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Abstract

Several authors have pointed out the relationship between consonant
random sets and possibility measures. However, this relationship has only
been proven for the finite case, where the inverse Möbius of the upper
probability induced by the random set simplifies the computations to a
great extent. In this paper, we study the connection between both con-
cepts for arbitrary referential spaces. We complete existing results about
the lack of an implication in general with necessary and sufficient condi-
tions for the most interesting cases.

Keywords: Possibility measures, maxitive measures, nested random
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1 Introduction

There has been a long interest in the literature concerning supremum preserving

upper probabilities. They had already appeared under different names ([27, 30,

31]) before Zadeh called them possibility measures ([32]), and claimed that they

were an important tool for modeling linguistic uncertainty. Since then, they

have become one of the main elements of the fuzzy theory ([10]), and have also

been studied from the measure and theoretical point of view ([2, 3]). Possibility

measures constitute a special case of maxitive measures, which have been used

in integration ([24, 25]), in extremal theory ([26]) or in connection with the

fuzzy theory ([12]).

In the finite context of Evidence Theory, Shafer ([28]) defined a consonant

plausibility function as the one whose focal elements are nested. This concept
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is equivalent, in a finitary setting, to those of possibility and maxitive measure.

The author argued that these set functions were interesting to model consonant

evidence, which is the evidence given by non-contradictory sources of informa-

tion. On the other hand, Shafer’s theory is a reinterpretation of Dempster’s

work on random sets ([6]). Formally, a random set is a measurable multi-valued

mapping. Given a probability space (Ω,A, P ), a measurable space (X,A′) and

a mapping Γ : Ω → P(X), Γ is said to be strongly measurable [15] when for

every A ∈ A′, Γ∗(A) := A∗ = {ω ∈ Ω : Γ(ω) ∩ A 6= ∅} belongs to A. A∗ is

called the upper inverse of A. Similarly, the lower inverse of A is defined by

A∗ := {ω ∈ Ω : Γ(ω) 6= ∅,Γ(ω) ⊆ A}. It is A∗ = (Ac∗)c ∩ X∗; hence, if Γ is

strongly measurable, A∗ ∈ A ∀A ∈ A′.
Using the upper and lower inverses, Dempster ([6]) defined the upper prob-

ability induced by Γ by P ∗(A) = P (A∗)
P (X∗) , and the lower probability by P∗(A) =

P (A∗)
P (X∗) . The restriction of P ∗ to the singletons of X is called the one-point

coverage function of the random set.

In Evidence Theory, focal elements play the same role as the images of

random sets in Dempster’s theory, while plausibility measures are analogous to

Dempster’s upper probabilities. This leads us to seek a connection between the

nesting of the images of a random set and the supremum-preserving property of

its upper probability. This is interesting not only from a purely theoretical point

of view (to obtain an equivalence between both structures) but also from a more

practical perspective (to give an interpretation to consonant random sets and

see if the one-point coverage function suffices to characterize the random set).

In this paper, we investigate the relationship between both models, completing

the results obtained in a previous article ([20]).

Special attention has been put on random sets defined on Polish spaces. A

Polish space (X, τ) ([17, 21]) is a topological metrizable space which is complete

and separable. We will denote β(τ) the Borel σ-field generated by the topology.

Polish spaces generalize the Euclidean space (Rn, d), while keeping most of the

good properties we have there. Moreover, they also generalize the finite spaces

(X,P(X)). Also, some authors consider only closed or compact-valued random

sets ([18]), because they have in most aspects better properties than other classes

of random sets. We will study the behaviour of these types of multi-valued
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mappings for our problem.

The paper is organized as follows: In Sections 2 and 3, we study thoroughly

the concepts of possibility and maxitive measure, and consonant random set.

Then, the mentioned problem is discussed; first, we study if a random set in-

ducing a possibility measure is consonant (Section 4) and next we investigate if

a consonant random set induces a possibility measure (Section 5). Finally, in

Section 6 we give some additional comments on the subject.

2 Possibility measures and maxitive capacities

Before introducing the concepts of possibility and maxitive measure, let us define

some general properties of set functions.

Definition 2.1. [7] Consider S a class of sets. A set function is a mapping

µ : S → [0,∞] s.t. µ(∅) = 0. It is called:

� monotone when A ⊂ B ⇒ µ(A) ≤ µ(B).

� continuous from above when for every decreasing sequence (An)n ⊂ S with

∩nAn ∈ S, it is µ(∩nAn) = limn µ(An).

� continuous from below if µ(∪nAn) = limn µ(An) for every increasing se-

quence (An)n ⊂ S s.t. ∪nAn ∈ S.

We will consider throughout a measurable space (X,A) and a monotone

set function µ : A → [0, 1] satisfying µ(X) = 1 (i.e., normalized). Let us give

another preliminary definition:

Definition 2.2. [29] Given a σ-field A, an upward net is a subclass C ⊂ A s.t.

∀A1, A2 ∈ C,∃A ∈ C with A1 ∪A2 ⊂ A.

Definition 2.3. ([3, 7, 16, 29]) Let (X,A) be a measurable space. A monotone

and normalized set function µ : A → [0, 1] is called:

� ∞-alternating if µ(A1 ∩ · · · ∩ An) ≤
∑n
i=1 µ(Ai) −

∑
i

∑
j µ(Ai ∪ Aj) +∑

i

∑
j

∑
k µ(Ai∪Aj∪Ak)−· · ·+(−1)n+1µ(∪ni=1Ai) for any A1, . . . , An ∈

A, n ∈ N.

� maxitive when µ(A ∪B) = max{µ(A), µ(B)} ∀A,B ∈ A.
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� possibility measure when for every (Ai)i∈I ⊂ A s.t. ∪i∈IAi ∈ A, it is

µ(∪i∈IAi) = supi∈I µ(Ai).

� Choquet capacity1 if it is continuous for decreasing sequences of closed

sets and continuous from below (note that in this case µ has to be defined

on a Borel σ-field β(τ)).

� condensable if for every upward net C ⊂ A such that ∪A∈CA ∈ A it is

µ(∪A∈CA) = supA∈C µ(A).

The term condensable capacity was coined by Shafer ([29]) in the context of

∞-alternating capacities, and it has also been used by Nguyen ([22, 23]), among

others. It is a stronger condition than continuity from below. When A contains

the singletons2, a condensable capacity satisfies the following property:

Lemma 2.1. [29] Take µ : A → [0, 1]. Then, µ is condensable if and only if

µ(A) = sup{µ(J) : J ⊂ A finite}.

Let us also introduce the notion of capacitability, which, as we will show, is

related to the condensability of a set function.

Definition 2.4. [17] Let (X, τ) be a Hausdorff topological space, µ a set function

on β(τ). A set A ∈ β(τ) is called µ-capacitable when µ(A) = sup{µ(K) : K ⊂ A
compact}.

Some authors [16] also require µ(A) = infA⊂Gopen µ(G). This is not going

to be necessary for most of this paper, and we will explicitly state it otherwise.

We deduce from lemma 2.1 that a condensable capacity is determined by its

values on the finite sets. As these sets are compact, we conclude that given a

condensable capacity µ : β(τ) → [0, 1], where τ is a Hausdorff topology on X,

every Borel set is µ-capacitable.

Let us give now a property of maxitive capacities, which will help us to

analyze their relationship with possibility measures. We prove previously a

lemma for metric spaces:

1We are following the definition from [16]. Other authors [18] only require continuity for
decreasing sequences of compact sets.

2This will be no essential requirement, for in most of the propositions and examples we give
in this section we work with the Borel σ-field generated by a metric or a Hausdorff topology.
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Lemma 2.2. Let (X, τ) be a Hausdorff topological space, and consider a de-

creasing sequence (Kn)n of non-empty compact sets. Then, ∩nKn 6= ∅. If in

addition X is metric and δ(Kn) ↓ 0, there exists some x s.t. ∩nKn = {x}.
Proof: The sequence (Kn)n is a sequence of closed sets contained in the

compact set K1. Moreover, every finite subsequence has a non-empty intersec-

tion. Hence, the global intersection ∩nKn is non-empty. Now, if there were

x 6= y ∈ ∩nKn, it would be δ(Kn) ≥ d(x, y) ∀n, and this would contradict

δ(Kn) ↓ 0. �

Proposition 2.3. Let (X, d) be a metric space, and consider a monotone set-

function µ on the Borel σ-field β(d) continuous for decreasing sequences of com-

pact sets. If µ is maxitive, then µ(K) = maxx∈K µ({x}) for every K compact.

Proof: Consider K compact, and take ε1 = 1
2 . Then, K ⊂ ∪x∈KB(x; ε1),

whence ∃J ⊆ K finite s.t. K = ∪x∈J(B(x; ε1) ∩K). As µ is maxitive, there is

some x1 ∈ J s.t. µ(K) = µ(B(x1; ε1) ∩K). Take K1 = B(x1; ε1) ∩K compact.

By the monotonicity of µ, µ(K) = µ(K1). Given ε2 = 1
4 , K1 ⊂ ∪x∈K1B(x; ε2).

Following the previous reasoning, there exists some x2 ∈ K1 s.t. µ(K1) =

µ(B(x2; ε2) ∩K1). Take K2 = B(x2; ε2) ∩K1 compact. Then, µ(K2) = µ(K),

and δ(K2) ≤ 1
2 .

If we repeat this process, we obtain a decreasing sequence (Kn)n of compact

sets s.t. µ(Kn) = µ(K) ∀n, and δ(Kn) ≤ 1
2n−1 . By the previous lemma, there

is some x ∈ X s.t. ∩nKn = {x}. As µ is continuous for decreasing sequences of

compact sets, it is µ({x}) = limn µ(Kn) = µ(K).�

In particular, the result holds when µ is a Choquet capacity. Note that the

converse is not true in general:

Example 2.1. Consider (N, d) with the discrete metric, and µ : P(N) → [0, 1]

given by µ(B) = 0 if B is finite, µ(B) = 0.5 if |B| =∞, B * N, and µ(N) = 1.

With the discrete topology, the compact sets are finite, and hence µ(K) = 0 =

µ({x}) for every x ∈ K compact. Consequently, µ is continuous for decreasing

sequences of compact sets. However, given A = {1, 3, 5, . . . }, B = {2, 4, 6, . . . },
it is µ(A ∪B) = 1 > max{µ(A), µ(B)}, whence µ is not maxitive.

When a possibility measure is defined on a σ-field that contains the single-

tons, it is determined by its possibility distribution π : X → [0, 1], which is
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defined by π(x) = µ({x}). Then, it is µ(A) = supx∈A π(x) ∀A ∈ A′, and this

can be given as an alternative definition of possibility measure. It is clear that

a possibility measure is always maxitive. The converse, however, does not hold

in general: think for instance ([8]) of a set function µ on P(R) s.t. µ(A) = 1 if

A is infinite, µ(A) = 0 if A is finite. This example shows that for a maxitive

measure to be a possibility, we need some additional requirement of continuity,

which prevents the jump we had there between sup{µ({x}) : x ∈ A} and µ(A).

However, continuity from below is not sufficient: we only need to modify the

previous µ and make µ(A) = 1 if A is uncountable, µ(A) = 0 otherwise to find

a counterexample. An interesting study about maxitive measures (called there

generalized possibility measures) and possibility measures from the point of view

of fuzzy set theory can be found in [12].

In the following theorem we give implications among possibility, maxitive

and condensable set functions. We also establish a link with the concept of

capacitability. We show in particular that we need to require the continuity for

upward nets (i.e., the condensability) in order to obtain the equivalence between

possibility and maxitive measures:

Theorem 2.4. Let (X,A) be a measurable space, and consider µ : A → [0, 1].

Let us consider the following conditions:

1. µ is a possibility measure.

2. µ is maxitive and condensable.

3. µ(K) = maxx∈K µ({x}) ∀K compact and it is condensable.

4. µ is maxitive and every A ∈ β(d) is µ-capacitable.

5. µ(K) = maxx∈K µ({x}) ∀K compact and every A ∈ β(d) is µ-capacitable.

Then, we have the following relationships:

(a) In general, 1⇔ 2.

(b) If (X, τ) is a Hausdorff topological space and µ : β(τ) → [0, 1], then 3 ⇔
5⇒ 1⇔ 2⇒ 4.
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(c) If (X, d) is a metric space and µ : β(d)→ [0, 1] is continuous for decreasing

sequences of compact sets, then 1⇔ 2⇔ 3⇔ 4⇔ 5.

Proof:

(a) Let us prove the first equivalence. It is clear that any possibility mea-

sure is maxitive. On the other hand, given an upward net C ⊂ A, it is

µ(∪A∈CA) = supA∈C µ(A), and hence µ is condensable.

Conversely, take (Ai)i∈I ⊂ A s.t. ∪i∈IAi ∈ A, and define C = {Ai1 ∪ · · · ∪
Aim : {i1, . . . , im} ⊂ I,m ∈ N}. Then, C is an upward net and ∪A∈CA =

∪i∈IAi. The condensability of µ implies µ(∪i∈IAi) = supA∈C µ(A). As µ

is maxitive, for every A = Ai1 ∪· · ·∪Aim ∈ C, there exists j ∈ {i1, . . . , im}
s.t. µ(A) = µ(Aj). Hence, supA∈C µ(A) = supi∈I µ(Ai) and consequently

µ(∪i∈IAi) = supi∈I µ(Ai). Therefore, µ is a possibility measure.

(b) We will prove 3⇒ 5⇒ 1⇔ 2⇒ 4, and 5⇒ 3:

– 3 ⇒ 5. It follows from lemma 2.1 and the fact that finite sets are

compact.

– 5⇒ 1. Consider (Ai)i∈I ⊂ β(τ) s.t. ∪i∈IAi ∈ β(τ). Then, given ε >

0,∃K ⊆ ∪i∈IAi compact s.t. µ(∪i∈IAi) ≤ µ(K)+ε. For thisK, there

is some x ∈ K with µ(K) = µ({x}), whence µ(∪i∈IAi) ≤ µ({x}) +

ε ≤ supi∈I µ(Ai) + ε ∀ε > 0. Hence, µ(∪i∈IAi) = supi∈I µ(Ai), and

µ is a possibility measure.

– 1⇔ 2. It is a consequence of part [a].

– 2⇒ 4. It is analogous to 3⇒ 5.

– 5 ⇒ 3. Take A ∈ β(τ). Then, because of the capacitability, given

ε > 0, there exists K ⊆ A compact s.t. µ(A) − µ(K) < ε. Now,

∃x ∈ K s.t. µ(K) = µ({x}), whence µ(A) − µ({x}) < ε. From

lemma 2.1, µ is condensable.

(c) It suffices to show that under this additional hypotheses we have 4 ⇒ 5,

and this follows from proposition 2.3. �
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We can easily find counterexamples showing that 1 ⇒ 5 and 4 ⇒ 2 do not

hold under the hypotheses stated in part [b] of this theorem.

We see that the concept of capacitability is very important in the context

of possibility and maxitive measures. As we have already noted, it is a weaker

notion than condensability. To see that they are not equivalent in metric spaces,

consider Lebesgue measure λ on β[0,1]. Then, all the Borel sets are λ-capacitable,

but λ is not determined by its value on the finite sets and hence it is not

condensable.

On the other hand, in [16] it was checked that when µ is defined on a

complete and separable metric space and it is a Choquet capacity, the Borel

sets are capacitable. Formally,

Proposition 2.5. [16] Let (X, τ) be a Polish space and let µ be a Choquet

capacity on β(τ). Then every Borel set is µ-capacitable. Moreover, we also

have µ(A) = inf{µ(G) : A ⊂ G open } ∀A ∈ β(τ).

However, Choquet capacities are not equivalent to condensable set-functions

on Polish spaces: Lebesgue measure λ on [0, 1] is a Choquet capacity that is not

condensable. Conversely, consider the Borel σ-field β on R, and µ : β → [0, 1]

given by µ(A) = 1 if A∩Q 6= ∅, µ(A) = 0 otherwise. Then, we can check, using

the equivalent condition given in lemma 2.1, that µ is condensable; however,

µ([π − 1/n, π + 1/n]) = 1 ∀n whereas µ(∩n[π − 1/n, π + 1/n]) = µ({π}) = 0.

Thus, µ is not a Choquet capacity.

We can extend the capacitability property given by proposition 2.5 for more

general spaces, not necessarily Polish. A Polish space is a complete and sep-

arable metric space. In particular, (Rn, β(d)) and a compact metric space are

Polish, but a σ-compact metric space is not necessarily Polish (it does not need

to be complete). A locally compact Polish space is equivalent to a locally com-

pact σ-compact metric space, and also to a locally compact, Hausdorff and

separable topological space. These are the LCS spaces from Matheron ([18]).

See [17] for a complete review.

The following theorem will be very useful in connection with the upper

probabilities of random sets, as we will later show:
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Proposition 2.6. Let (X, d) be a σ-compact metric space, and consider µ :

β(d) → [0, 1] a set function continuous for decreasing sequences of compact

sets and continuous from below. Then, every Borel set is µ-capacitable. If in

addition (X, d) is locally compact and µ is ∞-alternating, we also have µ(A) =

infA⊆Gopen µ(G) ∀A ∈ β(d).

Proof:

� Let us start by the first statement. Consider A ∈ β(d), ε > 0. As (X, d)

is a σ-compact metric space, there exists an increasing sequence (Kn)n of

compact sets s.t. X = ∪nKn. Because of the continuity from below, it is

µ(A) = supn µ(A ∩Kn), whence ∃n0 ∈ N s.t. µ(A)− µ(A ∩Kn0
) < ε

2 .

Consider the compact metric space (Kn0 , d pKn0
) (which is in particular

Polish), and let µn0
: β(d pKn0

)→ [0, 1] be the restriction of µ. Then, µn0

is continuous for decreasing sequences of closed sets, because closed sets

in (Kn0
, d pKn0

) are compact on (X, d). Moreover, it is also continuous

from below. Hence, it is a Choquet capacity. From proposition 2.5, we

deduce that given A ∩ Kn0 ∈ β(d pKn0
), there exists a compact subset

K ⊂ A ∩Kn0
with µn0

(A ∩Kn0
)− µn0

(K) ≤ ε
2 . Hence,

µ(A)− µ(K) = µ(A)− µ(A ∩Kn0) + µ(A ∩Kn0)− µ(K) =

µ(A)− µ(A ∩Kn0) + µn0(A ∩Kn0)− µn0(K) ≤ ε

2
+
ε

2
= ε,

and K ⊆ A ∩ Kn0
⊆ A is also compact on (X, d). Therefore, µ(A) =

supK⊆Acompact µ(K).

� We turn now to the second part. Note that the concepts of locally compact

σ-compact metric space and locally compact Polish space are equivalent.

Take A ∈ β(d), ε > 0.

If (X, τ) is a locally compact Polish space, there exists an increasing se-

quence of open sets (Un)n ↑ X with Un ⊇ Un−1 compact for every n.

Let us denote Kn = Un, and define µn the restriction of µ to the Polish

space (Kn, d pKn
). As we showed in the previous point, µn is continuous

for decreasing sequences of closed sets on (Kn, d pKn
). Hence, it is a

Choquet capacity, and we can apply proposition 2.5. Given the set An :=
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A ∩ Un ∈ β(d pKn), there exists some open set Gn, (which we may in

particular assume open in (X, d) and also Gn ⊂ Un), with An ⊂ Gn,

µn(Gn)− µn(An) ≤ ε
2n , or, equivalently, µ(Gn)− µ(An) ≤ ε

2n .

Define G′n = ∪ni=1Gi. We can deduce from the ∞-alternating property of

µ that µ(G′n) − µ(An) ≤
∑n
i=1[µ(Gi) − µ(A ∩ Ui)] ≤

∑n
i=1

ε
2i (see [19,

th.21]).

Now, µ(∪nG′n) − µ(A) = limn[µ(G′n) − µ(A ∩ Un)] ≤
∑∞
n=1

ε
2n = ε, and

A = ∪n(A ∩ Un) ⊆ ∪nGn = ∪nG′n open. Hence, µ(A) = infA⊆Gopen µ(G)

for every A ∈ β(τ). This completes the proof. �

We are now going to apply these results in the context of random sets.

As we will show in this paper, the upper probability of a random set can be

maxitive and not a possibility measure. Hence, it is important to clarify when

the upper probability of a random set satisfies the conditions of condensability

or capacitability. As we have showed in the previous proposition, this is implied

under some hypotheses by the continuity of P ∗ for certain classes of sets. Let

us also remark that the upper probability of a random set is always continuous

from below and ∞-alternating ([22]):

Theorem 2.7. Let (Ω,A, P ) be a probability space, (X, τ) a Hausdorff space

and Γ : Ω→ P(X) a random set. Then:

1. If Γ is compact-valued, then P ∗ is a Choquet capacity.

2. If Γ is closed-valued, then P ∗ is continuous for decreasing sequences of

compact sets.

3. If Γ is closed-valued and X is a σ-compact metric space, then P ∗(A) =

supK⊆Acompact P
∗(K) ∀A ∈ β(d).

4. If in addition X is locally compact, then for every A ∈ β(d), P ∗(A) =

supK⊆Acompact P
∗(K) = infA⊆Gopen P

∗(G).

Proof: Consider a decreasing sequence (An)n. To prove the first two state-

ments, we are going to show that if Γ(ω) ∩ An is compact for every n, it is

∩n(An)∗ = (∩nAn)∗:
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∩n(An)∗ = ∩n{ω ∈ Ω : Γ(ω) ∩ An 6= ∅}. From lemma 2.2, a decreas-

ing sequence of non-empty compact sets has a non-empty intersection. Hence,

∩n{ω ∈ Ω : Γ(ω) ∩ An 6= ∅} = {ω ∈ Ω : ∩n(Γ(ω) ∩ An) 6= ∅} = {ω ∈ Ω :

Γ(ω) ∩ (∩nAn) 6= ∅} = (∩nAn)∗.

1. Now, note that P ∗ will be a Choquet capacity iff it is continuous for

decreasing sequences of closed sets. Given such a sequence (An)n, if Γ

is compact-valued we have Γ(ω) ∩ An compact for every ω, n, whence

(∩nAn)∗ = ∩n(An)∗ and consequently P ∗(∩nAn) = limn P
∗(An).

2. Similarly, if Γ is closed-valued, given (An)n a decreasing sequence of com-

pact sets, it is Γ(ω)∩An compact ∀ω, n, whence P ∗(∩nAn) = limn P
∗(An).

3. 4. They follow from the previous point and proposition 2.6. �

The third part of this theorem generalizes a result from Matheron ([18]).

Remark 2.1. Note that for closed random sets on a locally compact Polish

space, the upper probability is not necessarily a Choquet capacity: take for in-

stance Γ : [0, 1] → P(R) given by Γ(ω) = R ∀ω. Then, P ∗([n,∞)) = 1 ∀n,

whereas P ∗(∩n[n,∞))) = P ∗(∅) = 0. Therefore, P ∗ is not continuous for de-

creasing sequences of closed sets. This example shows that upper probabilities

induced by closed random sets on locally compact Polish spaces (and hence on

σ-compact metric spaces) do not posses the same properties as those induced by

compact random sets on Polish spaces. We will see, however, that they have the

same behaviour in relation to the problem treated in this paper.

Using theorems 2.4 and 2.7, we can deduce the following result:

Theorem 2.8. Let (Ω,A, P ) be a probability space, (X, d) a metric space and

Γ : Ω→ P(X) a random set. If any of the following conditions hold:

� Γ is compact-valued and X is Polish.

� Γ is closed-valued and X is σ-compact,

then P ∗ is a possibility measure⇔ P ∗ is maxitive⇔ P ∗(K) = maxx∈K P
∗({x})

for every K compact.
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Proof: Note first that under any of the hypotheses of this theorem, P ∗ is

continuous for decreasing sequences of compact sets, whence the third part of

theorem 2.4 is applicable. Also, we have showed in proposition 2.5 and theorem

2.7 that under these conditions, the Borel sets are P ∗-capacitable. Using the

equivalence 1⇔ 4⇔ 5 from theorem 2.4, we complete the proof. �

This result will acquire importance in the following sections, when we study

the relationship between possibility measures and consonant random sets. It is

interesting to remark that although in this paper we are trying to be as general

as possible, some authors only consider closed or compact random sets on Polish

spaces ([1, 14, 18]), for they have good mathematical properties while working

on a (relatively) general framework. It is therefore of special importance to

study the behaviour of this type of random sets for our problem.

3 Nested random sets

Let us take a closer look at consonant (or nested) random sets. They will be

used to represent what Shafer calls consonant evidence, that is, evidence where

different sources of information do not contradict each other.

As we said in the introduction, focal sets and images of random sets play

the same role on different contexts. Hence, the nesting of the focal elements on

Shafer’s theory should be equivalent to some kind of nesting among the images

of the random set. In [20], we considered the following:

Definition 3.1. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space

and Γ : Ω→ P(X) a random set. We say that Γ is consonant of type:

� C1 if any ω1, ω2 ∈ Ω satisfy either Γ(ω1) ⊆ Γ(ω2) or Γ(ω2) ⊆ Γ(ω1).

� C2 if there exists N ⊂ Ω null s.t. any ω1, ω2 ∈ Ω \N satisfy the previous

relation.

� C3 if for any ω1, ω2 ∈ Ω, either P ∗(Γ(ω1) \ Γ(ω2)) = 0 or P ∗(Γ(ω2) \
Γ(ω1)) = 0.

� C4 when there exists N ⊂ Ω null s.t. any ω1, ω2 ∈ Ω \ N satisfy the

previous relation.

12



� C5 if there exists a null set N ⊂ Ω s.t. for any ω1 ∈ Ω \N exists ω2 6= ω1

s.t. P ∗(Γ(ω1) \ Γ(ω2)) = 0 or P ∗(Γ(ω2) \ Γ(ω1)) = 0.

� C6 if any pair x1, x2 ∈ X satisfies P ({x1}∗ \ {x2}∗) = 0 or P ({x2}∗ \
{x1}∗) = 0.3

Conditions C1 − C2 call the images of the random set nested when one of

them is included in the other. They coincide with the notion of nesting mostly

used in the literature. On the other hand, conditions C3−C4 only require that

one of the differences Γ(ω1) \ Γ(ω2) and Γ(ω2) \ Γ(ω1) is a set of null upper

probability. The distinction between C1 and C2 (or equivalently, C3 and C4)

comes from the fact that the behaviour of the random set on a null set does

not affect its upper probability, and hence a random set inducing a possibility

measure could be C2 and not C1 (or C4 and not C3). When condition C5 does

not hold, we can argue that the random set is not consonant ‘at all’: there is a

set of positive probability such that the image of any of its elements is not nested

with the image of any other element in Ω. Finally, condition C6 is related to

the upper inverses. We refer to [20] for a more comprehensive motivation and

interpretation of these definitions.

All these conditions are different from one another in general, even though

some of them will have a similar behaviour; for instance, C1 and C2 will have

the same implications on the upper probability of the random set, and the same

applies to C3 and C4. We can easily prove the implication relationships drawn

in figure 1, and we refer to [20] for a detailed proof.

In [28], Shafer introduces the concept of consonant plausibility function as

one whose focal elements are nested. This concept coincides with that of a pos-

sibility measure in the case of a finitary setting. In that case it is also equivalent

to a maxitive set function. If we study the conditions given on definition 3.1 for

the case of a finite final space, we can prove the following result:

Proposition 3.1. [20] Let (Ω,A, P ) be a probability space, (X,P(X)) a mea-

surable space, with X finite, and Γ : Ω → P(X) a random set. The following

conditions are equivalent:

3Of course, these conditions are only applicable when A and A′ satisfy certain hypotheses:
in the case of conditions C3 and C4, A′ must contain the set differences Γ(ω1) \ Γ(ω2), etc.
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Figure 1: Relationships among the conditions.

1. P ∗ is a possibility measure.

2. Γ is C2.

3. Γ is C4.

4. Γ is C6.

This proposition is an immediate consequence of the equivalence, valid for

the finite case, between the focal elements of the upper probability and the

images of the random set. This connection is also studied in [11].

We can easily find examples showing that, even in the finite case, conditions

C1 and C3 are not necessary for P ∗ to be a possibility measure, and condition

C5 is not sufficient.

This proposition is one of the arguments which makes us wonder about the

existence of an equivalence between nested random sets and possibility measures

in the case of an infinite referential. This is also sustained by some results estab-

lished for particular infinite spaces ([5, 9, 13]) where both concepts are related.

However, as we will show in the following sections, neither of the implications

holds for arbitrary referential spaces, and additional requirements (though not

very restrictive ones) are necessary in order to obtain the equivalence.
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4 P ∗ possibility implies Γ nested?

In [20], we considered the direct and inverse problems for this equivalence. That

is, on one hand we studied if any random set inducing a possibility measure is

consonant; and we also investigated whether any consonant random set induces

a possibility measure.

Let us begin with the results for the direct problem. Let (Ω,A, P ) be a

probability space, (X,A′) a measurable space and Γ : Ω→ P(X) a random set,

and assume that P ∗ is a possibility measure. In general, the maxitivity of P ∗

suffices to guarantee that Γ is consonant C6 (see [20]), and consequently if P ∗

is a possibility measure Γ will be C6. The following example shows that the

other nesting conditions do not necessarily hold:

Example 4.1. Consider Γ : [0, 1]→ P([0, 1]) given by Γ(ω) = [0, 1] \ {ω} ∀ω ∈
[0, 1]. Then, P ∗({x}) = 1 ∀x ∈ [0, 1], and consequently P ∗ is a possibility

measure. However, Γ is not consonant C5: given ω1 6= ω2 ∈ [0, 1], P ∗(Γ(ω1) \
Γ(ω2)) = P ∗({ω2}) = 1, and P ∗(Γ(ω2) \ Γ(ω1)) = P ∗({ω1}) = 1. Hence, it is

not C1, . . . , C4 either, for these conditions are stronger than C5.

Even if this example shows the lack of an implication in general, it would be

interesting to see whether there is a nested random set inducing this possibility

measure, or if additional conditions on Γ guarantee the equivalence. As we saw

in the finite case, P ∗ possibility does not imply that Γ is C1 or C3, because we

can modify Γ on a null set so that it is not C1 (or C3) and this does not alter

the upper probability. Then, we only need to clarify under which conditions

P ∗ possibility implies that Γ is C2, C4 or C5. Let us show that when P ∗ is a

possibility on P(X) conditions C2 and C4 become equivalent:

Proposition 4.1. Consider a random set Γ : Ω→ P(X) s.t. P ∗ is a possibility

measure on P(X). Then, Γ is C2 if and only if it is C4.

Proof: It is clear that if Γ is C2, then it is C4. Conversely, assume that

Γ is a C4 random set whose upper probability is a possibility measure. Then,

there exists N ⊂ Ω null s.t. ∀ω1, ω2 ∈ Ω \ N , it is P ∗(Γ(ω1) \ Γ(ω2)) = 0 or

P ∗(Γ(ω1) \ Γ(ω1)) = 0. Consider now ω1, ω2 ∈ Ω \ N s.t. Γ(ω1) * Γ(ω2) and

Γ(ω2) * Γ(ω1). If it is P ∗(Γ(ω1) \ Γ(ω2)) = 0, we take x1 ∈ Γ(ω1) \ Γ(ω2).
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Otherwise, we take x2 ∈ Γ(ω2) \ Γ(ω1).

Denote by A the set of elements x selected through this process. As P ∗ is a

possibility measure, it must be P ∗(A) = 0, for every x ∈ A satisfies P ∗({x}) =

0. Take now ω1, ω2 ∈ Ω \ (A∗ ∪ N). Then, if we had Γ(ω1) * Γ(ω2) and

Γ(ω2) * Γ(ω1), one of them should be in A∗, a contradiction. Therefore, Γ is

C2. �

Remark 4.1. There is no additional implication among the nesting conditions

when P ∗ is a possibility measure on P(X). To see this, consider the following

examples:

1. Let ([0, 1], β[0,1], λ) be a probability space, ([0, 1],P([0, 1])) a measurable

space and consider Γ1 : [0, 1] → P([0, 1]) given by Γ1(0) = [0, 1],Γ1(ω) =

[0, 1]\{ω} if ω ∈ (0, 1]. Then, P ∗ is a possibility measure on P([0, 1]) and

Γ1 is C5 but not C4.

2. Consider the measurable space ({−1, 0, 1},P({−1, 0, 1})), and Γ2 : [0, 1]→
P({−1, 0, 1}) given by Γ2(ω) = {0} ∀ω ∈ (0, 1),Γ2(0) = {−1},Γ2(1) =

{1}. Then, Γ2 is C3 but not C1, and P ∗ is a possibility measure.

3. Take ({0, 1},P({0, 1})), and Γ3 : [0, 1] → P({0, 1}) given by Γ3(ω) =

{0, 1} ∀ω ∈ (0, 1),Γ3(0) = {0},Γ3(1) = {1}. Then, Γ3 is C4 but not C3,

and P ∗ is a possibility measure.

We summarize the relationships among the nesting conditions when P ∗ is a

possibility measure in figure 2.

Last proposition is also interesting for it helps us understand the situation

for the finite case. We can check that condition C6 is equivalent to P ∗(J) =

maxx∈J P
∗({x}) ∀J finite, and this is equivalent in the case of X finite to P ∗

maxitive. This does not hold for an infinite referential, as we deduce from

example 4.1.

Let us give now a couple of results concerning the images of the random set

and their relation with the upper probability.

Proposition 4.2. Let (Ω,A, P ) be a probability space, (X, d) a compact metric

space, Γ : Ω → P(X) a closed-valued random set. If P ∗ is maxitive, then Γ is

C2.
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Figure 2: Relationships among the conditions when P ∗ is a possibility on P(X).

Proof: As X is compact, for every n there is a finite measurable partition

of X {Fn1 , . . . , Fnmn
} s.t. δ(Fni ) ≤ 1

2n ∀i = 1, . . . ,mn. Let us define recursively

{An1 , . . . , Ankn} := {Fni ∩ A
n−1
j : i = 1, . . . ,mn, j = 1, . . . , kn−1}, n ≥ 2, and

{A1
1, . . . , A

1
k1
} := {F 1

1 , . . . , F
1
m1
}; we obtain a sequence of measurable partitions

s.t. each of them is finer than the precedent.

Define Γn : Ω→ P(X) by Γn(ω) = ∪{Ani : ω ∈ Γ∗(Ani )}. It is Γn(ω) = ∅ ⇔
Γ(ω) = ∅, whence Γ∗n(X) = Γ∗(X). Moreover, x ∈ Γn(ω) implies d(x,Γ(ω)) ≤
1

2n , because δ(Ani ) ≤ 1
2n ∀i.

� Given A ∈ β(d), it is Γ∗n(A) = ∪{Γ∗(Ani ) : A ∩ Ani 6= ∅}. Hence, Γn is

strongly measurable.

� Γn is simple, because kn is finite.

� For every ω ∈ Ω, Γ(ω) = ∩nΓn(ω): the construction of the partitions

{Ani : i = 1, . . . , kn} implies Γ(ω) ⊆ Γn+1(ω) ⊆ Γn(ω)∀n, whence Γ(ω) ⊆
∩nΓn(ω). Conversely, x ∈ Γn(ω) ⇒ d(x,Γ(ω)) ≤ 1

2n , and then x ∈
∩nΓn(ω) implies x ∈ Γ(ω), because this set is closed.

� P ∗Γn
(A) =

P (Γ∗n(A))
P (Γ∗n(X)) =

P (Γ∗(∪A∩An
i
6=∅A

n
i ))

P (Γ∗(X)) = P ∗Γ(∪A∩An
i 6=∅A

n
i ) ∀A ∈ β(d);

the maxitivity of P ∗ implies then that P ∗Γn
is maxitive.

Reasoning in the same way as in the finite case, we can deduce that Γn is C2:

we can assume without loss of generality P ∗Γn
(An1 ) ≤ P ∗Γn

(An2 ) ≤ · · · ≤ P ∗Γn
(Ankn).
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Take Mi = (Ani )∗ \ (Ani+1)∗, i = 1, . . . , kn − 1. Then, Nn = ∪kn−1
i=1 Mi is null and

we can check that ∀ω1, ω2 ∈ Ω \Nn, it is Γn(ω1) ⊆ Γn(ω2) or Γn(ω2) ⊆ Γn(ω1).

Take now N = ∪nNn null, ω1, ω2 ∈ Ω \ N . Then, Γ(ω1) = ∩nΓn(ω1),

Γ(ω2) = ∩nΓn(ω2). If Γ(ω1) \ Γ(ω2) 6= ∅, there exists some n1 ∈ N s.t. Γ(ω1) \
Γn(ω2) 6= ∅∀n ≥ n1, whence Γm(ω1) \ Γn(ω2) 6= ∅∀n ≥ n1,∀m. Similarly,

Γ(ω2) \ Γ(ω1) 6= ∅ ⇒ ∃n2 ∈ N s.t. Γ(ω2) \ Γm(ω1) 6= ∅∀m ≥ n2 ⇒ Γn(ω2) \
Γm(ω1) 6= ∅ ∀m ≥ n2,∀n. Given n3 = max{n1, n2}, it is Γn3(ω1) \ Γn3(ω2) 6=
∅,Γn3(ω2) \ Γn3(ω1) 6= ∅, a contradiction. Therefore, Γ is C2. �

Next we extend this proposition for more general cases. Let us previously

recall a property proven by Arstein4:

Proposition 4.3. [1, lemma 3-3] Let (Ω,A, P ) be a probability space, (X, τ)

a Polish space and Γ : Ω → P(X) a compact-valued random set. Then, there

exists a σ-compact set E s.t. P∗(E) = 1.

Theorem 4.4. Let (Ω,A, P ) be a probability space, (X, d) a metric space and

Γ : Ω → P(X) a random set. If P ∗ is maxitive, then Γ is C2 if we are under

any of the following conditions:

� Γ is compact-valued and X is Polish.

� Γ is closed-valued and X is σ-compact.

Proof:

� From proposition 4.3, there is a σ-compact set E = ∪nKn s.t. P∗(E) = 1.

We can assume that the sequence of compact sets (Kn)n is non-decreasing.

Fixed n, the multi-valued mapping Γn : Ω → P(X) given by Γn(ω) =

Γ(ω)∩Kn is strongly measurable and closed-valued on the compact space

(Kn, d pKn
). Moreover, it satisfies P ∗Γn

(A) = P (Γ∗(A∩Kn))
P (Γ∗(Kn)) ∀A ∈ β(τ).

Therefore, P ∗Γn
is maxitive, and from proposition 4.2 Γn is C2. That

is, there exists Nn ⊂ Ω null s.t. for any ω1, ω2 ∈ Ω \ Nn, it is either

Γn(ω1) ⊆ Γn(ω2) or Γn(ω2) ⊆ Γn(ω1).

4Although his result comes in a context where (Ω,A, P ) is assumed to be a Polish space,
this hypothesis is not necessary for the proposition.
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Take N = (∪nNn)∪ ((E∗)
c∩X∗) null, and consider ω1, ω2 ∈ Ω\N . Then,

it is Γ(ω1),Γ(ω2) ⊆ E, whence Γ(ω1) = ∪nΓn(ω1), Γ(ω2) = ∪nΓn(ω2).

If Γ(ω1) * Γ(ω2), there is some n1 ∈ N s.t. Γn1(ω1) * Γ(ω2), whence

Γm(ω1) * Γ(ω2) ∀m ≥ n1. Conversely, Γ(ω2) * Γ(ω1) implies the ex-

istence of some n2 ∈ N s.t. Γm(ω2) * Γ(ω1) ∀m ≥ n2. Take n3 =

max{n1, n2}. Then, since Γn3
(ω2) ⊆ Γ(ω2), we have Γn3

(ω1) * Γn3
(ω2)

and similarly Γn3
(ω2) * Γn3

(ω1). This is a contradiction. Hence, it is

Γ(ω1) ⊆ Γ(ω2) or Γ(ω2) ⊆ Γ(ω1) for any ω1, ω2 ∈ Ω \N , and Γ is C2.

� The proof is similar to that of the first point, now with X playing the role

of E. �

This theorem is interesting because most authors (see for instance [18]) only

consider closed and compact-valued random sets on (Rn, β), and we have proven

that in this case the supremum-preserving property of P ∗ guarantees the con-

sonance C2 of Γ.

Note also that, from the relationships among the conditions (see figure 1),

we can deduce that when P ∗ is maxitive on a metric space and we are under

any of the hypotheses of theorem 4.4, Γ is also consonant C4, C5 and C6. As

we have already remarked, it will not imply that Γ is C1 (nor C3).

Even though we have clarified the situation for the most important classes

of random sets, it is interesting to study the behaviour of random sets not

necessarily closed or compact-valued and whose upper probability is a possibility

measure. In this sense, we have proven a connection between these type of

random sets and their closure:

Proposition 4.5. Let (Ω,A, P ) be a probability space, (X, τ) a Polish space

and Γ a random set s.t. P ∗Γ is maxitive and Γ is strongly measurable. If either

of the following conditions holds:

� Γ(ω) is compact for every ω,

� X is locally compact,

then Γ is consonant C2.

Proof:
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� Assume first that Γ̄ is compact, and let us show that then P ∗Γ maxitive

implies P ∗
Γ̄

maxitive:

Note that given G open, Γ(ω) ∩ G 6= ∅ if and only if Γ(ω) ∩ G 6= ∅, by

the definition of closure. Hence, Γ
∗
(G) = {ω : Γ(ω) ∩ G 6= ∅} = {ω :

Γ(ω) ∩ G 6= ∅} = Γ∗(G). From proposition 2.5 and the compactness of

Γ(ω) ∀ω, it is P ∗
Γ̄

(A) = infA⊆Gopen P
∗
Γ̄

(G) = infA⊆Gopen P
∗
Γ(G) ∀A ∈ β(τ).

Consider A,B ∈ β(τ), and assume for instance max{P ∗
Γ̄

(A), P ∗
Γ̄

(B)} =

P ∗
Γ̄

(A). For every n, there are Cn, Dn ∈ τ s.t. A ⊆ Cn, B ⊆ Dn, P
∗
Γ(Cn)−

P ∗
Γ̄

(A) < 1
n , P

∗
Γ(Dn)− P ∗

Γ̄
(B) < 1

n . Now,

P ∗Γ̄(A∪B) = inf
(A∪B)⊆Gopen

P ∗Γ̄(G) ≤ inf
n
P ∗Γ̄(Cn∪Dn) = inf

n
P ∗Γ(Cn∪Dn) =

inf
n

max{P ∗Γ(Cn), P ∗Γ(Dn)} ≤ inf
n

(P ∗Γ̄(A) +
1

n
) = P ∗Γ̄(A),

whence P ∗
Γ̄

(A ∪B) = P ∗
Γ̄

(A) and P ∗
Γ̄

is maxitive.

Now, applying theorem 4.4, we deduce that Γ̄ is C2.

� Taking into account part (4) of theorem 2.7, we can prove, proceeding as

in the previous point that P ∗
Γ̄

is maxitive. Now, locally compact Polish

spaces are in particular σ-compact metric spaces. Applying theorem 4.4,

we deduce that Γ̄ is C2. �

Let us give a few comments on this result:

Example 4.2. The converse of the proposition is not true in general: consider

Γ : [0, 1]→ P([0, 1]) given by Γ(ω) = Q ∩ [0, 1] if ω ≤ 1
2 , Γ(ω) = I ∩ [0, 1] other-

wise. Then, P ∗Γ is not maxitive, because P ∗({0.1, π4 }) = 1 > 1
2 = P ∗({0.1}) =

P ∗({π4 }). However, Γ(ω) = [0, 1] ∀ω, whence Γ̄ is C2.

Remark 4.2. The result can be given more generally in the following way: if Γ :

Ω→ P(X) is a random set such that Γ̄ is strongly measurable and P ∗
Γ̄

satisfies

the approximation P ∗
Γ̄

(A) = infA⊆Gopen P
∗
Γ̄

(G), then P ∗Γ maxitive implies P ∗
Γ̄

maxitive.

Remark 4.3. It is not clear to us whether this proposition holds for random

sets on a σ-compact metric space; i.e., we would like to know if the closure of
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a random set on a σ-compact metric space whose upper probability is maxitive

is a C2 random set. The property P ∗(A) = infA⊆Gopen P
∗(G), which seems

to us essential for the proof, has only been proven for the particular case of

locally compact Polish spaces, which are in fact locally compact σ-compact metric

spaces. This is the only proposition in this paper where compact random sets

on Polish spaces and closed random sets on σ-compact metric spaces behave

differently. Hence, it would be interesting to study whether the local compactness

can be removed.

In particular, we infer that if Γ is a random set on (Rn, β) and P ∗Γ is a

possibility measure, the closure random set Γ̄ will be consonant C2.

Finally, we are going to give an additional property of random sets inducing

a possibility measure. Let us recall a result from Goodman ([13]):

Proposition 4.6. Let Π : P(X) → [0, 1] be a possibility measure. Consider

f : [0, 1]→ [0, 1] a uniformly distributed random variable, and define Γ : [0, 1]→
P(X) by Γ(α) = {ω ∈ X | Π(ω) ≥ f(α)}. Then, Γ is a random set (it is strongly

measurable) and P ∗Γ coincides with Π.

With this proposition, Goodman gives a Choquet representation theorem

for possibility measures: he shows that given a possibility measure, there is

always a random set (which is consonant) inducing it. This result has also been

commented by De Cooman and Aeyels [4], who have shown that we can also

consider the strict α-cut Γ(α) = {ω ∈ Ω : Π(ω) > α}.
We have proven something more important in our context: if the upper prob-

ability induced by a random set is a possibility measure, there is a consonant

random set defined between the same spaces inducing this possibility measure.

Hence, the class of random sets inducing a possibility measure could be reduced,

for practical purposes, to the class of consonant random sets inducing a possibil-

ity measure. This shows the importance of these particular type of multi-valued

mappings.

Theorem 4.7. Let (Ω,A, P ) be a probability space, (X,P(X)) a measurable

space and Γ : Ω → P(X) a random set s.t. P ∗Γ is a possibility measure. Then,

there exists a C1 random set Γ′ : Ω→ P(X) satisfying P ∗Γ′ = P ∗Γ .
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Proof: Let us denote Ax = {y : P ∗Γ({y}) ≥ P ∗Γ({x})}, Bx = {y : P ∗Γ({y}) ≤
P ∗Γ({x})}. Note that P ∗Γ(Bx) = P ∗Γ({x}), for P ∗Γ is a possibility measure. Define

Γ′ : Ω→ P(X) by Γ′(ω) = ∪x∈Γ(ω)Ax.

� Γ′ is strongly measurable: given x ∈ X, it is Γ′∗({x}) = {ω : x ∈ Γ′(ω)} =

{ω : ∃y ∈ Γ(ω), x ∈ Ay} = {ω : ∃y ∈ Γ(ω), y ∈ Bx} = Γ∗(Bx) ∈
A, because Γ is strongly measurable. Now, given C ⊆ X, Γ′∗(C) =

∪x∈CΓ′∗({x}) = ∪x∈CΓ∗(Bx) = Γ∗(∪x∈CBx) ∈ A.

� Γ′ is C1: consider ω1, ω2 ∈ Ω, and let us define zω1
:= infx∈Γ(ω1) P

∗({x}),
zω2

:= infx∈Γ(ω2) P
∗({x}). If zω1

is a minimum, it is Γ′(ω1) = {y :

P ∗({y}) ≥ zω1
} and otherwise it is Γ′(ω1) = {y : P ∗({y}) > zω1

}; the

same happens with Γ′(ω2) respect to zω2
. Hence, either Γ′(ω1) ⊆ Γ′(ω2)

or Γ′(ω2) ⊆ Γ′(ω1).

� Given x ∈ X, P ∗Γ′({x}) = P ∗Γ(Bx) = P ∗Γ({x}). Therefore, the one-point

coverage functions of P ∗Γ and P ∗Γ′ coincide.

� Given C ⊂ X, it is P ∗Γ′(C) = P ∗Γ(∪x∈CBx) = supx∈C P
∗
Γ(Bx) =

supx∈C P
∗
Γ({x}) = supx∈C P

∗
Γ′({x}). Hence, P ∗Γ′ coincides with P ∗Γ and it

is a possibility measure. �

Note that we are considering the σ-field P(X) on the final space in order to

guarantee the strong measurability of Γ′, for which Γ∗(Bx) must belong to A
for every x.

The random set we are constructing in this theorem is not always closed-

valued, as we can see if we consider Γ : [0, 1] → P([0, 1]) given by Γ(ω) =

Q ∩ [0, 1] ∀ω: in that case, Ax = Q ∩ [0, 1] if x ∈ Q ∩ [0, 1], and Ax = [0, 1]

otherwise. Hence, Γ′(ω) = Γ(ω) ∀ω ∈ [0, 1].

5 Γ nested implies P ∗ possibility?

We aim our attention now towards the inverse problem; that is, we study

whether a consonant random set induces a possibility measure or not. Con-

cerning this problem we must remark that condition C1 will imply that P ∗ is

a possibility measure if and only if C2 does so, and that the same applies to
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conditions C3 and C4. This is because the behaviour of Γ on a null subset of

Ω does not alter the upper probability. One of the main results on the subject

is the following:

Proposition 5.1. [5] Consider the measurable space ([0, 1], β[0,1]) and a proba-

bility measure P on it. Take a measurable space (X,P(X)), and a multi-valued

mapping Γ : [0, 1]→ P(X). If

[
∀ (x, y) ∈ [0, 1]2

]
[x ≥ y ⇒ Γ(x) ⊆ Γ(y)] ,

then Γ is strongly measurable and induces a possibility measure.

This proposition extends a result from [9], and also proposition 4.6 can be

derived as a corollary. On the other hand, it also appears in [4], where it is proven

for the case of an arbitrary lattice structure on the initial space. However, in

both cases the argument identifies the nesting order on the images with the

order on the initial lattice, in the sense of s ≺ t ⇒ Γ(s) ⊇ Γ(t). Moreover,

in [4] some additional requirements are made on the images of the random set.

However, we are looking here at the general case where the random set goes from

an arbitrary probability space to an arbitrary measurable space, and where no

other assumption is made on the images apart from the nesting. This has been

one of the main motivations for our more general definitions of consonance.

Our goal in this section is to see if we can loosen the prerequisites that appear

in proposition 5.1. The following result gives a positive answer for maxitive

measures:

Proposition 5.2. Let (Ω,A, P ) be a probability space, (X,A′) a measurable

space, and Γ : Ω→ P(X) a C2 random set. Then, P ∗ is maxitive.

Proof: If Γ is C2, there is some N ⊆ Ω null s.t. ∀ω1, ω2 ∈ Ω \N, Γ(ω1) ⊆
Γ(ω2) or Γ(ω2) ⊆ Γ(ω1). Suppose that P ∗ is not maxitive. Then, there exist

A,B ∈ A′ s.t. P ∗(A ∪ B) > max{P ∗(A), P ∗(B)}. Hence, P (A∗ \ B∗) >

0, P (B∗ \ A∗) > 0, and we can select in particular x1 ∈ (Ω \ N) ∩ (A∗ \ B∗),
x2 ∈ (Ω \ N) ∩ (B∗ \ A∗). Because of the C2 condition it should be either

Γ(x1) ⊆ Γ(x2) or Γ(x2) ⊆ Γ(x1). Let us assume for instance Γ(x1) ⊆ Γ(x2).

Then, x1 ∈ A∗ ⇒ Γ(x1) ∩ A 6= ∅, whence Γ(x2) ∩ A 6= ∅ and x2 ∈ A∗. This
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contradicts x2 ∈ B∗ \ A∗. We get an analogous contradiction if Γ(x2) ⊆ Γ(x1).

Therefore, P ∗ is maxitive. �

In particular, this proposition generalizes the result for the finite case. Un-

fortunately, in general the consonance of Γ does not imply that P ∗ is supremum-

preserving, as we showed in a counterexample in [20]. Let us briefly outline the

main ideas:

Example 5.1. Consider a well-order in [0, 1] (existing because of Zermelo’s

theorem), and denote Px the set of predecessors of x. Let x0 be the first element

with an uncountable number of predecessors, and define a probability measure

Q on A = σ({Px : x ∈ [0, 1]}) satisfying Q(A) = 1 if there exists x ∈ Px0

such that Px0
\ Px ⊂ A, and Q(A) = 0 otherwise. The multi-valued mapping

Γ : ([0, 1],A, Q)→ P([0, 1]) given by Γ(ω) = (Pω)c is C1 but its upper probability

is not a possibility measure.

The key in this example is to construct a non-condensable upper probability.

For this, it suffices to have some set A with P ∗(A) > P ∗(B) for every B ⊆ A

countable.

This example and the previous proposition point out an advantage of max-

itive set functions over possibility measures: they capture the behaviour of

consonant random sets without any additional assumption, whereas a conso-

nant random set must satisfy some extra requirements in order to induce a

possibility measure, as we show next.

Theorem 5.3. Let (Ω,A, P ) be a probability space, (X, d) a metric space and

Γ : Ω → P(X) a random set. Then, if Γ is consonant C2, P ∗ is a possibility

measure when any of the following conditions hold:

� Γ is compact-valued and X is Polish.

� Γ is closed-valued and X is σ-compact.

Proof: It is a consequence of theorem 2.8 and proposition 5.2.�

Remark 5.1. We can see that even if Γ satisfies the previous two hypotheses,

conditions C3 to C6 do not imply that P ∗ is a possibility measure (nor that it
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is maxitive): take for instance (Ω,A, P ) = ([0, 1], β[0,1], λ), and let Γ : [0, 1] →
P([0, 1]) be given by Γ(x) = {x}; then, for any ω1, ω2 ∈ [0, 1], it is P ∗(Γ(ω1) \
Γ(ω2)) = λ({ω1}) = 0, P ∗(Γ(ω2) \ Γ(ω1)) = λ({ω2}) = 0. Hence, Γ is C3 (and

consequently C4, C5, C6). However, P ∗ = λ, which is not maxitive.

If we join these results with the ones from the previous section, we see that

even if neither of the implications holds in general for possibility measures (i.e.,

P ∗ possibility does not imply Γ C1, . . . , C5 and Γ C1, . . . , C6 does not imply

P ∗ possibility), we have the equivalence for some particular cases:

Corollary 5.4. Consider (Ω,A, P ) a probability space, (X, d) a metric space

and a random set Γ : Ω→ P(X).

1. If Γ is closed and X is σ-compact, or if Γ is compact and X Polish, then

the following are equivalent:

� Γ is C2.

� P ∗ is a possibility measure

� P ∗ is maxitive.

� P ∗(K) = maxx∈K P
∗({x}) for every K compact.

2. Assume now X Polish and Γ̄ strongly measurable. If X is locally compact

or Γ̄ is compact, then P ∗Γ maxitive implies Γ̄ is C2.

Proof:

1. From theorem 2.8, we have the equivalence among P ∗ possibility, P ∗ max-

itive and P ∗(K) = maxx∈K P
∗({x}) ∀K compact under these conditions.

The equivalence with condition C2 follows from theorems 4.4 and 5.3.

2. It is proposition 4.5. �

In particular we have the equivalence between possibility measures and con-

sonant random sets when Γ is closed-valued on Rn. Moreover, if the upper

probability of a random set Γ on Rn is maxitive, then the closure random set Γ̄

is C2. This is interesting because closed-random sets on Rn are mostly used in

practice.
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The results obtained in this paper are drawn in figures 3 and 4. The first

one represents the relationships between consonant random sets and possibility

measures that hold in general, and the second one shows the situation for closed

random sets on σ-compact metric spaces.

Figure 3: Relationships among the nesting conditions, P ∗ possibility and P ∗

maxitive in general.

6 Concluding remarks

In this paper, we have completed the studies we initiated in [20] about conso-

nant random sets. We have characterized these mappings through the upper

probability they induce. This upper probability is uniquely determined in the

case of a finite referential by its focal elements, which are in correspondence

with the images of the random set.

In the general framework we have studied here, there are no focal elements

that we can take advantage of. Another difficulty is the lack of a general defini-

tion of consonance: most of the authors who have given results on the subject

have considered multi-valued mappings defined on ([0, 1], β[0,1]) or, more gener-

ally, on a lattice, and have established a correspondence between the order on

26



Figure 4: Relationships among the nesting conditions, P ∗ possibility and P ∗

maxitive when Γ is closed-valued on (X, d) σ-compact.

the lattice and the one we have on the images of the random set. For general

probability spaces, it becomes necessary to compare all pairs of elements in the

initial space to check the nesting of their images in the final space. This has

provided us six definitions of consonance. Conditions C1 and C2 are arguably

the most intuitive ones, and they also turn out to capture the essence of possi-

bility measures. With definitions C3 to C6 we have made a study of nesting by

means of the upper inverses and probabilities, which are the elements extending

the concept of distribution from random variables to random sets. These condi-

tions are in fact too weak to deal with the consonance in a proper way, mainly

because in the infinite case we can partition the final space by an uncountable

number of sets of null upper probability.

We have also paid attention to maxitive set functions, as an alternative to

possibility measures. These two types of set functions are not equivalent in gen-

eral, and we have studied in this paper the properties that separate them. These

properties make maxitive set functions more related to consonance than possi-

bility measures, contrary to what might have been expected: we have checked

that in general the upper probability of a C2 random set is maxitive and is not

necessarily a possibility measure. Nevertheless, we have the equivalence among
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C2 consonance, possibility and maxitive measures for fairly general cases, such

as compact random sets on Polish spaces or closed random sets on a σ-compact

metric spaces. These are the types of random sets mostly used in practice. In

those cases, possibility and maxitive measures are also equivalent to another

condition, namely being maximum-preserving on compact sets.

It is interesting to remark that although compact random sets on Polish

spaces and closed random sets on σ-compact metric spaces do not have the

same implications on the upper probability in general (for instance, in the first

case P ∗ is always a Choquet capacity, and this does not hold for the second one),

we have shown that they share the same behaviour in the context of possibility

measures and consonant random sets.

Note also that although our attention has been centered on the behaviour of

closed or compact random sets, we have obtained some results on multi-valued

mappings where no assumption is made on the images. In this sense, given

a random set on a locally compact Polish space (like Rn), we have obtained

a necessary condition for its upper probability to be maxitive in terms of the

consonance (namely that Γ̄ is C2), and also a different, sufficient one (that

Γ is C2). Moreover, we have showed by different counterexamples that these

conditions are not sufficient and necessary, respectively.

We conclude outlining some of the open problems derived from this research:

we intend to make a deeper study of the relationship between maxitive and pos-

sibility measures. Also, other particular cases of random sets could be studied.

Nevertheless, we are not very optimistic about the existence of positive results

for those cases, because we have used some specific properties of the classes of

random sets considered in this paper, such as the capacitability of the Borel

sets.

Finally, let us remark that one of the reasons why a consonant random set

always induces a maxitive measure but not necessarily a possibility measure

might be that in our definition of consonance we are comparing the images of

pairs of elements of the initial space. We could then wonder if a condition of

consonance where we compared the images of all elements on an infinite set

would be more related with possibility measures. It is not clear to us at this

point whether this is the case or if a consonance condition of this type would
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be equivalent to some of those considered here.
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