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Abstract

Numerical possibility measures can be interpreted as systems of upper betting
rates for events. As such, they have a special part in the unifying behavioural theory
of imprecise probabilities, proposed by Walley. On this interpretation, they should
arguably satisfy certain rationality, or consistency, requirements, such as avoiding
sure loss and coherence. Using a version of Walley’s notion of epistemic indepen-
dence suitable for possibility measures, we study in detail what these rationality
requirements tell us about the construction of independent product possibility mea-
sures from given marginals, and we obtain necessary and sufficient conditions for
a product to satisfy these criteria. In particular, we show that the well-known min-
imum and product rules for forming independent joint distributions from marginal
ones, are only coherent when at least one of these distributions assume just the
values zero and one.

Keywords. Possibility theory, upper probability, coherence, conditioning, epistemic

independence, independent product.

1 Introduction

Possibility theory, as originated by Zadeh [19], can be described as collection of notions

and techniques centered around the concept of apossibility measure. It is mainly used

for the representation and manipulation of so-calledlinguistic uncertainty, produced

by (potentially vague) statements in natural language. It was conceived as an alterna-

tive to probability theory, which, according to Zadeh, does not lend itself very well

to modelling linguistic uncertainty. In parallel with probability theory, notions such

as possibility integrals, product possibility measures, conditional possibility measures

and possibilistic independence have been developed [2, 6, 7]. Possibility measures
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have also been studied under different names and guises, and in other contexts, see for

instance [1, 9, 10, 13, 14].

In recent years, quite some effort has been invested in the study of possibility mea-

sures in the framework of the theory of imprecise probabilities [15]. In this approach,

the possibility of some event is given the behavioural interpretation of a subject’sup-

per probability, or upper betting rate, for the event, i.e., the infimum rate at which the

subject is willing totake bets onthe event, or equivalently, one minus the supremum

rate at which he is willing tobet againstit. A possibility measure then represents a col-

lection of such upper betting rates. Because specifying an upper betting rate amounts

to a commitment to act (bet) in certain ways, upper probabilities and in particular pos-

sibility measures are subject to a number of rationality, or consistency, requirements,

calledavoiding sure lossandcoherence. It turns out thatnormalpossibility measures

satisfy these requirements, and can therefore be considered as reasonable imprecise

probability models [3, 4, 5, 16]. So can (precise) probability measures. This points to

a distinct advantage of the unifying approach using the theory of imprecise probabili-

ties: it allows the comparison of both types of measures in a single framework, using

a common language and the same (behavioural) interpretation. This has for instance

been done in a recent study [18], where it is argued that possibility measures indeed

seem to be better suited for modelling linguistic uncertainty than probability measures.

This being said, it is by no means obvious that all of what is commonly understood

as ‘possibility theory’ will get similar backing from the theory of imprecise probabili-

ties: the rationality criteria of avoiding sure loss and coherence can for instance be used

to weed out those notions and techniques which are inconsistent with the behavioural

interpretation of possibility measures as upper probabilities. To give an example, in

contradistinction to probability theory, a large variety of rules have been proposed for

conditioning a possibility measure (see for instance the overviews in [2, 7, 17]). In a re-

cent paper [17], Walley and De Cooman have shown that most of these rules avoid sure

loss, but do not satisfy the stricter requirement of coherence. They have also suggested

a number of new conditioning rules that guarantee coherence.

Two variables are said to beepistemically independentto a subject when new

knowledge about the value that one variable assumes, does not change his beliefs about

the value the other variable takes [15, Chapter 9]. In the present paper, we study some

aspects of this notion of independence for possibility measures. More specifically, we
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investigate what the rationality criteria of avoiding sure loss and coherence tell us about

the construction of independent joint possibility measures from given marginal ones.

We have organised the paper as follows. In Section 2, we briefly review definitions

and basic results concerning the interpretation of possibility measures as upper betting

rates, necessary for understanding much of what follows. In Section 3, we formulate a

definition of epistemic independence inspired by Walley’s original definition [15], and

suitable in a ‘possibilistic’ context. We also derive a necessary and sufficient condi-

tion, in terms of sets of dominated probability measures, for the consistency of a joint

possibility measure with its marginals, under the epistemic independence assumption.

This condition is quite complicated, but we show in Section 4 that it can be simplified

significantly when one of the marginal possibility measures is unimodal: we obtain a

characterisation of the coherent product possibility measures through an upper bound.

The study for the plurimodal case seems to be much harder, and we present a simpli-

fied sufficient, and a different necessary, condition for coherence under the epistemic

independence assumption in Section 5. Section 6 concludes the paper with additional

discussion.

This paper is an updated and expanded version of a paper [11] presented at ISIPTA

’01, the Second International Symposium on Imprecise Probabilities and Their Appli-

cations.

2 Preliminary notions and results

A possibility measureΠ on a finite1 setΩ is a map defined on the power set℘(Ω) of

Ω and taking values in the real unit interval[0, 1], that satisfiesΠ(∅) = 0 and that is

moreovermaxitive: for all subsetsA andB of Ω, Π(A ∪ B) = max{Π(A),Π(B)}.
It is completely determined by its(possibility) distributionπ : Ω → [0, 1], defined by

π(ω) = Π({ω}) for all ω ∈ Ω. Indeed, we haveΠ(A) = max{π(ω) : ω ∈ A} for any

non-empty subsetA of Ω.

Possibility measures can be incorporated into the behavioural theory of imprecise

probabilities [15] by interpreting them as upper probabilities: for any eventA ⊆ Ω,

Π(A) is then a subject’s upper probability ofA, i.e., his infimum acceptable rate for

taking bets onA, or one minus his supremum acceptable rate forbetting againstA.

1We only deal with possibility measures onfinitesets in this paper.
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This means that the subject is disposed to accept a bet whose outcome isx − 1 if A

occurs, andx if A doesn’t occur, for allx > Π(A). It turns out [3, 4, 16] that a possibil-

ity measureΠ with this interpretation satisfies the rationality criteria of avoiding sure

loss and coherence2 if and only if it is normal, i.e., if Π(Ω) = 1. We shall therefore

only consider normal possibility measures in what follows. Normality implies that the

distributionπ has at least onemode(or modal value)ωo, for whichπ(ωo) = 1. If there

is only one such mode, thenπ (andΠ) is calledunimodal. A distribution with more

than one mode is calledplurimodal.

Consider two variablesX andY taking values in the respective finite setsX andY.

We only consider the interesting case that bothX andY have more than one element.

We assume that a subject has certain beliefs about which values these variables assume,

and that he models these beliefs using a possibility measureΠX,Y on X × Y, with

distributionπX,Y .3 For C ⊆ X × Y, ΠX,Y (C) is the subject’s upper probability for

the event that(X, Y ) assumes a value inC, and for(x, y) ∈ X × Y, πX,Y (x, y) is his

upper probability that(X, Y ) assumes the value(x, y).

The marginalsΠX andΠY of the so-calledjoint possibility measureΠX,Y are

defined as follows.ΠX is defined onX by ΠX(A) = ΠX,Y (A×Y). It is a possibility

measure onX , andΠX(A) represents the subject’s upper probability that the variable

X assumes a value inA ⊆ X (regardless of what valueY takes). Similarly, the

possibility measureΠY is defined onY by ΠY (B) = ΠX,Y (X × B); andΠY (B) is

the subject’s upper probability thatY takes a value inB ⊆ Y. We denote the possibility

distributions ofΠX andΠY by πX andπY respectively.

Conditional possibility measures [2, 3, 6, 7] can be given the behavioural inter-

pretation ofupdatedupper probabilities [3, 17].ΠX|Y (A|y) is then interpreted as the

subject’s infimum acceptable rate for taking bets on, or one minus his supremum rate

for betting against, the event thatX assumes a value inA ⊆ X , after learning only that

Y takes the valuey ∈ Y; and similarly forΠY |X(B|x). For eachx ∈ X , ΠY |X(·|x)

is assumed to be a possibility measure onY, with distributionπY |X(·|x); and for each

y ∈ Y, ΠX|Y (·|y) is assumed to be a possibility measure onX , with distribution

πX|Y (·|y).4

2We assume that the reader is familiar with these basic consistency requirements in the theory of impre-
cise probabilities. See [3, 4, 15, 16] for more details.

3A specific and interesting case where this assumption makes sense, is discussed in [18].
4We only consider the case that the subject’s conditional upper probabilities are possibility measures as
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Since on a behavioural interpretation, the joint and the conditional possibility mea-

sures represent a subject’s dispositions to act in certain ways, they should satisfy cer-

tain rationality requirements, not only separately (they should all be normal!) butalso

taken together. A thorough discussion of such criteria in the general context of impre-

cise probabilities was given by Walley [15]. The special case of possibility measures

was discussed by Walley and De Cooman [17], who also investigated which of a large

number of so-called conditioning rules for possibility measures, available in the litera-

ture, satisfy these criteria. We refer to their work for both motivation and mathematical

development.

For the purposes of the present paper, it will suffice to recall the following charac-

terisation of the criteria of avoiding sure loss and of coherence of the joint and condi-

tional possibility distributions (or equivalently, measures) in terms of sets of dominated

probability measures. It can be easily inferred from Lemma 3 and the proof of Theo-

rem 1 in [17]. LetMc be the set of probability measures defined on the power set of

X × Y and satisfying the following inequalities:

(C1) P (A) ≤ ΠX,Y (A) for all A ⊆ X × Y; and

(C2) P (B × {y})/P (X × {y}) ≤ ΠX|Y (B|y) for all B ⊆ X andy ∈ Y such that

P (X × {y}) > 0; and

(C3) P ({x} × C)/P ({x} × Y) ≤ ΠY |X(C|x) for all C ⊆ Y andx ∈ X such that

P ({x} × Y) > 0.

Theorem 1. The joint possibility distributionπX,Y and the conditional possibility dis-

tributions{πY |X(·|x) : x ∈ X} and{πX|Y (·|y) : y ∈ Y} avoid sure loss if and only

if Mc is non-empty. They are coherent if and only if there is a non-empty setM of

probabilities defined on the power set ofX × Y such that:

1. ΠX,Y (A) = sup{P (A) : P ∈M} for all A ⊆ X × Y.

2. ΠX|Y (B|y) ≥ sup{P (B × {y})/P (X × {y}) : P ∈M, P (X × {y}) > 0} for

all B ⊆ X andy ∈ Y, with equality whenβ(y) = max{πY (v) : v 6= y} < 1.

3. ΠY |X(C|x) ≥ sup{P ({x} ×C)/P ({x} × Y) : P ∈M, P ({x} × Y) > 0} for

all C ⊆ Y andx ∈ X , with equality whenη(x) = max{πX(u) : u 6= x} < 1.

well. This is perfectly compatible with the epistemic independence assumption to be introduced and studied
later.
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If there is such a setM, thenMc is the largest such set.

A few remarks are in order here. Strictly speaking, this theorem gives a char-

acterisation of the rationality conditions of avoidinguniform sureloss, and ofweak

coherence, respectively. Walley [15, Section 7.1] also discusses the generally more

stringent rationality conditions of avoidingpartial loss and (strong) coherence. But we

have shown elsewhere [12] that, for general upper probabilities, under the conditions of

epistemic independence to be discussed further on, the weak and strong coherence of

joint and marginal upper probabilities in fact turn out to be equivalent, and that the same

holds for avoiding partial loss and avoiding uniform sure loss. For these reasons, we

have restricted ourselves here to the characterisation of the weaker notions: this turns

out to be sufficient, but it is a lot easier to do. In order not to burden our terminology

too much, we shall simply refer to them as ‘avoiding sure loss’ and ‘coherence’.

There is a simplenecessarycondition for the coherence ofπX,Y , {πY |X(·|x) : x ∈
X} and{πX|Y (·|y) : y ∈ Y}, which was shown in [17] to be the following:

πX,Y (x, y) ≤
πX|Y (x|y)πY |X(y|x) max{πX(x), πY (y)}

πX|Y (x|y) + πY |X(y|x)− πX|Y (x|y)πY |X(y|x)
(1)

for all x ∈ X and y ∈ Y, where 0
0 is taken to be0. As mentioned in [17], the

inequality (1) is a special case of a condition valid in general for upper probabilities. It

will play a central part in what follows.

3 Epistemic independence and coherence

We are now ready to address the question that will occupy us in the rest of the paper.

Assume that our subject has beliefs (or information) about the values assumed by the

variablesX andY separately, and that he has modelled his beliefs in the form of the

marginal possibility distributionsπX andπY . He also judges the variablesX andY

to be epistemically5 independent: he judges that new information about the value of

one variable will not affect his beliefs about the value the other variable assumes. We

intend to investigate what this independence assumption, together with the rationality

requirements of avoiding sure loss and coherence, tells us about the joint distribution

πX,Y , which models the subject’s beliefs about the valuesX andY assume jointly.

5There is more than one independence concept in possibility theory, see for instance [2, 7]. Here, we use
a version of Walley’s notion of epistemic independence [15], because it has the most natural interpretation
in the behavioural context of the theory of imprecise probabilities.
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For probability measures (on finite spaces), the judgement of epistemic indepen-

dence together with coherence leads uniquely to the product probability measure of the

marginals [15, Section 9.3.2]. We shall see that there is no uniqueness in the case of

possibility measures: for given marginals, there is generally more than one joint possi-

bility distribution that satisfies the independence and coherence requirements. Our aim

is to characterise such joint distributions in a manner that is as simple as possible.

The first step we have to take is to apply the notion of epistemic independence,

formulated by Walley for general imprecise models [15, Section 9] to the case that

beliefs are represented by possibility distributions.

Definition 1. We say thatY is irrelevant to X when πX|Y (x|y) = πX(x) for all

x ∈ X andy ∈ Y. We say thatX andY areepistemically independentwhenX is

irrelevant toY andY is irrelevant toX.

Given the marginal distributionsπX andπY , the judgement of epistemic indepen-

dence leads at once to values for the conditional distributions{πX|Y (·|y) : y ∈ Y} and

{πY |X(·|x) : x ∈ X}. We now only have to require that the jointπX,Y (which has

marginalsπX andπY ) should be consistent with these conditional distributions.

Definition 2. We say that the normal joint possibility distributionπX,Y avoids sure

loss under epistemic independencewhen the joint distribution and the conditional pos-

sibility distributions{πY |X(·|x) : x ∈ X} and{πX|Y (·|y) : y ∈ Y} given by

πX|Y (x|y) = πX(x) and πY |X(y|x) = πY (y) (2)

for all x ∈ X andy ∈ Y, avoid sure loss. Similarly, we say that the joint distribution

πX,Y is coherent under epistemic independencewhen these possibility distributions

are coherent. In that case,πX,Y will be called anindependent joint distribution, or an

independent productof its marginalsπX andπY .

It turns out that the first consistency condition under epistemic independence is

always satisfied. The second condition is more involved, however. To see this, con-

sider the setMi (the counterpart of the setMc in the previous section) of probability

measures defined on the power set ofX × Y and satisfying the following inequalities:

(CI 1) P (A) ≤ ΠX,Y (A) for all A ⊆ X × Y; and
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(CI 2) P (B × {y})/P (X × {y}) ≤ ΠX(B) for all B ⊆ X andy ∈ Y such that

P (X × {y}) > 0; and

(CI 3) P ({x} × C)/P ({x} × Y) ≤ ΠY (C) for all C ⊆ Y andx ∈ X such that

P ({x} × Y) > 0.

Applying Theorem 1 leads to the following result, which is the starting point for the

further development.6

Theorem 2. A normal joint possibility distributionπX,Y always avoids sure loss under

epistemic independence, or in other words,Mi 6= ∅. It is coherent under epistemic

independence if and only if there is a non-empty set of probabilitiesM defined on the

power set ofX × Y such that:

1. ΠX,Y (A) = sup{P (A) : P ∈M} for all A ⊆ X × Y.

2. ΠX(B) ≥ sup{P (B × {y})/P (X × {y}) : P ∈ M, P (X × {y}) > 0} for all

B ⊆ X andy ∈ Y, with equality whenβ(y) < 1.

3. ΠY (C) ≥ sup{P ({x} × C)/P ({x} × Y) : P ∈ M, P ({x} × Y) > 0} for all

C ⊆ Y andx ∈ X , with equality whenη(x) < 1.

If there is such a setM, thenMi is the greatest such set.

Proof. The coherence part follows immediately from Theorem 1. The same theorem

tells us thatπX,Y avoids sure loss under epistemic independence if and only ifMi 6= ∅.
It therefore only remains to show thatMi 6= ∅. Consider(x, y) ∈ X × Y such that

πX,Y (x, y) = 1, and consequentlyπX(x) = πY (y) = 1 (there always are suchx and

y, sinceπX,Y is normal). Define the (degenerate) probability measureP on the power

set ofX × Y by P (x, y) = 1. Then it is easy to see thatP ∈Mi. �

We can also take a look at the necessary condition for coherence (1), mentioned in

the previous section. Using the epistemic independence relation (2), we find:

πX,Y (x, y) ≤ πX(x)πY (y) max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

(NC)

for all x ∈ X andy ∈ Y, where0
0 is taken to be0. This is a very simplenecessary

condition for the coherence under epistemic independence ofπX,Y , expressed only in

6It turns out that the first part of Theorem 2 holds for general imprecise probability models: any (sepa-
rately) coherent joint upper prevision avoids sure loss under independence. See [12] for more details.
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terms of thelocal valuesπX,Y (x, y), πX(x) andπY (y) of the joint distribution and

its marginals. We can easily deduce from this condition certain properties that will be

used repeatedly further on.

Lemma 3. If the normal joint distributionπX,Y satisfies the necessary condition(NC),

then for all(x, y) ∈ X × Y:

1. πX,Y (x, y) ≤ πX(x)πY (y);

2. if 0 < πX,Y (x, y) = πX(x) thenπY (y) = 1;

3. if πY is unimodal with unique modeyo, thenπX(x) = πX,Y (x, yo).

4. if 0 < πX(x) < 1 and0 < πY (y) < 1 thenπX,Y (x, y) < πX(x)πY (y).

Proof. The proof of the fourth statement is similar to that of the first, and the sec-

ond statement follows immediately from the first. We therefore concentrate on prov-

ing the first and third statements. We may assume without loss of generality that

max{πX(x), πY (y)} = πX(x). In that case

max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

=
πX(x)

πX(x) + πY (y)− πX(x)πY (y)
≤ πX(x)

πX(x)
= 1

and consequently

πX,Y (x, y) ≤ πX(x)πY (y) max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

≤ πX(x)πY (y).

To prove the third statement, observe that we may assume thatπX(x) > 0. Then there

is somey in Y such thatπX,Y (x, y) = πX(x), and the second statement tells us that

πY (y) = 1, whencey = yo. �

In the rest of this section, we investigate how the necessary and sufficient condition

of Theorem 2 can be simplified. Our efforts will culminate in Theorem 8, which is

the most important stepping stone for our investigation in the following sections. First

of all, in checking the coherence condition, the following lemma will be very useful,

because it helps us verify whether a probability measure belongs toMi or not. The

proof is elementary, and therefore omitted.

Lemma 4. Letm be the number of elements inX , andn the number of elements inY.

Consider a probability measureP defined on the power set ofX × Y.
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1. Assume that themn elementsz = (x, y) ofX ×Y are labeled in such a way that

πX,Y (z1) ≤ πX,Y (z2) ≤ · · · ≤ πX,Y (zmn). ThenP satisfies condition(CI 1)

if and only if P (z1) + · · ·+ P (zj) ≤ πX,Y (zj) for j = 1, . . . , nm.

2. Assume that them elements ofX are labeled in such a way thatπX(x1) ≤
πX(x2) ≤ · · · ≤ πX(xm). ThenP satisfies condition(CI 2) if and only if for all

y ∈ Y such thatP (X × {y}) > 0 and forj = 1, . . . ,m,

P (x1, y) + · · ·+ P (xj , y)
P (X × {y})

≤ πX(xj).

3. Assume that then elements ofY are labeled in such a way thatπY (y1) ≤
πY (y2) ≤ · · · ≤ πY (yn). ThenP satisfies condition(CI 3) if and only if for

all x ∈ X such thatP ({x} × Y) > 0 and forj = 1, . . . , n,

P (x, y1) + · · ·+ P (x, yj)
P ({x} × Y)

≤ πY (yj).

Interestingly, coherence under independence is not influenced by removing from

the setX elementsx such thatπX(x) = 0 and from the setY elementsy such that

πY (y) = 0.7 To see this, consider the marginal sets

X ′ = {x ∈ X : πX(x) > 0}

Y ′ = {y ∈ Y : πY (y) > 0}

and denote byΠ′
X,Y the restriction ofΠX,Y to the power set ofX ′ × Y ′. With this

(normal) possibility measure, with possibility distributionπ′
X,Y , we may associate a set

M′
i of probability measures on the power set ofX ′×Y ′ satisfying the (corresponding)

properties(CI 1)–(CI 3), which by Theorem 2 completely determines the coherence

under independence of the joint distributionπ′
X,Y (or the possibility measureΠ′

X,Y ).

Proposition 5. Mi satisfies the conditions of Theorem 2 if and only ifM′
i satisfies

them, or in other words, the normal joint distributionπX,Y is coherent under indepen-

dence if and only ifπ′
X,Y is.

Proof. The proof is immediate if we observe that the elements ofMi and those ofM′
i

are in one-to-one correspondence, and thatM′
i consists of the restrictions toX ′ × Y ′

of the probabilities inMi. �

7For our subject, it is practically impossible that the variablesX andY assume such values, since he is
disposed to betat all oddsagainst the event that they do.
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This implies that our results will remain valid if, instead of using condition (2) to

define epistemic independence, we use the alternative condition:

πX|Y (x|y) = πX(x) if πY (y) > 0

πY |X(y|x) = πY (y) if πX(x) > 0

for all (x, y) ∈ X × Y, which is sometimes found in the literature (see for instance

[8]).

Proposition 6. The set of probabilitiesMi satisfies the first condition of Theorem 2 if

and only if for all(x, y) in X ×Y there is aP inMi such thatP (x, y) = πX,Y (x, y).

Proof. We first show that the condition is sufficient. Indeed, for anyA ⊆ X × Y,

there is some(xA, yA) ∈ A such thatΠX,Y (A) = πX,Y (xA, yA), and the condition

tells us moreover that there is someP ∈ Mi such thatP (xA, yA) = πX,Y (xA, yA),

whenceΠX,Y (A) ≤ P (A). Since for allQ ∈ Mi, condition (CI 1) tells us that

Q(A) ≤ ΠX,Y (A), we infer thatΠX,Y (A) = max{Q(A) : Q ∈ Mi}. Next, we

show that the condition is necessary. Consider(x, y) ∈ X × Y. If Mi satisfies the

first condition of Theorem 2, thenπX,Y (x, y) = sup{P (x, y) : P ∈Mi}. SinceMi is

obviously closed in the natural topology8, this supremum is actually achieved for some

P ∈ Mi, or in other words, there is someP ∈ Mi such thatP (x, y) = πX,Y (x, y).

�

Proposition 7. If the normal joint distributionπX,Y satisfies the necessary condi-

tion (NC), then the setMi always satisfies the second and third conditions of Theo-

rem 2.

Proof. We show thatMi satisfies the second condition. The proof for the third condi-

tion is completely similar (or symmetrical). It follows from(CI 2) that we only need

to prove that for allB ⊆ X :

ΠX(B) = sup{P (B × {y})
P (X × {y})

: P ∈Mi, P (X × {y}) > 0}, (3)

whenβ(y) < 1. Let us suppose, therefore, thatβ(yo) < 1, or in other words thatπY

is unimodal with unique modeyo. ConsiderB ⊆ X . Then there is somexB ∈ B such

8We identify the probabilities onX × Y with elements ofRnm in the obvious way, and consider the
topology generated by the Euclidean metric onRnm.
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thatΠX(B) = πX(xB). If ΠX(B) = 1, it follows from Lemma 3 and the unimodality

of πY that1 = πX(xB) = πX,Y (xB , yo). The probabilityP uniquely defined on the

power set ofX × Y by P (xB , yo) = 1 is easily shown to belong toMi and to attain

the desired equality. Let us therefore consider the case thatΠX(B) < 1. Let x′ be

a modal point of the marginal distributionπX . Note thatx′ 6∈ B so x′ 6= xB . As

πY is unimodal with unique modeyo, we must have thatπX,Y (x′, yo) = 1. We also

infer from Lemma 3 thatπX,Y (xB , yo) = πX(xB). Consider the probability measure

P uniquely defined on the power set ofX × Y by P (xB , yo) = πX,Y (xB , yo) and

P (x′, yo) = 1 − πX,Y (xB , yo). We proceed to show thatP ∈ Mi. Observe that

πX,Y (xB , yo) < πX,Y (x′, yo) = 1, so Lemma 4 tells us thatP satisfies(CI 1) if and

only if P (xB , yo) ≤ πX,Y (xB , yo), which holds by construction. Next, observe that

πX(xB) < πX(x′) = 1. Since

P (xB , yo)
P (X × {yo})

=
πX,Y (xB , yo)

1
≤ πX(xB)

andP (X × {y}) = 0 for everyy ∈ Y \ {yo}, we may infer from Lemma 4 thatP

satisfies(CI 2). Since moreoverπY (yo) = 1 we immediately infer from Lemma 4 that

P satisfies(CI 3) as well. We may therefore indeed conclude thatP ∈ Mi. It is now

obvious that

P (B × {yo})
P (X × {yo})

=
P (xB , yo)

P (X × {yo})
=

πX(xB)
1

= ΠX(B),

so the second condition of Theorem 2 is satisfied.�

We may summarise these results in the following theorem.

Theorem 8. The normal joint distributionπX,Y is coherent under independence if and

only if it satisfies(NC) and for all (x, y) in X × Y there is someP in Mi such that

P (x, y) = πX,Y (x, y).

In checking whether the conditions of this theorem are verified, the following

lemma will allow us to proceed somewhat faster.

Lemma 9. Assume that the normal joint distributionπX,Y satisfies condition(NC)

and let (x, y) be an element ofX × Y such that one of the following conditions is

satisfied:

1. πX,Y (x, y) = 0;
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2. max{πX(x), πY (y)} = 1;

3. 0 < πX,Y (x, y) andmax{πX(x), πY (y)} < 1, and there arex′ ∈ X andy′ ∈
Y such thatπX,Y (x′, y) = πY (y), πX,Y (x, y′) = πX(x) andπX,Y (x′, y′) = 1.

Then there is aP in Mi such thatP (x, y) = πX,Y (x, y).

Proof. Assume that the first condition is satisfied. We know from the first part of

Theorem 2 thatMi 6= ∅. It follows from condition(CI 1) andπX,Y (x, y) = 0 that

P (x, y) = πX,Y (x, y) = 0 for all P ∈Mi.

Next, if the second condition holds, we may assume without loss of generality that

πY (y) = 1. If πX,Y (x, y) = 1, consider the (degenerate) probability measure defined

on the power set ofX × Y by P (x, y) = 1 = πX,Y (x, y). It is easily verified that

P ∈ Mi. If πX,Y (x, y) < 1, then there is somex′ 6= x in X such thatπX,Y (x′, y) =

1. Consider the probability measureP uniquely defined on the power set ofX × Y
by P (x, y) = πX,Y (x, y) andP (x′, y) = 1 − πX,Y (x, y). It remains to be shown

that P ∈ Mi. First of all, recall thatπX,Y (x, y) ≤ πX,Y (x′, y) = 1, so to prove

that P satisfies(CI 1), Lemma 4 tells us that we need only verify thatP (x, y) ≤
πX,Y (x, y), which holds by construction. Next, observe thatπX(x) ≤ πX(x′) = 1

and thatP (X × {v}) > 0 only if v = y, so in order to verify thatP satisfies(CI 2),

Lemma 4 tells us that we need only verify thatP (x, y)/P (X × {y}) ≤ πX(x), or

equivalently,πX,Y (x, y)/1 ≤ πX(x), which holds trivially. Finally, sinceP (u, v) > 0

only if v = y, and sinceπY (y) = 1, we infer from Lemma 4 thatP also satisfies(CI 3),

so indeedP ∈Mi.

To conclude the proof, let us assume that the third condition holds. Lemma 3 then

tells us thatπX,Y (x, y) < πX(x)πY (y). Consequently, there is someα ∈ (0, 1) such

thatπX,Y (x, y) = απX(x)πY (y). It also follows from the assumption thatπX(x′) =

πY (y′) = 1 and thereforex′ 6= x andy′ 6= y. We now define the (finitely) additive set

functionP on the power set ofX × Y by:

P (x, y) = πX,Y (x, y)

P (x, y′) = απX(x)− πX,Y (x, y)

P (x′, y) = απY (y)− πX,Y (x, y)

P (x′, y′) = 1− α[πX(x) + πY (y)] + πX,Y (x, y)

13



andP (u, v) = 0 for all other(u, v) ∈ X×Y. We show thatP is a probability. It is clear

thatP (x, y) + P (x, y′) + P (x′, y) + P (x′, y′) = 1, so it remains to be shown that all

these terms are non-negative. First of all, it is obvious thatP (x, y) = πX,Y (x, y) ≥ 0.

Moreover,

P (x′, y) = πX,Y (x, y)(
1

πX(x)
− 1) ≥ 0

and from the symmetry, we infer that alsoP (x, y′) ≥ 0. Finally, since

α[πX(x) + πY (y)]− πX,Y (x, y) = πX,Y (x, y)(
1

πX(x)
+

1
πY (y)

− 1)

= πX,Y (x, y)
πX(x) + πY (y)− πX(x)πY (y)

πX(x)πY (y)
≤ 1,

where the inequality follows from (NC), we see thatP (x′, y′) = 1 − α[πX(x) +

πY (y)] + πX,Y (x, y) ≥ 0. The proof is complete if we can show thatP ∈ Mi.

We use Lemma 4. We may assume without loss of generality thatπX(x) ≤ πY (y),

whenceπX,Y (x, y) < πX,Y (x, y′) ≤ πX,Y (x′, y) < πX,Y (x′, y′) = 1. Clearly,

P (x, y) = πX,Y (x, y) andP (x, y) + P (x, y′) = απX(x) ≤ πX(x) = πX,Y (x, y′).

Moreover,

P (x, y) + P (x, y′) + P (x′, y) = α[πX(x) + πY (y)]− πX,Y (x, y)

= πX,Y (x, y)
πX(x) + πY (y)− πX(x)πY (y)

πX(x)πY (y)
≤ πY (y) = πX,Y (x′, y),

where the inequality follows from (NC). We may then conclude from Lemma 4 thatP

satisfies(CI 1). Next, observe thatπX(x) < πX(x′) = 1,

P (x, y)
P (X × {y})

=
πX,Y (x, y)
απY (y)

= πX(x)

and

P (x, y′)
P (X × {y′})

=
απX(x)− πX,Y (x, y)

1− απY (y)
= πX(x)

απX(x)− πX,Y (x, y)
πX(x)− απX(x)πY (y)

= πX(x)
απX(x)− πX,Y (x, y)
πX(x)− πX,Y (x, y)

≤ πX(x).

For everyv ∈ Y different fromy andy′, we have thatP (X × {v}) = 0, so we may

conclude from Lemma 4 thatP satisfies(CI 2). The proof thatP satisfies(CI 3) is

completely symmetrical.�
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4 The unimodal case

It turns out that when at least one of the marginal distributionsπX andπY is unimodal,

the conditions for coherence under epistemic independence, stated in Theorem 8, sim-

plify significantly: in this case, the necessary condition (NC) is also sufficient.

Theorem 10. If the marginal distributionsπX andπY are not both plurimodal, then

the normal joint distributionπX,Y is coherent under epistemic independence if and

only if for all (x, y) ∈ X × Y:

πX,Y (x, y) ≤ πX(x)πY (y) max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

.

Proof. It is enough to check that the condition is sufficient. Assume therefore that (NC)

holds. It follows from Theorem 8 thatπX,Y is coherent under epistemic independence

if and only if for all (x, y) ∈ X × Y there is someP ∈ Mi such thatP (x, y) =

πX,Y (x, y). This is what we now set out to prove. Let us assume without loss of

generality thatπY is unimodal with unique modeyo, and let(x, y) be an arbitrary

element ofX × Y. Lemma 9 (conditions 1 and 2) tells us that we may assume that

0 < πX,Y (x, y) andmax{πX(x), πY (y)} < 1. We show that in this case condition 3

of Lemma 9 holds because of the unimodality ofπY , so that there is nothing left to

prove. Indeed, there is somex′ ∈ X such thatπY (y) = πX,Y (x′, y), whence we

deduce thatπX(x′) = 1 and thereforex′ 6= x, using Lemma 3. Similarly, there is some

y′ ∈ Y such thatπX(x) = πX,Y (x, y′), whenceπY (y′) = 1 and thereforey′ = yo,

andy′ 6= y. Also, there is somey′′ ∈ Y such thatπX,Y (x′, y′′) = πX(x′) = 1,

whenceπY (y′′) = 1, again by Lemma 3. Thereforey′′ = y′ = yo, andπX,Y (x′, y′) =

πX,Y (x′, yo) = πX,Y (x′, y′′) = 1. �

What we have in particular proven is that given two marginal possibility distribu-

tionsπX andπY , at least one of which is unimodal, the largest independent product

possibility distribution that is coherent, is given by

πX,Y (x, y) = T (πX(x), πY (y)),

whereT is the binary operatorT : [0, 1]2 → [0, 1] on the unit interval defined by

T (α, β) =
αβ max{α, β}
α + β − αβ
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for all α andβ in [0, 1]. The operatorT is non-decreasing in both arguments, and has

unit1 and zero0, so it is a so-called triangular seminorm. It is moreover continuous and

commutative, but it is not a triangular norm, because it does not satisfy the associative

property. To see this, takeα = 1/4, β = 1/2 andγ = 3/4; thenT (α, T (β, γ)) =

81/1540 < 9/124 = T (T (α, β), γ).

5 The general case

We now turn to the general case that both distributionsπX andπY may be plurimodal.

The first thing to note is that the result of the previous case cannot be extended. To see

this, consider the following counterexample.

Example1. Let X = {a1, a2, a3}, Y = {b1, b2, b3} and consider the normal joint

possibility distributionπX,Y given by the following diagram:

πX,Y b1 b2 b3 πX

a1 β 3
10 0 3

10

a2
1
2 0 1 1

a3 0 1 0 1

πY
1
2 1 1

where, of course,0 ≤ β ≤ 3/10. Since (NC) holds trivially forx andy such that

max{πX(x), πY (y)} = 1, we see that the necessary condition (NC) for coherence

under independence is satisfied provided thatβ ≤ T (1/2, 3/10) = 3/26. Assume

thatπX,Y is coherent under independence, which implies in particular that there is a

P ∈ Mi such thatP (a1, b1) = β, and which also implies thatβ ≤ 3/26. Assume in

addition thatβ > 0, whenceP ({a1} × Y) > 0 andP (X × {b1}) > 0. There is some

α ∈ (0, 1) such thatβ = απX(a1)πY (b1) (use Lemma 3). SinceP (a1, b1)/P ({a1}×
Y) ≤ πY (b1) becauseP ∈Mi, it follows thatP ({a1} × Y) ≥ απX(a1), whence

P (a1, b2) ≥ απX(a1)− β = απX(a1)[1− πY (b1)].

This implies thatP (X × {b2}) > 0. Consequently, it follows fromP (a1, b2)/P (X ×
{b2}) ≤ πX(a1) that

P (X × {b2}) ≥
P (a1, b2)
πX(a1)

≥ α[1− πY (b1)].
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We find in a completely similar (or symmetrical) way that

P ({a2} × Y) ≥ P (a2, b1)
πY (b1)

≥ α[1− πX(a1)].

By combining these inequalities we find that

P (a1, b1) + P (a2, b1) + P (a1, b2) + P (a2, b3) + P (a3, b2)

= P (a1, b1) + P ({a2} × Y) + P (X × {b2})

≥ β + α[1− πY (b1)] + α[1− πX(a1)]

= β

(
2

πX(a1)πY (b1)
− 1

πX(a1)
− 1

πY (b1)
+ 1

)
= β

2− πX(a1)− πY (b1) + πX(a1)πY (b1)
πX(a1)πY (b1)

,

and ifβ > 1/9, or in other words, if

πX,Y (a1, b1) >
πX(a1)πY (b1)

2− πX(a1)− πY (b1) + πX(a1)πY (b1)
,

this contradicts the fact thatP is a probability measure. We conclude that there can be

no coherence forβ > 1/9!

This counterexample suggests a sufficient condition for independence and coher-

ence in the general case.

Theorem 11. If the normal joint distributionπX,Y satisfies

πX,Y (x, y) ≤ min
{

T (πX(x), πY (y)),
πX(x)πY (y)

2− πX(x)− πY (y) + πX(x)πY (y)

}
for all (x, y) ∈ X × Y, then it is coherent under epistemic independence.

Proof. Since (NC) is in particular satisfied, Theorem 8 tells us that we only have to

show that for every(x, y) ∈ X × Y there is someP ∈ Mi such thatP (x, y) =

πX,Y (x, y). We infer from Lemma 9 (conditions 1 and 2) that we may assume that

0 < πX,Y (x, y) andmax{πX(x), πY (y)} < 1. Then there arex′ ∈ X andy′ ∈ Y such

thatπX,Y (x′, y) = πY (y) andπX,Y (x, y′) = πX(x). It follows from the assumptions

and Lemma 3 thatπX(x′) = πY (y′) = 1, whence alsox′ 6= x andy′ 6= y. Lemma 9

(condition 3) tells us that we may assume thatπX,Y (x′, y′) < 1. Consequently, there

arex′′ 6= x′ in X andy′′ 6= y′ in Y such thatπX,Y (x′, y′′) = πX,Y (x′′, y′) = 1.

Note thatπX(x′′) = πY (y′′) = 1, soπX andπY are in this case plurimodal,x′′ 6= x
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andy′′ 6= y. It also follows from the assumptions and Lemma 3 that there is some

α ∈ (0, 1) such thatπX,Y (x, y) = απX(x)πY (y). We can assume without loss of

generality thatπX(x) ≤ πY (y). Let P be the probability measure uniquely defined on

the power set ofX × Y by P (x, y) = πX,Y (x, y),

P (x′, y) = απY (y)− πX,Y (x, y) = πX,Y (x, y)
1− πX(x)

πX(x)

P (x, y′) = απX(x)− πX,Y (x, y) = πX,Y (x, y)
1− πY (y)

πY (y)
P (x′, y′′) = α[1− πX(x)− πY (y)] + πX,Y (x, y)

= πX,Y (x, y)
1− πX(x)

πX(x)
1− πY (y)

πY (y)

andP (x′′, y′) = 1 − α. (It is easy to see that all these terms are non-negative and

add up to one.) It only remains to show thatP ∈ Mi. We use Lemma 4. Recall

thatπX,Y (x, y) ≤ πX,Y (x, y′) ≤ πX,Y (x′, y) ≤ πX,Y (x′, y′′) = πX,Y (x′′, y′) = 1.

Observe thatP (x, y) = πX,Y (x, y) and that

P (x, y) + P (x, y′) = απX(x) < πX(x) = πX,Y (x, y′).

Also P (x, y) + P (x, y′) + P (x′, y) is equal to

πX,Y (x, y)
πX(x) + πY (y)− πX(x)πY (y)

πX(x)πY (y)

and is therefore is dominated byπX,Y (x′, y) = πY (y) if and only if

πX,Y (x, y) ≤ πX(x)πY (y)2

πX(x) + πY (y)− πX(x)πY (y)
,

which is implied by the hypothesis. We may therefore conclude from Lemma 4 thatP

satisfies(CI 1). Note also thatP (X × {y}) = απY (y) > 0, P (X × {y′}) > 0 and

P (X × {y′′}) = P (x′, y′′) > 0 and thatP (X × {v}) = 0 for all otherv ∈ Y. Since

πX(x) ≤ πX(x′) = πX(x′′) = 1, P (x, y′′) = 0,

P (x, y)
P (X × {y})

=
πX,Y (x, y)
απY (y)

= πX(x),

and since it is easily verified thatP (x, y′)/P (X × {y′}) ≤ πX(x) if and only if

πX,Y (x, y) ≤ πX(x)πY (y)
2 + πX(x)πY (y)− πX(x)− πY (y)

which is implied by the hypothesis, we infer from Lemma 4 thatP satisfies(CI 2).

Similarly, note thatP ({x} × Y) = απX(x) > 0, P ({x′} × Y) = α[1 − πX(x)] > 0
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andP ({x′′} × Y) = P (x′′, y′) = 1 − α > 0 and thatP ({u} × Y) = 0 for all other

u ∈ X . SinceπY (y) ≤ πY (y′) = πY (y′′) = 1, P (x′′, y) = 0,

P (x, y)
P ({x} × Y)

=
πX,Y (x, y)
απX(x)

= πY (y),

and

P (x′, y)
P ({x′} × Y)

=
πX,Y (x, y)

1− πX(x)
πX(x)

πX,Y (x, y)
πX(x)πY (y)

[1− πX(x)]
= πY (y),

we infer from Lemma 4 thatP also satisfies(CI 3), so we may indeed conclude that

P ∈Mi. �

This theorem provides us with a sufficient condition for the coherence under epis-

temic independence of possibility measures. The condition is not necessary, however.

To see this, it is enough to consider the case that (NC) holds and one of the marginal

distributions is unimodal, but where for some(x, y) ∈ X × Y,

πX(x)πY (y)
2− πX(x)− πY (y) + πX(x)πY (y)

< πX,Y (x, y)

≤ πX(x)πY (y) max{πX(x), πY (y)}
πX(x) + πY (y)− πX(x)πY (y)

.

Then we deduce from Theorem 10 thatπX,Y is coherent under epistemic indepen-

dence. Still,πX,Y does not satisfy the condition given by the last theorem. The con-

dition is not necessary in the case that both marginals are plurimodal either, as the

following counterexample shows.

Example2. Let X = {a1, a2, a3}, Y = {b1, b2, b3} and consider the normal joint

possibility distributionπX,Y given by the following diagram:

πX,Y b1 b2 b3 πX

a1 β 3
10 0 3

10

a2
1
2 1 1 1

a3 0 1 0 1

πY
1
2 1 1

where1/9 < β < 3/26. ThenπX,Y (a1, b1) = β does not satisfy the condition stated

on the previous theorem, as

πX(a1)πY (b1)
2− πX(a1)− πY (b1) + πX(a1)πY (b1)

=
1
9
.
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We show thatπX,Y is nevertheless coherent under independence. Clearly, (NC) is sat-

isfied, asβ < 3/26 = T (1/2, 3/10). Consider(x, y) ∈ X × Y, then we show that

there is aP ∈ Mi such thatP (x, y) = πX,Y (x, y). It follows from Lemma 9 (condi-

tions 1 and 2) that we may assume thatπX,Y (x, y) > 0 andmax{πX(x), πY (y)} < 1,

so we need only look atx = a1 andy = b1. Note thatπX,Y (a1, b2) = πX(a1),

πX,Y (a2, b1) = πY (b1) andπX,Y (a2, b2) = 1 so Lemma 9 (condition 3) tells us that

there is aP ∈ Mi such thatP (a1, b1) = πX,Y (a1, b1) = β, andπX,Y is coherent

under independence.

6 Conclusions

In this paper, we have continued the study of the implications of giving possibil-

ity measures a behavioural interpretation in terms of upper betting rates, initiated in

[3, 4, 5, 16, 17]. In particular, we have looked at the consequences of the rationality

requirements of avoiding sure loss and coherence when forming independent products

of marginal possibility measures. The definition of independence that was used here, is

based on Walley’s [15] notion of epistemic independence: two variables are epistemi-

cally independent for a subject when his beliefs about the value taken by one variable

are not influenced by new knowledge about the value of the other variable. In the con-

text of possibility theory, where beliefs are expressed in terms of possibility measures,

it seems natural to express epistemic independence in terms of the equality of condi-

tional and marginal possibility distributions (or measures), as we did in Definition 1.

We have obtained a simple characterisation for the coherence under independence of a

joint possibility distribution in the unimodal case, and we have found a simple sufficient

condition, as well as a different, necessary one in the plurimodal case. It is not clear

to us whether in the general case, there is a simple necessary and sufficient condition

involving only thelocal values of the joint and marginal possibility distributions.

An immediate conclusion of Lemma 3 is that the so-called minimum and product

rules for forming joint distributions from given marginals, which yieldπX,Y (x, y) =

min{πX(x), πY (y)} andπX,Y (x, y) = πX(x)πY (y) respectively, and which are quite

common in possibility theory (see for instance [2, 6, 7, 19]),are only coherent when

πX and/orπY assume only the values0 and1.

We could also consider the so-called independent natural extensionE [15, Sec-
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tion 9.3] of two marginal possibility measuresΠX andΠY . This is the greatest (least-

committal or most conservative) coherent and independent jointupper probability,

which need not be a possibility measure. In fact, on productsA × B it can be shown

thatE(A × B) = ΠX(A)ΠY (B), whereA ⊆ X andB ⊆ Y [15, Section 9.3.5].E

will therefore in generalnot be a possibility measure: if it were, its distribution would

be given by the product rule, which is generally not coherent!

The results in this paper indicate that the theory of imprecise probabilities has use-

ful things to say about independence in possibility theory. But we should warn the

reader against too much optimism. Indeed, possibility measures are rather imprecise

uncertainty models: ifΠ is a normal possibility measure (and therefore a coherent up-

per probability) on some setΩ, andN is its conjugate lower probability, also called

necessity measure, and defined byN(A) = 1−Π(coA), wherecoA is the set-theoretic

complement ofA ⊆ Ω, then we have thatΠ(A) < 1 ⇒ N(A) = 0: the probability

interval [N(A),Π(A)] always contains zero or one (or both). Alternatively, it always

holds forA ⊆ Ω thatΠ(A) = 1 or Π(coA) = 1, meaning that a subject whose be-

liefs are modelled by the upper probabilityΠ will not be disposed to bet againstA or

againstcoA (unless perhaps at the trivial rate zero!), and this for allA ⊆ Ω. On a

behavioural interpretation, possibility measures therefore model fairly weak informa-

tion states. On the other hand, a judgement of independence is quite informative, and

we suspect that in some cases it will be too informative to be adequately modelled by

possibility measures, or within the context of possibility theory. This is illustrated by

the fact that, as we have seen above, the greatest independent joint possibility measure

T (ΠX(A),ΠY (B)) can be appreciably smaller than the independent natural extension

E(A×B) = ΠX(A)ΠY (B) on productsA×B: if we restrict ourselves to possibilis-

tic models, we are obliged, in order to capture independence, to use products that may

be significantly more precise than if we had used a more general approach, e.g., with

coherent upper probabilities. This identifies a weakness in possibility theory.
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