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Abstract

Numerical possibility measures can be interpreted as systems of upper betting
rates for events. As such, they have a special part in the unifying behavioural theory
of imprecise probabilities, proposed by Walley. On this interpretation, they should
arguably satisfy certain rationality, or consistency, requirements, such as avoiding
sure loss and coherence. Using a version of Walley’s notion of epistemic indepen-
dence suitable for possibility measures, we study in detail what these rationality
requirements tell us about the construction of independent product possibility mea-
sures from given marginals, and we obtain necessary and sufficient conditions for
a product to satisfy these criteria. In particular, we show that the well-known min-
imum and product rules for forming independent joint distributions from marginal
ones, are only coherent when at least one of these distributions assume just the
values zero and one.

Keywords. Possibility theory, upper probability, coherence, conditioning, epistemic

independence, independent product.

1 Introduction

Possibility theory, as originated by Zadeh [19], can be described as collection of notions
and techniques centered around the conceptpafssibility measurelt is mainly used

for the representation and manipulation of so-calladuistic uncertainty produced

by (potentially vague) statements in natural language. It was conceived as an alterna-
tive to probability theory, which, according to Zadeh, does not lend itself very well
to modelling linguistic uncertainty. In parallel with probability theory, notions such
as possibility integrals, product possibility measures, conditional possibility measures
and possibilistic independence have been developed [2, 6, 7]. Possibility measures
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have also been studied under different names and guises, and in other contexts, see for
instance [1, 9, 10, 13, 14].

In recent years, quite some effort has been invested in the study of possibility mea-
sures in the framework of the theory of imprecise probabilities [15]. In this approach,
the possibility of some event is given the behavioural interpretation of a subyjget’s
per probability, or upper betting rate, for the event, i.e., the infimum rate at which the
subject is willing totake bets orthe event, or equivalently, one minus the supremum
rate at which he is willing tdet againsit. A possibility measure then represents a col-
lection of such upper betting rates. Because specifying an upper betting rate amounts
to a commitment to act (bet) in certain ways, upper probabilities and in particular pos-
sibility measures are subject to a number of rationality, or consistency, requirements,
calledavoiding sure lossindcoherence It turns out thahormal possibility measures
satisfy these requirements, and can therefore be considered as reasonable imprecise
probability models [3, 4, 5, 16]. So can (precise) probability measures. This points to
a distinct advantage of the unifying approach using the theory of imprecise probabili-
ties: it allows the comparison of both types of measures in a single framework, using
a common language and the same (behavioural) interpretation. This has for instance
been done in a recent study [18], where it is argued that possibility measures indeed
seem to be better suited for modelling linguistic uncertainty than probability measures.

This being said, it is by no means obvious that all of what is commonly understood
as ‘possibility theory’ will get similar backing from the theory of imprecise probabili-
ties: the rationality criteria of avoiding sure loss and coherence can for instance be used
to weed out those notions and techniques which are inconsistent with the behavioural
interpretation of possibility measures as upper probabilities. To give an example, in
contradistinction to probability theory, a large variety of rules have been proposed for
conditioning a possibility measure (see for instance the overviewsin [2, 7, 17]). Inare-
cent paper [17], Walley and De Cooman have shown that most of these rules avoid sure
loss, but do not satisfy the stricter requirement of coherence. They have also suggested
a number of new conditioning rules that guarantee coherence.

Two variables are said to bepistemically independerd a subject when new
knowledge about the value that one variable assumes, does not change his beliefs about
the value the other variable takes [15, Chapter 9]. In the present paper, we study some
aspects of this notion of independence for possibility measures. More specifically, we



investigate what the rationality criteria of avoiding sure loss and coherence tell us about
the construction of independent joint possibility measures from given marginal ones.

We have organised the paper as follows. In Section 2, we briefly review definitions
and basic results concerning the interpretation of possibility measures as upper betting
rates, necessary for understanding much of what follows. In Section 3, we formulate a
definition of epistemic independence inspired by Walley’s original definition [15], and
suitable in a ‘possibilistic’ context. We also derive a necessary and sufficient condi-
tion, in terms of sets of dominated probability measures, for the consistency of a joint
possibility measure with its marginals, under the epistemic independence assumption.
This condition is quite complicated, but we show in Section 4 that it can be simplified
significantly when one of the marginal possibility measures is unimodal: we obtain a
characterisation of the coherent product possibility measures through an upper bound.
The study for the plurimodal case seems to be much harder, and we present a simpli-
fied sufficient, and a different necessary, condition for coherence under the epistemic
independence assumption in Section 5. Section 6 concludes the paper with additional
discussion.

This paper is an updated and expanded version of a paper [11] presented at ISIPTA
'01, the Second International Symposium on Imprecise Probabilities and Their Appli-
cations.

2 Preliminary notions and results

A possibility measurél on a finité setQ is a map defined on the power s&f) of
Q and taking values in the real unit intenfal 1], that satisfiedI(()) = 0 and that is
moreovemaxitive for all subsetsA and B of 2, II(A U B) = max{II(A),II(B)}.
It is completely determined by it@ossibility) distributionz: Q — [0, 1], defined by
7(w) = II({w}) forallw € Q. Indeed, we havél(A) = max{n(w): w € A} for any
non-empty subsed of .

Possibility measures can be incorporated into the behavioural theory of imprecise
probabilities [15] by interpreting them as upper probabilities: for any event (2,
II(A) is then a subject’s upper probability df, i.e., his infimum acceptable rate for
taking bets on4, or one minus his supremum acceptable ratebfeiting againstA.

1we only deal with possibility measures 6inite sets in this paper.



This means that the subject is disposed to accept a bet whose outcomelisf A
occurs, and: if A doesn’toccur, foralk > II(A). Itturns out [3, 4, 16] that a possibil-

ity measurdl with this interpretation satisfies the rationality criteria of avoiding sure
loss and coherengéf and only if it is normal i.e., if [1(Q2) = 1. We shall therefore
only consider normal possibility measures in what follows. Normality implies that the
distribution has at least oneode(or modal value)v,, for whichw(w,) = 1. If there

is only one such mode, then(andIl) is calledunimodal A distribution with more
than one mode is callgolurimodal

Consider two variableX andY taking values in the respective finite satand) .

We only consider the interesting case that batland)’ have more than one element.

We assume that a subject has certain beliefs about which values these variables assume,
and that he models these beliefs using a possibility meds$wre on X x ), with
distributionmy y.2 ForC C X x Y, lx y(C) is the subject’s upper probability for

the event that X, Y') assumes a value ifi, and for(x,y) € X x YV, mx vy (x,y) is his

upper probability that X, Y') assumes the value, y).

The marginalsIlx andIly of the so-calledoint possibility measurdly y- are
defined as followslI x is defined ont’ by ITx (A) = IIx v (A x )). Itis a possibility
measure o', andIl x (A) represents the subject’s upper probability that the variable
X assumes a value il C X (regardless of what valu¥ takes). Similarly, the
possibility measurély- is defined oriy by Iy (B) = IIx y (X x B); andIly (B) is
the subject’s upper probability thittakes a value i3 C ). We denote the possibility
distributions ofll x andIly by 7x andmy respectively.

Conditional possibility measures [2, 3, 6, 7] can be given the behavioural inter-
pretation ofupdatedupper probabilities [3, 17]l1x|y (Aly) is then interpreted as the
subject’s infimum acceptable rate for taking bets on, or one minus his supremum rate
for betting against, the event th&tassumes a value in C X, after learning only that
Y takes the valug € ); and similarly forlly x (B|z). For eachr € X, Iy | x(:|x)
is assumed to be a possibility measure)gmwith distributionry| x (-|2); and for each
y € Y, Uxy(-|y) is assumed to be a possibility measure Bnwith distribution

WX\Y('\Z/)-4

2We assume that the reader is familiar with these basic consistency requirements in the theory of impre-
cise probabilities. See [3, 4, 15, 16] for more details.

3A specific and interesting case where this assumption makes sense, is discussed in [18].

“We only consider the case that the subject’s conditional upper probabilities are possibility measures as



Since on a behavioural interpretation, the joint and the conditional possibility mea-
sures represent a subject’s dispositions to act in certain ways, they should satisfy cer-
tain rationality requirements, not only separately (they should all be nhormalBlsmt
taken togetherA thorough discussion of such criteria in the general context of impre-
cise probabilities was given by Walley [15]. The special case of possibility measures
was discussed by Walley and De Cooman [17], who also investigated which of a large
number of so-called conditioning rules for possibility measures, available in the litera-
ture, satisfy these criteria. We refer to their work for both motivation and mathematical
development.

For the purposes of the present paper, it will suffice to recall the following charac-
terisation of the criteria of avoiding sure loss and of coherence of the joint and condi-
tional possibility distributions (or equivalently, measures) in terms of sets of dominated
probability measures. It can be easily inferred from Lemma 3 and the proof of Theo-
rem 1in[17]. LetM. be the set of probability measures defined on the power set of
X x Y and satisfying the following inequalities:

(

Ch
(Co) P(B x {y})/P(X x {y}) < Ilxy(Bly) forall B C & andy € Y such that
C3

) P(A) <IIxy(A)forallAC X x Y;and
(
P(X x{y}) > 0;and

(

(

)
) P({z} x C)/P({x} x Y) < Ily|x(C|z) forall C € Y andz € & such that
P({z} xY)>0.

(

Theorem 1. The joint possibility distributionrx y and the conditional possibility dis-
tributions {7y | x (-|z): = € X} and{nxy(:ly): y € YV} avoid sure loss if and only
if M. is non-empty. They are coherent if and only if there is a non-emptyvcef
probabilities defined on the power settfx ) such that:

1. IOxy(A) =sup{P(A): Pe M} forall AC X x ).

2. Tlxy (Bly) > sup{P(B x {y})/P(X x {y}): P € M, P(X x {y}) > 0} for
all B C X andy € Y, with equality wherb(y) = max{my (v): v # y} < 1.

3. lly|x (Clz) = sup{P({x} x C)/P({x} x ¥): P € M, P({x} x ) > 0} for
all C C Y andz € X, with equality whem(z) = max{mx(u): u # x} < 1.

well. This is perfectly compatible with the epistemic independence assumption to be introduced and studied
later.



If there is such a seM, then M. is the largest such set.

A few remarks are in order here. Strictly speaking, this theorem gives a char-
acterisation of the rationality conditions of avoidingiform sureloss, and ofweak
coherence, respectively. Walley [15, Section 7.1] also discusses the generally more
stringent rationality conditions of avoidingartial loss and ¢trong coherence. But we
have shown elsewhere [12] that, for general upper probabilities, under the conditions of
epistemic independence to be discussed further on, the weak and strong coherence of
joint and marginal upper probabilities in fact turn out to be equivalent, and that the same
holds for avoiding partial loss and avoiding uniform sure loss. For these reasons, we
have restricted ourselves here to the characterisation of the weaker notions: this turns
out to be sufficient, but it is a lot easier to do. In order not to burden our terminology
too much, we shall simply refer to them as ‘avoiding sure loss’ and ‘coherence’.

There is a simpl@ecessargondition for the coherence afy y, {7y |x (-|z): = €
X} and{mxy(-ly): y € Y}, which was shown in [17] to be the following:

7TX|Y(35\?J)7TY\X(CU|$> max{rmx (), Ty (y)}
x|y (2]y) + 7y x (Wlz) — 7x)v (2]y) Ty X (y]2)

1)

mxy(z,y) <

forall x € X andy € ), Whereg is taken to bed. As mentioned in [17], the
inequality (1) is a special case of a condition valid in general for upper probabilities. It
will play a central part in what follows.

3 Epistemic independence and coherence

We are now ready to address the question that will occupy us in the rest of the paper.
Assume that our subject has beliefs (or information) about the values assumed by the
variablesX andY separately, and that he has modelled his beliefs in the form of the
marginal possibility distributions x andwy. He also judges the variablé§ andY

to be epistemicalfindependent: he judges that new information about the value of
one variable will not affect his beliefs about the value the other variable assumes. We
intend to investigate what this independence assumption, together with the rationality
requirements of avoiding sure loss and coherence, tells us about the joint distribution
mx,y, Which models the subject’s beliefs about the valeandY assume jointly.

5There is more than one independence concept in possibility theory, see for instance [2, 7]. Here, we use
a version of Walley’s notion of epistemic independence [15], because it has the most natural interpretation
in the behavioural context of the theory of imprecise probabilities.



For probability measures (on finite spaces), the judgement of epistemic indepen-
dence together with coherence leads uniquely to the product probability measure of the
marginals [15, Section 9.3.2]. We shall see that there is no uniqueness in the case of
possibility measures: for given marginals, there is generally more than one joint possi-
bility distribution that satisfies the independence and coherence requirements. Our aim
is to characterise such joint distributions in a manner that is as simple as possible.

The first step we have to take is to apply the notion of epistemic independence,
formulated by Walley for general imprecise models [15, Section 9] to the case that
beliefs are represented by possibility distributions.

Definition 1. We say thatY” is irrelevantto X whennyy (zly) = nx(x) for all
x € X andy € ). We say thatX andY areepistemically independemthen X is
irrelevant toY” andY is irrelevant toX.

Given the marginal distributionsx andry, the judgement of epistemic indepen-
dence leads at once to values for the conditional distribuiarsy (-|y): vy € Y} and
{my|x(-]z): » € X'}. We now only have to require that the joink y (which has

marginalsrx andry ) should be consistent with these conditional distributions.

Definition 2. We say that the normal joint possibility distributian, y avoids sure
loss under epistemic independendesen the joint distribution and the conditional pos-
sibility distributions{7y | x (-|z): 2 € X'} and{m x|y (-]y): y € Y} given by

mxpy (zly) = 7x(z) and my|x(ylr) =7y (y) (2)

forall z € X andy € ), avoid sure loss. Similarly, we say that the joint distribution
Tx,y IS coherent under epistemic independemd®en these possibility distributions
are coherent. In that casey y will be called anindependent joint distributigror an
independent produdf its marginalsrx andry .

It turns out that the first consistency condition under epistemic independence is
always satisfied. The second condition is more involved, however. To see this, con-
sider the setM; (the counterpart of the séf.. in the previous section) of probability
measures defined on the power sefok ) and satisfying the following inequalities:

(CI) P(A) <IIxy(A)forall AC X x Y;and



(CIy) P(B x {y})/P(X x {y}) < Ux(B) forall B C X andy € Y such that
P(X x {y}) > 0;and

(CI3) P{z} x C)/P({z} x Y) < Iy (C) forall C C Y andz € X such that
P({z} xY)>0.

Applying Theorem 1 leads to the following result, which is the starting point for the

further developmerft.

Theorem 2. A normal joint possibility distributiomnr x y always avoids sure loss under
epistemic independence, or in other wordd, # (. It is coherent under epistemic
independence if and only if there is a non-empty set of probabilitiedefined on the
power set oft’ x Y such that:

1. Oxy(A) =sup{P(A): Pe M} forall AC X x ).

2. lIx(B) > sup{P(B x {y})/P(X x {y}): P € M, P(X x {y}) > 0} for all
B C X andy € ), with equality wherf(y) < 1.

3. Iy (C) > sup{P({z} x C)/P({z} x V): P € M, P({x} x Y) > 0} for all
C C Y andz € X, with equality whem(z) < 1.

If there is such a seM, thenM; is the greatest such set.

Proof. The coherence part follows immediately from Theorem 1. The same theorem
tells us thatr x y avoids sure loss under epistemic independence if and oy i~ 0.
It therefore only remains to show that; # (. Consider(z,y) € X x Y such that
mx,y(z,y) = 1, and consequently x (x) = my (y) = 1 (there always are suchand
y, sincerx y is normal). Define the (degenerate) probability meagton the power
setofX x Y by P(z,y) = 1. Thenitis easy to see thatc M,. &

We can also take a look at the necessary condition for coherence (1), mentioned in
the previous section. Using the epistemic independence relation (2), we find:

mx (x)my (y) max{rx (z), 7y (y)}
mx(x) + 7y (y) — nx(@)7y (y) (NC)

xy(z,y) <

forallz € X andy € ), Where% is taken to be). This is a very simplaecessary

condition for the coherence under epistemic independengg ef, expressed only in

81t turns out that the first part of Theorem 2 holds for general imprecise probability models: any (sepa-
rately) coherent joint upper prevision avoids sure loss under independence. See [12] for more details.



terms of thelocal valueswy vy (z,y), mx (x) andry (y) of the joint distribution and
its marginals. We can easily deduce from this condition certain properties that will be

used repeatedly further on.

Lemma 3. If the normal joint distributionrx y- satisfies the necessary conditicC),
then for all(z,y) € X x Y-
1 mxy(z,y) < mx(z)my (y);
2. if0<mxy(z,y) =7x(x)thenmy (y) =1,
3. if my is unimodal with unique modg,, thenrx (z) = 7x vy (z,¥,)-
4. if0<7x(z) <land0 < 7wy (y) < lthenmx y(z,y) < nx(z)my (y).
Proof. The proof of the fourth statement is similar to that of the first, and the sec-
ond statement follows immediately from the first. We therefore concentrate on prov-

ing the first and third statements. We may assume without loss of generality that

max{nx (z), 7y (y)} = 7x(x). In that case

max{mx (z), Ty (y)}
Tx (@) + 7y (y) — 7x(2)7y (y)

_ mx (x)
mx(®) + 7y (y) — mx(2)7y (y) ~ 7x ()

and consequently

mx () my (y) max{mx (z), 7y (y)}
mx(z) + 7y (y) — mx (2)7y (y)

Txy(z,y) < < mx (@) Ty ().

To prove the third statement, observe that we may assume thaf) > 0. Then there
is somey in Y such thatrx y (z,y) = mx(x), and the second statement tells us that
my (y) = 1, whencey = y,. B

In the rest of this section, we investigate how the necessary and sufficient condition
of Theorem 2 can be simplified. Our efforts will culminate in Theorem 8, which is
the most important stepping stone for our investigation in the following sections. First
of all, in checking the coherence condition, the following lemma will be very useful,
because it helps us verify whether a probability measure belong4,tor not. The

proof is elementary, and therefore omitted.

Lemma 4. Letm be the number of elementsin andn the number of elements .
Consider a probability measur® defined on the power set &f x ).



1. Assume that thein elements = (z, y) of X x ) are labeled in such a way that
wx,y(z1) < mxy(z2) < --- < 7x,y(zmn). ThenP satisfies conditiofCI;)
ifand only if P(z1) +--- + P(z;) <mxy(z;)forj=1,...,nm.

2. Assume that the: elements ofY’ are labeled in such a way thaty (1) <
mx(x2) < -+ < wx(zm). ThenP satisfies conditiofCI5) if and only if for all
y € Y suchthatP(X x {y}) > 0andforj =1,...,m,

P(xlvy)++P(xjay)
P(X x{y})

< mx ().

3. Assume that the elements ofy are labeled in such a way thaty (y;) <
my (y2) < -+ < 7wy (yn). ThenP satisfies conditior{ CI3) if and only if for
all z € X such thatP({z} x ) > 0andforj =1,...,n,

Pz, y1) +--- + P(x,y;)
P({z} xY)

< 7y (y;)-

Interestingly, coherence under independence is not influenced by removing from
the setX elementsr such thatrx (x) = 0 and from the sed elementsy such that

7y (y) = 0. To see this, consider the marginal sets
X ={zeX: mx(z) >0}
YV={yeY:ay(y) >0}

and denote byT'y ;- the restriction oflly y to the power set oft” x )’. With this
(normal) possibility measure, with possibility distributiofy ,-, we may associate a set
M, of probability measures on the power settfx )’ satisfying the (corresponding)
properties(CI,)—(CI3), which by Theorem 2 completely determines the coherence
under independence of the joint distributiofy - (or the possibility measuré’y ;).

Proposition 5. M, satisfies the conditions of Theorem 2 if and onlyuf; satisfies
them, or in other words, the normal joint distributiary y- is coherent under indepen-
dence if and only ifr’y y- is.

Proof. The proof is immediate if we observe that the element§ffand those o\
are in one-to-one correspondence, and thjtconsists of the restrictions t&’ x )’
of the probabilities inM;. B

“For our subject, it is practically impossible that the variabeandY assume such values, since he is
disposed to bedt all oddsagainst the event that they do.
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This implies that our results will remain valid if, instead of using condition (2) to
define epistemic independence, we use the alternative condition:

mxy (z|y) = mx (x) if 7y (y) >0

myx (yl) = my (y) i x () > 0

for all (z,y) € X x Y, which is sometimes found in the literature (see for instance
(8]).

Proposition 6. The set of probabilitieg1; satisfies the first condition of Theorem 2 if
and only if for all(z, y) in X x ) there is aP in M, such thatP(z,y) = mx vy (z,y).

Proof. We first show that the condition is sufficient. Indeed, for ahyC X x ),
there is soméz4,y4) € A such thafllx y(A) = mx y(x4,y4), and the condition
tells us moreover that there is soffee M; such thatP(z4,y4) = 7x v (T4,y4),
whencelly y (A) < P(A). Since for allQ € M;, condition(CI;) tells us that
Q(A) < IIxy(A), we infer thatllx y (4) = max{Q(A): @ € M;}. Next, we
show that the condition is necessary. Considery) € X x V. If M, satisfies the
first condition of Theorem 2, theny y (z, y) = sup{P(z,y): P € M;}. SinceM,; is
obviously closed in the natural topolo8ythis supremum is actually achieved for some
P € M;, or in other words, there is sonde € M, such thatP(z,y) = mx v (z,y).

[ |

Proposition 7. If the normal joint distributionrx y- satisfies the necessary condi-
tion (NC), then the setM; always satisfies the second and third conditions of Theo-

rem 2.

Proof. We show thatM; satisfies the second condition. The proof for the third condi-
tion is completely similar (or symmetrical). It follows fro(CI5) that we only need
to prove that for allB C X’:

IIx(B) = sup{wz P e M;, P(X x {y}) > 0}, (3)

(X x {y})

wheng(y) < 1. Let us suppose, therefore, th#ty,) < 1, or in other words thaty
is unimodal with unique modg,. ConsiderB C X'. Then there is someg € B such

8We identify the probabilities otk x ) with elements ofR™™ in the obvious way, and consider the
topology generated by the Euclidean metricRif™.

11



thatllx (B) = mx(zp). If Ix(B) = 1, it follows from Lemma 3 and the unimodality
of my thatl = nx(xg) = 7x v (xB,¥,). The probabilityP uniquely defined on the
power set of¥ x Y by P(xzp,y,) = 1 is easily shown to belong t81; and to attain
the desired equality. Let us therefore consider the casdlkdBB) < 1. Letz’ be

a modal point of the marginal distributiany. Note thatz’ ¢ B soz’ # zp. As
7y is unimodal with unique modg,, we must have thatx y (2’,y,) = 1. We also
infer from Lemma 3 thatr x v (x5, ¥o) = mx(zp). Consider the probability measure
P uniquely defined on the power set &f x )V by P(zp,y,) = 7x,v(zB,Y,) and
P(z',yo) = 1 —mxy(zB,¥,). We proceed to show thd € M;. Observe that
Xy (B, Y) < Txy(z',yo) = 1, SO Lemma 4 tells us that satisfiesCI,) if and
only if P(zp,y,) < 7mx,v(zB,Ys), Which holds by construction. Next, observe that

mx(zp) < mx(z') = 1. Since

P(zp,y,) _ mx,y(2B,Yo)
P 1 )

andP(X x {y}) = 0 for everyy € Y\ {y,}, we may infer from Lemma 4 tha®

satisfieg CT). Since moreovery (y,) = 1 we immediately infer from Lemma 4 that
P satisfies(CI3) as well. We may therefore indeed conclude tRag M,. It is now

obvious that

P(Bx{yo})  Plrp,y)  7x(zp)
P < () Paxiwp 1 x®)

so the second condition of Theorem 2 is satisfilld.

We may summarise these results in the following theorem.

Theorem 8. The normal joint distributionrx y- is coherent under independence if and
only if it satisfies(NC) and for all (z,y) in X x ) there is some” in M; such that
P(z,y) = mxy(z,y).

In checking whether the conditions of this theorem are verified, the following
lemma will allow us to proceed somewhat faster.

Lemma 9. Assume that the normal joint distributiory y satisfies conditiof{NC)
and let(z,y) be an element o’ x ) such that one of the following conditions is
satisfied:

1. 7TX’y(.’L', y) =0;

12



2. max{nx(x), 7y (y)} =1;
3. 0 < mxy(z,y) andmax{rx(z), 7y (y)} < 1, and there aret’ € X andy’ €

Y such thatn'x’y ({,C/, y) = Wy(y), WX’y(x, y/) =Tx (IL‘) andﬁxyy ({L‘/, y/) =1.
Then there is & in M; such thatP(z, y) = 7x v (z,y).

Proof. Assume that the first condition is satisfied. We know from the first part of
Theorem 2 thatM; # 0. It follows from condition(C7;) andwx y (z,y) = 0 that
P(z,y) =rxy(z,y) =0forall P € M,.

Next, if the second condition holds, we may assume without loss of generality that
my(y) = 1. If 7x y(z,y) = 1, consider the (degenerate) probability measure defined
on the power set ot x Y by P(z,y) = 1 = nxy(z,y). Itis easily verified that
P e M;. If mxy(z,y) <1, then there is som& # x in X’ such thatrx y (z',y) =
1. Consider the probability measure uniquely defined on the power set af x )
by P(z,y) = nxy(z,y) andP(z',y) = 1 — nx,y(x,y). It remains to be shown
that P € M,. First of all, recall thatrx vy (z,y) < 7xy(z',y) = 1, so to prove
that P satisfies(CI;), Lemma 4 tells us that we need only verify th@fz,y) <
7x,y (z,y), which holds by construction. Next, observe that(z) < 7x(z') =1
and thatP(X x {v}) > 0 only if v = y, so in order to verify thaP satisfies(CI),
Lemma 4 tells us that we need only verify thafx,y)/P(X x {y}) < nx(x), or
equivalentlyrx y (z,y)/1 < mx («), which holds trivially. Finally, sinceé?(u, v) > 0
only if v = y, and sincery (y) = 1, we infer from Lemma 4 thaP also satisfie§CI3),
so indeedP € M;.

To conclude the proof, let us assume that the third condition holds. Lemma 3 then
tells us thatrx y (z,y) < mx(z)my (y). Consequently, there is somec (0,1) such
thatry v (z,y) = arx(x)my (y). It also follows from the assumption thak (=) =
7y (y') = 1 and thereforer’ # = andy’ # y. We now define the (finitely) additive set
function P on the power set ok’ x Y by:

13



andP(u,v) = 0forall other(u,v) € X x). We show thaP is a probability. Itis clear
thatP(z,y) + P(z,y') + P(«',y) + P(2/,y’) = 1, so it remains to be shown that all

these terms are non-negative. First of all, it is obvious hat, y) = 7x v (z,y) > 0.

Moreover,
1
P2 y) = —-1)>0
((E 7y) ﬂ—X,Y(x7y)(7TX(I) ) -
and from the symmetry, we infer that al&{z, y') > 0. Finally, since

alrx (z) + 7y (y)] — mx,v (z,y) = WX’Y(m’y)(%(x) ’ 1

=Ty Y(x y) 7TX(:C) + ﬂ-Y(y) - 71-X(':E)TrY(y)
S )

where the inequality follows from (NC), we see th@fz’,y') = 1 — a[rx(z) +
my (y)] + mxy(z,y) > 0. The proof is complete if we can show th&t € M,.
We use Lemma 4. We may assume without loss of generalityrthét) < my (y),
whencerx y(z,y) < mxy(z,y) < mxy(z',y) < mxy(@,y") = 1. Clearly,
P(z,y) = mxy(z,y) andP(z,y) + P(z,y) = anx(z) < mx(z) = mxy(2,9).
Moreover,

P(z,y) + P(x,y') + P(a',y) = a[rx (z) + 7y (y)] — 7x,v (2, )

mx(z) + my (y) — 7x (@) 7y (y)
mx (z)my (y)

<7y(y) = mx,y (@, y),

- WX,Y(xay)

where the inequality follows from (NC). We may then conclude from Lemma 4/that
satisfieg CI1). Next, observe thatx (z) < mx(z') =1,

P(z,y) X,y (x,y)

PR ) amly) ")
and
P(z,y) _ arx(z) — mxy(x,y) - arx(x) —mxy(z,y)
P(X x{y'}) 1 —amy(y) mx(z) — arx (z)my (y)

arx(x) —rxy(z,y)
mx () — mx,y(z,y)

=nx(z < mwx(x).

For everyv € Y different fromy andy’, we have that’(X x {v}) = 0, so we may
conclude from Lemma 4 tha® satisfies(CI.). The proof thatP satisfies(CT3) is

completely symmetricalll
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4 The unimodal case

It turns out that when at least one of the marginal distributiop@ndry is unimodal,
the conditions for coherence under epistemic independence, stated in Theorem 8, sim-

plify significantly: in this case, the necessary condition (NC) is also sufficient.

Theorem 10. If the marginal distributionsrx andry are not both plurimodal, then
the normal joint distributionrx y is coherent under epistemic independence if and
only if for all (z,y) € X x Y:

mx (2)my (y) max{mx (z), Ty (y)}
mx(z) + 7y (y) — mx(z)7y (y)

xy(z,y) <

Proof. Itis enough to check that the condition is sufficient. Assume therefore that (NC)
holds. It follows from Theorem 8 thatx y is coherent under epistemic independence
if and only if for all (z,y) € X x Y there is som&” € M, such thatP(z,y) =
7x,y(z,y). This is what we now set out to prove. Let us assume without loss of
generality thatry is unimodal with unique modg,, and let(x,y) be an arbitrary
element ofY x ). Lemma 9 (conditions 1 and 2) tells us that we may assume that
0 < mx,y(z,y) andmax{rx (z), 7y (y)} < 1. We show that in this case condition 3
of Lemma 9 holds because of the unimodalitymgf, so that there is nothing left to
prove. Indeed, there is somé € X such thatry (y) = 7x,y(2',y), whence we
deduce that x (') = 1 and therefore’ # x, using Lemma 3. Similarly, there is some
y' € Y such thatrx (z) = mxy(z,y’), whencery (y') = 1 and therefore/ = y,,
andy’ # y. Also, there is somg” € Y such thatrx y (2/,y") = nx(z') = 1,
whencery (y’) = 1, again by Lemma 3. Therefog¢ =y’ = y,, andrx y (z/,y') =
mxy(@,yo) =mxy(,y")=1.1

What we have in particular proven is that given two marginal possibility distribu-
tionstx andmy, at least one of which is unimodal, the largest independent product
possibility distribution that is coherent, is given by

TFX7Y(337?J) =T(rx (), Ty (y)),

whereT is the binary operatdf': [0, 1]> — [0, 1] on the unit interval defined by

af max{a, 5}

T(a,p) = “
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for all « and 3 in [0, 1]. The operatof is non-decreasing in both arguments, and has
unit1 and zerd), soitis a so-called triangular seminorm. It is moreover continuous and
commutative, but it is not a triangular norm, because it does not satisfy the associative
property. To see this, take = 1/4, § = 1/2 and~y = 3/4; thenT(«, T(5,7)) =
81/1540 < 9/124 = T(T(cv, B), 7).

5 The general case

We now turn to the general case that both distributiopsandy may be plurimodal.
The first thing to note is that the result of the previous case cannot be extended. To see

this, consider the following counterexample.

Examplel. Let X = {a1,a2,a3}, Y = {b1,be,bs} and consider the normal joint

possibility distributionrx y- given by the following diagram:

mxy | b1 by b3 | mx
a1 B 1% 0 1%
az |5 0 1|1
as 0 1 0 1
Ty % 1 1

where, of course) < 8 < 3/10. Since (NC) holds trivially forz andy such that
max{nx (z), 7y (y)} = 1, we see that the necessary condition (NC) for coherence
under independence is satisfied provided that 7'(1/2,3/10) = 3/26. Assume
thatmx y is coherent under independence, which implies in particular that there is a
P € M, such thatP(aq,b;) = (3, and which also implies that < 3/26. Assume in
addition thats > 0, whenceP({a1} x ) > 0 andP(X x {b1}) > 0. There is some

a € (0,1) such thaly = anx (a1)my (b1) (use Lemma 3). SincB(aq,b1)/P({a1} x

Y) < 7y (b1) because® € M,, it follows thatP({a1} x V) > arx(a1), whence

P(ahbz) Z 0[71')((&1) — /8 = omx(al)[l — Wy(bl)].

This implies thatP(X x {b2}) > 0. Consequently, it follows fron® (a1, b2)/P(X x
{bg}) < Wx(al) that
P(al, bg)

P(X x {b2}) > x(a1)

> afl — 1y (by))].
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We find in a completely similar (or symmetrical) way that

P(CLQ, bl)
= v (b))

By combining these inequalities we find that

P({az2} x ) > all —mx(a1)].

P(al,bl) + P(ag,bl) + P(al,bg) + P(ag,bg) =+ P(ag,bQ)
= P(a1,b1) + P({az2} x V) + P(X x {b2})

> f+all =7y (b)] + ol —7x(a1)]

2 1 1
=/ (wxwl)w(bl) T x(a) D 1)
_ 52 —7x(a1) — 7wy (b1) + mx(a1)my (b1)
7x (a1)my (b1)

Y

and if 3 > 1/9, or in other words, if

mx (a1)my (b1)
2—7x(a1) — wy (b)) + mx(a1)my (b1)’

this contradicts the fact thdt is a probability measure. We conclude that there can be

wx,y(a,b1) >

no coherence fof > 1/9!

This counterexample suggests a sufficient condition for independence and coher-

ence in the general case.

Theorem 11. If the normal joint distributionr x 1 satisfies

mx (2)Ty (y) }

() < min (Tl O g e )

forall (z,y) € X x Y, then itis coherent under epistemic independence.

Proof. Since (NC) is in particular satisfied, Theorem 8 tells us that we only have to
show that for every(z,y) € X x Y there is someP € M; such thatP(z,y) =
mx,y(z,y). We infer from Lemma 9 (conditions 1 and 2) that we may assume that
0 < 7x,y(z,y) andmax{rx (z), 7y (y)} < 1. Thenthereare’ € X andy’ € ) such
thatrx v (z',y) = my (y) andrx v (z,y’) = wx (x). It follows from the assumptions
and Lemma 3 thatx (') = 7y (y') = 1, whence alsa’ # z andy’ # y. Lemma 9
(condition 3) tells us that we may assume thaty (z’,y’) < 1. Consequently, there
arez” # 2/ in X andy” # ¢’ in Y such thatry y (¢/,y") = mxy(z",y) = 1.
Note thatrx (') = 7y (y"") = 1, sorx andmy are in this case plurimodal;” # «
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andy” # y. It also follows from the assumptions and Lemma 3 that there is some
a € (0,1) such thatrx y (z,y) = amx(x)ry(y). We can assume without loss of
generality thatrx (x) < 7y (y). Let P be the probability measure uniquely defined on
the power setoft’ x Y by P(x,y) = nx y(z,y),

P(2',y) = amy (y) — mx,v (2,9) = mx,v (2, y)l;;();()””)
P(z,y') = arx(z) — mxy(z,y) = mx v (z, y)l;;?/y()y)

Pz, y") = o[l —nx(z) — 7y (y)] + 7x v (z,y)
1—mx(z)1—7y(y)
mx(z) 7y (y)

- 7TX,Y('ijy)

andP(z”,y') = 1 — «. (Itis easy to see that all these terms are non-negative and
add up to one.) It only remains to show thate M;. We use Lemma 4. Recall
thatmx v (z,y) < nxy(z,y) < mxy(@,y) < mxy (@, y’) = mxy(@”,y) =1

Observe thaP(z,y) = mx vy (z,y) and that
P(I’,y) + P(‘Ta y/) = O”TX(I) < TFX(:C) = 7T'X,Y(Ia y/)

Also P(z,y) + P(x,y’) + P(2,y) is equal to

mx(z) + 7y (y) — 7x (2)7y (y)
mx (@) Ty (y)

WX,Y(xv y)

and is therefore is dominated by y (z',y) = 7y (y) if and only if
mx (2)7y (y)?

mx () + 7y (y) — mx (2)7y (y)
which is implied by the hypothesis. We may therefore conclude from Lemma 4that
satisfies(C7;). Note also thaP(X x {y}) = any(y) > 0, P(X x {y'}) > 0 and
P(X x{y"}) = P(«/,y") > 0 and thatP(X x {v}) = 0 for all otherv € ). Since

mx(z) <mx(a') = mwx(z") =1, P(z,y") = 0,

mxy(z,y) <

)

P(J;vy) _ ﬂ-X,Y('ray) —r (I)
P(Xx{y}) amyly) 7

and since it is easily verified th&(z,y')/P(X x {y'}) < wx(x) if and only if

mx (@)my (y)
WX,Y(xvy) < 2+ ﬂ-X(I)ﬂ-Y(y) — 7Tx(.13) - 7T'Y(y)

which is implied by the hypothesis, we infer from Lemma 4 tRasatisfies(CI,).
Similarly, note thatP({z} x V) = anx(z) > 0, P{2'} xY) = a[l —7x(z)] >0
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andP({z"} x ¥) = P(z",y') =1 — «a > 0 and thatP({u} x Y) = 0 for all other
u € X. Sincery (y) < my(y) = 7y (y") = 1, P(e",y) =0,

P(xvy) N FX,Y(.TJ,y) .
Pz} xY)  anx(z) v (¥),

and . ()
— TTx\T
P(l’l,y) 3 TFX,Y(xvy) WX(.T) B ( )
P({l'/}xy) B WX,Y(.’E,y) [1—7Tx($)] -
mx (2)Ty (y)

we infer from Lemma 4 thaP also satisfiegCI3), so we may indeed conclude that
PeM; R

This theorem provides us with a sufficient condition for the coherence under epis-
temic independence of possibility measures. The condition is not necessary, however.
To see this, it is enough to consider the case that (NC) holds and one of the marginal
distributions is unimodal, but where for sorie y) € X x ),

mx ()my (y)
2 —7nx(x) —7my(y) + mx(z)my (yv)

< TFX,Y(xvy)

mx () Ty (y) max{mx(z), 7y (y)}
mx(x) + 7y (y) — nx(z)my (y)

Then we deduce from Theorem 10 tha¢ y is coherent under epistemic indepen-
dence. Still,rx y does not satisfy the condition given by the last theorem. The con-
dition is not necessary in the case that both marginals are plurimodal either, as the

following counterexample shows.

Example2. Let X = {a1,a2,a3}, Y = {b1,be, b3} and consider the normal joint

possibility distributionrx y- given by the following diagram:

mxy | b1 by b3 | mx
ay 3 1@ 0 %
az |+ 1 1] 1
as 0 1 O 1
v |3 1 1
wherel/9 < 8 < 3/26. Thenrwx y(a1,b1) = 8 does not satisfy the condition stated

on the previous theorem, as

wx(a1)my (b1) 1

2—71')(((11)—7Ty(b1)+7Tx(a1)7Ty(b1) 9.

19



We show thatrx y is nevertheless coherent under independence. Clearly, (NC) is sat-
isfied, asg < 3/26 = T'(1/2,3/10). Consider(z,y) € X x Y, then we show that
there is aP € M, such thatP(z,y) = 7x v (z,y). It follows from Lemma 9 (condi-
tions 1 and 2) that we may assume thaty (z,y) > 0 andmax{rx (z), 7y (y)} < 1,

so we need only look at = a; andy = b;. Note thatrx y(a1,b2) = 7x(a1),
mx,y(as,b1) = my (b1) andwx y (az,b2) = 1 so Lemma 9 (condition 3) tells us that
there is aP € M, such thatP(aq,b1) = mx v(a1,b1) = 8, andrx y is coherent

under independence.

6 Conclusions

In this paper, we have continued the study of the implications of giving possibil-
ity measures a behavioural interpretation in terms of upper betting rates, initiated in
[3, 4, 5, 16, 17]. In particular, we have looked at the consequences of the rationality
requirements of avoiding sure loss and coherence when forming independent products
of marginal possibility measures. The definition of independence that was used here, is
based on Walley’s [15] notion of epistemic independence: two variables are epistemi-
cally independent for a subject when his beliefs about the value taken by one variable
are not influenced by new knowledge about the value of the other variable. In the con-
text of possibility theory, where beliefs are expressed in terms of possibility measures,
it seems natural to express epistemic independence in terms of the equality of condi-
tional and marginal possibility distributions (or measures), as we did in Definition 1.
We have obtained a simple characterisation for the coherence under independence of a
joint possibility distribution in the unimodal case, and we have found a simple sufficient
condition, as well as a different, necessary one in the plurimodal case. It is not clear
to us whether in the general case, there is a simple necessary and sufficient condition
involving only thelocal values of the joint and marginal possibility distributions.

An immediate conclusion of Lemma 3 is that the so-called minimum and product
rules for forming joint distributions from given marginals, which yielg y (z,y) =
min{rx (z), 7y (y)} andrx vy (z,y) = 7x (x)7y (y) respectively, and which are quite
common in possibility theory (see for instance [2, 6, 7, 18 only coherent when
mx and/ormy assume only the valuésand1.

We could also consider the so-called independent natural extehs{ds, Sec-
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tion 9.3] of two marginal possibility measurésy andIly . This is the greatest (least-
committal or most conservative) coherent and independent jgiper probability
which need not be a possibility measure. In fact, on proddcts B it can be shown
that (A x B) = IIx(A)Ily(B), whereA C X andB C ) [15, Section 9.3.5].F
will therefore in generahot be a possibility measure: if it were, its distribution would
be given by the product rule, which is generally not coherent!

The results in this paper indicate that the theory of imprecise probabilities has use-
ful things to say about independence in possibility theory. But we should warn the
reader against too much optimism. Indeed, possibility measures are rather imprecise
uncertainty models: ifl is a normal possibility measure (and therefore a coherent up-
per probability) on some sé?, andN is its conjugate lower probability, also called
necessity measure, and defined¥fyd) = 1 —II(coA), wherecoA is the set-theoretic
complement ofd C (, then we have thdfl(A) < 1 = N(A) = 0: the probability
interval [N(A), II(A)] always contains zero or one (or both). Alternatively, it always
holds forA C Q thatII(4) = 1 orII(coA) = 1, meaning that a subject whose be-
liefs are modelled by the upper probabilitywill not be disposed to bet againdtor
againstcoA (unless perhaps at the trivial rate zero!), and this foralC 2. On a
behavioural interpretation, possibility measures therefore model fairly weak informa-
tion states. On the other hand, a judgement of independence is quite informative, and
we suspect that in some cases it will be too informative to be adequately modelled by
possibility measures, or within the context of possibility theory. This is illustrated by
the fact that, as we have seen above, the greatest independent joint possibility measure
T(IIx(A),IIy (B)) can be appreciably smaller than the independent natural extension
E(A x B) =l x(A)Ily(B) on productsd x B: if we restrict ourselves to possibilis-
tic models, we are obliged, in order to capture independence, to use products that may
be significantly more precise than if we had used a more general approach, e.g., with

coherent upper probabilities. This identifies a weakness in possibility theory.
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