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The Total Variation is a common distance between probability distributions that mea-

sures the maximum difference in probability among all events. When comparing non-

additive measures, that can be represented by closed and convex sets of probability
measures, the Total Variation distance can be extended in multiple ways. This paper

explores three specific approaches in detail. The first approach considers the minimum

Total Variation distance between the probability measures dominating the non-additive
measures. The second approach replaces the minimum with the maximum of the Total

Variation distances. The third approach modifies the first one by using the supremum

distance instead of the Total Variation. We analyse the main properties of each approach
and, in particular, apply them to distort non-additive measures. Finally, we demonstrate

that the distortion of non-additive measures with the proposed extensions are closely
connected to the strong and weak cores in coalition game theory.

Keywords: Total variation distance, supremum distance, lower probabilities, non-additive

measures, 2-monotone lower probabilities, coalitional games.

1. Introduction

In many areas of probability theory, and in particular when analysing the robustness

of a model, there is a need to measure the distance between probability measures.

One popular approach is to do this by means of the Total Variation distance (TV-

distance, for short? ), which has two key features, its simple formulation and its

intuitive interpretation: it measures the maximum absolute difference between the

probabilities of each event.

The TV-distance also plays an important role when dealing with non-additive

measures, also called capacities or, following the terminology of the broader theory

of imprecise probabilities?,? , lower probabilities. To mention just a few of its appli-

cations, it has been used to distort a probability? , giving rise to a neighbourhood

model called the TV-model? ; to measure the distance between imprecise Markov

Chains? ; to extend the Radon-Nikodym Theorem to non-additive measures? ; or

to determine a centroid of the set of probability measures compatible with a non-

additive measure? .
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Our aim in this contribution is to explore how the TV-distance can be generalised

in order to be able to compare non-additive measures, going a step beyond the study

presented in? . Given two non-additive measures or lower probabilities, we consider

the set of probability measures they determine (i.e., their credal sets? ) and follow

two different approaches. On the one hand, we seek the minimum TV-distance

between all the probabilities in the credal sets, giving rise to what we will call

Minimum TV. On the other hand, we look for the maximum of the TV-distances

instead of the minimum, leading to what we will call Maximum Discrepancy. This

second approach aligns with the proposal in? . Additionally, we also consider the

supremum distance between probability measures, that as we shall see is related to

a sort of penalised or weighted TV-distance. This leads to our third approach, that

we shall call Minimum Supremum, and that consists in finding the minimum of the

supremum distances between the probability measures in the credal sets.

For each of these three proposals, we investigate: (i) whether they define a

distance between lower probabilities; (ii) if alternative formulations can be derived

in terms of the extreme points of the credal sets, in terms of the probability measures

at the boundaries of the credal sets, or in terms of the direct comparison of lower

and upper probabilities; and (iii) how they can be used to distort a lower probability

by creating a neighbourhood around it.

There exists a formal connection between lower probabilities (or non-additive

measures) and (normalised and monotone) coalitional games?,? : the domain of the

lower probability can be seen as the set of coalitions between players and the lower

probability of an event can be regarded as the minimum proportion of an available

resource required by the players in the corresponding coalition. In this paper, we

exploit this connection to show that the so-called strong and weak cores? , used to

avoid games with an empty core, are closely connected to the distortion of lower

probabilities. This complements our recent studies in?,? , where we analysed the

invariance of probabilistic solutions after distorting games.

The paper is organised as follows. After providing an overview of lower prob-

abilities in Section 2, in Section 3 we recall the definition of the TV-distance and

introduce the three aforementioned extensions for comparing lower probabilities.

Later, in Sections 4÷6 we explore in detail the three proposals, and in Section 7

we show the application of our results in the context of coalitional game theory, by

means of a penalised version of the supremum distance. We conclude the paper in

Section 8 with some final comments.

2. Preliminaries

In this paper we consider a finite possibility space X = {x1, . . . , xn}. We use P(X )

to denote the probability measures defined on P(X ), the power set of X , and P∗(X )

for those probability measures P satisfying P (A) > 0 for any A ̸= ∅.
A lower probability is a function P : P(X ) → [0, 1] that is monotone increasing

and satisfies P (∅) = 0 and P (X ) = 1. It is also called non-additive measure or
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capacity? in the literature; here we follow the standard terminology in the impre-

cise probability theory?,? . By conjugacy, a lower probability determines an upper

probability P using the formula P (A) = 1− P (Ac) for any A ⊆ X . A lower proba-

bility determines a (possibly empty) closed and convex set of probability measures,

usually called its associated credal set, by:

M(P ) = {Q ∈ P(X ) | Q(A) ≥ P (A) ∀A ⊆ X}.

The credal set is determined by its extreme points, that are those probability mea-

sures P ∈ M(P ) that cannot be expressed as a non-trivial convex combination of

elements in M(P ). We shall denote the set of extreme points by ext
(
M(P )

)
.

A lower (respectively, upper) probability may be interpreted as a lower (respec-

tively, upper) bound for a probability measure that is only partially known, and

the credal set includes all those probability measures compatible with P (and P ).

This leads to two common consistency requirements on lower probabilities. On the

one hand, P avoids sure loss if M(P ) ̸= ∅, meaning that there is at least one

probability measure compatible with P . On the other hand, P is coherent when

P (A) = min{P (A) | P ∈ M(P )} for any A ⊆ X , meaning that the bounds given

by P are tight.

A lower probability P avoiding sure loss satisfies P (A) ≤ P (A) for any A ⊆ X ,

and it can be used to determine a coherent lower probability Q using the natu-

ral extension Q(A) = min{P (A) | P ∈ M(P )} for any A ⊆ X . It holds that

M(Q) = M(P ), and Q is the smallest coherent lower probability that dominates

P . Obviously, if P is coherent itself then it coincides with its natural extension.

The natural extension can also be used to extend a lower probability from events

to real-valued functions g : X → R, usually called gambles, by taking P (g) =

min{P (g) | P ∈ M(P )}, where P (g) denotes the expectation of g with respect

to P . Using the terminology of the imprecise probability theory, P evaluated on

gambles is a coherent lower prevision?,? . The set of all gambles defined on X shall

be denoted by L(X ).

We should also mention that any closed and convex set of probability measures

M determines a coherent lower probability P by P (A) = min{P (A) | P ∈ M}, but
in general M ⊆ M(P ). In particular, different credal sets may determine the same

coherent lower probability.

A useful property that a coherent lower probability may satisfy is that of 2-

monotonicity, meaning that for any A,B ⊆ X it satisfies the inequality

P (A ∩B) + P (A ∪B) ≥ P (A) + P (B).

2-monotone lower probabilities possess a number of interesting properties that co-

herent lower probabilities need not satisfy; some of these are summarised in? .

For example, their natural extension to gambles can be easily computed using the

Choquet integral? . For any gamble g, there is a permutation σ of {1, . . . , n} such

that g(xσ(1)) ≥ . . . ≥ g(xσ(n)); denoting Ai = {xσ(1), . . . , xσ(i)} for i = 1, . . . , n,

αi = g(xσ(i)) − g(xσ(i+1)) for i = 1, . . . , n − 1 and αn = g(xσ(n)), the Choquet
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integral is given by:

(C)

∫
gdP = min

x∈X
g(x) +

∫ max g

min g

P ({x | g(x) ≥ y})dy =

n∑
i=1

αiP (Ai). (1)

In what follows, we shall use P(X ) to denote the set of lower probabilities defined

on P(X ) and P∗(X ) for those lower probabilities P satisfying P (A) > 0 for any

A ̸= ∅.

3. Extensions of the Total Variation distance

In this section we propose three different extensions of the Total Variation and

supremum distances as methods for comparing lower probabilities. For this aim, we

briefly review these distances (Section 3.1) and later introduce our generalisations

(Section 3.2). Recall that a distance d on a space M is a function d : M ×M → R
satisfying the following properties:

• Non-negativity: d(x, y) ≥ 0 for any x, y ∈ M .

• d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x) for any x, y ∈ M .

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ M .

3.1. The Total Variation distance

The Total Variation distance (TV-distance, for short) between probability measures

is defined as:

dTV(P,Q) = max
A⊆X

|P (A)−Q(A)| ∀P,Q ∈ P(X ). (TV)

It is a convex (in particular, quasi-convex) and continuous distance [?, Prop.2.1].

The continuity is referred to the product topology on P(X ) × P(X ) based on the

topology induced by the Euclidean distance on P(X ), while the convexity is referred

to the convex linear combination inherited from the ambient Euclidean space. An

alternative expression of the TV-distance is the following:

dTV(P,Q) =
1

2

∑
x∈X

|P ({x})−Q({x})|. (2)

Given a probability measure P0 and a distortion parameter δ > 0, the TV-distance

determines a neighbourhood or distortion model?,? as:

Bδ
dTV

(P0) = {Q ∈ P(X ) | dTV(Q,P0) ≤ δ}.

The continuity and quasi-convexity of the TV-distance implies that Bδ
dTV

(P0) is a

closed and convex set of probability measures [?, Prop.1], i.e. a credal set. Moreover,

the lower probability it determines is given by:

PTV(A) = max{0, P0(A)− δ} ∀A ⊂ X
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and PTV(X ) = 1, and the neighbourhood can be expressed as Bδ
dTV

(P0) =

M(PTV). Indeed, PTV is not only coherent but also 2-monotone. This model, known

as the TV-model, was thoroughly investigated in [?, Sect.2].

The TV-distance considers the maximum absolute difference between the prob-

abilities of all the events. If we focus on the singletons, we obtain the distance

associated with the supremum norm on the associated mass functions, i.e.:

d∞(P,Q) = max
x∈X

|P ({x})−Q({x})| ∀P,Q ∈ P(X ). (3)

Interestingly, this distance, that is also continuous and convex, is related to a mo-

dified version of the TV-distance, since it can also be expressed as:

d∞(P,Q) = max
A⊆X

|P (A)−Q(A)|
|A|

∀P,Q ∈ P(X ). (4)

To see the equality between (3) and (4), note that for any non-empty event A, it

holds that:

|P (A)−Q(A)|
|A|

=
|
∑

x∈A P ({x})−
∑

x∈A Q({x})|
|A|

≤
∑
x∈A

|P ({x})−Q({x})|
|A|

≤ max
x∈A

|P ({x})−Q({x})|,

from which it follows that the expression in Eq. (4) is dominated by that in Eq. (3).

The converse inequality follows considering that Eq. (3) corresponds to the case

where the maximum on Eq. (4) is taken on singletons only.

We may thus interpret the supremum distance as a sort of penalised TV-

distance, where the differences are weighted by the cardinality of the event.

3.2. The TV distance for lower probabilities

As we discussed in the introduction, our aim in this paper is to extend the TV-

distance to compare lower probabilities. We shall explore the following possibilities:

Minimum Total Variation: Our first option computes the minimum of the TV-

distances between any pair of probability measures in the credal sets:

dmin
TV (P ,Q) := min

P∈M(P )
Q∈M(Q)

dTV(P,Q) ∀P ,Q ∈ P(X ). (5)

Maximum Discrepancy: If we replace the minimum by a maximum in the pre-

vious proposal, we get:

dmax
TV (P ,Q) := max

P∈M(P )
Q∈M(Q)

dTV(P,Q) ∀P ,Q ∈ P(X ). (6)

This formula gives the maximum difference between any pair of probability

measures included in the credal sets.
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Minimum Supremum: Our third proposal takes into consideration the minimum

of the supremum distances between each pair of probability measures in the

credal sets. In other words:

dmin
∞ (P ,Q) := min

P∈M(P )
Q∈M(Q)

d∞(P,Q) ∀P ,Q ∈ P(X ). (7)

Note that the expressions in Eqs. (5)÷(7) are well defined because the maxima and

minima for P ∈ M(P ) and Q ∈ M(Q) are indeed attained, since the product of

the credal sets is compact and dTV and d∞ are continuous. Clearly dmin
TV and dmax

TV

are extensions of the TV-distance, in the sense that dmin
TV (P,Q) = dmax

TV (P,Q) =

dTV(P,Q) for P,Q ∈ P(X ). Similarly, d∞ extends the supremum distance because

dmin
∞ (P,Q) = d∞(P,Q).

As observed in [?, Sect.3.3], any distance between probability measures may be

used to compare two credal sets by considering the minimum distance between pairs

of elements P ∈ M(P ) and Q ∈ M(Q). This is the path followed by the first and

third options above. In fact, the first one is considered in? and it also appears in the

particular case when one of the lower probabilities is in correspondence with a single

probability measure in? . The latter situation was thoroughly analysed in our recent

contributions?,? . The second option considers the maximum over the credal sets

of the TV-distances, and appeared in? under the name of maximal (TV-)distance.

Also, these extensions are closely related to the Haussdorf distance induced by

the TV-distance, given by? :

max

{
max

P∈M(P )
min

Q∈M(Q)
dTV(P,Q), max

Q∈M(Q)
min

P∈M(P )
dTV(Q,P )

}
.

Specifically, by replacing the maxima over the credal sets in the previous expression

with minima and using the symmetry of the TV-distance, we obtain the first option.

Moreover, if the TV-distance is replaced by the supremum distance, we get the

third option. If instead we replace the minima with maxima in the expression of

the Hausdorff distance we recover the Maximum Discrepancy.

Note that the above definitions depend entirely on the credal sets associated with

the lower probabilities P ,Q; as a consequence, if P ′, Q′ ∈ P(X ) satisfy M(P ) =

M(P ′) and M(Q) = M(Q′), we obtain dmin
TV (P ,Q) = dmin

TV (P ′, Q′), dmax
TV (P ,Q) =

dmax
TV (P ′, Q′) and dmin

∞ (P ,Q) = dmin
∞ (P ′, Q′). In particular, the discrepancies be-

tween two lower probabilities coincide with those between their natural extensions.

In the reminder of this manuscript we shall explore the properties of the func-

tionals defined in Eqs.(5)÷(7) and analyse their suitability as a distortion model

for lower probabilities.

4. Minimum Total Variation

Our analysis begins with the Minimum Total Variation (Minimum TV, for short).

We start by observing that whenever M(P )∩M(Q) ̸= ∅, we get dmin
TV (P ,Q) = 0;

as a consequence, dmin
TV (P ,Q) = 0 does not imply P = Q, so the Minimum TV is not
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a distance, in spite of satisfying dmin
TV (P ,Q) = 0 whenever P = Q and the symmetry

axiom. It is also not difficult to show that the triangle inequality does not hold

either: it suffices to consider three coherent lower probabilities P ,Q,R ∈ P(X ) such

that M(P ) ∩ M(R) and M(Q) ∩ M(R) are non-empty but M(P ) ∩ M(Q) = ∅.
In this way, dmin

TV (P ,R) = dmin
TV (R,Q) = 0 but dmin

TV (P ,Q) > 0, meaning that the

triangle inequality is violated.

Next, we delve into the properties of the Minimum TV, and establish some

alternative expressions.

4.1. Alternative expressions

Since the value dmin
TV (P ,Q) is attained on some P ∈ M(P ), Q ∈ M(Q) and dTV is a

distance, it follows that dmin
TV (P ,Q) = 0 if and only if M(P )∩M(Q) ̸= ∅. We focus

then our attention on lower probabilities whose associated credal sets are disjoint.

Let us establish that in that case the Minimum TV is attained at the boundaries

of the credal sets, that we denote in this paper using the symbol ∂.

Proposition 1. Let P and Q be two lower probabilities avoiding sure loss such that

M(P )∩M(Q) = ∅. If P ∈ M(P ) and Q ∈ M(Q) satisfy dmin
TV (P ,Q) = dTV(P,Q),

then P ∈ ∂M(P ) and Q ∈ ∂M(Q). As a consequence,

dmin
TV (P ,Q) = min

P∈∂M(P )
Q∈∂M(Q)

dTV(P,Q).

Proof. Ex-absurdo, assume that dmin
TV (P ,Q) = dTV(P,Q) where at least one of P ∈

M(P ) \ ∂M(P ) or Q ∈ M(Q) \ ∂M(Q) holds. Assume that P ∈ M(P ) \ ∂M(P );

the other case follows analogously. Then P belongs to the interior of M(P ), and as

a consequence it must be P (A) > P (A) > P (A) for any A ̸= ∅,X , given that there

must be some neighbourhood of P included within M(P ).

Let us consider the following partition of X :

X1 = {x ∈ X | P ({x}) > Q({x})}, X2 = {x ∈ X | P ({x}) < Q({x})},
X3 = {x ∈ X | P ({x}) = Q({x})}.

Since M(P )∩M(Q) = ∅, it follows that P ̸= Q, implying that both X1 and X2 are

non-empty. Thus, applying Eq. (2) we obtain:

dmin
TV (P,Q) =

1

2

∑
x∈X

|P ({x})−Q({x})| = 1

2

∑
x∈X1

|P ({x})−Q({x})|

+
1

2

∑
x∈X2

|P ({x})−Q({x})|+ 1

2

∑
x∈X3

|P ({x})−Q({x})|

=
1

2

∑
x∈X1

(
P ({x})−Q({x})

)
+

1

2

∑
x∈X2

(
Q({x})− P ({x})

)
.
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Take ε > 0 satisfying:

ε <
1

2
min

A̸=∅,X

(
P (A)− P (A)

)
. (8)

Fix x1 ∈ X1 and x2 ∈ X2 and define:

P ∗({x}) =


P ({x1})− ε, if x = x1,

P ({x2}) + ε, if x = x2,

P ({x}), if x ̸= x1, x2.

By construction P ∗({x1}) ≥ P ({x1}) ≥ 0 and since
∑

x∈X P ∗({x}) =∑
x∈X P ({x}) = 1 we deduce that P ∗ is a probability measure; moreover, from

Eq. (8), it satisfies P ∗(A) ≥ P (A)−ε ≥ P (A) for any A ̸= ∅,X . Thus, P ∗ ∈ M
(
P
)
.

Moreover, using Eq. (2) we obtain:

dTV(P
∗, Q) =

1

2

∑
x∈X

|P ∗({x})−Q({x})| = 1

2

(
(P ({x1})− ε)−Q({x1})

)
+

1

2

(
Q({x2})− (P ({x2}) + ε)

)
+

1

2

∑
x ̸=x1,x2

|P ({x})−Q({x})|

=
1

2

∑
x∈X

|P ({x})−Q({x})| − ε < dTV(P,Q) = dmin
TV (P ,Q),

a contradiction with dmin
TV (P ,Q) = dTV(P,Q).

We should mention that the same result does not necessarily hold when M(P ) ∩
M(Q) ̸= ∅, because in that case the value dmin

TV (P ,Q) = 0 will be attained by

considering dTV(P, P ) for any P ∈ M(P ) ∩M(Q), be it in the boundary of these

credal sets or not.

Our next example shows that Proposition 1 cannot be refined, in the sense that

the Minimum TV is not necessarily reached at the extreme points of the credal sets.

Example 1. Let X = {x1, x2, x3} and consider the coherent lower probabilities P

and Q given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P (A) 0.2 0.1 0.1 0.3 0.3 0.8

Q(A) 0.3 0.3 0.4 0.6 0.7 0.7

Their credal sets are given by M(P ) = {Pα | α ∈ [0, 1]}, where Pα = (0.2, 0.6α +

0.1, 0.7− 0.6α), and M(Q) = {Q}, where Q = (0.3, 0.3, 0.4). We deduce that:

ext
(
M(P )

)
= {P0 = (0.2, 0.1, 0.7), P1 = (0.2, 0.7, 0.1)}, ext

(
M(Q)

)
= {Q}.

Taking P0.5 = (0.2, 0.4, 0.4) ∈ M(P ) we get that dTV(P0.5, Q) = 0.1 while

dTV(P0, Q) = 0.3, dTV(P1, Q) = 0.4. Thus, the minimum distance is not attained

on the extreme points of the credal sets. ♦
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Now, we look for an alternative expression of dmin
TV (P ,Q) in terms of the values that

P and Q take on events. For this purpose, let us define:

d′TV(Q,P ) := max
A⊆X

(
P (A)−Q(A)

)
, (9)

which is also an extension of the TV-distance to the case where its first argument

is a precise probability and the second argument is a lower probability. Moreover,

whenever P is coherent, it can be written as:

d′TV(Q,P ) = max
A⊆X

(
min

P∈M(P )
P (A)−Q(A)

)
= max

A⊆X
min

P∈M(P )

(
P (A)−Q(A)

)
,

for each Q ∈ P(X ). From this expression we see that d′TV arises by exchanging the

minimum and maximum in the Minimum TV.

We next prove, in virtue of a minimax theorem relating d′TV and dmin
TV , that

these two coincide under 2-monotonicity. Moreover, the maximum over events co-

incides with the maximum over the gambles taking values in [0, 1] of the respective

analogous expressions for the natural extensions to gambles.

Proposition 2. Let P and Q be two 2-monotone lower probabilities, and let H =

{g : X → [0, 1]} be the set of gambles taking values in [0, 1]. It holds that:

dmin
TV (P ,Q) = max

A⊆X

(
P (A)−Q(A)

)
= max

g∈H

(
P (g)−Q(g)

)
, (10)

where P (g), Q(g) are the natural extensions of P ,Q to gambles.

Proof. First of all, it is a consequence of [?, Thm.1] and the 2-monotonicity of P

that d′TV(Q,P ) = dmin
TV (Q,P ) for each Q ∈ P(X ), which yields:

dmin
TV (P ,Q) = min

P∈M(P )
Q∈M(Q)

dTV(Q,P ) = min
Q∈M(Q)

dmin
TV (Q,P ) = min

Q∈M(Q)
d′TV(Q,P )

= min
Q∈M(Q)

max
A⊆X

(
P (A)−Q(A)

)
.

We aim to prove that

min
Q∈M(Q)

max
A⊆X

(
P (A)−Q(A)

)
= max

A⊆X
min

Q∈M(Q)

(
P (A)−Q(A)

)
, (11)

which will give the first equality in Eq. (10). For this, note that H includes the set

of indicator functions of the events A ⊆ X . We define the map:

fP : M(Q)×H → R

(Q, g) ↪→ fP (Q, g) = P (g)−Q(g),

where P (g) denotes the natural extension of the lower probability P to gambles and

Q(g) is the expectation of g with respect to the probability measure Q. We shall

prove that the equality:

max
g∈H

min
Q∈M(Q)

fP (Q, g) = min
Q∈M(Q)

max
g∈H

fP (Q, g) (12)
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is satisfied and that it is equivalent to Eq. (11).

Steps 1÷3 below prove that the hypotheses of the minimax theorem in [?,

App. E6] are fulfilled, implying that Eq. (12) holds. The remaining two steps show

that the minimax and maximin on events, respectively, may be computed by taking

the maximum over gambles in H rather than on events. From the minimax theorem

over gambles, this implies that Eq. (11) is satisfied. Thus, the verification of these

two equations trivially yields the desired result.

Step 1 M(Q) and H are convex and compact sets in Rn, where n = |X |.
Step 2 Given g ∈ H and µ ∈ R, we aim to prove that Cg,µ = {Q ∈ M(Q) |

fP (Q, g) ≤ µ} = {Q ∈ M(Q) | Q(g) ≥ P (g)− µ} is convex and closed. Let

α ∈ [0, 1] and Q1, Q2 ∈ Cg,µ. Then,

αQ1(g) + (1− α)Q2(g) ≥ α(P (g)− µ) + (1− α)(P (g)− µ) = P (g) + µ,

so αQ1 + (1− α)Q2 ∈ Cg,µ, hence Cg,µ is convex.

Consider a sequence (Qk)k ⊂ Cg,µ for which Qk → Q for some Q ∈ P(X )

and let us prove that Q ∈ Cg,µ. Since (Qk)k is included in M(Q) and this is

closed set, we haveQ ∈ M(P ). Also, (Qk)k → Q implies thatQk(g) → Q(g)

for every g ∈ H. Thus, taking limits we get:

Qk(g) ≥ P (g)− µ ∀k ∈ N ⇒ Q(g) ≥ P (g)− µ.

Hence, Q ∈ Cg,µ and Cg,µ is closed.

Step 3 Given Q ∈ M(Q) and µ ∈ R, let us prove that SP,µ = {g ∈ H | fP (Q, g) ≥
µ} = {g ∈ H | P (g) ≥ Q(g) + µ} is convex and closed. Let α ∈ [0, 1] and

g1, g2 ∈ SP,µ. Then, since P is concave [?, Sec.2.6.1(g)] and Q is linear,

P (αg1 + (1− α)g2) ≥ αP (g1) + (1− α)P (g2)

≥ α(Q(g1) + µ) + (1− α)(Q(g2) + µ) = Q(g) + µ,

so αg1 + (1− α)g2 ∈ SP,µ and SP,µ is convex.

Consider a sequence (gk)k ⊂ SP,µ such that gk → g for certain g ∈ L(X ).

Since (gk)k ⊂ H and H is closed, then g ∈ H. Also, from [?, Sec.2.6.1(l)],

Q being continuous and taking limits, we deduce:

P (gk) ≥ Q(gk) + µ ∀k ∈ N ⇒ P (g) ≥ Q(g) + µ,

so g ∈ SP,µ and this is a closed set.

Step 4 Let us next prove that the equality

max
g∈H

min
Q∈M(Q)

fP (Q, g) = max
A⊆X

min
Q∈M(Q)

(
P (A)−Q(A)

)
.

holds. Since the indicator functions belong to H, we clearly have that:

max
g∈H

min
Q∈M(Q)

fP (Q, g) ≥ max
A⊆X

min
Q∈M(Q)

(
P (A)−Q(A)

)
.

For the converse inequality, note that

max
A⊆X

min
Q∈M(P )

(P (A)−Q(A)) ≤ δ ⇔ ∀A ⊆ X P (A)−Q(A) ≤ δ;
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if we decompose g ∈ H in the manner described in Eq. (1) and use the

expression of the Choquet integral, we conclude that

P (g)−Q(g) =

n∑
i=1

αi

(
P (Ai)−Q(Ai)

)
≤ δ

n∑
i=1

αi ≤ δ.

Hence, maxg∈H minQ∈M(Q) fP (Q, g) ≤ δ for every δ ≥ 0.

Step 5 Let us prove that

min
Q∈M(Q)

max
g∈H

fP (Q, g) = min
Q∈M(Q)

max
A⊆X

(
P (A)−Q(A)

)
.

One of the inequalities is trivial, while expressing any given g =∑n
i=1 αiIAi ∈ H as in the previous step, an analogous procedure allows

us to deduce the converse inequality, since:

min
Q∈M(Q)

max
A⊆X

(
P (A)−Q(A)

)
≤ δ

is equivalent to the existence of Q ∈ M(Q) such that P (A) − Q(A) ≤ δ

for every A ⊆ X and, for this probability measure, we deduce, again using

Eq. (1), that:

fP (Q, g) = P (g)−Q(g) =

n∑
i=1

αi

(
P (Ai)−Q(Ai)

)
≤ δ ∀g ∈ H.

Thus, minP∈M(P ) maxg∈H fP (Q, g) ≤ δ, for every δ ≥ 0.

Despite the previous result, the equality between dmin
TV and d′TV does not hold when

one of the lower probabilities is not 2-monotone. For an explicit counterexample

we refer to [?, Ex.3], where one of the arguments is a probability measure and the

other one is a coherent lower probability that is not 2-monotone.

4.2. Distorting lower probabilities with the Minimum TV

In our previous contributions?,? we investigated how dmin
TV can be used to distort a

lower probability by creating a neighbourhood around a lower probability P . We

next summarise our results from? . In order to distort P ∈ P(X ), we may apply the

Minimum TV to obtain the function:

dmin
TV (Q,P ) := min

P∈M(P )
dTV(Q,P ) ∀Q ∈ P(X ).

It determines a neighbourhood around the lower probability P using a distortion

parameter δ ≥ 0 as:

Bδ
dmin
TV

(P ) =
{
Q ∈ P(X ) | dmin

TV (Q,P ) ≤ δ
}
,

which is closed and convex, hence a credal set, since dTV is quasi-convex and con-

tinuous [?, Prop.2.1]. We observe that by construction Bδ
dmin
TV

(P ) is equal to

{Q ∈ P(X ) | ∃P ∈ M(P ) : dTV(Q,P ) ≤ δ} =
⋃

P∈M(P )

Bδ
dTV

(P ),
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from which it follows that Bδ
dmin
TV

(P ) ⊇ M(P ) for any δ ≥ 0.

Similarly, if we consider d′TV, we may define a neighbourhood around P with

distortion parameter δ as:

Bδ
d′
TV

(P ) = {Q ∈ P(X ) | d′TV(Q,P ) ≤ δ} =
{
Q ∈ P(X ) | max

A⊆X

(
P (A)−Q(A)

)
≤ δ

}
.

From [?, Cor.1], the lower probabilities associated with Bδ
dmin
TV

(P ) and Bδ
d′
TV

(P )

coincide, for P coherent, and are given by:

Q
d′
TV

(A) = max
{
P (A)− δ, 0

}
∀A ̸= X , Q

d′
TV

(X ) = 1.

In general, this expression completely characterises the neighbourhood of d′TV [?,

Prop.8], in the sense that Bδ
d′
TV

(P ) = M
(
Q

d′
TV

)
. However, even if both Bδ

dmin
TV

(P )

and Bδ
d′
TV

(P ) induce the same lower probability Q
d′
TV

, these two credal sets may

not coincide (see [?, Ex.3]). On the other hand, when P is 2-monotone we do

have Bδ
dmin
TV

(P ) = Bδ
d′
TV

(P ) [?, Thm.1]. Moreover, in that case [?, Prop.5] Q
d′
TV

is 2-monotone as well. The equality between the credal sets goes in line with the

statement in Proposition 2, where we proved that under 2-monotonicity dmin
TV and

d′TV are connected.

5. Maximum Discrepancy

We now shift our attention to the Maximum Discrepancy. We must first of all

remark that dmax
TV is not a distance between coherent lower probabilities: while it

clearly satisfies symmetry and (in contradistinction with the Minimum TV) the

triangle inequality, dmax
TV (P , P ) equals 0 if and only if M(P ) is a singleton, being

dmax
TV (P , P ) > 0 otherwise.

In what follows, we establish more operative expressions for the Maximum Dis-

crepancy and use it as a tool to distort lower probabilities.

5.1. Alternative expressions

The following result, shown in? , provides an alternative expression for the Max-

imum Discrepancy in terms of the direct comparison of the lower and upper pro-

babilities, and also in terms of that of the lower and upper previsions of gambles

taking values in [0, 1].

Proposition 3. [?, Sec.3.1] Let P and Q be two coherent lower probabilities. Taking

H = {g : X → [0, 1]}, it holds that:

dmax
TV (P ,Q) = max

A⊆X
|P (A)−Q(A)| = max

g∈H
|P (g)−Q(g)| . (13)

As we mentioned in Section 3, the Maximum Discrepancy between two lower prob-

abilities depends on their credal sets, whence it follows that it does not vary when

we consider two pairs of lower probabilities associated with the same credal sets.
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For this reason, Eq. (13) does not hold when either P or Q avoids sure loss but is

not coherent. We illustrate this in our next example.

Example 2. Consider X = {x1, x2, x3} and let P be the lower probability given

by

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P (A) 0.2 0.3 0.4 0.6 0.7 0.7

Then M(P ) = {P}, where P is given by the mass function (0.3, 0.3, 0.4). As a

consequence, P avoids sure loss but is not coherent. It follows that

dmax
TV (P , P ) = 0 < max

A⊆X
|P (A)− P (A)| = |P ({x1})− P ({x1})| = 0.1,

and therefore Eq. (13) does not hold. ♦

However, if P ′ and Q′ are the natural extensions on events of P and Q, we deduce

from Proposition 3 that

dmax
TV (P ,Q) = dmax

TV (P ′, Q′) = max
A⊆X

∣∣P ′(A)−Q
′
(A)

∣∣.
Since any coherent lower probability can be obtained as the lower envelope of the

extreme points of its credal set, this allows us to conclude the following:

Corollary 1. If P and Q are two lower probabilities avoiding sure loss, then:

dmax
TV (P ,Q) = max

P∈ext(M(P ))
Q∈ext(M(Q))

dTV(P,Q). (14)

The expression in Eq. (14) notably simplifies the computation of the Maximum

Discrepancy, as it implies that we only need to compute the TV-distance between

pairs of extreme points. It is known that the maximum number of extreme points

of a coherent lower probability is n!?,? , and they can be obtained by computing

the feasible region of a linear programming problem. Moreover, for some particular

cases of coherent lower probabilities (e.g. 2-monotone? , completely monotone? ,

p-boxes? , possibility measures? , . . . ) the maximum number of extreme points is

smaller and they can moreover be easily computed.

5.2. Distorting lower probabilities with the Maximum Discrepancy

Following the same reasoning as in Section 4.2 with the Minimum TV, we use

the Maximum Discrepancy for creating a neighbourhood around a coherent lower

probability. For this aim, we compare probability measuresQ and lower probabilities

P as:

dmax
TV (Q,P ) := max

P∈M(P )
dTV(Q,P ).
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In this way, the neighbourhood around the lower probability P with distortion

parameter δ is given by:

Bδ
dmax
TV

(P ) = {Q ∈ P(X ) | dmax
TV (Q,P ) ≤ δ}.

Since dmax
TV (Q,P ) > 0 unless P is a precise probability and coincides with Q, we

will focus in this section on the case of δ > 0.

By construction, the above neighbourhood can be expressed as:

{Q ∈ P(X ) | ∀P ∈ M(P ) : dTV(Q,P ) ≤ δ} =
⋂

P∈M(P )

Bδ
dTV

(P ). (15)

Next, we investigate some properties of the neighbourhood Bδ
dmax
TV

(P ). First of all,

note that whenever P is coherent, from Proposition 3 we get:

dmax
TV (Q,P ) = max

A⊆X

∣∣Q(A)− P (A)
∣∣,

leading to an alternative expression for Bδ
dmax
TV

(P ):

Bδ
dmax
TV

(P ) =
{
Q ∈ P(X ) | max

A⊆X
|Q(A)− P (A)| ≤ δ

}
.

Our next example uses the above expression to show two facts that may appear

counter-intuitive at first: that Bδ
dmax
TV

(P ) may be empty, and that, when it is not, it

may not be a superset of M(P ), not even for a 2-monotone P .

Example 3. Let X = {x1, x2, x3}, and consider the following lower probability P

and its conjugate upper probability P :

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P (A) 0.1 0.1 0.3 0.3 0.6 0.7

P (A) 0.3 0.4 0.7 0.7 0.9 0.9

P is coherent and, since X is a 3-element possibility space, it is 2-monotone as well.

The extreme points of M(P ) correspond to the following mass functions:

(0.1, 0.2, 0.7), (0.1, 0.4, 0.5), (0.2, 0.1, 0.7), (0.3, 0.1, 0.6), (0.3, 0.4, 0.3).

On the one hand, taking δ = 0.1, any P ∈ B0.1
dmax
TV

(P ) should satisfy:

P ({x1}) ≥ P ({x1})− δ = 0.2, P ({x2}) ≥ P ({x2})− δ = 0.3,

P ({x3}) ≥ P ({x3})− δ = 0.6,

but there is not probability P satisfying these three inequalities, so B0.1
dmax
TV

(P ) = ∅.
On the other hand, taking δ = 0.3, any P ∈ B0.3

dmax
TV

(P ) should satisfy:

0.6 = P ({x1}) + δ ≥ P ({x1}) ≥ P ({x1})− δ = 0,

0.7 = P ({x2}) + δ ≥ P ({x2}) ≥ P ({x2})− δ = 0.1,

1 = P ({x3}) + δ ≥ P ({x3}) ≥ P ({x3})− δ = 0.4,

1 = P ({x1, x2}) + δ ≥ P ({x1}) + P ({x2}) ≥ P ({x1, x2})− δ = 0.4,

1 = min
{
P ({x1, x3}) + δ, 1

}
≥ P ({x1}) + P ({x3}) ≥ P ({x1, x3})− δ = 0.6,

1 = min
{
P ({x2, x3}) + δ, 1

}
≥ P ({x2}) + P ({x3}) ≥ P ({x2, x3})− δ = 0.6.
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Hence, B0.3
dmax
TV

(P ) = M(Q), where Q is the coherent lower probability given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
Q(A) 0 0.1 0.4 0.4 0.6 0.6

However, M(P ) ̸⊆ B0.3
dmax
TV

(P ), since for instance (0.1, 0.2, 0.7) dominates P but not

Q. ♦

This example shows some unwanted behaviour of the neighbourhoods determined

by the Maximum Discrepancy, in that they may be empty or may not be a neigh-

bourhood of the original credal set if the distortion parameter is small enough. Next,

we identify which is the minimum distortion parameter that should be considered

to avoid these problems.

Lemma 1. Let P be a coherent lower probability and consider δ∗ = dmax
TV (P , P ).

Then Bδ
dmax
TV

(P ) ⊇ M(P ) if and only if δ ≥ δ∗.

Proof. On the one hand, if δ ≥ δ∗ it holds that dTV(P,Q) ≤ δ∗ ≤ δ for any

P,Q ∈ M(P ), meaning that Bδ
dTV

(P ) ⊇ M(P ). Also, from Eq. (15), it holds that:

Bδ
dmax
TV

(P ) =
⋂

P∈M(P )

Bδ
dTV

(P ) ⊇ M(P ).

Conversely, assume that Bδ
dmax
TV

(P ) ⊇ M(P ). Ex-absurdo, if δ < δ∗, from Corollary 1

there are P,Q ∈ ext(M(P )) such that dTV(P,Q) = δ∗ > δ, implying from Eq. (15)

that either P /∈ Bδ
dmax
TV

(P ) or Q /∈ Bδ
dmax
TV

(P ), a contradiction with the inclusion

Bδ
dmax
TV

(P ) ⊇ M(P ).

Perhaps surprisingly, if we take δ∗ as distortion parameter, the ball Bδ∗

dmax
TV

(P ) may

not coincide with M(P ), even if it will include it because of the previous lemma.

Example 4. Let us continue with Example 3. Using Proposition 3 we get:

δ∗ = dmax
TV (P , P ) = max

A⊆X
|P (A)− P (A)| = 0.4.

Taking this distortion parameter, any P ∈ Bδ∗

dmax
TV

(P ) should satisfy:

0.7 = P ({x1}) + δ ≥ P ({x1}) ≥ max
{
P ({x1})− δ, 0

}
= 0,

0.8 = P ({x2}) + δ ≥ P ({x2}) ≥ max
{
P ({x2})− δ, 0

}
= 0,

1 = min{P ({x3}) + δ, 1} ≥ P ({x3}) ≥ P ({x3})− δ = 0.3,

1 = min
{
P ({x1, x2}) + δ, 1

}
≥ P ({x1}) + P ({x2}) ≥ P ({x1, x2})− δ = 0.3,

1 = min
{
P ({x1, x3}) + δ, 1

}
≥ P ({x1}) + P ({x3}) ≥ P ({x1, x3})− δ = 0.5,

1 = min
{
P ({x2, x3}) + δ, 1

}
≥ P ({x2}) + P ({x3}) ≥ P ({x2, x3})− δ = 0.5.

This means that Bδ∗

dmax
TV

(P ) = M(Q), where:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
Q(A) 0 0 0.3 0.3 0.5 0.5
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Since (0, 0.5, 0.5) belongs to M(Q) but not to M(P ), we deduce that Bδ∗

dmax
TV

(P ) and

M(P ) do not coincide. ♦

The next result gives an intuitive expression of Bδ∗

dmax
TV

(P ) in terms of δ∗ and P .

Proposition 4. Let P be a coherent lower probability and consider δ∗ =

dmax
TV (P , P ). It holds that Bδ∗

dmax
TV

(P ) = M(P ∗), where P ∗(A) = max
{
P (A)− δ∗, 0

}
for any A ̸= X and P ∗(X ) = 1.

Proof. On the one hand, it is clear that Bδ∗

dmax
TV

(P ) ⊆ M(P ∗). Conversely, take

P ∈ M(P ∗), and let us see that dmax
TV (P, P ) ≤ δ∗. We consider two cases:

Case 1: If P (A) < P (A), we get:

|P (A)− P (A)| = P (A)− P (A) =
(
P (A)− δ∗

)
+ δ∗ − P (A) ≤ δ∗.

Case 2: If P (A) ≥ P (A), we get:

|P (A)− P (A)| = P (A)− P (A) = P (Ac)− P (Ac)

≤ P (Ac)−max
{
0, P (Ac)− δ∗

}
= P (Ac) + min

{
0, δ∗ − P (Ac)

}
= min{P (Ac), δ∗ + P (Ac)− P (Ac)} ≤ δ∗

given that P ≤ P .

We therefore conclude that dmax
TV (P, P ) = maxA⊆X |P (A)− P (A)| ≤ δ∗.

Notwithstanding, the lower probability P ∗ considered in the previous result may

not be coherent.

Example 5. Consider a possibility space X with cardinality five and the coherent

lower probability P given by:

|A| 1 2 3 4 5

P (A) 0.19 0.38 0.58 0.78 1

P is coherent because it is the lower envelope of the mass function

(0.19, 0.19, 0.2, 0.2, 0.22) and its permutations. We get δ∗ = dmax
TV (P , P ) = 0.04,

and when computing P ∗ we obtain the following values:

|A| 1 2 3 4 5

P ∗(A) 0.18 0.38 0.58 0.77 1

However, P ∗ is not coherent. For example, taking A = {x1, x2, x3, x4}, it is not

possible to find P ∈ M(P ∗) such that P (A) = P ∗(A) = 0.77. If it existed, then

P ({x5}) = 0.23, and since P ({xi, x5}) ∈ [0.38, 0.42] for i = 1, . . . , 4, we should have

P ({xi}) ∈ [0.18, 0.19] for i = 1, . . . , 4. However, this implies that:

1 =

5∑
i=1

P ({xi}) ≤ 4 · 0.19 + 0.23 = 0.76 + 0.23 = 0.99,
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a contradiction. ♦

Finally, if the distortion parameter is greater than δ∗, we may also find a simple

expression for the distortion model.

Proposition 5. Let P be a coherent lower probability, δ∗ = dmax
TV (P , P ) and δ > 0.

It holds that Bδ∗+δ
dmax
TV

(P ) = M(Q), where Q(A) = max{P ∗(A)− δ, 0} for any A ⊂ X ,

Q(X ) = 1 and P ∗ is given by Proposition 4.

Proof. On the one hand, assume that P ∈ Bδ∗+δ
dmax
TV

(P ). Thus, for any A ⊂ X it

holds that |P (A)− P (A)| ≤ δ∗ + δ, meaning that

−δ∗ − δ ≤ P (A)− P (A) ≤ δ∗ + δ.

Hence, P (A) ≥ P (A)− δ∗ − δ, or equivalently, P (A) ≥ max{P ∗(A)− δ, 0} = Q(A).

Conversely, take P ∈ M(Q), and let us see that dmax
TV (P, P ) ≤ δ+δ∗. We consider

two cases:

Case 1: If P (A) < P (A) we get:

|P (A)− P (A)| = P (A)− P (A) ≤ P (A)−
(
P (A)− δ∗ − δ

)
= δ∗ + δ.

Case 2: If P (A) ≥ P (A), assume ex-absurdo that |P (A)−P (A)| > δ∗+ δ. We get:

|P (A)− P (A)| = P (A)− P (A) > δ∗ + δ,

which is equivalent to P (Ac)− P (Ac) > δ∗ + δ, and then:

P (Ac) < P (Ac)− δ∗ − δ ≤ P (Ac)− δ∗ − δ,

a contradiction.

We conclude that dmax
TV (P, P ) = maxA⊆X |P (A)− P (A)| ≤ δ∗ + δ.

Again, the lower probability Q may not be coherent.

Example 6. Let us continue with Example 5. For δ ∈ (0, 0.01), we get:

|A| 1 2 3 4 5

Q(A) 0.18− δ 0.38− δ 0.58− δ 0.77− δ 1

Following the same steps as in Example 5, Q is not coherent because there is no

P ∈ M(Q) such that P ({x1, x2, x3, x4}) = Q({x1, x2, x3, x4}). ♦

6. Minimum Supremum

The third distortion procedure we analyse in this paper is based on the minimum

of the supremum distances between the elements of the credal set.

We begin our analysis by remarking that some properties of dmin
∞ are analogous

to those of dmin
TV . This is not surprising, since both of them consist in taking the
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minimum over the credal sets of a convex and continuous distance between proba-

bility measures. We observe then that the Minimum Supremum between two lower

probabilities is zero if and only if their credal sets have non-empty intersection, and

therefore dmin
∞ is not a distance between lower probabilities. The same reasoning

used in Section 4 to show that the Minimum TV violates the triangle inequality is

valid here, while the rest of the axioms of a distance are satisfied.

Next, as we did for the Minimum TV and Maximum Discrepancy, we look for

more operative expressions for dmin
∞ .

6.1. Alternative expressions

We start by showing in the following example that the Minimum Supremum is not

attained at the extreme points of the credal set.

Example 7. Considering again the setting of Example 1, we obtain that

dmin
∞ (P0, Q) = 0.3, dmin

∞ (P1, Q) = 0.4 and d∞(P0.5, Q) = 0.1, meaning that the

Minimum Supremum is not reached at the extreme points of the credal sets. ♦

This same example shows that dmin
∞ (P ,Q) cannot be expressed as

max
x∈X

min
{
|P ({x})−Q({x})|, |P ({x})−Q({x})|

}
,

which for this example gives the value 0.3, different from dmin
∞ (P ,Q) = 0.1.

Despite the previous counterexample, we next prove that, under some conditions,

the Minimum Supremum is attained at the boundary of the credal sets:

Proposition 6. Let P and Q be two lower probabilities avoiding sure loss such that

M(P ) ∩M(Q) = ∅. If P ∈ M(P ) and Q ∈ M(Q) satisfy dmin
∞ (P ,Q) = d∞(P,Q),

then P ∈ ∂M(P ) and Q ∈ ∂M(Q). As a consequence,

dmin
∞ (P ,Q) = min

P∈∂M(P )
Q∈∂M(Q)

d∞(P,Q).

Proof. The proof is quite similar to that of Proposition 1. Ex-absurdo, assume

that dmin
∞ (P ,Q) = d∞(P,Q) where at least one of P ∈ M(P ) \ ∂M(P ) or Q ∈

M(Q) \ ∂M(Q) holds. Assume that P ∈ M(P ) \ ∂M(P ); the other case follows

analogously. Then P belongs to the interior of M(P ), and as a consequence it

must be P (A) > P (A) > P (A) for any A ̸= ∅,X , given that there must be some

neighbourhood of P included within M(P ).

Let us consider the following partition of X :

X1 = {x ∈ X | P ({x}) > Q({x})}, X2 = {x ∈ X | P ({x}) < Q({x})},
X3 = {x ∈ X | P ({x}) = Q({x})}.
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Since M(P )∩M(Q) = ∅, it follows that P ̸= Q, implying that both X1 and X2 are

non-empty. Thus, applying Eq. (3) we obtain:

dmin
∞ (P,Q) = max

x∈X
|P ({x})−Q({x})|

= max
x∈X1∪X2

|P ({x})−Q({x})| = |P ({x∗})−Q({x∗})|

for some x∗ ∈ X1 ∪X2. Assume that x∗ ∈ X1; the other case follows similarly. Take

ε > 0 satisfying:

ε < min
A ̸=∅,X

(
P (A)− P (A)

)
, (16)

fix x2 ∈ X2 and define:

P ∗({x}) =


P ({x∗}) + ε, if x = x∗,

P ({x2})− ε, if x = x2,

P ({x}), if x ̸= x∗, x2.

By construction P ∗({x2}) ≥ P ({x2}) ≥ 0 and P ∗({x∗}) ≤ P ({x∗}) ≤ 1. From this

we deduce that P ∗ is a probability measure that, from Eq. (16), satisfies P ∗(A) ≥
P (A) − ε > P (A) for any A ̸= ∅,X , meaning that P ∗ ∈ M

(
P
)
. Moreover, using

Eq. (3) we obtain:

d∞(P ∗, Q) = max
x∈X

|P ∗({x})−Q({x})| ≥ P ∗({x∗})−Q({x∗})

= P ({x∗})−Q({x∗}) + ε = d∞(P,Q) + ε > d∞(P,Q) = dmin
∞ (P ,Q).

a contradiction.

6.2. Distorting lower probabilities with the Minimum Supremum

Next we analyse the distortion of a lower probability using the Minimum Supremum.

If we consider dmin
∞ , a distortion factor δ ≥ 0 and a lower probability P , we can

determine the following neighbourhood:

Bδ
dmin
∞

(P ) =
{
Q ∈ P(X ) | dmin

∞ (Q,P ) ≤ δ
}
.

Let us denote by Q
dmin
∞

the coherent lower probability it induces by taking lower

envelopes.

Given a probability measure P , we consider also the neighbourhood Bδ
dmin
∞

(P )

and denote by QP

dmin
∞

the coherent lower probability it induces. By definition:

Bδ
dmin
∞

(P ) =
⋃

P∈M(P )

Bδ
dmin
∞

(P ) ⇒ Q
dmin
∞

= min
P∈M(P )

QP

dmin
∞

.

Taking into account the comments above, we look for an explicit formula for Q
dmin
∞

.

Proposition 7. Let P and Q be two probability measures and δ > 0. It holds that:

d∞(Q,P ) ≤ δ ⇔ Q(A) ≥ P (A)− δmin(|A|, |Ac|).
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Proof. For the direct implication, it suffices to observe that, by Eq. (4),

d∞(Q,P ) ≤ δ ⇒ |Q(A)− P (A)| ≤ δ|A| and |Q(Ac)− P (Ac)| ≤ δ|Ac| ∀A ̸= ∅,

whence

Q(A) ≥ max
{
P (A)− δ|A|, P (A)− δ|Ac|

}
= P (A)− δmin(|A|, |Ac|) ∀A ̸= ∅.

Conversely, take any event A ⊆ X . If Q(A) ≥ P (A), then by assumption (Q(A) −
P (A)) ≥ −δ|A| and also (Q(Ac) − P (Ac)) ≥ −δ|A|, and this second inequality is

equivalent to (Q(A) − P (A)) ≤ δ|A|. Thus, |Q(A) − P (A)| ≤ δ|A|. The reasoning

when |Q(A)− P (A)| = P (A)−Q(A) is similar.

As a consequence, the lower probability QP

dmin
∞

corresponds to the natural extension

of the functional given by:

QP (A) = max{P (A)− δmin(|A|, |Ac|), 0} ∀A ̸= ∅,X , (17)

QP (∅) = 0 and QP (X ) = 1. This immediately allows to deduce the following result:

Corollary 2. Let P be a coherent lower probability and δ > 0. For any P ∈ M(P ),

it holds that Bδ
dmin
∞

(P ) = M(QP ), where QP is given by Eq. (17). Consequently,

Bδ
dmin
∞

(P ) = ∪P∈M(P )M(QP ), and if QP is coherent for every P then Q
dmin
∞

coin-

cides with the functional QP given by

QP (A) = max{P (A)− δmin(|A|, |Ac|), 0} ∀A ̸= ∅,X , (18)

QP (∅) = 0 and QP (X ) = 1, that is then a coherent lower probability.

Proof. We shall only establish the equality Q
dmin
∞

= QP when QP is coherent for

every P ≥ P , the rest of the proof being immediate. For this, note that the coherence

of P implies that for every A ⊆ X there is some P ≥ P such that P (A) = P (A),

and then the coherence of QP implies the existence of Q ∈ M(QP ) = Bδ
dmin
∞

(P )

such that Q(A) = QP (A) = QP (A). Since Bδ
dmin
∞

(P ) ⊆ Bδ
dmin
∞

(P ), this implies that

Q
dmin
∞

≤ QP ; and taking into account that the converse inequality is immediate, we

deduce the equality.

Moreover, under some relatively mild conditions we can guarantee the 2-

monotonicity:

Proposition 8. Let P be a 2-monotone lower probability in P∗(X ) and let 0 < δ <

minA ̸=X ,∅
P (A)

min(|A|,|Ac|) . Then the functional given by Eq. (18) is a 2-monotone lower

probability if and only if it is monotone.

Proof. Assume that QP is monotone, and let us prove that it is 2-monotone. Given

the constraint in δ, we must show that for any two events A,B it holds that

QP (A ∪B) +QP (A ∩B) ≥ QP (A) +QP (B).
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Since this equation is trivial when either A or B is equal to X , we can assume

w.l.o.g. that A,B ̸= X . We shall also use that QP (A∪B) ≥ P (A∪B)− δmin(|A∪
B|, |(A ∪B)c|), with equality whenever A ∪B ̸= X . Using the assumption on δ we

shall then prove that

P (A ∪B)− δmin(|A ∪B|, |(A ∪B)c|) + P (A ∩B)− δmin(|A ∩B|, |(A ∩B)c|)
≥ P (A)− δmin(|A|, |Ac|) + P (B)− δmin(|B|, |Bc|).

Since P is assumed to be 2-monotone, it satisfies

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B).

Let us prove that also

− δmin(|A ∪B|, |(A ∪B)c|)− δmin(|A ∩B|, |(A ∩B)c|)
≥ −δmin(|A|, |Ac|)− δmin(|B|, |Bc|),

or, equivalently, that

min(|A∪B|, |(A∪B)c|)+min(|A∩B|, |(A∩B)c|) ≤ min(|A|, |Ac|)+min(|B|, |Bc|).
(19)

We consider a number of cases:

• If min(|A ∪ B|, |(A ∪ B)c|) = |A ∪ B|, then min(|A ∩ B|, |(A ∩ B)c|) =

|A ∩ B|, min(|A|, |Ac|) = |A| and min(|B|, |Bc|) = |B|, whence (19) holds

with equality.

• Similarly, if min(|A ∩B|, |(A ∩B)c|) = |(A ∩B)c|, then min(|A ∪B|, |(A ∪
B)c|), min(|A|, |Ac|) = |Ac| and min(|B|, |Bc|) = |Bc|, and (19) holds with

equality.

• Assume now that |A ∩ B| < |(A ∩ B)c| and |A ∪ B| > |(A ∪ B)c|. Then if

for instance |A| ≤ |Ac|, |B| ≥ |Bc|, we obtain

|Ac ∩Bc|+ |A ∩B| ≤ |Bc|+ |A|;

if |A| ≥ |Ac|, |B| ≤ |Bc|, we obtain

|Ac ∩Bc|+ |A ∩B| ≤ |Ac|+ |B|;

if |A| ≥ |Ac|, |B| ≥ |Bc|, we obtain

|Ac ∩Bc|+ |A ∩B| ≤ |Ac ∩Bc|+ |Ac ∪Bc| = |Ac|+ |Bc|;

and if |A| ≤ |Ac|, |B| ≤ |Bc|, we obtain

|Ac ∩Bc|+ |A ∩B| ≤ |A ∪B|+ |A ∩B| = |A|+ |B|;

in any of these cases we conclude that (19) holds.

We see from the proof above that the assumption of P ∈ P∗(X ) is critical to be

able to choose a δ small enough so as to express the functional in Eq. (18) in terms

of P .
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7. Penalised total variation and coalitional games

In this section, we shall make a connection between the distortion of imprecise

probabilities and coalitional games. More specifically, we shall first of all introduce

and analyse a slight modification of the Minimum Supremum distance, which we

shall call Penalised Total Variation, and then show its relation with the weak delta-

core from coalitional games.

7.1. The penalised total variation

We recall that, in the particular case where we want to compare a probability

measure and a lower probability, the Minimum Supremum becomes:

dmin
∞ (Q,P ) = min

P∈M(P )
max
x∈X

|P ({x})−Q({x})| = min
P∈M(P )

max
A⊆X

|P (A)−Q(A)|
|A|

,

where the second equality follows from Eq. (4). This leads us to consider the func-

tion:

dmin
PTV(Q,P ) := max

A⊆X

P (A)−Q(A)

|A|
,

that will be called the Penalised TV (PTV, for short), and that is similar to the

function d′TV given in Eq. (9), taking also into account the cardinality of the events.

Note that dmin
PTV does not coincide with dmin

∞ : to see it, consider again Examples 1

and 7. It holds that

dmin
PTV(Q,P ) =

P ({x2, x3})−Q({x2, x3})
2

= 0.05 ̸= 0.1 = d∞(Q,P ).

The neighbourhood model induced by dmin
PTV is given by:

Bδ
dmin
PTV

(P ) = {Q ∈ P(X ) | dmin
PTV(Q,P ) ≤ δ}.

The next result gives a simple expression for the coherent lower probability Q
dmin
PTV

it determines.

Proposition 9. Let P be a coherent lower probability and δ ≥ 0. It holds that

Q
dmin
PTV

is the natural extension of the functional Q given by:

Q(A) = max
{
P (A)− δ|A|, 0

}
∀A ⊂ X , (20)

and Q(X ) = 1. Also, Bδ
dmin
PTV

(P ) = M
(
Q
)
.

Proof. The equality Bδ
dmin
PTV

(P ) = M
(
Q
)
follows from the fact that Q ∈ Bδ

dmin
PTV

(P )

if and only if maxA⊆X
P (A)−Q(A)

|A| ≤ δ, which is equivalent to Q(A) ≥ P (A) − δ|A|
for any A ⊆ X .

Regarding the properties of this neighbourhood, by construction M(P ) ⊆
Bδ

dmin
PTV

(P ), meaning that Q
dmin
PTV

avoids sure loss when P does. However, Q need

not be a coherent lower probability even if P is:
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Example 8. Let X be a four element possibility space, P be the lower envelope of

the probability mass functions (0.5, 0.5, 0, 0) and (0.25, 0.25, 0.25, 0.25), and consider

δ = 0.2. It holds that:

Q({x2, x3, x4}) = max
{
P ({x2, x3, x4})− 3δ, 0

}
= max{0.5− 3 · 0.2, 0} = 0.

Q({x2, x3}) = max
{
P ({x2, x3})− 2δ, 0

}
= max{0.5− 2 · 0.2, 0} = 0.1.

This means that Q is not monotone, hence it cannot be coherent (it is not even a

lower probability). ♦

With a similar reasoning as the one in Proposition 8, we can show that the

distortion by means of the Penalised Total Variation preserves 2-monotonicity:

Proposition 10. Let P be a 2-monotone lower probability in P∗(X ) and let 0 <

δ < minA ̸=X ,∅
P (A)
|A| . Then the functional given by Eq. (20) is a 2-monotone lower

probability if and only if it is monotone.

On the other hand, a sufficient condition for the monotonicity of the functionals

QP , Q given in Eqs. (18),(20) is that for any event A ̸= ∅,X and any x ∈ A

δ ≤ P (A)− P (A \ {x}).

In other words, provided P is strictly monotone and δ is sufficiently small, we have

an expression for the lower probabilities associated with the Minimum Supremum

and with dmin
PTV, and the distortion procedures preserve 2-monotonicity. In particular,

if

δ ≤ min
P∈M(P )

min
A ̸=∅,X ,x∈A

(
P (A)− P (A \ {x})

)
,

we would deduce that QP is 2-monotone, and therefore coherent, for every P ≥ P ,

and then Corollary 2 implies that QP coincides with Q
dmin
∞

.

7.2. Distortion of coalitional games

A (monotone and normalised) coalitional game? is formally equivalent to a lower

probability P : P(X ) → [0, 1]. In this context, X is interpreted as a set of pla-

yers that may form coalitions, represented by subsets A ⊆ X , in order to obtain a

higher proportion of the resource for which they compete. Thus, P (A) represents

the minimum proportion of the reward guaranteed by the coalition A, and M(P )

contains all the additive distributions of the total reward compatible with the re-

quirements imposed by each coalition. These distributions are called solutions of

the game. All the notions related to lower probabilities (avoiding sure loss, coher-

ence, 2-monotonicity, credal set, . . . ) have a counterpart in coalitional game theory

(balanced, exact or convex games and core, respectively) [?, Table 1]: even though

the notation and interpretation may differ, the mathematical formulation is equiv-

alent. We refer to? for a thorough analysis of coalitional games, and to?,? for some

recent advances in the field.
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A problem that may arise in coalitional game theory is the existence of an empty

core. This means that there is no way to distribute the total reward while simul-

taneously satisfying the requirements imposed by all coalitions. In the literature? ,

two common approaches are used to address this problem: the strong δ-core and

the weak δ-core, given by:

coreSδ (P ) =
{
Q ∈ P(X ) | Q(A) ≥ P (A)− δ ∀A ⊆ X

}
.

coreWδ (P ) =
{
Q ∈ P(X ) | Q(A) ≥ P (A)− δ|A| ∀A ⊆ X

}
.

While the strong δ-core uniformly reduces the requirements of all the (non-trivial)

coalitions, the weak δ-core reduces the requirements proportionally to the size of

the coalition.

It is possible to create a connection between the neighbourhoods created in the

previous sections and the strong and weak cores. On the one hand, it was proven

in [?, Prop.11] that Bδ
d′
TV

(P ) = coreSδ (P ). On the other hand, the following result

relates the weak core with one of the neighbourhoods previously introduced.

Corollary 3. Let P be a lower probability and δ > 0. It holds that:

coreWδ (P ) = Bδ
dmin
PTV

(P ).

We therefore conclude that the weak and strong cores are related to the distortion

of a lower probability using the functions d′TV and dmin
PTV, respectively.

8. Conclusions

In this work, we have explored two different extensions of the TV-distance for

comparing non-additive measures or lower probabilities, the Minimum TV and the

Maximum Discrepancy, and one extension of the supremum distance, the Minimum

Supremum.

For each of these proposals we have investigated if they are distances between

lower probabilities and alternative expressions in terms of the extreme points, ele-

ments in the frontier of the credal sets or in terms of the direct comparison of the

lower and upper probabilities involved. Moreover, we have used the three approaches

to distort a lower probability creating a neighbourhood around a lower probability.

A summary of the results can be seen in Table 1, where a double check (✓✓) means

that the property is satisfied, a single check (✓) means that the property is satisfied

under some additional condition indicated at the bottom of the table, and a cross

(✗) means that the property is not fulfilled.

In addition, we have shown an interesting connection between the distortion of

lower probabilities by the extensions of the TV-distance and the strong and weak

core in game theory. On the one hand, in? we showed that the neighbourhood

created by the function d′TV coincides with the strong core. On the other hand, we

have seen that a function called PTV induces a neighbourhood that coincides with

the weak core. Our results allow us also to deduce that the weak core does not
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Property dmin
TV dmax

TV dmin
∞

D
is

t
a
n
c
e

d··(P ,Q) = 0 ⇒ P = Q ✗ ✓✓ ✗

d··(P , P ) = 0 ✓✓ ✗ ✓✓

Symmetry ✓✓ ✓✓ ✓✓

Triangle inequality ✗ ✓✓ ✗

E
x
p
r
e
s
s
io

n Characterised by the extremes ✗ ✓✓ ✗

Characterised by the boundary ✓✓ ✓✓ ✓✓

Characterised by the lower/upper probs ✓2 ✓1 ✗

D
is

t
o
r
t
in

g
P Bδ

d·
·
(P ) ̸= ∅ ✓✓ ✓1,3 ✓✓

Bδ
d·
·
(P ) ⊇ M(P ) ✓✓ ✓1,3 ✓✓

Bδ
d·
·
(P ) determined by a lower probability ✓2 ✓1,3 ✓1

1: coherence. 2: 2-monotonicity. 3: δ ≥ δ∗.

Table 1. Summary of the properties satisfied by dmin
TV , dmax

TV and dmin
∞ .

induce a monotone model in general, and to have sufficient conditions for it to be

a 2-monotone one.

A number of interesting open problems arise from this contribution. First of all,

similarly to the Maximum Discrepancy, we may analyse the Maximum Supremum,

paying special attention to the neighbourhood it induces. Second, while we have fo-

cused on the TV and supremum distances, it would be worthwhile to explore other

distances between probability measures, such as the Kolmogorov distance. For each

of them, we believe that similar extensions could be applied to the comparison of

lower probabilities. In this respect, a somewhat related approach in the context of

optimal transport between belief functions and with respect to the Wasserstein dis-

tance has been considered in? ; it would be worth analysing whether our extensions

of the total variation are of interest in that context. Thirdly, we should further

explore the connection between the distortion of lower probabilities and coalitional

games, and in particular on the preservation of other properties.
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