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There is a mistake in the proofs of Lemmas 11 and 12 in Section 5 of our paper
[2]. It is wrongly assumed there that for every gamble h on [0,1] and every t ∈ [0,1],
osc(h)> t coincides with int({h > t}). To see that we indeed have the inclusion, note that
if osc(h)(x)> t, then there is some open set B that includes x such that infy∈B f (y)> t, so
B is included in { f > t} and therefore x belongs to the interior of { f > t}. However, the
inclusion can be strict, as the following example shows:

Example 1. Let f be the gamble given by

f (x) =

{
2 if x = 0.5
1+ |x−0.5| otherwise.

Then { f > 1} = [0,1], whence int({ f > 1}) = [0,1]. However, for every open set B that
includes x = .5, we see that infy∈B f (y) = 1, and therefore osc( f )(x) = 1. As a consequence,
{osc( f )> 1} is a strict subset of int({ f > 1}).

Nevertheless, both Lemmas 11 and 12 are correct, as we show next:

Corrected proof of Lemma 11. Let us show first of all that osc(h) is lower semicontinuous.
Consider t ∈ R and x ∈ {osc(h)> t}. Then there is some open set B including x such that
infy∈B f (y)> t. As a consequence, B⊆ {osc(h)> t}, and this implies that {osc(h)> t} is
open. Since this holds for all real t, we deduce that osc(h) is lower semicontinuous. It also
follows from its definition that osc(h)≤ h.

Next, consider any lower semicontinuous mapping g that is dominated by h. Then for
any real number t and any x in the open set {g > t}, it holds that osc(g)(x)≥ t, whence also
osc(h)(x) ≥ osc(g)(x) ≥ t. As a consequence, {g > t} ⊆ {osc(h) ≥ t} for all real t, and
this implies that g≤ osc(h). We conclude that osc(h) is the greatest lower semicontinuous
gamble that is dominated by h. �

In general, we have the following chain of inclusions

{osc(h)> t} ⊆ int({h > t})⊆ int({h≥ t})⊆ {osc(h)≥ t}.

To see that the last inclusion holds, observe that if x ∈ int({h≥ t}), then there is some open
set B that includes x such that h(y)≥ t for all y∈B, and therefore osc(h)(x)≥ infy∈B h(y)≥ t.

Using this chain of inequalities, we can also establish Lemma 12:

Corrected proof of Lemma 12. For any gamble h on [0,1] and any d ∈ [0,1], it holds that∫ suph

infh
I{osc(h)>t}(d)dt ≤

∫ suph

infh
Iint{h≥t}(d)dt ≤

∫ suph

infh
I{osc(h)≥t}(d)dt,

and both the first and third integrals are equal to oscd(h)− infh. �

The correct arguments can also be found in a further paper [1].
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