y ∈ Y; see also [20, Lemma 1].

Theorem 1. Let D be a linear space. Then, P is Π-conglomerable if and only
if it is Π-disintegrable.

Proof. The “if” part is trivial. Suppose P is Π-conglomerable and define

YX(H) = P (X|H)− P (X) for all X ∈ D and H ∈ Π.

Since D is a linear space, Y := {YX : X ∈ D} is a linear space of bounded
functions on Π. Since P is Π-conglomerable, supH∈Π YX(H) ≥ 0 for each X ∈
D. Hence, the null functional on Y is coherent, and this implies that

0 =

∫
Π

YX(H)µ(dH) =

∫
Π

P (X|H)µ(dH)− P (X)

for all X ∈ D and some f.a.p. µ on P(Π).
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In general, if D is arbitrary, (D) implies (C) while the converse is not true.
Indeed, it may be that (C) holds and (D) fails even if D is “very large” (but it
is not a linear space). In the next example, P is conglomerable, D = P(Ω), and
yet P is not disintegrable.

Example 2. (Example 3.3 of [12]). Let Ω = N, D = P(Ω) and

Π =
{
{2n− 1, 2n} : n ∈ N

}
.

Let E = {2n : n ∈ N} be the set of even integers, S the collection of H ∈ Π
such that H = {2n − 1, 2n} for some n ∈ N (note that S is a subset of Π) and

Ω1 = Ec ∩ S∗, Ω2 = E ∩ S∗, Ω3 = Ec ∩ (S∗)c, Ω4 = E ∩ (S∗)c.

For each A ⊂ Ω, define

A0 = {2n− 1 : n ∈ N, 2n ∈ A} and A0 = {2n : n ∈ N, 2n− 1 ∈ A}

and note that (A0)0 = A ∩ E and (A0)0 = A ∩ Ec. Define also

P (A) =

4∑
i=1

{
ρi(A ∩ Ωi) + νi(A ∩ Ωi)

}
for all A ⊂ Ω,

where ρi and νi are measures on P(Ωi) such that ρi is σ-additive, νi is finitely
additive, and

− ρ1{ω} > 0 and ν1{ω} = 0 for each ω ∈ Ω1, ρ1(Ω1) = 1/12, ν1(Ω1) = 1/6;

− ρ2(A) = (1/2) ρ1(A0) and ν2(A) = (1/4) ν1(A0) for each A ⊂ Ω2;

− ρ3{ω} > 0 and ν3{ω} = 0 for each ω ∈ Ω3, ρ3(Ω3) = 1/12, ν3(Ω3) = 1/3;

− ρ4(A) = (1/2) ρ3(A0) and ν4(A) = (5/8) ν3(A0) for each A ⊂ Ω4.

Since P (H) > 0 for each H ∈ Π, the only coherent extension of P to C (still
denoted by P ) is P (A|H) = P (A ∩H)/P (H) for all A ⊂ Ω and H ∈ Π. Such
a P fails to be Π-disintegrable. In fact, since P (S∗) = 1/3, P (E|H) = 1/3 for
each H ∈ Π and condition (2) holds, one obtains∫

Π

P (E ∩ S∗|H)P (dH) =

∫
S

P (E|H)P (dH)

= (1/3)P (S∗) = 1/9 > 1/12 = P (E ∩ S∗).

It remains to show that P is Π-conglomerable. It suffices to prove

P (A) ≥ inf
H∈Π

P (A|H) for all A ⊂ Ω. (3)

In fact, under (3), taking complements yields P (A) ≤ supH∈Π P (A|H) for all
A ⊂ Ω. Fix A ⊂ Ω. To prove (3), it can be assumed A 6= Ω and A ∩H 6= ∅ for
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each H ∈ Π. If H = {2n − 1, 2n}, then P (A|H) takes the values 1/3, 2/3, 1
according to A ∩ H = {2n}, A ∩ H = {2n − 1}, A ∩ H = H, respectively. If
A ⊃ Ec, then

P (A) ≥ P (Ec) = 2/3 = inf
H∈Π

P (A|H)

where the last equality is because A 6= Ω. Otherwise, if A ∩ Ec 6= Ec, then
infH∈Π P (A|H) = 1/3. Since A ∩H 6= ∅ for each H ∈ Π, one obtains

(A ∩ Ω1)0 ∪ (A ∩ Ω2) = Ω2 and (A ∩ Ω3)0 ∪ (A ∩ Ω4) = Ω4.

Further, P (A ∩ Ωi) ≥ P
(

(A ∩ Ωi)
0
)

if i = 1 or i = 3. It follows that

P (A) =

4∑
i=1

P (A ∩ Ωi)

≥ P
(

(A ∩ Ω1)0
)

+ P (A ∩ Ω2) + P
(

(A ∩ Ω3)0
)

+ P (A ∩ Ω4)

≥ P (Ω2) + P (Ω4) = 1/3 = inf
H∈Π

P (A|H).

Thus, condition (3) holds, that is, P is Π-conglomerable. �

We close this section by showing that (D) amounts to a stronger form of (C)
provided D is large enough (but not necessarily a linear space).

Let S be the σ-field on Π generated by the maps H 7→ P (X|H) for all
X ∈ D, and let T be a coherent extension of P to C ∪ {X|S∗ : X ∈ D, S ∈ S}.
Suppose that

S∗ ∈ D and XS∗ ∈ D for all S ∈ S and X ∈ D. (4)

A (natural) strengthening of (C) is to require T (·|S∗) to be conglomerable for all
S ∈ S with P (S∗) > 0. On the other hand, since T (·|S∗) is actually supported
by S∗, conglomerability should be requested on S (and not on Π). On noting
that T (X|S∗) = P (XS∗)/P (S∗) if P (S∗) > 0, this leads to the condition

P (S∗) inf
H∈S

P (X|H) ≤ P (XS∗) ≤ P (S∗) sup
H∈S

P (X|H) (5)

for all X ∈ D and S ∈ S.
Condition (5) turns out to be exactly the right one. The next result slightly

improves [10, Theorem 1.6].

Theorem 2. Under condition (4), P is Π-disintegrable if and only if it satisfies
condition (5).

Proof. Since (4) implies (2), Π-disintegrability reduces to

P (X) =

∫
Π

P (X|H)P (dH)
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for all X ∈ D; see point (i) of Subsection 2.3. Hence, if P is Π-disintegrable,
condition (5) follows from

P (XS∗) =

∫
Π

P (XS∗|H)P (dH) =

∫
S

P (X|H)P (dH)

for all X ∈ D and S ∈ S. Conversely, suppose (5) holds and fix X ∈ D. Given
ε > 0, since H 7→ P (X|H) is P -integrable (because of (4)) there is a finite
partition {S1, . . . , Sn} ⊂ S of Π such that∫

Π

P (X|H)P (dH) < ε+

n∑
i=1

P (S∗i ) inf
H∈Si

P (X|H).

Thus, condition (5) yields∫
Π

P (X|H)P (dH)− ε <
n∑
i=1

P (S∗i ) inf
H∈Si

P (X|H) ≤
n∑
i=1

P (XS∗i ) = P (X).

Hence,
∫

Π
P (X|H)P (dH) ≤ P (X). The opposite inequality can be proved by

exactly the same argument.

4. Simultaneous conglomerability on several partitions

In this section, A is a σ-field of subsets of Ω and P is a f.a.p. on A. Also, B
denotes the collection of all countable partitions Π of Ω such that Π ⊂ A.

By a classical result of Yosida and Hewitt [21], P can be uniquely written as

P = αP1 + (1− α)P2,

where α ∈ [0, 1], P1 is a purely finitely additive f.a.p. and P2 a σ-additive f.a.p.
In the sequel, to stress the dependence on P , we write α(P ) instead of α. We
also recall that a f.a.p. Q on A is purely finitely additive if, for each ε > 0, there
is Π ∈ B such that

∑
H∈ΠQ(H) < ε.

Let P ∗ be a coherent extension of P to the class of all conditional bounded
random variables. If A ∈ A and Π ∈ B, then

P (A) ≥
∑
H∈Π

P (A ∩H) =
∑
H∈Π

P ∗(A|H)P (H)

≥
{

1− α(P )
} ∑
H∈Π

P ∗(A|H)P2(H) ≥
{

1− α(P )
}

inf
H∈Π

P ∗(A|H)

where P2 is the σ-additive part of P . Taking complements, one obtains

P (A)−
{

1− α(P )
}

sup
H∈Π

P ∗(A|H) ≤ α(P ).

It follows that

β(P ∗) := sup
A∈A,Π∈B

{
P (A)− sup

H∈Π
P ∗(A|H)

}
≤ α(P ).
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The number β(P ∗) quantifies the degree of non-conglomerability of P ∗ on
the partitions belonging to B. In particular, β(P ∗) = 0 if and only if P ∗

is Π-conglomerable for every Π ∈ B. Usually, β(P ∗) is called the extent of
non-conglomerability of P . The terminology may look inappropriate, for β(P ∗)
apparently depends on P ∗ and not on P . This is not the case, however, thanks
to a (nice) result of Schervish-Seidenfeld-Kadane [1]; see also [22].

Theorem 3. If P is a f.a.p. on a σ-field A, then

β(P ∗) = α(P )

for every coherent extension P ∗ of P .

Theorem 3 can be strengthened under the assumption that P takes infinitely
many values. Suppose in fact this is true and define B0 = {Π ∈ B : P (H) > 0
for each H ∈ Π}. Then, [1, Theorem 3.1] implies that

α(P ) = sup
A∈A,Π∈B0

{
P (A)− sup

H∈Π

P (A ∩H)

P (H)

}
.

Trivially, β(P ∗) = 0 whenever P is σ-additive. de Finetti has over and over
maintained that Π-conglomerability on a “wide” class of (countable) partitions
Π implies σ-additivity. de Finetti’s insight is endorsed by Theorem 3. In fact, if
P ∗ is Π-conglomerable on every Π ∈ B, then α(P ) = β(P ∗) = 0, which clearly
amounts to σ-additivity of P .

We finally mention an analogous of Theorem 3 which holds for an arbitrary
(infinite) cardinal k. Say that P is k-additive if P (∪iAi) = supi P (Ai) whenever
∪iAi ∈ A, (Ai) is an increasing collection of elements of A, and the cardinality
of (Ai) is less than or equal to k. Under some conditions (including k not weakly
inaccessible), if P is not k-additive then P fails to be Π-conglomerable in some
partition Π such that card(Π) ≤ k; see [23].

5. The imprecise case

In recent decades, there has been a growing interest in extending some no-
tions and results from probability theory to deal better with situations where the
information is vague or scarce. This has given rise to a number of mathematical
models that are often gathered under the common term imprecise probabilities;
see [24] for a review.

5.1. Conditional lower previsions

A first extension of de Finetti’s coherence principle to the imprecise case was
established by Peter Williams [7].

Definition 1. [Williams’ coherence] Let C be any class of conditional bounded
random variables and P a real function on C. Then, P is coherent if, for all
n ≥ 1, real numbers ci ≥ 0 and Xi|Hi ∈ C (i = 0, 1, . . . , n), one obtains

supG|H ≥ 0

11



where

G =

n∑
i=1

ciHi

{
Xi − P (Xi|Hi)

}
− c0H0

{
X0 − P (X0|H0)

}
and H =

n⋃
i=0

Hi.

A coherent function P is also called a coherent conditional lower prevision.
It is called a coherent conditional lower probability if each element of C is of the
form A|H, with A,H ⊂ Ω and H 6= ∅. Further, it is called a coherent lower
prevision when H = Ω for every X|H ∈ C.

As shown in [7], coherent conditional lower previsions are related to full
conditional probabilities, as defined in Subsection 2.2, in the sense that the
latter can be seen as (linear) previsions that are coherent in the sense above;
see also [25, Section 3.1].

Fix H ⊂ Ω, H 6= ∅, and define CH = {X ∈ l∞(Ω) : X|H ∈ C}. If P is
coherent, then

inf X|H ≤ P (X|H) ≤ supX|H, P (λX|H) = λP (X|H)

and P (X + Y |H) ≥ P (X|H) + P (Y |H)

whenever λ > 0 and X, Y, λX, X + Y belong to CH .
A real function P on C is coherent if and only if

P (X|H) = inf
P∈M(P )

P (X|H) for all X|H ∈ C (6)

where M(P ) = {P prevision : P ≥ P on C}; see [7]. Condition (6) allows
to attach coherent conditional lower previsions a Bayesian sensitivity analysis
interpretation. One more consequence of (6) is that if {Pλ : λ ∈ Λ} is any
family of coherent conditional lower previsions, then its lower envelope

Q(X|H) = inf
λ∈Λ

Pλ(X|H)

is still coherent.
As in the precise case, a coherent conditional lower prevision can be coher-

ently extended to {X|H : X ∈ l∞(Ω), ∅ 6= H ⊂ Ω}, the set of all conditional
bounded random variables. In particular, a coherent lower probability on P(Ω)
can be extended to a coherent lower prevision on l∞(Ω). However, and unlike
the precise case, the extension is not unique in general. For this reason, we
distinguish between lower previsions (the expectation operators) and the less
informative lower probabilities (their restrictions to indicators).

The betting interpretation mentioned in Subsection 2.2 is essentially pre-
served in the imprecise case, but with some modifications. This point is dis-
cussed in the next subsection, for it requires the notion of coherent set of desir-
able gambles.

5.2. Desirability and coherent lower previsions

The theory sketched above can be developed introducing coherent sets of
desirable bounded random variables, also called gambles in this context.

12



Definition 2. A subset D of l∞(Ω) is called a coherent set of desirable gambles
when it satisfies the following properties:

• 0 /∈ D,

• X 
 0⇒ X ∈ D,

• X ∈ D, λ > 0⇒ λX ∈ D,

• X,Y ∈ D ⇒ X + Y ∈ D.

We refer to [24, Chapter 1] and [26, Section 3.7] for more on desirable gam-
bles. Here we just note that, if the members of D are regarded as gains from
transactions, the above axioms may be seen as rationality criteria for the ac-
ceptability of such transactions.

Given a coherent set D of desirable gambles, a coherent lower prevision on
l∞(Ω) can be obtained by means of the formula

P (X) = sup{p : X − p ∈ D}. (7)

Conversely, given a coherent lower prevision P on l∞(Ω), the set of gambles{
X : P (X) > 0 or X 
 0

}
(8)

is coherent and induces P via equation (7). The correspondence between co-
herent lower previsions and coherent sets of desirable gambles is not one-to-one,
however, as different coherent sets of desirable gambles may be associated with
the same coherent lower prevision (the set in (8) is just one of them). In this
sense, desirable gambles are a more informative model.

We are now able to attach a (nice) interpretation to coherent lower previ-
sions.

In the precise case, given X ∈ l∞(Ω), a coherent assessment P (X) can be
regarded as a fair price for X, in the sense that we are disposed to accept both
transactions {X − P (X)} and {P (X) − X}. In fact, we are willing to accept
c {X − P (X)} where the constant c has arbitrary sign.

In the imprecise case, instead, we should distinguish between the acceptable
buying prices and the acceptable selling prices for X. The first are those prices
p such that {X − p} is considered to be a desirable transaction (i.e. it belongs
to a coherent set of desirable gambles) while the second are those prices p′ such
that {p′ −X} is considered desirable.

With this in mind, formula (7) says that the coherent lower prevision P (X)
is the supremum acceptable buying price for X. Similarly, the upper prevision
P (X) := −P (−X) would be the infimum acceptable selling price for X. Since
buying X is equivalent to selling −X, however, all the assessments can be made
in terms of lower previsions.

The lower and upper previsions for X do not agree in general. If P (X) <
P (X), there are some prices for which we would neither buy nor sell X. When
P (X) = P (X), this common value is the prevision or fair price for X.
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These ideas extend similarly to the conditional case, as discussed in Subsec-
tion 5.1.

Next, exploiting Definition 2, Williams’ notion of coherence for lower pre-
visions (Definition 1) can be also given a betting interpretation, analogous to
that of De Finetti’s coherence principle. Fix in fact a coherent set D of desir-
able gambles and define P (X|H) = sup{p : H(X − p) ∈ D} for all X ∈ l∞(Ω)
and H ⊂ Ω with H 6= ∅. By the properties of D, the transaction H(X − p)
is acceptable for p < P (X|H) while it is not for p > P (X|H). In addition,
a positive linear combination of acceptable transactions is still acceptable, as
it is any transaction more profitable than an acceptable one. It follows that
supG|H ≥ 0, where

G =
n∑
i=1

ciHi

{
Xi − P (Xi|Hi)

}
− c0H0

{
X0 − P (X0|H0)

}
and H =

n⋃
i=0

Hi

are as in Definition 1. In fact, if supG|H < 0, there is δ > 0 such that

c0H0

{
X0 − P (X0|H0)− δ

}
≥

n∑
i=1

ciHi

{
Xi − P (Xi|Hi) + δ

}
.

Define the transactions

T0 = c0H0

{
X0 − P (X0|H0)− δ

}
, T =

n∑
i=1

ciHi

{
Xi − P (Xi|Hi) + δ

}
,

and note that T is acceptable, being a positive linear combination of acceptable
transactions. Therefore, we get a contradiction:

• If c0 = 0, then T ≤ 0. Thus, T /∈ D contrary to its acceptability.

• If c0 > 0, since T0 ≥ T and T is acceptable, T0 is acceptable as well.
Thus, P (X0|H0) + δ is an acceptable buying price for X0|H0, even if
strictly greater than the supremum acceptable buying price P (X0|H0).

Finally, the interpretation underlying coherence is finitary, in the sense that a
positive finite combination of acceptable transations is required to be acceptable,
but nothing is requested about infinite sums of acceptable transactions. Walley
argued that an infinite sum of acceptable transactions should be acceptable in
one particular case: when no two of the transactions can act simultaneously,
because they involve different events of a partition Π of Ω. In fact, given a
partition Π, a coherent set D of desirable gambles is called Π-conglomerable if

HX ∈ D ∪ {0} for each H ∈ Π⇒ X ∈ D ∪ {0}. (9)

Condition (9) was called the conglomerative principle by Walley [27, Section 6].
We refer to [28, Section 3] and [29, Section 6] for a study of this notion.
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5.3. Conglomerability for conditional lower previsions

The first studies of conglomerability for conditional lower previsions were
made by Peter Walley [26]. These studies motivated a notion of coherence,
stronger than the one in Definition 1, referred to as Walley-coherence in this
paper. Let Π be a partition of Ω and P a real function on

C = {X|H : X ∈ l∞(Ω), H ∈ Π or H = Ω}.

The notions introduced below are easily extendable to the case where X ranges
in a (possibly non-linear) subset D of l∞(Ω); see [31] and [26].

For X ∈ l∞(Ω), define

G(X|Π) =
∑
H∈Π

H
{
X − P (X|H)

}
.

Also, let us call P 1 the restriction of P to l∞(Ω) and PΠ the restriction of P to
{X|H : X ∈ l∞(Ω), H ∈ Π}. Then, P is Walley-coherent if:

(a) P 1 and PΠ are each of them coherent in the sense of Definition 1,

(b) P
(
H(X − P (X|H))

)
= 0 for every X|H ∈ C,

(c) P
(
G(X|Π)

)
≥ 0 for every X ∈ l∞(Ω).

Condition (b) is usually called generalised Bayes’ rule. Under (b), condition
(a) could be replaced by asking P to be a coherent conditional lower prevision.
In fact, conditions (a)-(b) imply that P is coherent in Williams’ sense [7, 32].

The motivation behind condition (c) lies in Walley’s conglomerative principle
(condition (9)): if we are disposed to accept the transaction H

{
X − P (X|H)

}
,

no matter which H ∈ Π turns out to occur, then their sum G(X|Π) should also
be viewed as acceptable, for only one of its building blocks will come into play.
See also [29, 30].

Let P 1 be a coherent lower prevision on l∞(Ω). According to Walley, P 1

is Π-conglomerable if there exists a coherent conditional lower prevision PΠ on
{X|H : X ∈ l∞(Ω), H ∈ Π} such that P 1 and PΠ are Walley-coherent. More
precisely, the function P on C given by

P (X) = P 1(X) and P (X|H) = PΠ(X|H), X ∈ l∞(Ω), H ∈ Π,

is Walley-coherent. This means that the unconditional model P 1 can be updated
to a conditional one and this conditional model satisfies Walley’s notion of
coherence with respect to P 1.

Conglomerability can be characterized in a number of ways, some of which
are summarized in the following theorem. Given H ⊂ Ω and a coherent lower
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prevision P 1 on l∞(Ω), let us define the conditional natural extension of P 1 to
be the function EH on {X|H : X ∈ l∞(Ω)} given by

EH(X|H) =

{
inf X|H if P 1(H) = 0

inf{P1(HX)/P1(H) : P1 ≥ P 1, P1 prevision} if P 1(H) > 0.

We also let EΠ(X|H) = EH(X|H) for each H ∈ Π. Such EΠ, also called
conditional natural extension of P 1, is a coherent conditional lower prevision on
{X|H : X ∈ l∞(Ω), H ∈ Π}.

Theorem 4. [26, Chapter 6] Let P 1 be a coherent lower prevision on l∞(Ω).
The following are equivalent:

(i) P 1 is Π-conglomerable;

(ii) If X ∈ l∞(Ω) and P 1(XH) ≥ 0 for each H ∈ Π such that P 1(H) > 0,
then P 1(X) ≥ 0;

(iii) P 1 is Walley-coherent with its conditional natural extension EΠ.

Theorem 4-(ii) underlines the aforementioned interpretation of conglomer-
ability. It takes into account Walley’s updating principle [26, Section 6.1.6],
that renders equivalent the desirability of X conditional on the observation of
H with the desirability of the contingent random variable XH.

Theorem 4-(ii) also implies that only those H ∈ Π with positive lower prob-
ability matter for Walley’s notion of conglomerability. This is not equivalent to
considering all H ∈ Π. As a trivial example, take a prevision P1 on l∞(Ω) such
that P1(H) = 0 for all H ∈ Π. Then, P1 is Π-conglomerable by Theorem 4-(ii).
On the other hand, it is not true that P1(X) ≥ 0 if P1(XH) ≥ 0 for all H ∈ Π.
If X is the constant −1, for instance, P1(X) < 0 even if P1(XH) = 0 for all
H ∈ Π.

Thus, since at most countably many disjoint events may have positive lower
probability, to investigate conglomerability we may restrict to countable par-
titions. This is one of the main differences with the precise case (recall the
comments at the end of Section 4).

We next briefly mention disintegrability of coherent lower previsions. Let P 1

be a coherent lower prevision on l∞(Ω) and EΠ its conditional natural extension.
Define

P (X|Π) =
∑
H∈Π

H EΠ(X|H) for X ∈ l∞(Ω).

In line with the precise theory (Subsection 2.3) it is reasonable to say that P 1

is Π-disintegrable if

P 1(X) = P 1

(
P (X|Π)

)
for all X ∈ l∞(Ω).

However, despite l∞(Ω) being a linear space, Π-conglomerability does not amount
to Π-disintegrability. In fact, the coherence of P 1 and the definition of EΠ yield

P 1

(
X − P 1(X)

)
= 0 and P 1

(
H(X − EΠ(X|H))

)
= 0
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for all X ∈ l∞(Ω) and H ∈ Π. Therefore, Theorem 4-(iii) implies that P 1 is
Π-conglomerable if and only if P 1

(
X − P (X|Π)

)
≥ 0 for all X ∈ l∞(Ω), or

equivalently P 1(X) ≥ P 1

(
P (X|Π)

)
for all X ∈ l∞(Ω). But the equality need

not hold in general; see e.g. the prevision in [26, Example 6.6.10].
Finally, Walley’s notion of conglomerability applies, in particular, to previ-

sions P1 with domain l∞(Ω). Once again, Π-conglomerability of P1 is equivalent
to Walley-coherence of P1 with its conditional natural extension EΠ. However,
EΠ need not be a precise model, namely, it may be that

EH(X|H) 6= −EH(−X|H) = EH(X|H) for some X ∈ l∞(Ω) and H ∈ Π.

It follows from its definition that EH is precise when P1(H) > 0 (in which case
it is given by Bayes’ rule) and EH is imprecise when P1(H) = 0. In fact, there
are examples where Π-conglomerable previsions are not Walley-coherent with
any conditional prevision [26, Example 6.6.10]. However, if P1(H) > 0 for every
H ∈ Π, one obtains

P1 is Π-conglomerable ⇔ P1(X) = P1

(
P (X|Π)

)
for each X ∈ l∞(Ω).

We refer to [25, Section 4] for some results on the connections between
disintegrability and Walley’s notion of conglomerability for previsions P1 with
domain l∞(Ω). In particular, under some assumptions on the cardinality of Ω,
these notions become equivalent when they are required to hold with respect to
all partitions (what we call full conglomerability in Subsection 5.6).

5.4. Mathematical properties

As shown in [26, Section 2.6], the class of coherent lower previsions on
l∞(Ω) is closed under convex combinations, point-wise limits, and lower en-
velopes. However, these properties do not necessarily hold for the subclass of
Π-conglomerable lower previsions.

First of all, the point-wise limit of a sequence of Π-conglomerable lower
previsions need not be Π-conglomerable; see [33, Example 1] and [26, Exam-
ple 6.6.7]. Similarly, a convex combination of Π-conglomerable models need not
be Π-conglomerable; see [1, Example 4.1].

The situation is slightly more delicate for lower envelopes. In fact, the lower
envelope of a family of Π-conglomerable lower previsions is still Π-conglomerable
[26, Theorem 6.9.3], but there are Π-conglomerable lower previsions that are not
dominated by any Π-conglomerable prevision.

Example 3. (Example 6.6.9 of [26]). Let Ω = N∪−N and Π = {{−n, n} : n ∈
N}. Define P 1 = min{Q1, Q2}, where Q1 and Q2 are previsions on l∞(Ω) such
that

Q1(N) = 1/2 = Q1(−N), Q1{n} = 2−(n+1), Q1{−n} = 0,

Q2(N) = 1/2 = Q2(−N), Q2{n} = 0, Q2{−n} = 3−n,
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for all n ∈ N. Fix X ∈ l∞(Ω). If H = {−n, n}, then

P 1(XH) = min{Q1(XH), Q2(XH)} = min
{

2−(n+1)X(n), 3−nX(−n)
}
.

Hence, P 1(XH) ≥ 0 for all H ∈ Π if and only if X ≥ 0, which in turn implies
P 1(X) ≥ 0. By Theorem 4-(ii), P 1 is Π-conglomerable.

However, even if P 1 is Π-conglomerable, no prevision P dominating P 1 is
Π-conglomerable. To prove this fact, note that any such P can be expressed as
P = λQ1 + (1− λ)Q2 for some λ ∈ [0, 1]. If λ = 0, then P = Q2 and Q2 is not
Π-conglomerable, since Q2(N) = 1/2 and Q2(N|H) = 0 for all H ∈ Π. On the
other hand, if λ > 0, then

P
(
{n}|{−n, n}

)
=

P{n}
P{n}+ P{−n}

=
λ

λ+ 2 (1− λ) (2/3)n
−→ 1

as n → ∞. Define C = {m ∈ N ∪ −N : m ≥ −n∗}, where n∗ ∈ N is such that
P
(
{n}|{−n, n}

)
≥ 1− (λ/4) for each n ≥ n∗. Then,

P (C) = λQ1(C)+(1−λ)Q2(C) ≤ 1− λ
2

and P (C|H) ≥ 1− λ
4

for all H ∈ Π,

so that P is not Π-conglomerable. �

We conclude this subsection remarking that the envelopes of the set of con-
glomerable extensions of a strategy and a prior probability are characterized in
[34], while the notions of conglomerability/disintegrability for the so-called full
T-conditional measures are investigated in [35]. Full T-conditional measures
arise in possibility theory [36], and constitute an extension of full conditional
probabilities to this framework. Again, a formula for the envelopes of conglom-
erable extensions is established.

5.5. Conglomerable natural extension

The term natural extension is used in imprecise probability theory to refer to
the procedure of determining the closest model to a given one that satisfies some
properties. For instance, if a real function P 1 on l∞(Ω) admits a dominating
coherent lower prevision, the natural extension of P 1 is the smallest dominating
coherent lower prevision, or equivalently the lower envelope of M(P 1):

E(X) = min{P (X) : P ∈M(P 1)} for each X ∈ l∞(Ω).

Moreover, P 1 is coherent if and only if coincides with its natural extension.
In a similar vein, given a coherent lower prevision P 1 on l∞(Ω), its Π-

conglomerable natural extension is the smallest Π-conglomerable lower prevision
Q

1
such thatQ

1
≥ P 1. This was investigated in some detail in [28, 33]. However,

the conglomerable natural extension suffers from a number of problems.
The first problem is its existence: it is not trivial to characterise those coher-

ent lower previsions that are not Π-conglomerable but admit a Π-conglomerable
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natural extension. In [33, Section 3], a number of necessary or sufficient condi-
tions for the existence of the conglomerable natural extension were established,
but none of them is simultaneously necessary and sufficient. This contrasts with
the natural extension considered above, that exists if and only if the credal set
M(P 1) is non-empty (in which case, P 1 is said to avoid sure loss).

On the other hand, when the Π-conglomerable natural extension exists, there
is not an easy way to compute it. As deduced from Example 3, it can not be
generally obtained as a lower envelope of Π-conglomerable previsions. Another
approach would be considering Walley’s notion of natural extension of uncon-
ditional and conditional assessments [26, Section 8.1]. However, this natural
extension is not Π-conglomerable in general, and produces only a conservative
approximation of the Π-conglomerable natural extension [28, Example 5]. What
this means is that, even if the notion of Walley-coherence is taking conglom-
erability into account, it is not doing so in its full extent, and that to model
conglomerability in the imprecise case it is better to take conglomerability for
sets of desirable gambles (i.e., condition (9)) as primary notion, as in [30]. This
approach also has the advantage that it allows us to overcome the restriction of
positive lower probabilities that evntually leads to the consideration of countable
partitions, as discussed after Theorem 4.

If we stick to the notion established by Walley for lower previsions, we can
instead consider an iterative approximation to the conglomerable natural exten-
sion, by means of an increasing sequence of coherent lower previsions obtained
by means of Walley’s notion of natural extension. Nevertheless, this sequence
may not stabilise in a finite number of steps [33, Example 4]. A number of
sufficient conditions for its convergence were established in [28, 33].

5.6. Simultaneous conglomerability with respect to several partitions

Given a family D of partitions of Ω, a coherent lower prevision P 1 on l∞(Ω)
is D-conglomerable if it is Π-conglomerable for every Π ∈ D. This means that,
for each Π ∈ D, there exists a coherent conditional lower prevision PΠ on
{X|H : X ∈ l∞(Ω), H ∈ Π} such that P 1 and PΠ are Walley-coherent.

This notion has been considered in [37], [28, Section 7] and [25, Section 6.1].
In particular, P 1 is said to be fully conglomerable if it is Π-conglomerable for
every partition Π of Ω. As can be expected, fully conglomerable previsions are
quite related to countably additive ones.

Theorem 5. [26, Theorems 6.9.1 and 6.9.2] Let P be a prevision on l∞(Ω). If
P is countably additive, then it is fully conglomerable. The converse holds when
the restriction of P to P(Ω) takes an infinite number of values.

Theorem 5 is analogous to Theorem 3 in the special case A = P(Ω). When
making the comparison, recall that Walley’s notion of conglomerability (the
one discussed in this subsection) involves countable partitions only, since only
conditioning events with positive probability are considered.

The situation is less clear for coherent lower previsions. The problem was
studied recently in [25]. In addition to the family of fully conglomerable coherent
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lower previsions, denoted by M in what follows, two other subfamilies were
considered:

M1 = {lower envelopes of countably additive previsions},

M2 = {lower envelopes of fully conglomerable previsions}.

It holds that
M1 ⊂M2 ⊂M,

the inclusions being strict. Moreover, some continuity and σ-additivity proper-
ties for coherent lower previsions were also studied. Consider the conditions:

(a) Xn → X ⇒ P (Xn)→ P (X),

(b) Xn ↓ X ⇒ P (Xn) ↓ P (X),

(c) Xn ↓ 0⇒ P (Xn) ↓ 0,

(d) Xn ↑ X ⇒ P (Xn) ↑ P (X),

(e) P (
∑
nXn) ≥

∑
n P (Xn) if Xn ∈ l∞(Ω) for each n and

∑
nXn ∈ l∞(Ω).

The connection between full conglomerability and such conditions is sum-
marised in the following graph:

(a) ⇒ (d) ⇒ P ∈M1⇒ ⇒

(b) P ∈M2

⇓

⇒

(c) ⇐ (e) ⇒ P ∈M .

It should be noted that, although there are a number of sufficient conditions
for full conglomerability, none of them is simultaneously sufficient and necessary.

6. Concluding remarks

In this paper, to make the exposition clearer, the precise case (PC) and
the imprecise case (IC) are handled separately and PC is discussed before IC.
However, the paper could have been organized differently, starting with IC and
arriving to PC. This alternative formulation has some merits. In fact, PC can
be seen as a particular case of IC. Furthermore, conglomerability arises quite
naturally within IC, via the notion of coherent set of desirable gambles from
Subsection 5.2.

To begin with PC, in turn, can be motivated by essentially two reasons.
The first is of the historical type. Not only PC was developed long before IC,
but the latter was strongly affected by the former. The second reason is that,
as noted in Section 1, conglomerability/disintegrability are quite settled within
PC. There are of course some open problems (one is mentioned below) but the
general theory seems to be essentially understood. On the contrary, as regards
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IC, conglomerability/disintegrability are still in progress and some work is to
be done.

We next state the (announced) open problem on PC. Let Ω = [0, 1], D the
Borel σ-field and Q the Lebesgue measure on D. An intriguing question, raised
by Dubins and Prikry in [15], is whether or not Q is Π-disintegrable on every
Borel partition Π of [0, 1].

Let us turn now to IC. Here, de Finetti’s theory has been extended mostly
in two ways, by Peter Williams [7] and by Peter Walley [26]. The difference
between the two approaches lies precisely in the conglomerative principle, that
allows to consider the infinite sum of acceptable transactions involving different
events of a partition of Ω. In Williams’ approach this sum need not be accept-
able, while for Walley it should be. Then, Walley’s notion of a conglomerable
lower prevision means it can be updated into a conditional model while at the
same time satisfying the conglomerative principle.

As we have seen, some of the mathematical properties from PC do not extend
straightforwardly to IC. For instance, conglomerability cannot be characterised
by conditions of countable additivity or continuity. Also, it is not easy to accom-
modate conglomerability together with the notion of natural extension, which
is one of the pillars of the theory of coherent lower previsions and is the tool
for making conservative inferences. Thus, although the use of conglomerability
has again been recently advocated [29], some work remains in order to make it
fully operational.
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