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Under an epistemic interpretation, an upper probability can be regarded as equivalent
to the set of probability measures it dominates, sometimes referred to as its core. In
this paper, we study the properties of the number of extreme points of the core of a
possibility measure, and investigate in detail those associated with (uni- and bi-)variate
p-boxes, that model the imprecise information about a cumulative distribution function.
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1. Introduction

Capacities, or non-additive measures 2, are mathematical models that serve as an

alternative to probability theory. They are of particular interest in situations of

ambiguous or imprecise knowledge, and can thus be embedded within the theory of

imprecise probabilities. As particular cases, they include possibility measures 7, belief

functions 23, n-monotone capacities 2 or coherent lower and upper probabilities 27,

amongst others.

In this paper, we take a non-additive measure µ de�ned on the power set of a

�nite space X , and consider its core or credal set M(µ), which is the set of proba-

bility measures dominated by µ on all subsets of X . This set is useful for instance
if we give µ an epistemic interpretation as a model for the imprecise knowledge of

some probability measure P , in the sense that all we can give about P (A) is an

upper bound µ(A), and this for every set A; but it has also arisen in other contexts,

such as random set theory 4 or game theory 5,24.

We focus here on coherent upper probabilities µ 27, which are those whose

associated credal setM(µ) is non-empty and such that µ is the upper envelope of

1
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M(µ). These include as particular cases most of the existing models of non-additive

measures in the literature. In those cases, the setM(µ), and as a consequence the

non-additive measure µ, is determined by its vertices or extreme points; these can

then be used for a number of practical purposes, for instance when considering

graphical models with sets of probabilities 3, updating the probabilistic model under

new information 8, or giving the solution of a game whose information is modeled

by µ 5,24.

It was proven by Wallner 28 that the credal set associated with a coherent upper

probability µ has at most n! di�erent extreme points, where n is the cardinality of

the possibility space. This bound was the same that Dempster established earlier

for the particular case of plausibility functions 4 and Shapley for 2-alternating ca-

pacities 24. On the other hand, in the case of possibility measures, that constitute

a particular case of plausibility functions, the maximum number of extreme points

reduces to 2n−1 12,14.

In this paper, we deepen into this study by considering the formula established

in 22 for the number of extreme points of the core of a possibility measure, in terms

of the cardinalities of its focal elements. In particular, we characterize in which

cases the maximal number of extreme points is attained. Then we consider another

particular model of non-additive measures: probability boxes 9, or p-boxes for short,

that may be regarded as imprecise distribution functions. In the univariate case,

p-boxes are related to plausibility functions 25, and a study of the number of ex-

treme points of their core was recently made in 16. The situation is more involved

in the bivariate case, because there a p-box need not be equivalent to a coherent

upper probability, let alone a plausibility function 21. Nevertheless, in 17 necessary

and su�cient conditions for a bivariate p-box to be equivalent to a possibility mea-

sure were established. We use those conditions here to give the tightest possible

bound on the number of extreme points of the core of a maxitive bivariate p-box,

in terms of the cardinalities of the possibility spaces where it is de�ned. Moreover,

we characterize in which cases this bound is attained.

The remainder of this paper is organized as follows: in Section 2 we recall the

existing characterization of the extreme points of the core of a plausibility function;

in Section 3 we consider the particular case of possibility measures, and study when

the maximal number of extreme points are attained. In Section 4 we focus on those

p-boxes that are associated with a possibility measure, both in the univariate and in

the bivariate case. Some additional comments and remarks are given in Section 5.

In order to ease the reading, the proofs of our results as well as some auxiliary

lemmas have been gathered in an Appendix.

2. Extreme points for plausibility functions

2.1. Basic de�nitions

The main model we shall consider in this paper are belief and plausibility functions,

that play a key role in the theory of evidence developed by Shafer 23. Let X =
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{x1, . . . , xn} be a �nite possibility space.

De�nition 1. A basic probability assignment is a function m : P(X )→ [0, 1] such

that m(∅) = 0 and
∑
A⊆X m(A) = 1. Its associated belief Bel and plausibility Pl

functions are given by:

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A6=∅

m(B). (1)

Bel and Pl are conjugate functions because they satisfy the relation Bel(A) = 1 −
Pl(Ac), and moreover Bel(A) ≤ Pl(A) for any A ⊆ X . The subsets E of Ω such

that m(E) > 0 are called the focal sets of m, and can be used to determine the

associated belief and plausibility function by means of Equation (1).

One interpretation of belief and plausibility functions is that of envelopes of a

family of probability measures. This family is also called their core or credal set:

M(Pl) = {P prob. | Bel(A) ≤ P (A) ≤ Pl(A) ∀A ⊆ X}.

The core allows us to link evidence theory with imprecise probability theory 27. Bel

and Pl are the lower and upper envelopes ofM(Pl), respectively:

Bel(A) = min{P (A) : P ∈M(Pl)} and Pl(A) = max{P (A) : P ∈M(Pl)} ∀A ⊆ X .

The set M(Pl) is a closed and convex subset of the �nite-dimensional space of

probability measures on P(X ), and it is therefore characterized by its extreme points.

We say that P ∈M(Pl) is an extreme point when there are not P1, P2 ∈M(Pl) with

P1 6= P2 and α ∈ (0, 1) such that P = αP1+(1−α)P2. Then if {P1, . . . , Pm} are the
extreme points ofM(Pl), it follows that for every P ∈M(Pl) there are α1, . . . , αm
such that αi ≥ 0 for any i = 1, . . . ,m, α1+. . .+αm = 1 and P = α1·P1+. . .+αm·Pm.

2.2. Extreme points of the core of a plausibility function

It is well-known 1,4,24 that there is a connection between the extreme points of

M(Pl) and the permutations of {1, . . . , n}: any permutation σ of {1, . . . , n} deter-
mines an extreme point ofM(Pl) by means of:

Pσ({xσ(1)}) = Pl({x1}), (2)

Pσ({xσ(i)}) = Pl({xσ(1), . . . , xσ(i)})− Pl({xσ(1), . . . , xσ(i−1)}),∀i = 2, . . . , n,

and, conversely, any extreme point of M(Pl) is associated with a permutation σ

in the manner described above. Hence, the maximal number of extreme points of

M(Pl) is n!, where n is the cardinality of the possibility space. However, this number

is not always attained, because di�erent permutations may give rise to the same

extreme point by means of Equation (2).

The extreme points of the credal set associated with a plausibility function

were recently investigated in 16, and a new representation of the extreme points in

terms of counting vectors was introduced. This representation helped establishing

a number of properties of the number of extreme points ofM(Pl). In particular, it
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was established 16 that M(Pl) has n! extreme points if and only if all the sets of

cardinality two are focal.

3. Extreme points for possibility measures

We focus next on a particular case of plausibility and belief functions: possibility

and necessity measures. A possibility measure 7,29 Π : P(X )→ [0, 1] is a supremum-

preserving function: Π(A) = supx∈A Π({x}) ∀A ⊆ X . Its conjugate function is called
a necessity measure N(A) = 1 − Π(Ac). In the context of this paper, where X is

�nite, they are equivalent to maxitive and minitive measures, because they satisfy

Π(A ∪B) = max{Π(A),Π(B)} and N(A ∩B) = min{N(A), N(B)} ∀A,B ⊆ X .

Possibility and necessity measures correspond to the particular case of plausbility

and belief functions whose focal elements E1, . . . , El are nested, in the sense that

E1 ⊂ . . . ⊂ El, where ⊂ is used to denote strict inclusion. As a consequence, we can

compute the extreme points of the coreM(Π) of a possibility measure by means of

Equation (2). We denote by |ext(M(Π))| the number of extreme points onM(Π).

Consider thus a possibility measure Π : P(X )→ [0, 1] on X = {x1, . . . , xn}, and
let E1 ⊂ . . . ⊂ El be its focal sets. We shall assume that El = X , which means that

any singleton has a positive possibility measure; it is easy to extend the results to

the general case, simply by removing the elements in X \ El.
Let us de�ne

k1 = |E1| and ki = |Ei \ Ei−1| ∀i = 2, . . . , l. (3)

Since {E1, E2\E1, . . . , El\El−1} is a partition of X , we deduce that k1+. . .+kl = n.

The following theorem gives the exact number of extreme points of the credal

set associated with a possibility measure in terms of the cardinalities of the focal

sets. It improves upon earlier results by Kroupa (11 , 12 ), where only a lower and

an upper bound of the number of extreme points are given.

Theorem 1. 22 Let Π : P(X ) → [0, 1] be a possibility measure with focal sets

E1 ⊂ . . . ⊂ El = X . The number of extreme points ofM(Π) is

k1(1 + k2) · . . . · (1 + kl), (4)

where k1, . . . , kl are given by Equation (3).

Thus, the number of extreme points only depends on the cardinalities of the

focal sets but not on their masses. For this reason, from now on when considering

possibility measures we shall omit the values of their mass function and restrict our

attention to the focal sets.

We shall use extensively the formula given in Theorem 1 to investigate some

properties of the number of extreme points induced by a possibility measure. In

particular, we will also characterize the conditions a possibility measure must satisfy

in order for this number to be maximal.
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Proposition 1. Let Π : P(X ) → [0, 1] be a possibility measure with focal sets

E1 ⊂ . . . ⊂ El = X . Assume that there exists a set E∗ such that Ei ⊂ E∗ ⊂ Ei+1

for some i = 1, . . . , l− 1, and consider a possibility measure Π′ : P(X )→ [0, 1] with

focal sets E1 ⊂ . . . ⊂ Ei ⊂ E∗ ⊂ Ei+1 ⊂ . . . ⊂ El. Then, M(Π′) has more extreme

points thanM(Π).

With a similar reasoning we obtain the following:

Proposition 2. Let Π : P(X )→ [0, 1] be a possibility measure with focal sets E1 ⊂
. . . ⊂ El = X . Assume that there exists a non-empty set E∗ such that E∗ ⊂ E1, and

consider a possibility measure Π′ : P(X )→ [0, 1] with focal sets E∗ ⊂ E1 ⊂ . . . ⊂ El.
Then,

(i) If |E∗| > 1,M(Π′) has more extreme points thanM(Π).

(ii) If |E∗| = 1,M(Π′) andM(Π) have the same number of extreme points.

The underlying idea to these two results is that the focal sets of a possibility

measure Π induce the partition {E1, E2 \E1, . . . , El \El−1} of the possibility space,

and that if the partition induced by Π′ is �ner than the one induced by Π, then

M(Π′) has at least as many extreme points asM(Π).

It was established in 14 that the maximal number of extreme points on M(Π)

is 2n−1, where n = |X | (this is also a consequence of Theorem 1). Our previous

results allow us to determine the possibility measures where this maximal number

is attained.

Corollary 1. Given a possibility measure Π : P(X ) → [0, 1] with focal sets E1 ⊂
. . . ⊂ El, its coreM(Π) has 2n−1 extreme points if and only if one of the following

statements holds:

(i) l = n and |Ei| = i for any i = 1, . . . , n.

(ii) l = n− 1, |E1| = 2 and |Ei| = i+ 1 for any i = 2, . . . , n− 1.

We conclude this section with a recursive algorithm that computes the extreme

points of the credal set associated with a possibility measure. Some interesting

related results under a geometric approach can be found in 22. Consider a possibility

measure Π with focal sets E1 ⊂ . . . ⊂ El, and let k1, . . . , kl be given by Equation (3).
In order to simplify the notation, we shall assume without loss of generality that for

any xr ∈ Ej and xs ∈ Ej+1 \ Ej it holds that r < s (i.e., the elements of X follow

the same order as the focal sets). For any P ∈M(Π), denote by x∗P the element:

x∗P = max{xi : P ({xi}) > 0}.

Finally, let δx denote the degenerate probability on x ∈ X , determined by the mass

function δx({x}) = 1. The procedure for computing the extreme points ofM(Π) is

described in Algorithm 1.

The following example illustrates the algorithm.



January 24, 2018 10:44 WSPC/INSTRUCTION FILE extremos-rev

6 I.Montes, E. Miranda

Algorithm 1 Procedure de�ning the extreme points of a possibility measure.

1: De�ne

M1 = {δxi : i = 1, . . . , k1}.

2: for j = 2, . . . , l do

3: LetM∗ = ∅.
4: for x ∈ Ej\Ej−1 do
5: for P ∈Mj−1 do

De�ne QP by:

QP ({x}) = m(Ej) +m(Ej+1) + . . .+m(El) = Pl({x}),
QP ({x∗P }) = P ({x∗P })−QP ({x}),
QP ({y}) = P ({y}) ∀y 6= x, x∗P .

Add QP toM∗.

6: end for

7: end for

8: LetMj =Mj−1 ∪M∗.
9: end for

Example 1. Consider X = {x1, x2, x3, x4, x5} and a possibility measure Π with

focal sets

E1 = {x1, x2}, E2 = {x1, x2, x3}, E3 = X

with masses 0.3, 0.5 and 0.2, respectively. In the �rst step, we de�ne the setM1:

M1 = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)}.

For j = 2, the only value in E2\E1 is x3. Then, we obtain the following probabilities:

(0.3, 0, 0.7, 0, 0) and (0, 0.3, 0.7, 0, 0). Therefore:

M2 = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0.3, 0, 0.7, 0, 0), (0, 0.3, 0.7, 0, 0)}.

For j = 3, we have to consider the elements x4 and x5. For x4 we obtain the prob-

abilities (0.8, 0, 0, 0.2, 0), (0, 0.8, 0, 0.2, 0), (0.3, 0, 0.5, 0.2, 0) and (0, 0.3, 0.5, 0.2, 0),

and while for x5 we obtain (0.8, 0, 0, 0, 0.2), (0, 0.8, 0, 0, 0.2), (0.3, 0, 0.5, 0, 0.2) and

(0, 0.3, 0.5, 0, 0.2).

If we add these to the setM2 we obtain the 12 extreme points ofM(Π). �

Remark 1. Plausibility functions, and as a consequence also possibility measures,

can be represented by means of measurable multi-valued mappings, or random

sets 4,19. In particular, a possibility measure on P(X ) can always be obtained as

the upper probability induced by a consonant random set, i.e., one with nested

images 13,20. It can be checked that the extreme points of the core of a possibility

measure can be obtained as distributions induced by some measurable selections of

the random set, and this idea is present in some of the results established in 5,22.
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In terms of random sets, the focal elements of the possibility measure are the

images that are attained with positive probability. Then the interpretation of the

results in Corollary 1 is that the maximum number of extreme points is attained if

and only if there is some order {xσ(1), xσ(2), . . . , xσ(n)} in X such that the images

that the associated random set takes with positive probability are {xσ(1), . . . , xσ(i)}
for i = 2, . . . , n, and possibly also {xσ(1)}. �

4. Extreme points for maxitive p-boxes

Next we consider another imprecise probability model that is also related to possi-

bility measures and plausibility functions: p-boxes, both uni- and bivariate. In the

univariate case, we shall consider a �nite and ordered set X = {x1, . . . , xn} with
x1 < . . . < xn. When dealing with bivariate p-boxes, we shall consider two �nite

and ordered spaces X = {x1, . . . , xn} and Y = {y1, . . . , ym}, where x1 < . . . < xn
and y1 < . . . < ym, and shall denote by X × Y their cartesian product. We shall

assume without loss of generality that n ≤ m.

4.1. P -boxes

Probability boxes (p-boxes, for short) 9 can be used to model the imprecise infor-

mation about a (uni- or bi-variate) distribution function, by means of a lower and

an upper functional. As such, they constitute an imprecise probability model. Their

main advantage over other models is that they are computationally quite simple,

being determined by point functions instead of set-valued ones.

De�nition 2. A (univariate) p-box 9 (F , F ) on X is a pair of increasing functions

F , F : X → [0, 1] such that F (xn) = F (xn) = 1. A bivariate p-box 21 (F , F ) on

X × Y is a pair of component-wise increasing functions F , F : X × Y → [0, 1] such

that F (xn, ym) = F (xn, ym) = 1.

A univariate p-box can be used to model the imprecise knowledge about the

distribution function of a random variable X taking values in the possibility space

X , and a bivariate p-box can be used to model the imprecise knowledge about

the joint distribution function of two variables X,Y taking values in X and Y,
respectively. We shall assume that these two variables are logically independent, so

that the bivariate random variable (X,Y ) may take any value in the product space

X × Y.
Given a univariate p-box (F , F ) on X , its associated credal set is given by

M(F , F ) := {P : F ≤ FP ≤ F}, where FP denotes the cumulative distribution

function associated with P . It can be used to determine the lower and upper prob-

abilities associated with a p-box, given by 10,25:

P (A) = inf{P (A) | F ≤ FP ≤ F} ∀A ⊆ X ,
P (A) = sup{P (A) | F ≤ FP ≤ F} ∀A ⊆ X . (5)
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It was proven in 25 that P , P are a belief and a plausibility function, respectively. As

a consequence, they are determined by the focal elements of their associated basic

probability assignment. It can be checked that for every focal set E, it holds that

E = {x ∈ X : minE ≤ x ≤ maxE}. Moreover, for any pair of focal sets E1, E2, it

holds that either minE1 ≤ minE2 and maxE1 ≤ maxE2 or minE1 ≥ minE2 and

maxE1 ≥ maxE2. We refer to 6,10 for more information.

From 16, the set M(F , F ) associated with a univariate p-box has at most Pn
extreme points, where Pn is the Pell number, de�ned recursively by:

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2.

Those univariate p-boxes for which this maximal number of extreme points is at-

tained were also investigated in 16.

The upper probability associated with a univariate p-box by means of Equa-

tion (5) may not be a possibility measure. The connection between univariate p-

boxes and possibility measures is clari�ed in the following proposition:

Proposition 3. 26 Let (F , F ) be a univariate p-box on X . Its associated upper

probability is a possibility measure if and only if F or F is vacuous, meaning that

F = I{xn} or F = 1.

Thus, p-boxes inducing a possibility measure can be used to model situations

where all the available information about an unknown cumulative distribution func-

tion is determined by either an upper bound (when F = I{xn}) or a lower one (when

F = 1).

Next we focus on bivariate p-boxes, that were investigated in detail in 18,21. For

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, the cumulative rectangle A(xi,yj) is given by

A(xi,yj) := {(xr, ys) : r ≤ i, s ≤ j}. (6)

The bivariate p-box (F , F ) allows us to de�ne the following upper probabilities:

P (A(xi,yj)) = F (xi, yj), P (Ac(xi,yj)
) = 1− F (xi, yj), (7)

and using conjugacy, also the lower probabilities of the sets A(xi,yj), A
c
(xi,yj)

. Then

the credal set associated with the bivariate p-box is given by

M(F , F ) =

{P : F (xi, yj) = P (A(xi,yj)) ≤ P (A(xi,yj)) ≤ P (A(xi,yj)) = F (xi, yj) ∀i, j}.

However, P , P need not coincide with the lower and the upper envelope of the set

M(F , F ), meaning that they are not coherent 27 lower and upper probabilities,

respectively. This problem was investigated in 21. It follows that P , P are not belief

and plausibility functions in general.

In 17, we studied under which conditions the functions P , P given by Equa-

tion (7), and extended to P(X × Y ) by taking the envelopes of M(F , F ), are a
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necessity and a possibility measure, respectively. We assumed the following techni-

cal condition:

P ({(xi, yj)}) > 0 ∀i = 1, . . . , n; j = 1, . . . ,m. (8)

This condition means that any element in X × Y belongs to at least one focal set,

and it also helps simplifying some of the proofs. Therefore, from now on, when-

ever we consider the upper probability associated with a bivariate p-box de�ned

on Equation (7) and extended to P(X × Y) by computing the lower envelope of

M(F , F ), we shall assume it to satisfy restriction (8).

We also established the following de�nitions:

De�nition 3. 17 A bivariate p-box (F , F ) is said to be of type-1 when F is vacuous

(F (x, y) = I{(xn,ym)}(x, y) ∀(x, y) ∈ X × Y), and is said to be of type-2 when it is

not of type 1 and F is constant on 1 (F (x, y) = 1 ∀(x, y) ∈ X × Y).

Similarly to the univariate case, type-1 (respectively, type-2) bivariate p-boxes

can be used to model situations where the only available information about an un-

known bivariate cumulative distribution function is given by an upper (respectively,

a lower) bound.

We call a bivariate p-box maxitive when the upper probability P it induces by

means of Equation (7) is a possibility measure. We have the following characteriza-

tion:

Theorem 2. 17 Let (F , F ) be a bivariate p-box satisfying Equation (8). Its asso-

ciated upper probability is maxitive if and only if one of the following conditions

hold:

Condition 1 (F , F ) is of type-1, F (xi, yj) = max{F (xi, y1), F (x1, yj)} for any

i = 1, . . . , n; j = 1, . . . ,m and either

(a) F (x, ym) = 1 for any x ∈ X ; or
(b) F (xn, y) = 1 for any y ∈ Y.

Condition 2 (F , F ) is of type-2 and F (xi, yj) = min{F (xi, ym), F (xn, yj)} for any
i = 1, . . . , n; j = 1, . . . ,m.

Remark 2. Interestingly, maxitive p-boxes can be embedded into the more general

framework of generalized p-boxes 6, that extend p-boxes to not necessarily ordered

spaces Z. Given such a space Z: a generalized p-box is a pair of functions F , F :

Z → [0, 1] that are comonotone (they increase and decrease simultaneously) and

componentwise ordered: F ≤ F .
In the case of maxitive bivariate p-boxes, Theorem 2 tells us that either F is

vacuous or F is constant on 1; in any of the two cases, it trivially follows that F

and F are comonotone and componentwise ordered, and as a consequence maxitive

bivariate p-boxes are in particular generalized p-boxes; this could be of interest

because, even if we assume that X ,Y are totally ordered spaces, they only induce

a partial order on the product space X × Y.
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Although one may think that the extreme points for maxitive bivariate p-boxs

could be computed using the results established in 16 for generalized p-boxes, this

will not be the case in general. The reason is that the bivariate structure of maxitive

bivariate p-boxes is not preserved when we study them as generalized p-boxes, since

there is not a one-to-one correspondence between their credal sets. To see this more

clearly, consider a type-1 maxitive bivariate p-box de�ned by:

(x1, y1) (x1, y2) (x2, y1) (x2, y2)

F 0 0 0 1

F 0.6 1 1 1

If we de�ne the four-element space Z by:

z1 = (x1, y1), z2 = (x1, y2), z3 = (x2, y1), z4 = (x2, y2),

we obtain the generalized p-box (FZ , FZ) given by:

z1 z2 z3 z4
FZ 0 0 0 1

FZ 0.6 1 1 1

Although FZ is a univariate cumulative distribution function, when we consider

our bivariate framework we obtain the function F that is not a bivariate cumulative

distribution function, because it does not satisfy the rectangle inequality. This shows

that the representation as a generalized p-boxes is entailing a loss of information in

this context. �

In the remainder of the section we investigate the number of extreme points of

the cores of maxitive p-boxes. We consider both the univariate and bivariate cases

and, in this second case, type-1 and type-2 bivariate p-boxes.

4.2. Maxitive univariate p-boxes

By Proposition 3, a univariate p-box (F , F ) de�nes a maxitive function if and only

if either F = I{xn} or F = 1. In order to compute the extreme points of the core of

(F , F ), it will be helpful to look at the form of the focal sets.

(a) Assume that F = I{xn}. In that case, denote by {u1, . . . , uk} = {xi ∈ X |
F (xi) > F (xi−1)}, where F (x0) := 0 and u1 < . . . < uk. Then, the focal

sets are given by:

E1 = {x ∈ X | x ≥ u1}, . . . , Ek = {x ∈ X | x ≥ uk},

with respective masses m(E1) = F (u1), m(Ei) = F (ui) − F (ui−1) for

i = 2, . . . , k. It holds that E1 ⊃ E2 ⊃ . . . ⊃ Ek.
(b) Assume that F = 1. Denote by {u1, . . . , uk} = {xi ∈ X | F (xi) > F (xi−1)},

where F (x0) = 0 and u1 < . . . < uk. The focal sets are given by:

E1 = {x ∈ X | x ≤ u1}, . . . , Ek = {x ∈ X | x ≤ uk},
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with masses m(E1) = F (u1), m(Ei) = F (ui)−F (ui−1) for any i = 2, . . . , k.

It holds that E1 ⊂ . . . ⊂ Ek.

Using the above expressions of the focal sets, we easily see that the plausibility

function associated with a maxitive univariate p-box may have at most n di�erent

focal sets:

(a) If F = I{xn}, take F such that 0 < F (x1) < . . . < F (xn) = 1. Then the

focal sets are E1 = X , E2 = {x2, x3, . . . , xn}, . . . , En = {xn}.
(b) If F = 1, take F such that 0 < F (x1) < . . . < F (xn) = 1. Then the focal

sets are given by E1 = {x1}, E2 = {x1, x2}, . . . , En = X .

In both cases, using Equation (3), we obtain that ki = 1 for any i = 1, . . . , n, and

therefore the number of extreme points equals 1 · (1 + 1)n−1 = 2n−1.

This shows that given a maxitive univariate p-box (F , F ), its associated credal

set has at most 2n−1 extreme points. This number is smaller than the maximum

number of extreme points of the credal set associated with an arbitrary univariate

p-box, which is the Pell number 16, and it is equal to the maximal number of extreme

points of the credal set associated with a possibility measure.

4.3. Type-2 maxitive bivariate p-boxes

We turn now to the bivariate case. By Theorem 2, any maxitive bivariate p-box

must be either of type-1 (meaning that the lower distribution function F is equal to

I(xn,ym)) or of type-2 (meaning that the upper distribution function F is constant

on 1). We begin by considering this second case.

Consider thus a type-2 maxitive bivariate p-box (F , F ) on X × Y, and let Π

denote its associated possibility measure. In order to alleviate the notation, we

shall refer to Π as a type-2 possibility measure on P(X ×Y). From 17 , the focal sets

of Π are given by:

E1 = A(v1,w1), . . . , El = A(vl,wl) = X × Y,

for some elements of X and Y v1 ≤ . . . ≤ vl = xn and w1 ≤ . . . ≤ wl = ym,

respectively, and where A(vj ,wj) is the cumulative rectangle determined by the pair

(vj , wj) de�ned on Equation (6).

Our �rst result provides an upper bound of the maximal number of extreme

points ofM(Π).

Proposition 4. Let Π be a type-2 possibility measure on P(X × Y). If n,m > 1,

then the number of extreme points ofM(Π) is strictly smaller than 2nm−1.

Thus, unlike the univariate case, the cores of the possibility measures associated

with maxitive type-2 p-boxes will have in general fewer extreme points that those

associated with arbitrary possibility measures on P(X × Y). The key here is that

the possibility measure induced by a maxitive type-2 p-box cannot take di�erent

values on all elements of X × Y.
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In this section, we shall establish the tightest upper bound on the number of

extreme points ofM(Π). By Propositions 1 and 2, this maximal upper bound can

only be attained when it is not possible to add an intermediate cumulative rectangle

between two consecutive focal sets. In other words, if E1 ⊂ . . . ⊂ El are the focal sets
of Π, there cannot exist a cumulative rectangle A(x,y) such that Ei ⊂ A(x,y) ⊂ Ei+1

for some i = 1, . . . , l − 1.

It also follows that the smallest focal element E1 = A(v1,w1) must be one of

A(x1,y1), A(x1,y2) or A(x2,y1), while for any other focal element Ei = A(vi,wi) with

i > 2, one of the following conditions must hold:

(C1) vi = vi−1 and wi, wi−1 are consecutive elements of X .
(C2) wi = wi−1 and vi, vi−1 are consecutive elements of Y.

This implies that for M(Π) to have the maximal number of extreme points, it is

necessary that one of the following conditions holds:

(Type 2-a) Π has n + m − 1 focal sets E1 ⊂ . . . ⊂ En+m−1, where E1 = A(x1,y1) and

for any i = 2, . . . , n+m− 1, Ei and Ei−1 satisfy either (C1) or (C2);

(Type 2-b) Π has n+m− 2 focal sets E2 ⊂ . . . ⊂ En+m−1, where E2 is either A(x2,y1)

or A(x1,y2). Also, for any i = 3, . . . , n + m − 1, Ei and Ei−1 satisfy either

(C1) or (C2).

This motivates the following de�nition:

De�nition 4. A type-2 possibility measure Π will be called optimal when it satis�es

either (Type2-a) or (Type2-b). In order to unify the notation, we shall always denote

the focal sets of Π by E1 ⊂ E2 ⊂ . . . ⊂ En+m−1, and make E1 = ∅ and m(E1) = 0

when we are in case (Type2-b).

Taking into account the previous notation and comments, if Π is an optimal type-2

possibility measure with focal sets E1 ⊂ . . . ⊂ En+m−1, then

Ej = A(xs,yr) ⇒ j = r + s− 1 ∀j = 2, . . . , n+m− 1. (9)

Therefore, r + s is even (respectively, odd) whenever j is odd (respectively, even).

Interestingly, not all optimal type-2 possibility measures have the same number

of extreme points:

Example 2. Consider two optimal type-2 possibilities Π1,Π2 on P({x1, x2, x3} ×
{y1, y2}) with respective focal sets:

E1 = A(x1,y1), E2 = A(x1,y2), E3 = A(x2,y2), E4 = A(x3,y2), for Π1,

E
′

1 = A(x1,y1), E
′

2 = A(x2,y1), E
′

3 = A(x3,y1), E
′

4 = A(x3,y2), for Π2.

Taking Equation (3) into account, we obtain k1 = 1, k2 = 1, k3 = 2, k4 = 2 for Π1

and k
′

1 = 1, k
′

2 = 1, k
′

3 = 1, k
′

4 = 3 for Π2. Then, the number of extreme points of

M(Π1) is:

k1(1 + k2)(1 + k3)(1 + k4) = 1 · 2 · 3 · 3 = 18,



January 24, 2018 10:44 WSPC/INSTRUCTION FILE extremos-rev

Extreme points of maxitive bivariate p-boxes 13

while the number of extreme points ofM(Π2) is:

k
′

1(1 + k
′

2)(1 + k
′

3)(1 + k
′

4) = 1 · 2 · 2 · 4 = 16.�

We see that the maximal number of extreme points for a type-2 possibility measure

is not determined by looking at an arbitrary optimal one; we must instead determine

which con�guration generates the maximal number of extreme points, and also this

maximal number. For this aim, we introduce the following notion.

De�nition 5. Let Π be an optimal type-2 possibility measure on P(X × Y) with

focal sets E1 ⊂ . . . ⊂ En+m−1. The level of the focal set Ej = A(xr,ys) is de�ned as⌊
|r−s|

2

⌋
, that is, the smallest integer less than or equal to |r−s|2 .

Equivalently, we say that Ej = A(xr,ys) has level i when:

(a) |r − s| = 2i, if r + s is even.

(b) |r − s| = 2i+ 1, if r + s is odd.

Next we show some properties of the levels of the focal sets.

Proposition 5. Let Π be an optimal type-2 possibility measure on P(X × Y) with

focal sets E1 ⊂ . . . ⊂ En+m−1.

(i) level(E2j+1) ≥ max{level(E2j+2), level(E2j)} for every j.

(ii) Let E2j = A(xr,ys) for j ≥ 1, where r < s. If level(E2j) = i, then:

k2j+1 =

{
s if level(E2j+1) = i.

r if level(E2j+1) = i+ 1.

(iii) Let E2j+1 = A(xr,ys) for j ≥ 1, where r ≤ s. If level(E2j+1) = i, then:

k2j+2 =

{
r if level(E2j+1) = i.

s if level(E2j+1) = i− 1.

We deduce that for any optimal type-2 possibility measure Π, the number of extreme

points of M(Π) is determined by the levels of the focal sets; note that, even if

the second and third statements assume that r ≤ s, in a similar manner we can

establish their analog when r ≥ s (in the case of the second statement note that for

E2j = A(xr,ys) we cannot have r = s, because of Equation (9)).

On the other hand, Proposition 5, together with conditions (C1)�(C2), imply

that the levels satisfy the following properties:

(L1) level(E2j+1)−level(E2j) ∈ {0, 1} ∀j.
(L2) |level(Ej)− level(Ej+2)| ≤ 1 for any j = 1, . . . , n+m− 3.

This allows to give a graphical representation of the optimal type-2 possibility

measures. In Figure 1 we have depicted the case n = 3,m = 5. There, the element

(i, j) refers to the focal set A(i,j). The optimal type-2 possibilities start at (1, 1)
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and follow the arrows until (3, 5). There are as many optimal type-2 possibilities

as di�erent paths to (3, 5). Note that in this picture we have considered the case

E1 = A(x1,y1); the case of (Type2-b) is determined with a starting point in either

(2, 1) or (1, 2).

level 0

level 1

level 1

level 2

E1 E2 E3 E4 E5 E6 E7

(1, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(3, 3)

(2, 4)

(1, 5)

(3, 4)

(2, 5)

(3, 5)

(2, 1)

(3, 1)

(3, 2)

Fig. 1: Optimal type-2 possibility measures for n = 3,m = 5. The element (i, j)

refers to the focal set A(xi,yj).

On the other hand, if we �x the level of the focal set Ei, there are only two

possible focal sets with this level, and we can work without loss of generality with

one of them. This is clari�ed in the following proposition:

Proposition 6. Let Π,Π′ be two optimal type-2 possibility measures on P(X ×Y)

with respective focal sets E1 ⊂ . . . ⊂ En+m−1 and E′1 ⊂ . . . ⊂ E′n+m−1. Assume

Ei = A(xri
,ysi )

and E′i = A(xr′
i
,ys′

i
) for i = 1, . . . ,m+ 1.

(i) If level(Ei) = level(E′i) then min{ri, si} = min{r′i, s′i} and max{ri, si} =

max{r′i, s′i}.
(ii) De�ne E′′i := A(xmin{ri,si},ymax{ri,si})

for i = 1, . . . , n + m − 1. Then the

sets E′′i are nested and their associated possibility measure Π′′ is such that

M(Π) andM(Π′′) have the same number of extreme points.

Taking this result into account, we shall assume without loss of generality that for

any optimal type-2 possibility measure Π with focal sets E1 ⊂ . . . ⊂ En+m−1, it

holds that Ei = A(xr,ys) with r ≤ s for every i = 1, . . . , n+m−1. This will simplify

some of the proofs of the upcoming results.

We are �nally ready to establish the main results of this subsection.

Proposition 7. Let Π and Π′ be two optimal type-2 possibility measures on P(X ×
Y) with respective focal sets E1 ⊂ . . . ⊂ En+m−1 and E′1 ⊂ . . . ⊂ E′n+m−1. If

level(Ej) ≤ level(E′j) ∀j, with strict inequality in at least one j, then M(Π) has

more extreme points thanM(Π′).
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This result allows us to establish the maximal number of extreme points of a type-2

possibility measure, and to determine which con�gurations produce this maximal

number.

Theorem 3. Let Π be an optimal type-2 possibility measure on P(X × Y) with

n + m − 1 focal sets E1 ⊂ . . . ⊂ En+m−1. Assume without loss of generality that

n ≤ m (otherwise, we just need to switch the role of n and m). Then, the maximal

number of extreme points ofM(Π) is

(n!)2(n+ 1)m−n+1

2
, (10)

and this number is attained if and only if level(Ej) = 0 for all j = 1, . . . , 2n. On the

other hand, the minimal number of extreme points for an optimal type-2 possibility

is 2m−1(m+ 1)n−1.

The proof of this theorem, that we can �nd in the Appendix, details which optimal

type-2 possibilities attain the maximum number of extreme points. They can be

obtained by moving alternatively through the two axis, giving rise thus to the

following focal sets:

E1 = (x1, y1),

E2j = (xj+1, yj) or E2j = (xj , yj+1), ∀j = 1, . . . , n− 1,

E2j+1 = (xj+1, yj+1), ∀j = 1, . . . , n− 1,

and if m > n,

E2n−1+j = (xn, yn+j), ∀j = 1, . . . ,m− n.

In a similar manner, from the same proof we obtain a procedure to build optimal

type-2 possibilities that attain the minimum number of extreme points. Here there

are two possible scenarios (remember that we are assuming throughout that n ≤ m):

• If n < m, the focal sets are:

Ej = A(x1,yj) ∀j = 1, . . . ,m, Ej = A(xj−m+1,ym) ∀j = m+1, . . . ,m+n−1.

• If n = m, the focal sets are either:

Ej = A(x1,yj) ∀j = 1, . . . ,m, Ej = A(xj−m+1,ym) ∀j = m+1, . . . ,m+n−1.

or:

Ej = A(xj ,y1) ∀j = 1, . . . , n, Ej = A(xn,yj−n+1) ∀j = n+ 1, . . . ,m+n− 1.

Note that for non-optimal type-2 possibility measures the minimum number of

extreme points if nm, and this value is attained when the only focal set of the

associated plausibility function is X × Y (which as a consequence has mass 1).
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In the particular case when n = 1, the smallest and greatest number of extreme

points of the core of (F , F ) are m and 2m−1, respectively. These two correspond to

the bounds for univariate p-boxes considered in Section 4.2.

In Figure 2 we consider again the case n = 3,m = 5. All the optimal type-2

possibilities that start in (1, 1), (2, 1) or (1, 2) and move to (3, 5) only through red

nodes and arrows are those with the maximal number of extreme points, in this

case (3!)2·43
2 = 1152, by Equation (10).

level 0

level 1

level 1

level 2

E1 E2 E3 E4 E5 E6 E7

(1, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(3, 3)

(2, 4)

(1, 5)

(3, 4)

(2, 5)

(3, 5)

(2, 1)

(3, 1)

(3, 2)

Fig. 2: Optimal type-2 possibility measures for n = 3,m = 5. Those attaining the

maximal number of extreme points are the ones going from either (1, 1), (1, 2) or

(2, 1) to (3, 5) through red nodes and arrows.

Note that optimal type-2 possibility measures are not in a di�erent layer with

respect to the number of extreme points they induce, in the sense that if Π,Π′

are type-2 possibility measures such that Π is optimal and Π′ is not, it does not

necessarily hold that |ext(M(Π))| ≥ |ext(M(Π′))|. This is because we can �nd

non-optimal type-2 possibility measures with more than 2m−1(m + 1)n−1 extreme

points:

Example 3. Consider n = 2 and m = 5, and the possibility measure Π with focal

sets:

E1 = A(x2,y2), E2 = A(x2,y3), E3 = A(x2,y4), E4 = A(x2,y5).

Then k1 = |E1| = 4, k2 = |E2\E1| = 2, k3 = |E3\E2| = 2 and k4 = |E4\E3| = 2.

By Theorem 1, the number of extreme points ofM(Π) is:

k1(1 + k2)(1 + k3)(1 + k4) = 4 · 3 · 3 · 3 = 108.

This is strictly greater than the minimal number of extreme points of a type-2

possibility with n+m−1 focal elements, which according to Theorem 3 is 2m−1(m+

1)n−1 = 24 · 6 = 96. �
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4.4. Type-1 maxitive bivariate p-boxes

We consider in this subsection the possibility measures Π generated by type-1 max-

itive bivariate p-boxes.

De�nition 6. A possibility measure associated with a type-1 maxitive bivariate

p-box will be called type-1 possibility measure.

From 17 , the focal sets of a type-1 possibility measure are given by:

E1 = Ac(vl−1,wl−1)
, E2 = Ac(vl−2,wl−2)

, . . . , El−1 = Ac(v1,w1)
, El = X × Y,

where v1 ≤ . . . ≤ vl−1 (resp., w1 ≤ . . . ≤ wl−1) are elements from X (resp., Y).
From Propositions 1 and 2, for Π to determine a credal set with a maximal number

of extreme points, there can be no set E = Ac(xs,yr)
satisfying Ei ⊂ E ⊂ Ei+1 for

some i = 1, . . . , l− 1. This means that if Ei = A(vi,wi) is a focal set with i > 2, one

of the following conditions must hold:

(C'1) vi = vi−1 and wi, wi−1 are consecutive elements of X .
(C'2) wi = wi−1 and vi, vi−1 are consecutive elements of Y.

Also, Π must have n+m−1 focal sets and (v1, w1) = (x1, y1). Therefore, a necessary

condition for the core of Π to attain the maximum number of extreme points is that

its focal sets can be expressed by E1 ⊂ . . . ⊂ En+m−1 = X ×Y, En+m−2 = Ac(x1,y1)

and for any i = 2, . . . , n + m − 1 either (C'1) or (C'2) holds. A type-1 possibility

measure satisfying these properties will be called an optimal type-1 possibility.

According to Equation (4), the number of extreme points ofM(Π) is:

k1(1 + k2) . . . (1 + kn+m−1),

where:

k1 = |Ac(vl−1,wl−1)
|, ki = |Ei\Ei−1| ∀i = 2, . . . , n+m− 1.

It is useful to note that there is a one-to-one correspondence between optimal type-

1 and (Type2-a) possibility measures. The reason is that for an optimal type-1

possibility measure with focal sets

E1 = Ac(v1,w1)
⊂ . . . ⊂ En+m−2 = Ac(vn+m−2,wn+m−2)

= Ac(x1,y1)
⊂ En+m−1 = X×Y,

we can de�ne an optimal type-2 possibility Π̃ with focal sets:

Ẽj =


Ecn+m−2 = A(vn+m−2,wn+m−2) for j = 1

Ecn+m−j−1 = A(vn+m−j−1,wn+m−j−1) for j = 2, . . . , n+m− 2

X × Y for j = n+m− 1.

(11)

Furthermore, if we denote by k1 = |E1|, ki = |Ei\Ei−1| for any i = 2, . . . , n, then:

k̃1 = |Ẽ1| = |A(vn+m−2,wn+m−2)| = |A(x1,y1)| = |X × Y\Ac(x1,y1)
| = kn+m−1.

k̃i = |Ẽi\Ẽi−1| = |A(vn+m−i,wn+m−i)\A(vn+m−i+1,wn+m−i+1)|
= |Ac(vn+m−i+1,wn+m−i+1)

\Ac(vn+m−i,wn+m−i)
| = |En+m−i\En+m−i−1| = kn+m−i.
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This means that the number of extreme points of an optimal type-1 possibility is

equal to k1
∏n+m−1
i=2 (1 + ki), or equivalently:

k̃n+m−1

n+m−2∏
i=1

(1 + k̃i). (12)

It follows from this thatM(Π) andM(Π̃) will not have in general the same number

of extreme points.

Example 4. The one-to-one correspondence between optimal type-1 and (Type2-

a) possibility measures de�ned in Equation (11) can be given a graphical interpre-

tation. Consider, for simplicity, the case n = 2,m = 3, and the optimal type-1

possibility measure whose focal sets are:

E1 = Ac(x2,y2)
, E2 = Ac(x1,y2)

, E3 = A(x1,y1), E4 = X × Y.

Then, according to the previous comments, its associated (Type2-a) possibility mea-

sure has the following focal sets:

Ẽ1 = A(x1,y1), Ẽ2 = A(x1,y2), Ẽ3 = A(x2,y2), Ẽ4 = A(x2,y3) = X × Y.

We have depicted the focal sets Ei and Ẽi and their connection in Figure 3. �

x1 x2

y1

y2

y3

x1 x2

y1

y2

y3

x1 x2

y1

y2

y3

x1 x2

y1

y2

y3

x1 x2

y1

y2

y3

x1 x2

y1

y2

y3

x1 x2

y1

y2

y3

x1 x2

y1

y2

y3

E3 E2 E1E4

Ẽ1 Ẽ2 Ẽ3Ẽ4

Fig. 3: Connection between type-1 and (Type2-a) possibility measures.

The above connection between type-1 and type-2 optimal possibility measures al-

lows us to de�ne the level of the focal set of a type-1 possibility measure.
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De�nition 7. Let Π be an optimal type-1 possibility with focal sets E1 ⊂ . . . ⊂
En+m−1, and denote by Π̃ its associated type-2 possibility with focal sets Ẽ1 ⊂
. . . ⊂ Ẽn+m−1, given by Equation (11). We de�ne the level of Ej , level(Ej), as:

level(Ej) = level(Ẽn+m−j).

As we did with type-2 possibility measures in Section 4.3, we can also give a graphi-

cal representation of type-1 optimal possibility measures. For the case n = 3,m = 4,

Figure 4 shows that any optimal type-1 possibility must move either from (3, 3) or

(2, 4) to (1, 1) by following the arrows, where (i, j) represents the focal set Ac(xi,yj)
,

and also taking into account that the last focal set is not depicted because it should

be X × Y.

level 0

level 1

level 1

E5 E4 E3 E2 E1

(1, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(3, 3)

(2, 4)

(2, 1)

(3, 1)

(3, 2)

Fig. 4: Optimal type-1 possibility measures for n = 3,m = 4. The element (i, j)

refers to the focal set Ac(xi,yj)
, and E6 = Ax3,x4 .

We are now ready to give the main results, that are the counterparts to Propo-

sition 7 and Theorem 3.

Proposition 8. Let Π and Π′ be two optimal type-1 possibility measures with focal

sets E1 ⊂ . . . ⊂ En+m−1 and E′1 ⊂ . . . ⊂ E′n+m−1, respectively. If level(Ej) ≤
level(E′j) ∀j, with strict inequality in some j > 1, then M(Π) has more extreme

points than M(Π′). When the inequality is only strict for j = 1, both M(Π) and

M(Π′) have the same number of extreme points.

This result allows us to compute the maximal number of extreme points gener-

ated by a type-1 possibility measure.

Theorem 4. Let Π be an optimal type-1 possibility measure on P(X × Y), and

assume without loss of generality that n ≤ m (otherwise we just need to switch the

role of n and m). The maximal number of extreme points ofM(Π) is:

(n!)2n(n+ 1)m−n.
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When n = m or n < m − 1, this maximum is attained if and only if level(Ej) = 0

for any j = m− n, . . . ,m+ n− 1. When n = m− 1, this maximum is also attained

when level(Ej) = 0 for j > 1 and level(E1) = 1.

The minimal number of extreme points ofM(Π) is given by m2m(m+ 1)n−2.

The following example illustrates the result.

Example 5. Consider X = {x1, x2, x3} and Y = {y1, y2, y3, y4}, that is, n = 3 and

m = 4. In Figure 5 we have depicted all the optimal type-1 possibility measures.

The ones attaining the maximal number of extreme points are those whose focal

sets have zero levels, as well as the type-1 possibilities whose focal sets are:

E1 = Ac(x2,y4)
, E2 = Ac(x2,y3)

, E3 = Ac(x2,y2)
, E5 = Ac(x1,y1)

, E6 = X × Y,

and where E4 is either Ac(x2,y1)
or Ac(x1,y2)

. Furthermore, the maximum number of

extreme points is:

(n!)2n(n+ 1)m−n = (3!)2 · 3 · 41 = 36 · 12 = 432,

and the minimum one is m2m(m + 1)n−2 = 320. If we compare these with the

maximum and minimum number of extreme points of optimal type-2 possibility

measures, established in Theorem 3, we obtain that the maximal number is

(n!)2(n+ 1)m−n+1

2
= 288,

while the minimal number is 2m−1(m+ 1)n−1 = 200. �

Taking into account Theorems 3 and 4, we conclude that given a maxitive bivariate

p-box on X ×Y, where |X | = n ≤ |Y| = m, the maximal number of extreme points

is attained with the optimal type-1 possibility measures.

level 0

level 1

level 1

E5 E4 E3 E2 E1

(1, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(3, 3)

(2, 4)

(2, 1)

(3, 1)

(3, 2)

Fig. 5: Optimal type-1 possibility measures for n = 3,m = 4. The ones whose core

has the maximal number of extreme points are those whose focal sets go from either

(3, 3) or (2, 4) to (1, 1) through red nodes and arrows.
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5. Conclusions

Under an epistemic interpretation, an imprecise probability model can be regarded

as equivalent to a set of compatible probability measures. This set is closed and con-

vex, and it is uniquely determined by its extreme points. The number and features

of these extreme points are thus important for a number of practical purposes, for

instance when dealing with credal networks.

The following table summarizes the maximum number of extreme points for the

core of the di�erent imprecise probability models in the univariate case, in terms of

the cardinality n of the possibility space:

µ |ext(M(µ))|
Coherent upper probability n! 28

2-alternating capacity n! 24

Plausibility function n! 4

Possibility measure 2n−1 14

Univariate p-box Pn 16

Maxitive univariate p-box 2n−1

Comparative probabilities 2n−1 15

In this paper, based on the formula established in 22 for the number of extreme

points of the core of a possibility measure, we have investigated the number of

extreme points of the core of maxitive uni- and bivariate probability boxes. The

maximum number of extreme points is in those cases noticeably inferior to the case

of arbitrary coherent upper probabilities, or that of plausibility functions. Moreover,

we have determined in which cases the bound is attained. Interestingly, the formula

from 22 shows that the number of extreme points depends on the number and

cardinality of the focal sets of the possibility measure, but not on their masses.

One additional di�culty in the bivariate case is that, unlike the univariate case,

the upper probability associated with a bivariate p-box need not be a plausibility

function, or even coherent; for this reason, we have focused on one particular sub-

family of bivariate p-boxes: those whose associated upper probability is maxitive.

For those, the maximum number of extreme points of the core is given by:

(F , F ) |ext(M(F , F ))|
Type-2 maxitive (n!)2(n+1)m−n+1

2

Type-1 maxitive (n!)2n(n+ 1)m−n

In these formulas, we assume n = |X | ≤ m = |Y|; they can be given for the general

case in terms of max{n,m} and min{n,m}. Notice how the maximum number of

extreme points is di�erent for the two types of bivariate p-boxes that may induce

a possibility measure: the number for type-2 p-boxes is n+1
2n times the number for

type-1 bivariate p-boxes. This lack os symmetry was already present in the results

in 17, and it is due to the use of di�erent families of cumulative rectangles.

In any case, we see that the maximum number of extreme points is much smaller
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than that of an arbitrary possibility measure on P(X × Y), which is 2nm−1: this

is because not every possibility measure can be obtained as the upper probability

of a bivariate p-box, and it also means that maxitive bivariate p-boxes should be

more tractable from a computational point of view, because as we have seen, for

maxitive bivariate p-boxes either F or F is vacuous. One side remark here is that in

our results we are employing the assumption made in 17 that every pair (xi, yj) has

strictly positive upper probability: nevertheless, for maxitive bivariate p-boxes this

simply means that the union of the focal sets must be equal to the product X × Y.
More generally, it would be interesting to investigate the maximum number of

extreme points for the core of bivariate p-boxes that induce a plausibility function

or a coherent upper probability, but that are not maxitive. In this sense, we should

�rst of all characterize those bivariate p-boxes that are coherent (some results in

this sense can be found in 21) and those that induce a plausibility function. We

think that a multi-valued mapping representation might be useful for this second

problem.
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Appendix. Proofs

Proof. [Proof of Proposition 1] Using Theorem 1,M(Π) has k1(1+k2) · . . . ·(1+kl)

extreme points, where the values ki are given in Equation (3). For Π′, we have the

following values:

k′j = kj for any j 6= i+ 1, k′i+1,1 = |E∗\Ei|, k′i+1,2 = |Ei+1\E∗|,



January 24, 2018 10:44 WSPC/INSTRUCTION FILE extremos-rev

24 I.Montes, E. Miranda

where obviously k′i+1,1 + k′i+1,2 = ki+1. This implies that:

(1 + k′i+1,1)(1 + k′i+1,2) = 1 + k′i+1,1k
′
i+1,2 + k′i+1,1 + k′i+1,2

= (1 + ki+1) + k′i+1,1k
′
i+1,2 > 1 + ki+1.

Therefore, the number of extreme points ofM(Π′) is:

k′1(1 + k′2) · . . . · (1 + k′i) · (1 + k′i+1,1)(1 + k′i+1,2)(1 + k′i+2) · . . . · (1 + k′l)

> k1(1 + k2) · . . . · (1 + ki) · (1 + ki+1) · (1 + ki+2) · . . . · (1 + kl).

Proof. [Proof of Proposition 2] By Theorem 1, the number of extreme points of

M(Π) is k1(1+k2) · . . . ·(1+kl), where again the values ki are given in Equation (3).

On the other hand, in the case ofM(Π′), Equation (3) gives:

k = |E∗|, k′ = |E1\E∗|, k′i = |Ei\Ei−1| = ki ∀i = 2, . . . , l,

where k + k′ = k1, and therefore:

k(1 + k′) = k + kk′ ≥ k + k′ = k1;

the inequality is strict when k > 1. Thus, the number of extreme points ofM(Π′)

is given by:

k(1 + k′)(1 + k2) · . . . · (1 + kl) ≥ k1(1 + k2) · . . . · (1 + kl) = |ext(M(Π))|,

where the last inequality is strict when |E∗| = k > 1.

Proof. [Proof of Corollary 1] That both these conditions are su�cient for M(Π)

to have 2n−1 extreme points follows from Theorem 1.

To see that they are also necessary, assume ex-absurdo that there is some i ∈
{2, . . . , l} with ki > 1. Then, there we can �nd a set E∗ such that Ei−1 ⊂ E∗ ⊂ Ei,
and applying Proposition 1 we can use it to determine a possibility measure Π′ such

that M(Π′) has more extreme points that M(Π). Thus, M(Π) does not have the

maximal number of extreme points.

Proof. [Proof of Proposition 4] Let E1 ⊂ . . . ⊂ El be the focal sets of Π, where

El = A(xn,ym) = X ×Y. By Corollary 1, in order forM(Π) to have 2nm−1 extreme

points, the set El\El−1 should have one element, i.e., El−1 = X × Y\{(xn, ym)}.
However, when n,m > 1 this set is not a cumulative rectangle. Thus,M(Π) cannot

have 2nm−1 extreme points.

Proof. [Proof of Proposition 5]

(i) Let us prove that level(E2j+1) ≥ level(E2j+2) for every j.

Assume that E2j+1 = A(xr,ys). Since r + s is even by Equation (9),

we have that level(E2j+1) = |r−s|
2 , because r + s, |r − s| have the same

parity. Taking conditions (C1), (C2) into account, there are two possi-

bilities: either E2j+2 = A(xr+1,ys), whence level(E2j+2) = b |r+1−s|
2 c; or

E2j+2 = A(xr,ys+1), whence level(E2j+2) = b |r−s−1|2 c.
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In any case, |r + 1 − s| and |r − s − 1| cannot be greater than |r − s| + 1,

so level(E2j+2) ≤ |r−s|2 =level(E2j+1).

In a similar manner we can show that level(E2j+1) ≥ level(E2j) for ev-

ery j: conditions (C1) and (C2) imply that either E2j = A(xr−1,ys),

whence level(E2j) = b |r−1−s|2 c; or E2j = A(xr,ys−1), whence level(E2j+2) =

b |r−s+1|
2 c. Again |r−1−s| and |r−s+1| cannot be greater than |r−s|+1,

whence level(E2j) ≤ |r−s|2 =level(E2j+1).

(ii) Let us prove next the second statement; the proof of the third is analogous.

We already know from the �rst statement that level(E2j) ≤level(E2j+1).

Moreover, if E2j = A(xr,xs), then level(E2j) = |r−s−1|
2 , because |r − s| is

odd. Since either E2j+1 = A(xr+1,ys) or E2j+1 = A(xr,ys+1), we have the

following two possibilities:

a) If level(E2j+1) =level(E2j), then E2j+1 = A(xr+1,ys), and therefore:

k2j+1 = |E2j+1\E2j | = (r + 1) · s− r · s = s.

b) If level(E2j+1) =level(E2j)+1, then E2j+1 = A(xr,ys+1), and therefore:

k2j+1 = |E2j+1\E2j | = (s+ 1) · r − s · r = r.

Proof. [Proof of Proposition 6] We begin with the �rst statement. Let Ei =

A(xri
,ysi )

and without loss of generality assume that ri ≤ si. Take E
′
i = A(xr′

i
,ys′

i
)

and assume that level(Ei) = level(E′i). By Equation (9), we know that ri + si =

i+ 1 = r′i + s′i. Consider two cases:

Case 1 i is odd. Then:

|si − ri|
2

= level(Ei) = level(E′i) =
|r′i − s′i|

2
.

This implies that si − ri = |s′i − r′i|, whence either E′i = A(xri
,ysi )

or

E′i = A(xsi
,yri )

.

Case 2 i is even. Then:

|si − ri| − 1

2
= level(Ei) = level(E′i) =

|r′i − s′i| − 1

2
.

Thus, si − ri = |s′i − r′i|, and as a consequence either E′i = A(xri
,ysi )

or

E′i = A(xsi
,yri )

.

From this we deduce that min{ri, si} = min{r′i, s′i} and max{ri, si} = max{r′i, s′i}.
We turn now towards the second statement.

Let us prove that E′′i ⊂ E′′i+1 for any i = 1, . . . , n+m−2. We have the following

possible scenarios:

(a) E′′i = Ei and E
′′
i+1 = Ei+1. Then trivially E′′i ⊂ E′′i+1 because Ei ⊂ Ei+1.

(b) E′′i = Ei and E
′′
i+1 6= Ei+1. This means that:

Ei = A(xri
,yri )

= E′′i , Ei+1 = A(xri+1,yri )
and E′′i+1 = A(xri

,yri+1),
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whence E′′i ⊂ E′′i+1.

(c) E′′i 6= Ei and E
′′
i+1 = Ei+1. This means that:

Ei = A(xri
,yri−1), E′′i = A(xri−1,yri )

, Ei+1 = A(xri
,yri )

= E′′i+1.

Thus, E′′i ⊂ E′′i+1.

(d) E′′i 6= Ei and E
′′
i+1 6= Ei+1. This means that Ei = A(xri

,ysi )
and Ei+1 =

A(xri+1
,ysi+1

) with ri > si and ri+1 > si+1 with ri ≤ ri+1, si ≤ si+1. Then:

E′′i = A(xsi
,yri )

and Ei+1 = A(xsi+1
,yri+1

),

and therefore E′′i ⊂ E′′i+1.

Now, by de�nition it is clear that both Ei and E
′′
i have the same level (|ri − si| =

|si− ri|). Applying Proposition 5 we deduce that the values ki and k
′′

i also coincide

and consequently using Equation (4), |ext(M(Π))| = |ext(M(Π′′))|.

In order to prove Proposition 7, we must establish �rst a number of auxiliary

results:

Lemma 1. Let Π,Π′ be two optimal type-2 possibility measures. Assume that they

satisfy the following properties:

(1) The focal sets of Π are given by E1 ⊂ . . . ⊂ En+m−1 such that Ei = A(xr,ys),

Ei+1 = A(xr+1,ys) and Ei+2 = A(xr+1,ys+1).

(2) The focal sets of Π′ are given by

E1 ⊂ . . . ⊂ Ei ⊂ E′i+1 ⊂ Ei+2 ⊂ . . . ⊂ En+m−1,

with Ei = A(xr,ys), Ei+1 = A(xr,ys+1) and Ei+2 = A(xr+1,ys+1).

(3) s > r.

Then, |ext(M(Π))| > |ext(M(Π′))|.

Proof. From Equation (4), we only need to show that (1 + ki+1)(1 + ki+2) >

(1 + k′i+1)(1 + k′i+2), where kj = |Ej \ Ej−1| and k′j = |E′j \ E′j−1|. From the

hypotheses, we obtain

ki+1 = |Ei+1\Ei| = (r + 1) · s− r · s = s

ki+2 = |Ei+2\Ei+1| = (r + 1) · (s+ 1)− (r + 1)s = r + 1

while

k′i+1 = |Ei+1\Ei| = (s+ 1) · r − s · r = r.

k′i+2 = |Ei+2\Ei+1| = (r + 1) · (s+ 1)− (s+ 1) · r = s+ 1.

Now, since s > r,

(ki+1 + 1) · (ki+2 + 1) = (s+ 1)(r + 2) > (r + 1)(s+ 2) = (k
′

i+1 + 1) · (k
′

i+2 + 1),

and as a consequenceM(Π) has more extreme points thanM(Π′).
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Corollary 2. Let Π,Π′ be two optimal type-2 possibility measures. Assume that

they satisfy the following properties:

(1) The focal sets of Π are given by E1 ⊂ . . . ⊂ En+m−1 such that level(Ei) =

level(Ei+2).

(2) The focal sets of Π′ are given by

E1 ⊂ . . . ⊂ Ei ⊂ E′i+1 ⊂ Ei+2 ⊂ . . . ⊂ En+m−1

such that level(E′i+1) > level(Ei+1).

Then, |ext(M(Π))| > |ext(M(Π′))|.

Proof. This is a straightforward reformulation of Lemma 1 in terms of levels.

Lemma 2. Let Π and Π′ be two optimal type-2 possibility measures on P(X ×Y),

with respective focal sets E1 ⊂ . . . ⊂ En+m−1 and E′1 ⊂ . . . ⊂ E′n+m−1. As-

sume that level(E′j)−level(Ej) ∈ {0, 1} for any j = 2, . . . , n + m − 1 and that

level(E′j)−level(Ej) = 1 for at least one j. Then, |ext(M(Π))| > |ext(M(Π′))|.

Proof. Taking into account Proposition 6, we can assume without loss of generality

that if A(xr,ys) is a focal set Ei or E
′
i, then r ≤ s.

Let us proceed by induction on

γ = |j ∈ {2, . . . , n+m− 1} : level(E′j)− level(Ej) = 1}|.

First of all, assume that γ = 1, and let j + 1 satisfy level(E′j+1)−level(Ej+1) = 1.

Thus, level(Ei) =level(E′i) for any i 6= j+1 because γ = 1, and therefore, according

to Proposition 6, Ei = E′i for any i 6= j + 1. There are two possible cases:

(1) i = level(Ej) = level(E′j) = level(E′j+1) > i−1 = level(Ej+1). According to

Proposition 5, j must be odd. Also, since γ = 1, conditions (L1)�(L2) imply

that level(Ej+2) = level(E′j+2) = i − 1. Since Ei = E′i for any i 6= j + 1,

Corollary 2 implies thatM(Π) has more extreme points thanM(Π′).

(2) i = level(Ej) = level(E′j) = level(Ej+1) < i + 1 = level(E′j+1). By Propo-

sition 5, j must be even. Also, since γ = 1, the same result tells us that

level(Ej+2) = level(E′j+2) = i. Taking into account that Ei = E′i for any

i 6= j + 1, Corollary 2 implies that M(Π) has more extreme points than

M(Π′).

Next we consider the case of γ > 1 and denote j + 1 = min{2, . . . , n + m − 1 |
level(E′j) − level(Ej) = 1}; the idea of the proof is to build another possibility

measure Π∗ such thatM(Π) has more extreme points thanM(Π∗), which in turn

has more extreme points such thanM(Π′), and to apply the induction hypothesis

on Π∗. There are two possible scenarios:

(1) i = level(Ej) = level(E′j) = level(Ej+1) < level(E′j+1) = i + 1. According

to Proposition 5, j is even. We consider again the following cases:
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(1a) level(Ej+2) = i < i + 1 = level(E′j+2). We consider the possibility

measure Π∗ whose focal sets are E∗1 ⊂ . . . ⊂ E∗n+m−1, where

E∗j+1 = E′j+1 and E∗s = Es for any s 6= j + 1.

Note that the focal sets E∗i are nested: obviously E
∗
i ⊂ E∗i+1 for any i =

1, . . . , j−1, j+2, . . . , n+m−1 because E∗i = Ei and E
∗
i+1 = Ei+1. On

the other hand, if Ej = A(xr,ys), the equality level(E∗j ) =level(Ej+2)

implies that E∗j+1 = A(xr+1,ys+1). Therefore, E
∗
j+1 is either A(xr,ys+1)

or A(xr+1,ys), and in both cases E∗j ⊂ E∗j+1 ⊂ E∗j+2.

According to Corollary 2, M(Π) has more extreme points than

M(Π∗), level(E∗s ) ≤ level(E′s) and

|{j ∈ {2, . . . , n+m− 1} | level(E′j)− level(E∗j ) = 1}| = γ − 1.

Applying the induction hypothesis, M(Π∗) has more extreme points

thanM(Π′), whenceM(Π) has more extreme points thanM(Π′).

(1b) level(Ej+2) = i − 1 < i = level(E′j+2). We consider the possibility

measure Π∗ whose focal sets are E∗1 ⊂ . . . ⊂ E∗n+m−1, where

E∗j+1 = Ej+1 and E∗s = E′s for any s 6= j + 1.

Following the same reasoning than in (1a), we can verify that the sets

E∗i are nested and that as a consequence Π∗ is a possibility measure. By

Corollary 2,M(Π∗) has more extreme points thanM(Π′); moreover,

level(E∗s ) ≤ level(Es) and

|{j ∈ {2, . . . , n+m− 1} | level(E∗j )− level(Ej) = 1}| = γ − 1.

Applying the induction hypothesis, M(Π) has more extreme points

thanM(Π∗), whenceM(Π) has more extreme points thanM(Π′).

(1c) level(Ej+2) = i = level(E′j+2). We consider the possibility measure Π∗

whose focal sets are E∗1 ⊂ . . . ⊂ E∗n+m−1, where

E∗j+1 = Ej+1 and E∗s = E′s for any s 6= j + 1.

Reasoning as in (1a), we can easily verify that the sets E∗i are nested

and therefore Π∗ is a possibility measure. By Corollary 2,M(Π∗) has

more extreme points than M(Π′); moreover, level(Es) ≤ level(E∗s )

and

|{j ∈ {2, . . . , n+m− 1} | level(E∗j )− level(Ej) = 1}| = γ − 1.

Applying the induction hypothesis, M(Π) has more extreme points

than M(Π∗), whence that M(Π) has more extreme points than

M(Π′).

(2) The second possible case is that i = level(Ej) = level(E′j) = level(E′j+1) >

level(Ej+1) = i− 1. Here we have three possible scenarios:

(2a) level(Ej+2) = i− 1 < i = level(E′j+2).
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(2b) level(Ej+2) = i < i+ 1 = level(E′j+2).

(2c) level(Ej+2) = i = level(E′j+2).

The proof of these three cases is analogous to that of (1a)�(1c) above.

Proof. [Proof of Proposition 7] Taking into account Proposition 6, we can assume

without loss of generality that if A(xr,ys) is a focal set of Π or Π′, then r ≤ s.
Consider the value

α = max{level(E′j)− level(Ej) : j = 2, . . . , n+m− 1};

we shall make the proof by induction over α. For α = 1, the result was proven in

Lemma 2. Consider the case of α > 1, and let us de�ne

γ = |{j ∈ {1, . . . , n+m− 1} : level(E′j)− level(Ej) = α}|.

Again, let us proceed by induction over γ. For γ = 1, denote by j + 1 the unique

element such that level(E′j+1) − level(Ej+1) = α. This implies that level(E′j) −
level(Ej) = α− 1. There are two cases:

(1) i = level(Ej) > level(Ej+1) = i − 1, i + α − 1 = level(E′j) = level(E′j+1).

According to Proposition 5, j must be odd. Also, since γ = 1, conditions

(L1)�(L2) imply that level(Ej+2) = i and level(E′j+2) = i + α − 1. We

consider the possibility Π∗ with focal sets E∗1 ⊂ . . . ⊂ E∗n+m−1 given by:

E∗j+1 = E, E∗s = Es for any s 6= j + 1,

where Ej ⊂ E ⊂ Ej+2 and level(E) = i. Then, according to Corollary 2,

M(Π) has more extreme points thanM(Π∗), level(E∗s ) ≤ level(E′s) and

max{level(E′j)− level(E∗j ) : j = 2, . . . , n+m− 1} = α− 1

whence by the induction hypothesis,M(Π∗) has more extreme points than

M(Π′).

(2) i = level(Ej) = level(Ej+1), i + α − 1 = level(E′j) < level(E′j+1) = i +

α. According to Proposition 5, j must be even. Also, since γ = 1, using

conditions (L1)�(L2) we conclude that level(Ej+2) = i and level(E′j+2) =

i+α−1. We consider the possibility Π∗ with focal sets E∗1 ⊂ . . . ⊂ E∗n+m−1
given by:

E∗j+1 = E, E∗s = E′s for any s 6= j + 1,

where E′j ⊂ E ⊂ E′j+2 and level(E) = i + α − 1. Then, according to

Corollary 2, M(Π∗) has more extreme points than M(Π′), level(Es) ≤
level(E∗s ) and

max{level(E∗j )− level(Ej) : j = 2, . . . , n+m− 1} = α− 1,

whence by induction hypothesis, M(Π) has more extreme points than

M(Π∗).
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We conclude in either case thatM(Π) has more extreme points thanM(Π′).

Next we consider the case of γ > 1 and denote

j + 1 = min{2, . . . , n+m− 1 : level(E′j)− level(Ej) = α}.

This implies that level(E′j)− level(Ej) = α− 1. There are two possible cases:

(1) i = level(Ej) = level(Ej+1), i + α − 1 = level(E′j) < level(E′j+1) = i + α.

According to Proposition 5, j is even. We consider again the following cases:

(1a) i = level(Ej+2), i+α = level(E′j+2). We de�ne the possibility measure

Π∗ with focal sets E∗1 ⊂ . . . ⊂ E∗n+m−1 given by:

E∗j+1 = E, E∗s = Es for any s 6= j + 1,

where Ej ⊂ E ⊂ Ej+2 and level(E) = i+ 1. According to Corollary 2,

M(Π) has more extreme points than M(Π∗), level(E∗s ) ≤ level(E′s)

for any s = 2, . . . , n+m− 1 and

|{j ∈ {2, . . . , n+m− 1} : level(E′j)− level(E∗j ) = α}| = γ − 1.

Applying the induction hypothesis, M(Π∗) has more extreme points

thanM(Π′), whenceM(Π) has more extreme points thanM(Π′).

(1b) i− 1 = level(Ej+2), i+ α− 1 = level(E′j+2). We de�ne the possibility

measure Π∗ with focal sets E∗1 ⊂ . . . ⊂ E∗n+m−1 given by:

E∗j+1 = E, E∗s = E′s for any s 6= j + 1,

where E′j ⊂ E ⊂ E′j+2 and level(E) = i+ α − 1. According to Corol-

lary 2, M(Π∗) has more extreme points than M(Π′), level(Es) ≤
level(E∗s ) for any s = 2, . . . , n+m− 1 and

|{j ∈ {2, . . . , n+m− 1} : level(E∗j )− level(Ej) = α}| = γ − 1.

Applying the induction hypothesis, M(Π) has more extreme points

thanM(Π∗), whenceM(Π) has more extreme points thanM(Π′).

(1c) i = level(Ej+2), i + α − 1 = level(E′j+2). We de�ne the possibility

measure Π∗ with focal sets E∗1 ⊂ . . . ⊂ E∗n+m−1 given by:

E∗j+1 = E, E∗s = E′s for any s 6= j + 1,

where E′j ⊂ E ⊂ E′j+2 and level(E) = i + α − 1. By Corollary 2,

M(Π∗) has more extreme points than M(Π′), level(E∗s ) ≥ level(Es)

for any s = 2, . . . , n+m− 1 and

|{j ∈ {2, . . . , n+m− 1} : level(E′j)− level(Ej) = α}| = γ − 1.

Applying the induction hypothesis, M(Π) has more extreme points

than M(Π∗), and as a consequence it also has more extreme points

thanM(Π′).
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(2) The second possible case is that of i = level(Ej) > level(Ej+1) = i − 1,

i + α − 1 = level(E′j) = level(E′j+1). According to Proposition 5, j is odd.

Here there are three possible scenarios:

(2a) i− 1 = level(Ej+2), i+ α− 1 = level(E′j+2).

(2b) i = level(Ej+2), i+ α = level(E′j+2).

(2c) i = level(Ej+2), i+ α− 1 = level(E′j+2).

The proof of these cases is analogous to that of cases (1a)�(1c) above.

Proof. [Proof of Theorem 3] Let Π be an optimal type-2 possibility measure whose

credal set has the maximum number of extreme points. This only happens if the

level of any Ej is the minimum possible, or, equivalently, if level(Ej) = 0 for any

j = 2, . . . , 2n. It follows that the focal sets of Π must be:

E2j+1 = A(xj ,yj), for any j = 1, . . . , n− 1,

E2j = A(xj ,yj+1) or E2j = A(xj+1,yj) for any j = 1, . . . , n− 1,

E2n = A(xn,ym+1), . . . , En+m−1 = A(xn,ym),

and also either E1 = A(x1,y1) or E1 = ∅.
If Π′ is another type-2 optimal possibility di�erent than Π, it must have some

focal set Ei with level(E′i) > 0 for some i, and therefore from Proposition 7 the core

of Π has more extreme points than that of Π′.

Consider the case E1 = A(x1,y1); applying Proposition 5, the values kj associated

with Π are:

• k1 = 1.

• For j = 1, . . . , n− 1, k2j = j.

• For j = 2, . . . , n, k2j−1 = j.

• For j = 2n, . . . , n+m− 1, kj = n.

By Equation (4), the number of extreme points ofM(Π) is:

k1

n+m−1∏
j=2

(1 + kj) = k1

n−1∏
j=1

(1 + k2j)

n∏
j=2

(1 + k2j−1)

n+m−1∏
j=2n

(1 + kj)

= 1

n−1∏
j=1

(1 + j)

n∏
j=2

(1 + j)

n+m−1∏
j=2n

(n+ 1)

= (n!)

(
n!

2
(n+ 1)

)
(n+ 1)

m−n
=

(n!)2

2
(n+ 1)m−n+1.

When E1 = ∅, we deduce from Proposition 2 that the maximal number of extreme

points is the same as in the previous case.

Next we focus on the minimal number of extreme points. As we have seen in

Proposition 7, the greater the levels, the smaller the number of extreme points. We

consider thus the following cases:

• If j ≤ m, the maximum level for Ej = A(xr,ys) is achieved when either

r = j, s = 1 or r = 1, s = j. Therefore, either Ej = A(xj ,y1) or Ej = A(x1,yj).
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• If j > m, the maximum level for Ej = A(xr,ys) is achieved when either

r = m, s = j − m + 1 or r = j − m + 1, s = m. Therefore, either Ej =

A(xm,yj−m+1) or Ej = A(xj−m+1,ym).

Since the focal sets must be nested, there are two possibilities:

(1) If n < m, then the focal sets must be:

Ej = A(x1,yj) ∀j = 2, . . . ,m, Ej = A(xj−m+1,ym) ∀j = m+1, . . . ,m+n−1.

(13)

(2) If n = m, then the focal sets must be either as in Equation (13) or:

Ej = A(xj ,y1) ∀j = 2, . . . , n, Ej = A(xn,yj−m+1) ∀j = m+1, . . . ,m+n−1.

According to Proposition 5, the values kj are given by:

kj =

{
1 for j = 1, . . . ,m.

m for j = m+ 1, . . . ,m+ n− 1,
(14)

and applying Equation (4), the number of extreme points is given by:

k1(1 + k2) . . . (1 + kn+m−1) = 2m−1(m+ 1)n−1.

Lemma 3. Let Π,Π′ be two optimal type-1 possibility measures. Assume that:

(1) The focal sets of Π are given by E1 ⊂ . . . ⊂ En+m−1, with E1 = Ac(xn,ym−1)
.

(2) The focal sets of Π′ are given by E′1 ⊂ . . . ⊂ E′n+m−1, with E′1 = Ac(xn−1,ym)

and E′i = Ei for any i > 1.

Then, |ext(M(Π))| = |ext(M(Π′))|.

Proof. Let us denote by ki and k
′
i the elements:

k1 = |E1|, ki = |Ei\Ei−1|, k′1 = |E′1|, k′i = |E′i\E′i−1|,

for any i = 2, . . . , n + m − 1. Since Ei = E′i for any i > 1, ki = k′i for any

i = 3, . . . , n+m− 1. Let us compute the values of k1, k2, k
′
1, k
′
2. For this aim, note

that since E2 = E′2, it must hold that E2 = E′2 = Ac(xn−1,ym−1)
. Therefore:

k1 = |E1| = |Ac(xn,ym−1)
| = nm− n(m− 1) = n.

k2 = |E2\E1| = |Ac(xn−1,ym−1)
\Ac(xn,ym−1)

| = |A(xn,ym−1)\A(xn−1,ym−1)|
= n(m− 1)− (n− 1)(m− 1) = m− 1.

k′1 = |E′1| = |Ac(xn−1,ym)| = nm− (n− 1)m = m.

k′2 = |E′2\E′1| = |Ac(xn−1,ym−1)
\Ac(xn−1,ym)| = |A(xn−1,ym)\A(xn−1,ym−1)|

= (n− 1)m− (n− 1)(m− 1) = n− 1.

Then,

k1(1 + k2) = nm = k′1(1 + k′2),
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whence

k1

n+m−1∏
i=2

(1 + ki) = k1(1 + k2)

n+m−1∏
i=3

(1 + ki) = nm

n+m−1∏
i=3

(1 + ki)

= nm

n+m−1∏
i=3

(1 + k′i) = k′1(1 + k′2)

n+m−1∏
i=3

(1 + k′i) = k′1

n+m−1∏
i=2

(1 + k′i),

and thereforeM(Π) andM(Π′) have the same number of extreme points.

Lemma 4. Let Π,Π′ be two optimal type-1 possibility measures. Assume that they

satisfy the following properties:

(1) The focal sets of Π are given by E1 ⊂ . . . ⊂ En+m−1 such that Ei = Ac(xr,ys)
,

Ei+1 = Ac(xr−1,ys)
and Ei+2 = Ac(xr−1,ys−1)

.

(2) The focal sets of Π′ are given by

E1 ⊂ . . . ⊂ Ei ⊂ E′i+1 ⊂ Ei+2 ⊂ . . . ⊂ En+m−1

such that Ei = Ac(xr,ys)
, Ei+1 = Ac(xr,ys−1)

and Ei+2 = Ac(xr−1,ys−1)
.

(3) s > r.

Then, |ext(M(Π′))| > |ext(M(Π))|.

Proof. From Equation (4), we only need to show that (1 + ki+1)(1 + ki+2) <

(1 + k′i+1)(1 + k′i+2).

For Π, it holds that:

ki+1 = |Ei+1\Ei| = |Ac(xr−1,ys)
\Ac(xr,ys)

| = |A(xr,ys)\A(xr−1,ys)|

= rs− (r − 1)s = s

ki+2 = |Ei+2\Ei+1| = |Ac(xr−1,ys−1)
\Ac(xr−1,ys)

| = |A(xr−1,ys)\A(xr−1,ys−1)|

= (r − 1)s− (r − 1)(s− 1) = r − 1.

On the other hand, since for any j 6= i + 1, i + 2, k′i+1 = |E′i+1\Ei| and k′i+2 =

|Ei+2\E′i+1|, then k′j = kj , and furthermore:

k′i+1 = |E′i+1\E′i| = |Ac(xr,ys−1)
\Ac(xr,ys)

| = |A(xr,ys)\A(xr,ys−1)|

= rs− r(s− 1) = r.

k′i+2 = |E′i+2\E′i+1| = |Ac(xr−1,ys−1)
\Ac(xr,ys−1)

| = |A(xr,ys−1)\A(xr−1,ys−1)|

= r(s− 1)− (r − 1)(s− 1) = s− 1.

Since s > r,

(1 + ki+1)(1 + ki+2) = (s+ 1)r < (r + 1)s = (1 + k′i+1)(1 + k′i+2).

Consequently,M(Π′) has more extreme points thanM(Π).
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Lemma 5. Let Π and Π′ be two optimal type-1 possibility measures on P(X ×Y),

with respective focal sets E1 ⊂ . . . ⊂ En+m−1 and E′1 ⊂ . . . ⊂ E′n+m−1. As-

sume that level(E′j)−level(Ej) ∈ {0, 1} for any j = 2, . . . , n + m − 1 and that

level(E′j)−level(Ej) = 1 for at least one j. Then, it holds that:

(1) If level(E′j)−level(Ej) = 1 only for j = 1, |ext(M(Π))| = |ext(M(Π′))|.
(2) Otherwise, |ext(M(Π))| > |ext(M(Π′))|.

Proof. The �rst case follows from Lemma 3, taking into account that two focal

sets coincide when their levels coincide.

The proof of the second statement is analogous to that of Lemma 2 by using

Lemma 4.

Proof. [Proof of Proposition 8] When the inequality level(Ej) ≤ level(E′j) is strict

only for j = 1, we are in the conditions of Lemma 3, so both M(Π) and M(Π′)

have the same number of extreme points.

For the other case, the proof is analogous to that of Proposition 7 by using

Lemmas 3 and 5.

Proof. [Proof of Theorem 4] In order to obtain the maximum number of extreme

points, the focal sets of Π must have the minimum possible level. Let Π̃ be the

optimal type-2 possibility measure associated with Π. From Theorem 3 we know

that the focal sets of Π̃, Ẽ1, . . . , Ẽn+m−1, have the minimum possible level when

they are given by:

Ẽ2j+1 = A(xj ,yj), for any j = 0, . . . , n− 1.

Ẽ2j = A(xj ,yj+1) or Ẽ2j = A(xj+1,yj), for any j = 1, . . . , n− 1.

Ẽ2n = A(xn,ym+1), . . . , Ẽn+m−1 = A(xn,ym).

Then, the focal sets of Π must be:

Ej = Ẽcm+n−j−1 = Ac(xn,ym−j)
, for any j = 1, . . . ,m− n− 1.

En+m−2j = Ẽc2j−1 = Ac(xj ,yj)
for any j = 1, . . . , n.

En+m−2j−1 = Ẽc2j = Ac(xj ,yj+1)
or En+m−2j−1 = Ẽc2j = Ac(xj+1,yj)

for any j = 1, . . . , n− 1.

Em+n−1 = X × Y.

Furthermore, since ki = k̃m+n−j , and therefore, making use of Theorem 3:

kj = k̃m+n−j = n, for any j = 1, . . . ,m− n− 1.

kn+m−2j = k̃2j = j, for any j = 1, . . . , n.

kn+m−2j−1 = k̃2j+1 = j + 1, for any j = 1, . . . , n− 1.

km+n−1 = 1.
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This means that the maximum number of extreme points is:

k1

n+m−1∏
j=1

(1 + kj)

= n

m−n−1∏
j=2

(1 + kj)

n∏
j=1

(1 + kn+m−2j)

n−1∏
j=1

(1 + kn+m−2j−1)(1 + km+n−1)

= 2n

m−n−1∏
j=2

(n+ 1)

n∏
j=1

(j + 1)

n−1∏
j=1

(j + 2)

= 2n(n+ 1)m−n−2(n+ 1)! (n+1)!
2 = n(n+ 1)m−n(n!)2.

Consider now the case m = n + 1. Then, as we have seen, the following focal sets

determine an optimal type-1 possibility Π with the maximum number of extreme

points:

E2j−1 = Ac(xn−j+1,yn−j+1)
, for any j = 1, . . . , n.

E2j = Ac(xn−j+1,yn−j)
or E2j = Ac(xn−j ,yn−j+1)

, for any j = 1, . . . , n.

If we replace the focal set E1 = Ac(xn,yn)
by E′1 = Ac(xn−1,yn+1)

, then by Lemma 3 we

obtain an optimal type-1 possibility inducing the same number of extreme points

than Π.

With respect to the minimal number of extreme points, it follows from Proposi-

tion 8 that they are attained when the levels of the focal sets are as large as possible.

Taking into account the correspondence with an optimal type-2 possibility measure

in Equation (11) and Equation (14), we obtain

k̃j =

{
1 for j = 1, . . . ,m

m for j = m+ 1, . . . , n+m− 1,

and then Equation (12) means that the associated number of extreme points is

m(1 +m)n−22m.


