
FORWARD IRRELEVANCE

GERT DE COOMAN AND ENRIQUE MIRANDA

ABSTRACT. We investigate how to combine marginal assessments about the values that
random variables assume separately into a model for the values that they assume jointly,
when (i) these marginal assessments are modelled by means of coherent lower previsions,
and (ii) we have the additional assumption that the random variables are forward epis-
temically irrelevant to each other. We consider and provide arguments for two possible
combinations, namely the forward irrelevant natural extension and the forward irrelevant
product, and we study the relationships between them. Our treatment also uncovers an
interesting connection between the behavioural theory of coherent lower previsions, and
Shafer and Vovk’s game-theoretic approach to probability theory.

1. INTRODUCTION

In probability and statistics, assessments of independence are often useful as they allow
us to reduce the complexity of inference problems. To give an example, and to set the stage
for the developments in this paper, we consider two random variables X1 and X2, taking
values in the respective finite sets X1 and X2. Suppose that a subject is uncertain about
the values of these variables, but that he has some model expressing his beliefs about them.
Then we say that X1 is epistemically irrelevant to X2 for the subject when he assesses that
learning the actual value of X1 won’t change his beliefs (or belief model) about the value of
X2. We say that X1 and X2 are epistemically independent when X1 and X2 are epistemically
irrelevant to one another; the terminology is borrowed from Walley (1991, Chapter 9).

Let us first look at what these general definitions yield when the belief models our sub-
ject uses are precise probabilities. If the subject has a marginal probability mass function
p1(x1) for the first variable X1, and a conditional mass function q2(x2|x1) for the second
variable X2 conditional on the first, then we can calculate his joint mass function p(x1,x2)
using Bayes’s rule: p(x1,x2) = p1(x1)q2(x2|x1). Now consider any real-valued function f
on X1×X2. We shall call such functions gambles, because they can be interpreted as un-
certain rewards. We find for the prevision (or expectation, or fair price, we use de Finetti’s
(1974–1975) terminology and notation throughout this paper.) of such a gamble f that:

P( f ) = ∑
(x1,x2)∈X1×X2

f (x1,x2)p1(x1)q2(x2|x1)

= ∑
x1∈X1

p1(x1) ∑
x2∈X2

f (x1,x2)q2(x2|x1) = ∑
x1∈X1

p1(x1)Q2( f (x1, ·)|x1)

= P1(Q2( f |X1)), (1)
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where we let Q2( f |X1) be the subject’s conditional prevision of f given X1, which is a
gamble on X1 whose value in x1,

Q2( f |x1) := Q2( f (x1, ·)|x1) = ∑
x2∈X2

f (x1,x2)q2(x2|x1),

is the subject’s conditional prevision of f given that X1 = x1. We also let P1 be the subject’s
marginal prevision (operator) for the first random variable, associated with the marginal
mass function p1: P1(g) := ∑x1∈X1

g(x1)p1(x1) for all gambles g on X1.
When the subject judges X1 to be (epistemically) irrelevant to X2, then we get for all

x1 ∈X1 and x2 ∈X2 that
q2(x2|x1) = p2(x2), (2)

where p2 is the subject’s marginal mass function for the second variable X2 that we can
derive from the joint p using p2(x2) := ∑x1∈X1

p(x1,x2). The equality (2) expresses that
learning that X1 = x1 doesn’t change the subject’s probability model for the value of the
second variable. Condition (2) is equivalent to requiring that for all x1 ∈X and all gambles
f on X1×X2,

Q2( f (x1, ·)|x1) = P2( f (x1, ·)), (3)

where now P2 is the subject’s marginal prevision (operator) for the second variable, asso-
ciated with the marginal mass function p2. We can then write for the joint prevision:

P( f ) = P1(P2( f )), (4)

where f is any gamble on X1×X2, and where we let P2( f ) be the gamble on X1 that
assumes the value P2( f (x1, ·)) in x1 ∈X1.

Similarly, when X2 is epistemically irrelevant to X1 for our subject, then

q1(x1|x2) = p1(x1) (5)

for all x1 ∈X1 and x2 ∈X2. Here q1(x1|x2) is the subject’s mass function for the first vari-
able X1 conditional on the second. This leads to another expression for the joint prevision:

P( f ) = P2(P1( f )). (6)

Expressions (4) and (6) for the joint are equivalent, as generally P1(P2( f )) = P2(P1( f )).
This is related to the fact that Conditions (2) and (5) are equivalent: if X1 is epistemically
irrelevant to X2 then X2 is epistemically irrelevant to X1, and vice versa. In other words, for
precise probability models, epistemic irrelevance is equivalent to epistemic independence.

Some caution is needed here: this equivalence is only guaranteed if the marginal mass
functions are everywhere non-zero. If some events have zero probability, then it can still
be guaranteed provided we slightly change the definition of epistemic irrelevance, and for
instance impose q2(x2|x1) = p2(x2) only when p1(x1) > 0.

All of this will seem tritely obvious to anyone with a basic knowledge of probability
theory, but the point we want to make, is that the situation changes dramatically when
we use belief models that are more general (and arguably more realistic) than the precise
(Bayesian) ones, such as Walley’s (1991) imprecise probability models.

On Walley’s view, a subject may not generally be disposed to specify a fair price P( f )
for any gamble f , but we can always ask for his lower prevision P( f ), which is his supre-
mum acceptable price for buying the uncertain reward f , and his upper prevision P( f ),
which is his infimum acceptable price for selling f . We give a fairly detailed introduction
to Walley’s theory in Section 2.



FORWARD IRRELEVANCE 3

On this new approach, if X1 is epistemically irrelevant to X2 for our subject, then [com-
pare with Condition (3)]

Q2( f (x1, ·)|x1) = P2( f (x1, ·))
for all gambles f on X1 ×X2 and all x1 ∈ X1. Here, similar to what we did before,
P2 is the subject’s marginal lower prevision (operator) for X2, and Q2(·|X1) is his lower
prevision (operator) for X2 conditional on X1. We shall see in Section 3 that a reasonable
joint model1 for the value that (X1,X2) assumes in X1×X2 is then given by [compare
with Eqs. (1) and (4)]

P( f ) = P1(Q2( f |X1)) = P1(P2( f )) (7)
for all gambles f on X1×X2, where P1 is the subject’s marginal lower prevision (op-
erator) for X1, and where we also let P2( f ) be the gamble on X1 that assumes the value
P2( f (x1, ·)) in any x1 ∈X1.

On the other hand, when our subject judges X2 to be epistemically irrelevant to X1, we
are eventually led to the joint model

P′( f ) = P2(P1( f )),

where now P1( f ) is the gamble on X2 that assumes the value P1( f (·,x2)) in any x2 ∈X1.
Interestingly, it now is no longer guaranteed that P = P′, or in other words that P1(P2(·)) =
P2(P1(·)). We give an example in Section 4, where we also argue that this asymmetry
(i) isn’t caused by ‘pathological’ consequences involving zero probabilities, and can’t be
remedied by simple tricks as the one mentioned above for (precise) probabilities; and (ii)
is endemic, as it seems to be there for all imprecise models, apart from the extreme (linear
or vacuous) ones. It results that, here, the notion of epistemic irrelevance is fundamentally
asymmetrical, and is no longer equivalent to the symmetrical notion of epistemic indepen-
dence. This was discussed in much more detail by Couso et al. (2000).

But then, as the two notions are no longer equivalent here, it becomes quite important to
distinguish between them when we actually represent beliefs using imprecise probability
models. There are a number of reasons why a subject shouldn’t use the consequences of
epistemic independence automatically, when he is only assessing epistemic irrelevance.

First of all, an assessment of epistemic independence is stronger, and leads to higher
joint lower previsions. As lower previsions represent supremum buying prices, higher
values represent stronger commitments, and these may be unwarranted when it is only
epistemic irrelevance that our subject wants to model.

Secondly, joint lower previsions based on an epistemic irrelevance assessment are gen-
erally relatively straightforward to calculate, as Eq. (7) testifies. But calculating joint lower
previsions from marginals based on an epistemic independence assessment is quite often a
very complicated affair; see for instance the expressions in Section 9.3.2 of Walley (1991).

Moreover, there are special but nevertheless important situations where we want to ar-
gue that it may be natural to make an epistemic irrelevance assessment, but not one of
independence. Suppose, for instance that we consider two random variables, X1 and X2,
where our subject knows that the value of X1 will be revealed to him before that of X2.2

Then assessing that X1 and X2 are epistemically independent amounts to assessing that
(i) X1 is epistemically irrelevant to X2: getting to know the value of X1 doesn’t change

our subject’s beliefs about X2;

1This is the most conservative joint lower prevision that is coherent with P1 and Q2(·|X1), see also (Walley,
1991, Section 6.7).

2The discussion that follows here, as well as the one in Appendix A, generalises naturally to random pro-
cesses, where the values of a process are revealed at subsequent points in time.
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(ii) X2 is epistemically irrelevant to X1: getting to know the value of X2 doesn’t change
our subject’s beliefs about X1.

But since the subject knows that he will always know the value of X1 before that of X2,
(ii) is effectively a counter-factual statement for him: “if I got to the value of X2 first, then
learning that value wouldn’t affect my beliefs about X1”. It’s not clear that making such
an assessment has any real value, and we feel it is much more natural in such situations
context to let go of (ii) and therefore to resort to epistemic irrelevance.

This line of reasoning can also be related to Shafer’s (1985) idea that conditioning
must always be associated with a protocol. A subject can then only meaningfully update
(or condition) a probability model on events that he envisages may happen (according to
the established protocol). In the specific situation described above, conditioning on the
variable X2 could only legitimately be done if it were possible to find out the value of X2
without getting to know that of X1, quod non. Therefore, it isn’t legitimate to consider
the conditional lower prevision Q1(·|X2) expressing the beliefs about X1 conditional on
X2, and we therefore can’t meaningfully impose (ii), as it requires that Q1(·|X2) = P1.
Shafer has developed and formalised his ideas about protocols and conditioning using the
notion of an event tree, in an interesting book dealing with causal reasoning (Shafer, 1996).
In Appendix A, we formulate a simple example, where X1 and X2 are the outcomes of
successive coin tosses, in Shafer’s event-tree language. We show that in this specific case,
the general notion of event-tree independence that he develops in his book, is effectively
equivalent to the requirement that X1 should be epistemically irrelevant to X2.

For all these reasons, we feel that a study of the joint lower previsions that result from
epistemic irrelevance assessments is quite important, also from a practical point of view.
We take the first steps towards such a study in this paper.

We shall consider a finite number of variables X1, . . . , XN taking values in respective
sets X1, . . . , XN . We are going to assume moreover that for k = 2, . . . ,N the variables X1,
. . . , Xk−1 are epistemically irrelevant to Xk: we shall call such an assessment forward irrel-
evance. It means that we aren’t learning from the ‘past’,3 and it will be in general weaker
than an assessment of epistemic independence. We shall study which are the inferences
that can be made, based on such assessments.

In order to model the information we have about the variables X1, . . . , XN , we use the
behavioural theory of imprecise probabilities, developed mainly by Walley (1991), with
influences from earlier work by de Finetti (1974–1975) and Williams (1975), amongst
others. This theory constitutes a generalisation of de Finetti’s account of subjective proba-
bility, and uses (coherent) lower and upper previsions to represent a subject’s behavioural
dispositions. We give a brief introduction to the basic ideas behind coherent lower previ-
sions in Section 2, and we explain how they can be identified with sets of (finitely additive)
probability measures. This introductory section can be skipped by anyone with a reason-
able working knowledge of coherent lower previsions.

It may appear at first sight that, because of this choice of model, the results we ob-
tain have a limited interest for people working outside the field of imprecise probabil-
ities. We think that this is not necessarily so, for two reasons: on the one hand, the
mathematical theory of coherent lower and upper previsions subsumes a number of ap-
proaches to uncertainty modelling in the literature, like probability charges (Bhaskara Rao

3Of course, we can only speak of ‘the past’ in this context when the index k refers to the ‘time’ that the actual
value of a variable Xk is revealed. This is the specific situation where we argue that the notion of epistemic irrele-
vance is more natural than epistemic independence. But we don’t question the interest of epistemic independence
in other contexts, of course.



FORWARD IRRELEVANCE 5

and Bhaskara Rao, 1983), 2- and n-monotone set functions (Choquet, 1953–1954), pos-
sibility measures (De Cooman, 2001; De Cooman and Aeyels, 1999, 2000; Dubois and
Prade, 1988), and p-boxes (Ferson et al., 2003). This means that the results we establish
here will also be valid for any of these models.

Moreover, the behavioural theory of imprecise probabilities can also be given a Bayesian
sensitivity analysis interpretation: we may assume the existence of a precise but unknown
probability model for the random variables X1, . . . , XN , and model our information about
it by means of a set of possible models. As we shall see further on in Theorem 5, some of
the results we shall find also make sense on such a sensitivity analysis interpretation.

In Section 3 we explain how a subject’s assessment that he doesn’t learn from the past
can be used to combine a number of marginal lower previsions into a joint lower prevision,
called their forward irrelevant natural extension. We study the properties of this combina-
tion, and show later that it can be related to specific types of coherent probability protocols
introduced by Shafer and Vovk (2001). We also discuss another interesting way of combin-
ing marginal lower previsions into a joint, leading to their forward irrelevant product. This
product has an interesting Bayesian sensitivity analysis interpretation. We also discuss its
properties, and its relationship with the forward irrelevant natural extension. We show in
particular that the forward irrelevant product generally dominates—is less conservative or
more committal than—the forward irrelevant natural extension, and that these two coincide
when the variables Xk we consider, can assume only a finite number of values.

As indicated above, our results also allow us to uncover a perhaps surprising relationship
between Walley’s (1991) behavioural theory of coherent lower previsions, and Shafer and
Vovk’s (2001) game-theoretic approach to probability theory. This is done in Section 5.
In that same section, we also give an interesting financial interpretation for the forward
irrelevant natural extension in terms of an investment game involving futures. We have
gathered the proofs of the main results in Appendix B.

2. COHERENT LOWER AND UPPER PREVISIONS

Here, we present a succinct overview of the relevant main ideas underlying the be-
havioural theory of imprecise probabilities, in order to make it easier for the reader to
understand the course of reasoning that we shall develop. We refer to Walley (1991) for
extensive discussion and motivation.

2.1. Basic notation and rationality requirements. Consider a subject who is uncertain
about something, say, the value that a random variable X assumes in a set of possible
values4 X . Then, a bounded real-valued function on X is called a gamble on X (or on
X), and the set of all gambles on X is denoted by L (X ). Given a real number µ , we
also use µ to denote the gamble that takes the constant value µ . A lower prevision P is a
real-valued map (a functional) defined on some subset K of L (X ), called its domain.
For any gamble f in K , P( f ) is called the lower prevision of f .

A subset A of X is called an event, and it can be identified with its indicator IA, which
is the gamble on X that assumes the value one on A and zero elsewhere. The lower
probability P(A) of A is defined as the lower prevision P(IA) of its indicator IA. On the
other hand, given a lower prevision P, its conjugate upper prevision P is defined on the set
of gambles −K := {− f : f ∈K } by P( f ) := −P(− f ) for every − f in the domain of
P. This conjugacy relationship shows that we can restrict our attention to lower previsions
only. If the domain of P contains only indicators, then we also call P an upper probability.

4We don’t require X to be a subset of the reals, nor that X satisfies any kind of measurability condition.
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A lower prevision P with domain K is called coherent when for any natural numbers
n≥ 0 and m≥ 0, and f0, . . . , fn in K :

sup
x∈X

[ n

∑
k=1

[ fk(x)−P( fk)]−m[ f0(x)−P( f0)]
]
≥ 0. (8)

Coherent lower previsions share a number of basic properties. For instance, given gambles
f and g in K , real numbers µ and non-negative real numbers λ , coherence implies that
the following properties hold, whenever the gambles are in the domain K of P:
(C1) P( f )≥ infx∈X f (x);
(C2) P( f +g)≥ P( f )+P(g) [super-additivity];
(C3) P(λ f ) = λP( f ) [non-negative homogeneity];
(C4) P( f + µ) = P( f )+ µ [constant additivity].
Other properties can be found in Walley (1991, Section 2.6). It is important to mention
here that when K is a linear space, coherence is equivalent to (C1)–(C3). More generally,
a lower prevision on a general domain is coherent if and only if it can be extended to a
coherent lower prevision on some linear space, i.e., a real functional satisfying (C1)–(C3).

2.2. Natural extension. We can always extend a coherent lower prevision P defined on
a set of gambles K to a coherent lower prevision E on the set of all gambles L (X ),
through a procedure called natural extension. The natural extension E of P is defined as
the point-wise smallest coherent lower prevision on L (X ) that coincides on K with P.
It is given for all f in L (X ) by

E( f ) = sup
f1,..., fn∈K

µ1,...,µn≥0,n≥0

inf
x∈X

[
f (x)−

n

∑
k=1

µk[ fk(x)−P( fk)]
]
, (9)

where the µ1, . . . , µn in the supremum are non-negative real numbers.

2.3. Relation to precise probabilities. A linear prevision P is a real-valued functional
defined on a set of gambles K , that satisfies

sup
[ n

∑
i=1

fi−
m

∑
j=1

g j

]
≥

n

∑
i=1

P( fi)−
m

∑
j=1

P(g j) (10)

for all natural numbers n and m, and all gambles f1, . . . , fn, g1, . . . , gm in K .
In particular, a linear prevision P on the set L (X ) is a real linear functional that is

positive (if f ≥ 0 then P( f ) ≥ 0) and has unit norm (P(IX ) = 1). Its restriction to events
is a finitely additive probability. Moreover, any finitely additive probability defined on the
set ℘(X ) of all events can be uniquely extended to a linear prevision on L (X ). For this
reason, we shall identify linear previsions on L (X ) with finitely additive probabilities on
℘(X ). We denote by P(X ) the set of all linear previsions on L (X ).

Linear previsions are the precise probability models: they coincide with de Finetti’s
(1974–1975) notion of a coherent prevision or fair price. We call coherent lower and upper
previsions imprecise probability models. That linear previsions are only required to be
finitely additive, and not σ -additive, derives from the finitary character of the coherence
requirement in Eq. (10).

Consider a lower prevision P defined on a set of gambles K . Its set of dominating
linear previsions M (P) is given by

M (P) = {P ∈ P(X ) : (∀ f ∈K )(P( f )≥ P( f ))}.
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Then P is coherent if and only if M (P) 6= /0 and P( f ) = min{P( f ) : P ∈M (P)} for all f
in K , i.e., if P is the lower envelope of M (P). And the natural extension E of a coherent P
satisfies E( f ) = min{P( f ) : P∈M (P)} for all f in L (X ). Moreover, the lower envelope
of any set of linear previsions is always a coherent lower prevision.

These relationships allow us to provide coherent lower previsions with a Bayesian sen-
sitivity analysis interpretation, which is different from the behavioural interpretation dis-
cussed below in Section 2.5: we might assume the existence of an ideal (but unknown)
precise probability model PT on L (X ), and represent our imperfect knowledge about
PT by means of a (convex closed) set M of possible candidates for PT . The information
given by this set is equivalent to the one provided by its lower envelope P, which is given
by P( f ) = minP∈M P( f ) for all f in L (X ). This lower envelope P is a coherent lower
prevision; and indeed, PT ∈M is equivalent to PT ≥ P.

2.4. Joint and marginal lower previsions. Now consider two random variables X1 and
X2 that may assume values in the respective sets X1 and X2. We assume that these vari-
ables are logically independent: the joint random variable (X1,X2) may assume all values
in the product set X1×X2. A subject’s coherent lower prevision P on a subset K of
L (X1×X2) is a model for his uncertainty about the value that the joint random variable
(X1,X2) assumes in X1×X2, and we call it a joint lower prevision.

We can associate with P its X1-marginal (lower prevision) P1, defined as follows:

P1(g) = P(g′)

for all gambles g on X1, such that the corresponding gamble g′ on X1×X2, defined by
g′(x1,x2) := g(x1) for all (x1,x2) in X1×X2, belongs to K . The gamble g′ is constant
on the sets {x1}×X2, and we call it X1-measurable. In what follows, we identify g and
g′, and simply write P(g) rather than P(g′). The marginal P1 is the corresponding model
for the subject’s uncertainty about the value that X1 assumes in X1, irrespective of what
value X2 assumes in X2. The X2-marginal P2 is defined similarly. The coherence of the
joint lower prevision P clearly implies the coherence of its marginals. If P is in particular
a linear prevision on L (X1×X2), its marginals are linear previsions too.

Conversely, assume we start with two coherent marginal lower previsions P1 and P2,
defined on the respective domains K1 ⊆ L (X1) and K2 ⊆ L (X2). We can interpret
K1 as a set of gambles on X1×X2 that are X1-measurable, and similarly for K2. Any
coherent joint lower prevision defined on a set K of gambles on X1×X2 that includes K1
and K2, and that coincides with P1 and P2 on their respective domains, i.e., has marginals
P1 and P2, will be called a product of P1 and P2. We shall investigate various ways of
defining such products further on in the paper.5

2.5. The behavioural interpretation. The mathematical theory presented above can be
better understood if we consider the following behavioural interpretation.

We interpret a gamble as an uncertain reward: if the value of the random variable X
turns out to be x ∈X , then the corresponding reward will be f (x) (positive or negative),
expressed in units of some (predetermined) linear utility. A subject’s lower prevision P( f )
for a gamble f is defined as his supremum acceptable price for buying f : it is the highest
price µ such that the subject will accept to buy f for all prices α < µ (buying f for a price

5It should be noted here that, in contradistinction with Walley (1991, Section 9.3.1), we don’t intend the mere
term ‘product’ to imply that the variables X1 and X2 are assumed to be independent in any way. On our approach,
there may be many types of products, some of which may be associated with certain types of interdependence
between the random variables X1 and X2. In other words, a product will be simply a joint distribution which is
compatible with the given marginals.
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α is the same thing as accepting the uncertain reward f −α). A subject’s upper prevision
P( f ) for f is his infimum acceptable selling price for f . Then P( f ) = −P(− f ), since
selling f for a price α is the same thing as buying − f for the price −α .

A lower prevision P with domain K is then coherent when a finite combination of
acceptable buying transactions can’t lead to a sure loss, and when moreover for any f in K ,
we can’t force the subject to accept f for a price strictly higher than his specified supremum
buying price P( f ), by exploiting buying transactions implicit in his lower previsions P( fk)
for a finite number of gambles fk in K , which he is committed to accept. This is the
essence of the mathematical requirement (8).

The natural extension of a coherent lower prevision P is the smallest coherent extension
to all gambles, and as such it summarises the behavioural implications of P: E( f ) is the
supremum buying price for f that can be derived from the lower prevision P by arguments
of coherence alone. We can see from its definition (9) that it is the supremum of all prices
that the subject can be effectively forced to buy the gamble f for, by combining finite
numbers of buying transactions implicit in his lower prevision assessments P. In general
E won’t be the unique coherent extension of P to L (X ); but any other coherent exten-
sion will point-wise dominate E and will therefore represent behavioural dispositions not
implied by the assessments P and coherence alone.

Finally, a linear prevision P with a negation invariant domain K = −K corresponds
to the case where P( f ) = P( f ), i.e., when the subject’s supremum buying price coincides
with his infimum selling price, and this common value is a prevision or fair price for the
gamble f , in the sense of de Finetti (1974–1975). This means that our subject is disposed
to buy the gamble f for any price µ < P( f ), and to sell it for any price µ ′ > P( f ) (but
nothing is said about his behaviour for µ = P( f )).

2.6. Conditional lower previsions and separate coherence. Consider a gamble h on
X1×X2 and any value x1 ∈X1. Our subject’s conditional lower prevision P(h|X1 = x1),
also denoted as P(h|x1), is the largest real number p for which the subject would buy the
gamble h for any price strictly lower than p, if he knew in addition that the variable X1
assumes the value x1 (and nothing more!).

We shall denote by P(h|X1) the gamble on X1 that assumes the value P(h|X1 = x1) =
P(h|x1) in any x1 in X1. We can assume that P(h|X1) is defined for all gambles h in some
subset H of X1×X2, and we call P(·|X1) a conditional lower prevision on H . It is
important to recognise that P(·|X1) maps any gamble h on X1×X2 to the gamble P(h|X1)
on X1. We also use the notations

G(h|x1) := I{x1}×X2 [h−P(h|x1)], G(h|X1) = h−P(h|X1) := ∑
x1∈X1

G(h|x1);

G(h|X1) is a gamble on X1 as well.
That the domain of P(·|x1) is the same set H for all x1 ∈X1 is a consequence of the

notion of separate coherence that we shall introduce next (Walley, 1991, Section 6.2.4),
and that we shall assume for all the conditional lower previsions in this paper. We say that
P(·|X1) is separately coherent if (i) for all x1 in X1, P(·|x1) is a coherent lower prevision on
its domain, and if moreover (ii) P({x1}×X2|x1) = 1. It is a very important consequence
of this definition that for all x1 in X1 and all gambles h on the domain of P(·|x1),

P(h|x1) = P(h(x1, ·)|x1).

This implies that a separately coherent P(·|X1) is completely determined by the values
P( f |X1) that it assumes in the gambles f on X2 alone. We shall use this very useful
property repeatedly throughout the paper.
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2.7. Joint coherence and marginal extension. If besides the (separately coherent) con-
ditional lower prevision P(·|X1) on some subset H of L (X1 ×X2), the subject has
also specified a coherent joint (unconditional) lower prevision P on some subset K of
L (X1×X2), then P and P(·|X1) should in addition satisfy the consistency criterion of
joint coherence, which is discussed and motivated at great length in Walley (1991, Chap-
ter 6), and to a lesser extent in Appendix B (Section B.1).

Now, suppose our subject has specified a coherent marginal lower prevision P1 on some
subset K1 of L (X1), modelling the available information about the value that X1 assumes
in X1. And, when modelling the available information about X2, he specifies a separately
coherent conditional lower prevision P(·|X1) on some subset H of L (X1×X2). We can
then always extend P1 and P(·|X1) to a pair M and M(·|X1) defined on all of L (X1×X2),
which is the point-wise smallest jointly coherent pair that coincides with P1 and P(·|X1)
on their respective domains K1 and H . M and M(·|X1) are called the marginal extensions
of P1 and P(·|X1), and they are given, for all gambles f on X1×X2, by

M( f |x1) = E( f (x1, ·)|x1) and M( f ) = E1(E( f |X1)),

where for each x1 in X1, E(·|x1) is the (unconditional) natural extension of the coherent
lower prevision P(·|x1) to all gambles on X2, and E1 is the (unconditional) natural exten-
sion of P1 to all gambles on X1. This result is called the Marginal Extension Theorem in
Walley (1991, Theorem 6.7.2). Note that M coincides with E1 on X1-measurable gambles,
but also that M is not necessarily equal to the (unconditional) natural extension of P1 to all
gambles on X1×X2, as it also has to take into account the behavioural consequences of
the assessments that are present in P(·|X1). As is the case for unconditional natural exten-
sion, the marginal extensions M and M(·|X1) summarise the behavioural implications of P1
and P(·|X1), only taking into account the consequences of (separate and) joint coherence.

Further on, we consider a more general situation, where we work with N random vari-
ables X1 ,. . . , XN taking values in the respective sets X1, . . . , XN , and we apply a general-
isation of the Marginal Extension Theorem proved in Miranda and De Cooman (2007).

3. FORWARD IRRELEVANT NATURAL EXTENSION AND FORWARD IRRELEVANT
PRODUCT

We are ready to begin our detailed discussion of how to combine marginal lower previ-
sions into a joint, in such a way as to take into account epistemic irrelevance assessments.

3.1. Marginal information. Consider N random variables X1, . . . , XN taking values in
the respective non-empty sets X1, . . . , XN . We do not assume that these random variables
are real-valued, i.e., that the Xk are subsets of the set of real numbers R.

For each variable Xk, a subject has beliefs about the values that it assumes in Xk, ex-
pressed in the form of a coherent marginal lower prevision Pk defined on some set of
gambles Kk ⊆L (Xk).

Now, if we know Pk( f ) for some f , then coherence implies that Pk(λ f +µ) = λPk( f )+
µ for all λ ≥ 0 and µ ∈ R, so Pk can be uniquely extended to a coherent lower prevision
on all λ f + µ . We may therefore assume, without loss of generality, that Pk is actually
defined on the set of gambles K ∗

k (a cone containing all constant gambles), given by:

K ∗
k := {λ f + µ : λ ≥ 0, µ ∈ R and f ∈Kk}. (11)

We can extend the marginal lower previsions Pk defined on Kk (or on K ∗
k ) to marginal

lower previsions Ek defined on all of L (Xk), for 1 ≤ k ≤ N, through the procedure of
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natural extension, as explained in Section 2.2. Applying (9), this yields:

Ek(h) = sup
gkik
∈K ∗

k
ik=1,...,nk,nk≥0

inf
xk∈Xk

[
h(xk)−

nk

∑
ik=1

[gkik(xk)−Pk(gkik)]
]

(12)

for all gambles h on Xk, also taking into account that K ∗
k is a cone. Recall that Ek is

the point-wise smallest (least-committal) coherent extension of Pk: it is the extension that
takes into account only the consequences of coherence.

For any 1≤ k ≤ N, we define the set

X k :=×k
i=1Xi = {(x1, . . . ,xk) : xi ∈Xi, i = 1, . . . ,k}

and the random variable Xk := (X1, . . . ,Xk) taking values in the set X k. Our subject judges
the random variables X1, . . . , XN to be logically independent, which means that according
to him, the Xk can assume all values in the corresponding Cartesian product sets X k.

3.2. Expressing forward irrelevance. We now express the following forward irrelevance
assessment: for each 2 ≤ k ≤ N, our subject assesses that his beliefs about the value that
the variable Xk assumes in Xk will not be influenced by any additional information about
the value that the ‘previous’ variables Xk−1 = (X1, . . . ,Xk−1) assume in X k−1 =×k−1

i=1 Xi.
To use Walley’s (1991) terminology, the variables X1, . . . , Xk−1 are epistemically irrelevant
to the variable Xk, for 2≤ k ≤ N.

To make this forward irrelevance condition more explicit, we define the sets of gambles
K k on the product sets X k: let K 1 := K ∗

1 and for 2 ≤ k ≤ N, let K k be the set of
all gambles f on X k such that all partial maps f (x, ·) are in K ∗

k for x ∈ X k−1, i.e.,
K k := { f ∈L (X k) : (∀x ∈X k−1)( f (x, ·) ∈K ∗

k )}. It follows from Eq. (11) that K k is
a cone as well. In fact, we have something stronger: that λ f + µ ∈K k for all f in K k,
and all gambles λ ≥ 0 and µ on X k−1. The forward irrelevance assessment can now be
used to define conditional lower previsions P(·|Xk−1): let P( f |x1, . . . ,xk−1) := Pk( f ) for
all f in Kk. Invoking separate coherence (Section 2.6), they can actually be defined on all
g in K k by

P(g|x1, . . . ,xk−1) := Pk(g(x1, . . . ,xk−1, ·)) (13)

for all (x1, . . . ,xk−1) in X k−1, where 2≤ k ≤ N.
In summary, we have the following assessments: an marginal lower prevision P1 defined

on K 1, and conditional lower previsions P(·|Xk−1) defined on K k, which are derived
from the marginals Pk and the forward irrelevance assessment (13), for 2≤ k ≤ N.

3.3. The forward irrelevant natural extension. We now investigate what are the mini-
mal behavioural consequences of these (conditional) lower prevision assessments. In par-
ticular, if a subject has specified the marginal lower previsions Pk summarising his dis-
positions to buy gambles fk in Kk for prices up to Pk( fk), and if he makes the forward
irrelevance assessment expressed through Eq. (13), then what is the smallest (most conser-
vative, or least-committal) price that these assessments and coherence imply he should be
willing to pay for a gamble f on the product space X N?

The lower prevision that represents these least-committal supremum acceptable buying
prices is identified in the following theorem, which is proved in Appendix B, Section B.2.
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Theorem 1. The so-called natural extension EN of P1 and the P(·|Xk−1) to a lower previ-
sion on L (X N), defined by

EN( f ) = sup
gkik
∈K k,ik=1,...,nk

nk≥0,k=1,...,N

inf
x∈X N

[
f (x)−

N

∑
k=1

nk

∑
ik=1

G(gkik |X
k−1)(x)

]
(14)

is the point-wise smallest coherent extension of the marginal lower prevision P1 to L (X N)
that is jointly coherent with the conditional lower previsions P(·|X1), . . . , P(·|XN−1) ob-
tained from the marginal lower previsions P2, . . . , PN through the forward irrelevance
assessments (13).

The expression generalises Walley’s definition of natural extension (Walley, 1991, Sec-
tion 8.1) from linear spaces to more general domains (cones).

The joint lower prevision EN is actually a product of these marginal lower previsions:
we shall see in Proposition 7 that its marginals coincide with the lower previsions P1,
. . . , PN , on their respective domains K1, . . . , KN . In other words, EN provides a way to
combine the marginal lower previsions Pk into a joint lower prevision, taking into account
the assessment of forward irrelevance. We call EN the forward irrelevant natural extension
of the given marginals. Above, we have used the following notations, for all x ∈X N :

G(g|X0)(x) = g(x1)−P1(g)

for any g in K 1 = K ∗
1 , and

G(g|Xk−1)(x) = ∑
y∈X k−1

I{y}(x1, . . . ,xk−1)[g(x1, . . . ,xk)−P(g|y)]

for all 2≤ k ≤ N and g ∈K k, which can be simplified to

G(g|Xk−1)(x) = g(x1, . . . ,xk)−Pk(g(x1, . . . ,xk−1, ·)),
taking into account the forward irrelevance condition (13). This means that we can further
simplify the given expression for the forward irrelevant natural extension EN , also taking
into account that each K k is a cone (and with some obvious abuse of notation for k = 1):

EN( f ) = sup
gkik
∈K k,ik=1,...,nk

nk≥0,k=1,...,N

inf
x∈X N

[
f (x)

−
N

∑
k=1

nk

∑
ik=1

[gkik(x1, . . . ,xk)−Pk(gkik(x1, . . . ,xk−1, ·))]
]
. (15)

3.4. The forward irrelevant product. The forward irrelevant natural extension EN is the
smallest joint lower prevision on L (X N) that is coherent with the given assessments. In
some situations, we might be interested not only in coherently extending the given assess-
ments to a joint lower prevision, but we also might want to coherently extend the condi-
tional lower previsions P(·|Xk), defined on K k+1 (k = 1, . . . ,N−1), to all of L (X k+1),
or to L (X N) for that matter.

We have shown in Miranda and De Cooman (2007) that it is always possible to co-
herently extend any (separately) coherent (conditional) lower previsions P1, P(·|X1), . . . ,
P(·|XN−1) in a least-committal way: there always are (separately and) jointly coherent
(conditional) lower previsions MN , MN(·|X1), . . . , MN(·|XN−1), defined on L (X N),
that coincide with the respective original (conditional) lower previsions P1, P(·|X1), . . . ,
P(·|XN−1) on their respective domains K 1, K 2, . . . , K N , and that are the same time
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point-wise dominated by (i.e., more conservative than) all the other (separately and) jointly
coherent extensions of the original (conditional) lower previsions. This is the essence of
our Marginal Extension Theorem (Miranda and De Cooman, 2007, Theorem 4 and Sec-
tion 7). We refer to Miranda and De Cooman (2007) for a detailed introduction (with
proofs) to the concept of marginal extension and its properties. If we apply our general
Marginal Extension Theorem to the special case considered here, where the P1, P(·|X1),
. . . , P(·|XN−1) are constructed from the marginals P1, . . . , PN using the forward irrelevance
assessment (13), we come to the conclusions summarised in Theorem 2 below.

Consider, for 1 ≤ ` ≤ N, the (unconditional) natural extensions E` to L (X`) of the
marginals P` on K`, and define the lower prevision M` on L (X `) by

M`(h) := E1(E2(. . .(E`(h)) . . .)),

for any gamble h on X `. We use the general convention that for any gamble g on X k,
Ek(g) denotes the gamble on X k−1, whose value in an element (x1, . . . ,xk−1) of X k−1 is
given by Ek(g(x1, . . . ,xk−1, ·)). In general, we have the following recursion formula

Mk( f ) = Mk−1(Ek( f ))

for k = 2, . . . ,N and f in L (X k). Observe that M1 = E1.
We can now use the lower prevision MN to define the so-called marginal extensions

MN , MN(·|X1), . . . , MN(·|XN−1) to L (X N) of the original (conditional) lower previsions
P1, P(·|X1), . . . , P(·|XN−1). Consider any gamble f on X N . Then obviously6

MN( f ) = E1(E2(. . .(EN( f )) . . .)), (16)

and similarly, for any x = (x1, . . . ,xN) in X N ,

MN( f |x1) = MN( f (x1, ·)) = E2(E3(. . .(EN( f (x1, ·))) . . .))
MN( f |x1,x2) = MN( f (x1,x2, ·)) = E3(E4(. . .(EN( f (x1,x2, ·))) . . .))

. . .

MN( f |x1, . . . ,xN−1) = MN( f (x1, . . . ,xN−1, ·)) = EN( f (x1, . . . ,xN−1, ·)).

(17)

Theorem 2. The marginal extensions MN , MN(·|X1), . . . , MN(·|XN−1) defined above in
Eqs. (16) and (17) are the point-wise smallest jointly coherent extensions to L (X N) of
the (conditional) lower previsions P1, P(·|X1), . . . , P(·|XN−1), obtained from the marginal
lower previsions P1, . . . , PN through the forward irrelevance assessments (13) .

Since we shall see in Proposition 7 that the joint lower prevision MN coincides with
P1, . . . , PN on their respective domains K1, . . . , KN , MN is a product of these marginal
lower previsions, and we shall call it their forward irrelevant product. It too provides a
way of combining the marginal lower previsions Pk into a joint lower prevision, taking
into account the assessment of forward irrelevance.

The procedure of marginal extension preserves forward irrelevance: the equalities (17)
extend the equalities (13) to all gambles on X N , and not just the ones in the domains K k.

6To see that this expression makes sense, note that for any gamble f on X N , EN( f ) is a gamble on X N−1,
and as such we can apply EN−1 to it; then EN−1(EN( f )) is a gamble on X N−2, to which we can apply EN−2;
and, finally, E2(. . .(EN( f ))) is a gamble on X1, to which we can apply E1 to obtain the real value of MN( f ).
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3.5. The relationship between the forward irrelevant natural extension and the for-
ward irrelevant product. Perhaps surprisingly, the forward irrelevant product and the
forward irrelevant natural extension don’t always coincide, unless the variables Xk may as-
sume only a finite number of values, i.e., unless the sets Xk are finite. That they coincide
in this case follows from Walley (1991, Theorem 8.1.9) or from Miranda and De Cooman
(2007, Section 6). For an example showing that they don’t necessarily coincide when the
spaces Xk are infinite, check Example 1 and Section 7 in Miranda and De Cooman (2007).
We summarise this as follows.

Theorem 3. The forward irrelevant product dominates the forward natural extension:
MN( f ) ≥ EN( f ) for all gambles f on X N . But EN and MN coincide if the sets Xk,
k = 1, . . . ,N are finite.

The forward irrelevant natural extension and the forward irrelevant product also coin-
cide when the initial domains Kk are actually equal to L (Xk), for k = 1, . . . ,N. This
is stated in the following theorem, which is proved in Appendix B (Section B.3). When
Kk = L (Xk) for k = 1, . . . ,N, we obtain

MN( f ) = P1(P2(. . .(PN( f )) . . .)),

and, for any x = (x1, . . . ,xN) in X N ,

MN( f |x1) = P2(P3(. . .(PN( f (x1, ·))) . . .))
. . .

MN( f |x1, . . . ,xN−1) = PN( f (x1, . . . ,xN−1, ·)).

Theorem 4. If the domain Kk of the marginal lower prevision Pk is L (Xk) for k =
1, . . . ,N, then EN and MN coincide.

When EN doesn’t coincide with (i.e., is strictly dominated by) MN , it can’t, of course,
be jointly coherent with the conditional lower previsions MN(·|X1), . . . , MN(·|XN−1), al-
though it is, by Theorem 1, still coherent with their restrictions P(·|X1), . . . , P(·|XN−1)
to the respective domains K 2, . . . , K N . So it is all right to use the forward irrelevant
natural extension if we are interested in coherently extending the given assessments to a
joint lower prevision on L (X N) only. If, however, we also want to coherently extend the
given assessments to conditional lower previsions, we need the forward irrelevant product.
In this sense, the forward irrelevant product seems to be the better extension.

3.6. Properties of the forward irrelevant natural extension and the forward irrelevant
product. Let us now devote some attention to the properties of the forward irrelevant nat-
ural extension EN and product MN . First of all, MN has an interesting Bayesian sensitivity
analysis interpretation. We can construct MN as a lower envelope of joint linear previsions,
each of which can be obtained by combining the marginal linear previsions in the M (Pk)
in a special way. There seems to be no analogous construction for EN . The following
theorem is an immediate special case of the more general Lower Envelope Theorem we
have proved in (Miranda and De Cooman, 2007, Theorem 3).

Theorem 5 (Lower Envelope Theorem). Let P1 be any element of M (P1), and for 2≤ k≤
N and any (x1, . . . ,xk−1) in X k−1, let Pk(·|x1, . . . ,xk−1) be any element of M (Pk). Define,
for any gamble fk on X k, Pk( fk|Xk−1) as the gamble on X k−1 that assumes the value
Pk( fk(x1, . . . ,xk−1, ·)|x1, . . . ,xk−1) in the element (x1, . . . ,xk−1) of X k−1, for 2 ≤ k ≤ N.
Finally let, for any gamble f on X N , PN( f ) = P1(P2(. . .(PN( f |XN−1)) . . . |X1)), i.e., apply
Bayes’ rule (or marginal extension) to combine the linear prevision P1 and the conditional
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linear previsions P2(·|X1), . . . , PN(·|XN−1) [see footnote 6]. Then the PN constructed in
this way is a linear prevision on L (X N). Moreover, MN is the lower envelope of all
such linear previsions, and for any gamble f on X N there is such a linear prevision that
coincides on f with MN .

This theorem allows us to relate the forward irrelevant product to other products of
marginal lower previsions, extant in the literature. First of all, the so-called type-1 prod-
uct, or strong product of the marginals P1, . . . , PN is obtained by choosing the same
Pk(·|x1, . . . ,xk−1) in M (Pk) for all (x1, . . . ,xk−1) in X k−1 in the above procedure, and
then taking the lower envelope; see for instance Walley (1991, Section 9.3.5) and Couso
et al. (2000). It therefore dominates the forward irrelevant product.

In case we have X1 = · · · = XN , and P1 = · · · = PN = P, the so-called type-2 product
of the marginals P1, . . . , PN is obtained by choosing the same P1 and Pk(·|x1, . . . ,xk−1) in
M (P) for all (x1, . . . ,xk−1) in X k−1 and for all 2 ≤ k ≤ N in the above procedure, and
then taking the lower envelope; again see Walley (1991, Section 9.3.5) and Couso et al.
(2000). It therefore dominates both the type-1 product and the forward irrelevant product.

Next, we show that the forward irrelevant natural extension and the forward irrelevant
product have a number of properties that are similar to (but sometimes weaker than) the
usual product of linear previsions.

Proposition 6 (External linearity). Let fk be any gamble on Xk for 1≤ k ≤ N. Then

EN
( N

∑
k=1

fk

)
= MN

( N

∑
k=1

fk

)
=

N

∑
k=1

Ek( fk).

The forward irrelevant natural extension and product are indeed products: EN and MN are
extensions of the marginals Pk.

Proposition 7. Let fk be any gamble on Xk. Then EN( fk) = MN( fk) = Ek( fk). If in
particular fk belongs to Kk, then EN( fk) = MN( fk) = Pk( fk), for all 1≤ k ≤ N.

The forward irrelevant natural extension and product also satisfy a (restricted) product rule.

Proposition 8 (Product rule). Let fk be a non-negative gamble on Xk for 1≤ k≤ N. Then

EN( f1 f2 . . . fN) = MN( f1 f2 . . . fN) = E1( f1)E2( f2) . . .EN( fN)

EN( f1 f2 . . . fN) = MN( f1 f2 . . . fN) = E1( f1)E2( f2) . . .EN( fN).

In particular, let Ak be any subset of Xk for 1≤ k ≤ N. Then

EN(A1×A2×·· ·×AN) = MN(A1×A2×·· ·×AN) = E1(A1)E2(A2) . . .EN(AN)

EN(A1×A2×·· ·×AN) = MN(A1×A2×·· ·×AN) = E1(A1)E2(A2) . . .EN(AN).

Finally, both the forward irrelevant product and the forward irrelevant natural extension
satisfy the so-called forward factorising property. This property allows us to establish
laws of large numbers for these lower previsions (De Cooman and Miranda, 2006).

Proposition 9 (Forward factorisation). Let fk be a non-negative gamble on Xk for 1 ≤
k ≤ N−1, and let fN be a gamble on XN . Then

EN( f1 f2 . . . fN−1[ fN−EN( fN)]) = MN( f1 f2 . . . fN−1[ fN−EN( fN)]) = 0.

The following proposition gives an equivalent formulation. We prove in De Cooman and
Miranda (2006) that in the precise case the forward factorisation property is equivalent to
EN(g fN) = EN(g)EN( fN) for all g ∈X N−1 and all fN ∈XN , hence its name.
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Proposition 10. Let g be a non-negative gamble on X N−1, and let fN be a gamble on
XN . Then EN(g[ fN−EN( fN)]) = MN(g[ fN−EN( fN)]) = 0.

We refer to Miranda and De Cooman (2007, Section 7) for the proofs of Propositions 6–8.
Propositions 9 and 10 are proved in Appendix B (Sections B.4 and B.5).

3.7. Examples of forward irrelevant natural extension and product.

3.7.1. Linear marginals. Suppose our subject’s marginal lower previsions are precise in
the following sense: for each k = 1, . . . ,N, Pk = Pk is a linear prevision on Kk = L (Xk).
Then it follows from Eq. (16) that the forward irrelevant product MN satisfies:

MN( f ) = MN( f ) = P1(P2(. . .(PN−1(PN( f ))) . . .))

for all gambles f on X N , or in other words, MN = MN = MN is a linear prevision on
L (X N) that is the usual product7 of the marginals P1, . . . , PN .

Since here the domain of Pk is L (Xk), for k = 1, . . . ,n, we deduce from Theorem 4 that
the forward irrelevant natural extension coincides with the forward irrelevant product.

3.7.2. Vacuous marginals. Suppose that our subject has the following information: the
variable Xk assumes a value in a non-empty subset Ak of Xk. It has been argued elsewhere
(for instance, by Walley (1991) and De Cooman and Troffaes (2004)) that he can model
this using the so-called vacuous lower prevision PAk

relative to Ak, where for any gamble
f on Xk: PAk

( f ) = infxk∈Ak f (xk). Both forward irrelevant natural extension and product
of these marginal lower previsions Pk = PAk

coincide with the vacuous lower prevision
relative to the Cartesian product A1×·· ·×AN :

MN( f ) = EN( f ) = PA1×···×AN
( f ) = inf

(x1,...,xN)∈A1×···×AN
f (x1, . . . ,xN)

for all gambles f on X N . For MN , this is an immediate consequence of Eq. (16). That this
result also holds for EN follows from Theorem 4.

4. EPISTEMIC IRRELEVANCE VERSUS EPISTEMIC INDEPENDENCE

An assessment of forward irrelevance is actually weaker than one of epistemic inde-
pendence. Indeed, an assessment of epistemic independence would mean that the subject
doesn’t change his beliefs about any variable Xk after observing the values of a collection
of variables {X` : ` ∈ T}, where T is any non-empty subset of {1, . . . ,N} not containing k;
see for instance Walley (1991, Section 9.3) and Couso et al. (2000).

Epistemic independence clearly implies both forward and backward irrelevance, where
of course, backward irrelevance simply means that the subject doesn’t change his beliefs
about any Xk after observing the variables Xk+1, . . . , XN . We now show neither forward
nor backward irrelevance generally imply epistemic independence.

Consider the special case of two random variables X1 and X2 taking values on the same
finite space X , with identical marginal lower previsions P1 = P2 = P. Clearly, they are

7Some care is needed here, however, since for general linear previsions, contrary to the σ -additive case
(Fubini’s Theorem), this product is not necessarily ‘commutative’, meaning that ‘the order of integration’ cannot
generally be ‘permuted’, unless the spaces Xk are finite. This means that if we consider a permutation π on
{1, . . . ,n} and construct the forward irrelevant product Pπ(1)(Pπ(2)(. . .(Pπ(n)(·)))), it will not coincide in general
with MN . In Walley’s (1991) words, we then say that the linear marginals P1, . . . , PN are incompatible, meaning
that there is no (jointly) coherent lower prevision with marginals P1, . . . , PN that furthermore expresses the
epistemic independence of the random variables X1, . . . , XN ; see also Section 4 and Walley (1991, Section 9.3)
for more details about epistemic independence.
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epistemically independent if and only if there is both forward and backward irrelevance.
Suppose that, in general, forward irrelevance implied epistemic independence, then the
forward irrelevant product (or the forward irrelevant natural extension, since they coincide
on finite spaces) P1(P2(·)) of P1 and P2 would generally coincide with the epistemic inde-
pendent product and with the backward irrelevant product P2(P1(·)). The following simple
counterexample shows that this is not the case.

Let X = {a,b} and let the linear prevision P on X be determined by P({a}) = α and
P({b}) = 1−α , where 0≤α ≤ 1. Let the coherent marginal lower previsions P1 = P2 = P
be the so-called linear-vacuous mixture, or ε-contamination of P, given by

P( f ) = (1− ε)P( f )+ εPX ( f ) = (1− ε)[α f (a)+(1−α) f (b)]+ ε min{ f (a), f (b)}

for all gambles f on X , where 0 ≤ ε ≤ 1. It is, by the way, easy to see that all coherent
lower previsions on a two-element space are such linear-vacuous mixtures, which implies
that by varying α and ε we generate all possible coherent lower previsions on X .

Consider the gambles h1 = I{a}+ 2I{b} and h2 = I{a}− 2I{b} on X , and the gamble h
on X ×X given by h(x,y) = h1(x)h2(y), i.e.,

h = I{(a,a)}−2I{(a,b)}+2I{(b,a)}−4I{(b,b)}

In Fig. 1 we have plotted the difference P1(P2(·))−P2(P1(·)) between the forward and the
backward irrelevant natural extensions/products of the marginal lower previsions P1 and
P2, as a function of α and ε , for the gambles h and −h. These plots clearly show that,
unless the marginals are precise (ε = 0) or completely vacuous (ε = 1), the forward and
backward irrelevant natural extensions/products are always different in some gamble. This
example also shows that the product rule of Proposition 8 cannot in general be extended to
gambles that don’t have constant sign (but see also Propositions 9 and 10).

We get this inequality even though the two marginals are the same. Moreover, since

P1({a}) = P2({a}) = α(1− ε) and P1({b}) = P2({b}) = (1−α)(1− ε),

the inequality is in no way caused by any ‘pathological’ consequences of conditioning on
sets with probability zero.

We learn from this example that, generally speaking, in the context of the theory of co-
herent lower previsions, the fact that one variable is irrelevant to another doesn’t imply the
converse! Epistemic irrelevance is an asymmetrical notion, but when we restrict ourselves
to precise models (linear previsions), the asymmetry usually collapses into symmetry; see
also Section 1 and footnote 7. For more detailed discussion, we refer to Couso et al. (2000).

The so-called independent natural extension of P1, . . . , PN is defined as the point-wise
smallest (most conservative) product for which there is epistemic independence (Walley,
1991, Section 9.3). Since epistemic independence is generally a stronger requirement than
forward irrelevance, the independent natural extension will generally dominate the forward
irrelevant natural extension.

5. FURTHER DEVELOPMENTS OF THE MODEL

In the particular case that all the domains Kk are finite, or in other words, when the
marginal lower previsions Pk are based on a finite number of assessments, we can simplify
the formula for the forward irrelevant natural extension EN :

EN( f ) = sup
gkhk
∈L +(X k−1)

hk∈Kk,k=1,...,N

inf
x∈X N

[
f (x)−

N

∑
k=1

∑
hk∈Kk

gkhk(x1, . . . ,xk−1)[hk(xk)−Pk(hk)]
]

(18)
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FIGURE 1. The difference P1(P2(·))−P2(P1(·)) between the forward
and the backward irrelevant natural extensions/products of the marginal
lower previsions P1 and P2, as a function of α and ε , for the gambles h
(left) and −h (right).

where L +(X k) denotes the set of the non-negative gambles on X k for 1 ≤ k ≤ N− 1,
and with some abuse of notation, L +(X 0) denotes the set of non-negative real numbers;
see Appendix B, Section B.6 for a proof.

So EN( f ) is the solution of a special linear programming problem (with a possibly
infinite number of linear constraints and variables). Interestingly, the dual form of this
problem consists in minimising the linear expression P( f ) where the linear prevision P is
subject to the linear constraints implicit in the condition P ∈M (EN).

It is instructive to compare this expression with the one for the natural extension of the
marginals Pk without making any assumption about the interdependence of the variables
X1, . . . , XN . This is simply the natural extension FN to L (X N) of the lower prevision QN

defined on the gambles hk in Kk by QN(hk) = Pk(hk) for k = 1, . . . ,N, or in other words,
the point-wise smallest coherent lower prevision on L (X N) that coincides with the Pk on
Kk. Using the expression (9) for natural extension given in Section 2.2, we easily find that

FN( f ) = sup
λkhk
∈R+

hk∈Kk,k=1,...,N

inf
x∈X N

[
f (x)−

N

∑
k=1

∑
hk∈Kk

λkhk [hk(xk)−Pk(hk)]
]

for any gamble f on X N . We see that these formulae are quite similar, apart from the
fact that the non-negative constants λkhk in the expression for FN( f ) are replaced in the
expression for EN( f ) by non-negative gambles gkhk that may depend on the first k− 1
variables x1, . . . , xk−1. This makes sure that the forward irrelevant natural extension EN

dominates the natural extension FN : making an extra assessment of forward irrelevance
makes the resultant model more precise.
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For the conjugate upper prevision EN of EN , we get

EN( f ) = inf
gkhk
∈L +(X k−1)

hk∈Kk,k=1,...,N

sup
x∈X N

[
f (x)+

N

∑
k=1

∑
hk∈Kk

gkhk(x1, . . . ,xk−1)[hk(xk)−Pk(hk)]
]

(19)

But Eq. (19) also allows us to establish an intriguing relationship between the forward ir-
relevant natural extension in the theory of coherent lower previsions and Shafer and Vovk’s
(2001) game-theoretic approach to probability theory. To see how this comes about, let us
show how we can interpret EN in terms of a special investment game.

Assume that the random variable Xk represents some meaningful part of the state of the
market at times k = 1, . . . ,N. A gamble hk is a real-valued function of this variable: for
each possible state xk of the market at time k, it yields a (possibly negative) amount of
utility hk(xk). As an example, hk could be the unknown market value of a share at time k,
and this value is determined by the (unknown) state of the market Xk at that time.

Now let us consider two players: Bank and Investor. These players are called House
and Gambler in Shafer et al. (2003), and Forecaster and Skeptic in Shafer and Vovk (2001),
respectively. Before time k = 1 (for instance, at time 0), Bank models his uncertainty about
the values of the random variable Xk in terms of lower prevision assessments Pk on finite
sets of gambles Kk ⊆L (Xk), and this for all k = 1, . . . ,N.

Recall that the lower prevision Pk on Kk represents Bank’s commitments to buying the
gambles hk in Kk for the price Pk(hk).8 In fact, Bank is also committed to buying λhk
for the price λPk(hk) for all non-negative λ . As an example, if hk is the uncertain market
value of a share at time k, then Pk(hk) is the supremum price, announced by the Bank at
time 0, that he shall pay at time k for buying the share (at that time).

We assume that the actual value of the random variable Xk becomes known to Bank and
Investor at time k. Investor will now try to exploit Bank’s commitments in order to achieve
some goal. At each time k− 1

2 , i.e., some time after the value of Xk−1 and before that of
Xk becomes known, she chooses for each of the gambles hk in Kk (for each of the shares
Bank has promised to buy at time k), a non-negative multiplier gkhk(x1, . . . ,xk−1), which
represents the number of shares she will sell to Bank at time k, for the price Pk(hk) that
Bank has promised to pay for them. The number of shares gkhk(x1, . . . ,xk−1) that Investor
sells at time k, can depend on the previously observed states of the market X1, . . . , Xk−1. If
the state of the market Xk at time k turns out to be xk, then the utility Investor derives from
the transactions at time k is given by: −∑hk∈Kk

gkhk(x1, . . . ,xk−1)[hk(xk)−Pk(hk)].
Investor could also specify the functions gkhk : X k→R+ in advance, i.e., at time 0, and

in that case these functions constitute her strategy for exploiting Bank’s commitments. If
Investor starts at time 0 with an initial capital β , then by following this strategy her capital
at time N will be β −∑

N
k=1 ∑hk∈Kk

gkhk(x1, . . . ,xk−1)[hk(xk)−Pk(hk)].
Now consider a gamble f on X N , that we shall interpret as an investment for Investor

at time N. The price f (x1, . . . ,xN) that Investor has to pay for it generally depends on the
history of (x1, . . . ,xN) of the market. Clearly, Investor can hedge the investment f with the
chosen strategy and an initial capital β if and only if for all x = (x1, . . . ,xN) in X N :

f (x)≤ β −
N

∑
k=1

∑
hk∈Kk

gkhk(x1, . . . ,xk−1)[hk(xk)−Pk(hk)].

8Actually, Bank is only committed to buying hk for all prices Pk(hk)− ε , ε > 0. But it is simpler to assume
that this holds for ε = 0 as well, and this won’t affect the conclusions we reach.
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And the infimum capital for which there is some strategy that allows her to hedge the
investment f is called the upper price for f by Shafer and Vovk (2001), and given by

E( f ) = inf
gkhk
∈L +(X k−1)

hk∈Kk,k=1,...,N

sup
x∈X N

[
f (x)+

N

∑
k=1

∑
hk∈Kk

gkhk(x1, . . . ,xk−1)[hk(xk)−Pk(hk)]
]
.

This is precisely equal to the upper prevision EN( f ) for f associated with the forward
irrelevant natural extension of Bank’s marginal lower previsions!

Theorem 11. The infimum capital for which Investor has some strategy that allows her to
hedge an investment f is equal to Bank’s infimum selling price for f , based on his marginal
lower previsions Pk and on his assessment that he can’t learn about the current state of the
market by observing the previous states: E( f ) = EN( f ).

By itself, this is a surprising, non-trivial and interesting result. But the equality of upper
prices and the (conjugate) forward irrelevant natural extension also allows us to bring to-
gether two approaches to probability theory that until now were taken to be quite different:
Walley’s (1991) behavioural theory of coherent lower previsions, and Shafer and Vovk’s
(2001) game-theoretic approach to probability theory. On the one hand, our Theorem 11
allows us to incorporate many of the results in Shafer and Vovk’s work into the theory of
coherent lower previsions. And on the other hand, it shows that all the properties we have
proved for the forward irrelevant natural extension in Section 3 are also valid for Shafer
and Vovk’s upper prices in this particular type of investment game.

6. DISCUSSION

Why do we believe that the results presented here merit attention?
First of all, the material about forward irrelevance in Section 3 constitutes a significant

contribution to the theory of coherent lower previsions. We have shown that the forward
irrelevant product, given by the concatenation formula (16), is the appropriate way to com-
bine marginal lower previsions into a joint lower prevision, based on an assessment of for-
ward irrelevance; see the comments near the end of Section 3.5. Such a concatenation is
sometimes used to combine marginal lower previsions; see for instance Denneberg (1994,
Chapter 12). The fact that, even on finite spaces, changing the order of the marginals in
the concatenation generally produces different joints, or in other words that a Fubini-like
result doesn’t generally hold for lower previsions (unless they are linear or vacuous, see
Section 4), is related to the important observation that epistemic irrelevance (as opposed to
the more involved notion of epistemic independence) is an asymmetrical notion.

Besides the forward irrelevant product, we have also introduced the forward irrelevant
natural extension as a way to combine marginal into joint lower previsions, based on an
assessment of forward irrelevance. This forward irrelevant natural extension turns out to
coincide with the upper prices for specific types of coherent probability protocols in Shafer
and Vovk’s approach. This is our main reason for deeming the forward irrelevant natural
extension useful. It allows us to embed many of Shafer and Vovk’s ideas into the theory of
coherent lower previsions. We feel, however, that our approach to interpreting the forward
irrelevant product has certain benefit. One of them is that it has a more direct behavioural
interpretation. For one thing, in contradistinction with the general approach described by
Shafer and Vovk (2001) and Shafer et al. (2003), it has no need of Cournot’s bridge to
link upper and lower previsions and probabilities to behaviour (see Shafer and Vovk (2001,
Section 2.2) for more details).
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Both the forward irrelevant product and the forward irrelevant marginal extension can be
regarded as joint lower previsions compatible with a number of given marginals under for-
ward irrelevance. The forward irrelevant natural extension of P1, P(·|X1), . . . , P(·|XN−1)
to L (X N) is the smallest coherent lower prevision that extends P1 and is coherent with
P(·|X1), . . . , P(·|XN−1). But being coherent with P(·|Xk), k = 1, . . . ,N−1 means in par-
ticular extending the marginals P2, . . . , PN . Hence, the forward irrelevant natural exten-
sion is the smallest coherent joint lower prevision on X N that is coherent with the given
marginals, also taking into account the assessment of forward irrelevance.

If we are only interested in coherently constructing a joint lower prevision from a num-
ber of given marginals under forward irrelevance, the forward irrelevant natural extension
seems to be an appropriate choice. If on the other hand, we wish to coherently extend the
marginals to joint and conditional lower previsions on all gambles that satisfy the condi-
tions for forward irrelevance everywhere (see Section 3.4), then the procedure of marginal
extension, leading to the forward irrelevant product, seems preferable.

Finally, we have also related the forward irrelevant natural extension and product to a
number of other ways of combining marginals into joints: they are more conservative than
independent natural extension, type-1 and type-2 products.

APPENDIX A. EVENT-TREE INDEPENDENCE AND EPISTEMIC IRRELEVANCE

In this Appendix, we shed more light on why we believe that in certain contexts, and
especially in random processes, where the values of random variables become known one
after the other, the notion of epistemic irrelevance (rather than epistemic independence) is
a natural one to consider. In particular, we show that for a random process with only two
random variables, Shafer’s (1996) notion of (event-tree) independence reduces to forward
epistemic irrelevance. This can be generalised to random processes with more than two
observations (or time instants), but the derivation is cumbersome, and the essential ideas
remain the same as in the special case we consider here.

Consider an experiment, where two coins are flipped one after the other. The random
variable X1 is the outcome of the first coin flip, and X2 the outcome of the second. Both
variables assume values in the set {h, t}. The event tree for this experiment is depicted in
Fig. 2. The labels for the situations (or nodes in the tree) should be intuitively clear: e.g., in

?,?

t,?
t, t

t,h

h,?
h, t

h,h

FIGURE 2. The event tree associated with two successive coin tosses.

the initial situation ‘?,?’ none of the coins have been flipped, in the non-terminal situation
‘h,?’ the first coin has landed ‘heads’ and the second coin hasn’t been flipped yet, and in
the terminal situation ‘t, t’ both coins have been flipped and have landed ‘tails’.

For each variable Xk there is, in each situation s, a lower prevision (operator) PXk
s repre-

senting some subject’s beliefs about the value of Xk conditional on the experiment getting
to situation s. Table 1 identifies these models in the language used in the Introduction.
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PX1
?,?( f ) PX1

h,?( f ) PX1
t,?( f ) PX1

h,h( f ) PX1
h,t( f ) PX1

t,h( f ) PX1
t,t ( f )

P1( f ) f (h) f (t) f (h) f (h) f (t) f (t)

PX2
?,?(g) PX2

h,?(g) PX2
t,?(g) PX2

h,h(g) PX2
h,t(g) PX2

t,h(g) PX2
t,t (g)

P2(g) Q2(g|h) Q2(g|t) g(h) g(t) g(h) g(t)

TABLE 1. The conditional lower previsions PX1
s and PX2

s . f is any gam-
ble on the outcome of the first variable X1, and g any gamble on the
outcome of the second variable X2.

In Shafer’s (1996) language, (the experiment in a) situation s influences a variable X if s
has at least one child situation c such that the subject’s model is changed if the experiment
moves from s to c: for our imprecise probability models this means that PX

s 6= PX
c . Two

variables X and Y are then event-tree independent if there are no situations that influence
them both. Shafer proves in Section 8.1 of his book that for event trees with (precise)
probabilistic models, event-tree independence implies the usual notion of independence as
discussed in the Introduction.

Let us now investigate under what conditions the variables X1 and X2 will be event-tree
independent. It is obvious that the only situations that can influence these variables, are
the non-terminal situations, as these are the only ones with children. In Table 2, we use
the identifications of Table 1 to indicate if and when each of these situations influences X1
and/or X2. It is clear from this table that X1 and X2 are event-tree independent if and only
if Q2(·|X1) = P2, or in other words if X1 is epistemically irrelevant to X2.

?,? h,? t,?

X1 always never never

X2 if Q2(·|h) 6= P2 or Q2(·|t) 6= P2 always always

TABLE 2. When do the non-terminal situations influence the variables
X1 and X2?

APPENDIX B. PROOFS OF THEOREMS

B.1. Preliminaries. Let us begin by making a few preliminary remarks, and fixing a num-
ber of notations. For 1≤ j ≤ N, let X N

j =×N
`= jX`. For 1≤ j ≤ N−1, we call a gamble

f on X N X j-measurable if it is constant on the elements of {(x1, . . . ,x j)}×X N
j+1, for all

(x1, . . . ,x j) in X j.
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We define the X j−1-support S j( f ) of a gamble f on X N , as the set of those subsets
{(x1, . . . ,x j−1)}×X N

j of X N such that the gamble f is not identically zero on this set. In
particular, S1( f ) = X N if f is not identically 0. If f happens to be X j-measurable, then

S j( f ) := {{(x1, . . . ,x j−1)}×X N
j : f (x1, . . . ,x j−1,x j) 6= 0 for some x j ∈X j}.

In what follows, we need to prove joint coherence of conditional lower previsions whose
domains are not necessarily linear spaces. Since Walley (1991, Section 8.1) has only given
definitions of joint coherence for conditional lower previsions defined on linear spaces, we
must check the following, fairly straightforward, generalisation to non-linear domains of
Walley’s coherence condition. See Miranda and De Cooman (2005) for more details.

Consider a coherent lower prevision Q defined on a subset H 1 of L (X N), and sep-
arately coherent conditional lower previsions Q(·|X1), . . . , Q(·|XN−1) defined on the re-
spective subsets H 2, . . . , H N of L (X N). We may assume without loss of generality
that these domains are cones (see the discussion in Section 3.2). Then these (conditional)
lower previsions are called jointly coherent if for any g j

` in H `, j = 1, . . . ,n`, n` ≥ 0 and
` = 1, . . . ,N and any k ∈ {1, . . . ,N} and g0 ∈H k, the following conditions are satisfied:

(JC1) If k = 1, we must have that

sup
x∈X N

[ n1

∑
j=1

G(g j
1)(x)+

N

∑
`=2

n`

∑
j=1

G(g j
`|X

`−1)(x)−G(g0)(x)
]
≥ 0. (20)

(JC2) If k > 1, we must have that for any (y1, . . . ,yk−1) ∈X k−1, there is some B in

{{(y1, . . . ,yk−1)}×X N
k }∪

N⋃
`=1

n⋃̀
j=1

S`(g
j
`)

such that

sup
x∈B

[ n1

∑
j=1

G(g j
1)(x)+

N

∑
`=2

n`

∑
j=1

G(g j
`|X

`−1)(x)−G(g0|y1, . . . ,yk−1)(x)
]
≥ 0. (21)

Here, for any x ∈X N , and g j
` ∈H `,

G(g j
`)(x) = g j

`(x)−Q(g j
`) (22)

when ` = 1, and

G(g j
`|X

`−1)(x) = g j
`(x1, . . . ,x`)−Q(g j

`|(x1, . . . ,x`−1)) (23)

when ` > 1. The idea behind this condition is, as for (unconditional) coherence (see
Section 2), that we shouldn’t be able to raise the supremum acceptable buying price we
have given for a gamble f by considering the acceptable transactions implicit in other
gambles in the domains. For instance, if condition (20) fails, then there is some δ > 0
such that the gamble G( f0)− δ = f0− (Q( f0)+ δ ) dominates the acceptable transaction

∑
n1
j=1 G(g j

1)+ ∑
N
`=2 ∑

n`
j=1 G(g j

`|X
`−1)+ δ , meaning that Q( f0)+ δ must be an acceptable

buying price for f0.
Using Eqs. (22) and (23), it is easy to see that conditions (20) and (21) are equivalent,

respectively, to

sup
x∈X N

[ n1

∑
j=1

[g j
1(x)−Q(g j

1)]+
N

∑
`=2

n`

∑
j=1

[g j
`(x)−Q(g j

`|x1, . . . ,x`−1)]− [g0(x)−Q(g0)]
]
≥ 0,



FORWARD IRRELEVANCE 23

and

sup
x∈B

[ n1

∑
j=1

[g j
1(x)−Q(g j

1)]+
N

∑
`=2

n`

∑
j=1

[g j
`(x)−Q(g j

`|x1, . . . ,x`−1)]

− I{(y1,...,yk−1)}(x1, . . . ,xk−1)[g0(x)−Q(g0|y1, . . . ,yk−1)]
]
≥ 0.

B.2. Proof of Theorem 1. Theorem 1 is a consequence of the following three lemmas.

Lemma 12. The lower previsions P1, P(·|X1), . . . , P(·|XN) are jointly coherent.

Proof. We can prove independently (using the Marginal Extension Theorem, see Theo-
rem 2) that P1, P(·|X1), . . . , P(·|XN) can be extended to jointly coherent (conditional)
lower previsions on all of L (X N). This means that the restrictions P1, P(·|X1), . . . ,
P(·|XN) to the respective domains K 1, . . . , K N of these jointly coherent (conditional)
lower previsions, are of course jointly coherent as well. �

Lemma 13. The lower prevision EN is jointly coherent with the conditional lower previ-
sions P(·|X1), . . . , P(·|XN−1).

Proof. We have to check that the immediate generalisation (see Section B.1) to non-linear
domains of Walley’s joint coherence requirements is satisfied. We use the fact that EN is a
coherent lower prevision on the linear space L (X N), and that the domains K i are cones.
Consider g1 ∈ L (X N) and g j

i ∈K i for i = 2, . . . ,N, j = 1, . . . ,ni. Let k ∈ {1, . . . ,N},
g0 ∈K k and (y1, . . . ,yk−1) ∈X k−1. Assume first that k > 1, i.e., let us prove (JC2). If
g1 = 0, then the result follows from the joint coherence of P(·|X1), . . . , P(·|XN−1).

Assume then that g1 6= 0. Then (JC2) is equivalent to

sup
x∈X N

[
[g1(x)−EN(g1)]+

N

∑
i=2

ni

∑
j=1

G(g j
i |X

i−1)(x)−G(g0|y1, . . . ,yk−1)(x)
]
≥ 0. (24)

From the definition of EN [see Eq. (14)] and the fact that all relevant domains are cones,
we see that for any ε > 0, there are mi ≥ 0 and h j

i ∈K i for i = 1, . . . ,N and j = 1, . . . ,mi,
such that

g1(x)−
N

∑
i=1

mi

∑
j=1

G(h j
i |X

i−1)(x)≥ EN(g1)− ε (25)

for all x ∈X N . Hence

sup
x∈X N

[
[g1(x)−EN(g1)]+

N

∑
i=2

ni

∑
j=1

G(g j
i |X

i−1)(x)−G(g0|y1, . . . ,yk−1)(x)
]

≥ sup
x∈X N

[ N

∑
i=1

mi

∑
j=1

G(h j
i |X

i−1)(x)+
N

∑
i=2

ni

∑
j=1

G(g j
i |X

i−1)(x)−G(g0|y1, . . . ,yk−1)(x)
]
− ε

≥−ε,

where the last inequality follows from the joint coherence of P1, P(·|X1), . . . , P(·|XN−1),
by Lemma 12 [also see Eq. (21)]. Since this holds for any ε > 0, we deduce that Eq. (24)
holds.

Next, we consider (JC1). Assume then that k = 1, i.e., g0 ∈L (X N). We show that

sup
x∈X N

[
[g1(x)−EN(g1)]+

N

∑
i=2

ni

∑
j=1

G(g j
i |X

i−1)(x)− [g0(x)−EN(g0)]
]
≥ 0. (26)
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Assume ex absurdo that there is some δ > 0 such that this supremum is smaller than −δ .
Then, using the approximation of EN(g1) given by Eq. (25) for ε = δ

2 , we deduce that

−δ > sup
x∈X N

[
[g1(x)−EN(g1)]+

N

∑
i=2

ni

∑
j=1

G(g j
i |X

i−1)(x)− [g0−EN(g0)]
]

≥−δ

2
+ sup

x∈X N

[ N

∑
i=1

mi

∑
j=1

G(h j
i |X

i−1)(x)+
N

∑
i=2

ni

∑
j=1

G(g j
i |X

i−1)(x)− [g0(x)−EN(g0)]
]
,

whence

inf
x∈X N

[
g0(x)−

N

∑
i=1

mi

∑
j=1

G(h j
i |X

i−1)(x)−
N

∑
i=2

ni

∑
j=1

G(g j
i |X

i−1)(x)
]

> EN(g0)+
δ

2
,

and this contradicts the definition of EN(g0). Hence, Eq. (26) holds and we conclude that
the (conditional) lower previsions EN , P(·|X1), . . . , P(·|XN−1) are jointly coherent. �

Lemma 14. EN is an extension of the lower prevision P1 to L (X N), i.e., EN( f ) = P1( f )
for all f in K 1.

Proof. Consider f ∈K 1. From (15) we deduce that EN( f )≥ infx∈X N [ f (x)−G1( f )(x)] =
P1( f ). Assume ex absurdo that EN( f ) > P1( f ). Then there are gambles g j

i ∈ Ki for
i = 1, . . . ,N and j = 1, . . . ,ni, such that infx∈X N [ f (x)−∑

N
i=1 ∑

ni
j=1 G(g j

i |X i−1)(x)] > P1( f ).

But this means that supx∈X N [∑N
i=1 ∑

ni
j=1 G(g j

i |X i−1)(x)− [ f (x)−P1( f )]] < 0, and this con-
tradicts the joint coherence of P1, P(·|X1), . . . , P(·|XN−1), which we have proved in
Lemma 12 [also see Eqs. (20) and (21)]. Consequently, EN( f ) = P1( f ). �

Proof of Theorem 1. Taking into account the previous lemmas, it only remains to prove
that EN is the point-wise smallest coherent extension of P1 to L (X N) that is coherent
with P(·|X1), . . . , P(·|XN−1). Let therefore F be another coherent extension of P1 to
L (X N) that is moreover jointly coherent with the conditional lower previsions P(·|X1),
. . . , P(·|XN−1), and consider any f ∈L (X N). Then, for any ε > 0, the expression (14)
for EN( f ) implies that there are h j

i ∈K i for i = 1, . . . ,N and j = 1, . . . ,ni such that

sup
x∈X N

[ N

∑
i=1

ni

∑
j=1

G(h j
i |X

i−1)(x)− f (x)
]
≤−EN( f )+ ε.

On the other hand, the coherence of F , P(·|X1), . . . , P(·|XN−1) implies that

sup
x∈X N

[ N

∑
i=1

ni

∑
j=1

G(h j
i |X

i−1)(x)− [ f (x)−F( f )]
]
≥ 0,

whence

−F( f )≤ sup
x∈X N

[ N

∑
i=1

ni

∑
j=1

G(h j
i |X

i−1)(x)− f (x)
]
≤−EN( f )+ ε.

Therefore, F( f )≥ EN( f )− ε for any ε > 0, so F dominates EN on L (X N). �
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B.3. Proof of Theorem 4. From Theorem 3 we infer that EN ≤MN , so we only need to
prove the converse inequality. Note first of all that if Kk = L (Xk), then the domain K k

of P(·|Xk−1) is L (X k), for k = 1, . . . ,N.
Consider any gamble f on X N , and recursively define fN := f , fN−1 := PN( fN), . . . ,

fk := Pk+1( fk+1), . . . , f1 := P2( f2). Then clearly fk belongs to L (X k), and P1( f1) =
MN( f ), P( f2|X1) = P2( f2) = f1, . . . , P( fk|Xk−1) = Pk( fk) = fk−1, . . . , P( fN |XN−1) =
PN( fN) = fN−1. Hence

f −
N

∑
k=1

G( fk|Xk−1) = f − [ f1−MN( f )]−
N−1

∑
k=2

[ fk− fk−1]− [ f − fN−1] = MN( f ).

We therefore deduce from Eq. (14) that indeed EN( f )≥MN( f ).

B.4. Proof of Proposition 9. First of all, we can assume without loss of generality that
fN is non-negative: otherwise, it suffices to take gN = fN − inf fN , which is non-negative
and satisfies gN−EN(gN) = fN−EN( fN).

From Proposition 8, we infer that

MN( f1 . . . fN) = EN( f1 . . . fN) = E1( f1) . . .EN( fN)

= MN( f1 . . . fN−1EN( fN)) = EN( f1 . . . fN−1EN( fN)),

taking into account that EN( fN) ≥ 0 because we are assuming fN to be non-negative, and
the non-negative homogeneity of a coherent lower prevision. Using the super-additivity
[due to coherence] of MN and EN , we deduce that

MN( f1 . . . fN−1[ fN−EN( fN)])≤MN( f1 . . . fN)−MN( f1 . . . fN−1EN( fN)) = 0

EN( f1 . . . fN−1[ fN−EN( fN)])≤ EN( f1 . . . fN)−EN( f1 . . . fN−1EN( fN)) = 0.

We are now going to show that, conversely, EN( f1 . . . fN−1[ fN −EN( fN)]) ≥ 0. This will
complete the proof, since we know that MN dominates EN , and it will therefore also follow
that MN( f1 . . . fN−1[ fN −EN( fN)]) ≥ 0. So, fix ε > 0, then it follows from Eq. (12) that
there are nN ≥ 0 and gambles g j

N in K ∗
N for j = 1, . . . ,nN such that

inf
xN∈XN

[
fN(xN)−

nN

∑
j=1

[g j
N(xN)−PN(g j

N)]
]
≥ EN( fN)− ε. (27)

Define the gambles h j
N on X N by h j

N := f1 . . . fN−1g j
N . All these gambles clearly belong to

K N , so, using Eq. (15), we get that EN( f1 . . . fN−1[ fN −EN( fN)]) is greater than or equal
to

sup
gkik
∈K k,ik=1,...,nk

nk≥0,k=1,...,N−1

inf
x∈X N

[
f1 . . . fN−1[ fN−EN( fN)](x)

−
N−1

∑
k=1

nk

∑
ik=1

[gkik(x1, . . . ,xk)−Pk(gkik(x1, . . . ,xk−1, ·))]

−
nN

∑
j=1

[h j
N(x1, . . . ,xN)−PN(h j

N(x1, . . . ,xN−1, ·))]
]
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and after some manipulations, using the coherence of PN and the fact that all the fk are
non-negative, this can be rewritten as

sup
gkik
∈K k,ik=1,...,nk

nk≥0,k=1,...,N−1

inf
x∈X N−1

[
−

N−1

∑
k=1

nk

∑
ik=1

[gkik(x1, . . . ,xk)−Pk(gkik(x1, . . . ,xk−1, ·))]

+ f1(x1) . . . fN−1(xN−1) inf
xN∈XN

[
fN(xN)−EN( fN)−

nN

∑
j=1

[g j
N(xN)−PN(gN j)]

]]
Now if we use the inequality (27), we see that this is greater than or equal to

EN( f1 . . . fN−1[−ε]) =−εEN( f1 . . . fN−1)≥−ε sup f1 . . .sup fN−1,

where the last inequality is a consequence of coherence and the non-negativity of the fk.
Since this holds for any ε > 0, we deduce that indeed EN( f1 . . . fN−1[ fN−EN( fN)])≥ 0.

B.5. Proof of Proposition 10. The proof of the inequality EN(g[ fN −EN( fN)]) ≥ 0 is
completely analogous to that in Proposition 9, with g taking the role of f1 . . . fN−1. We
deduce from this that MN(g[ fN−EN( fN)])≥ EN(g[ fN−EN( fN)])≥ 0.

Conversely, we get from Theorem 5 that MN(g fN) = MN(g)MN( fN) = MN−1(g)EN( fN)
for any non-negative gamble g on X N−1 and any fN ∈L (XN). By the super-additivity
[coherence] of MN we get MN(g[ fN −EN( fN)]) ≤MN(g fN)−MN(gEN( fN)) ≤ 0, and as
a consequence MN(g( fN−EN( fN))) = EN(g( fN−EN( fN))) = 0.

B.6. Proof of Eq. (18). Assume that for each Xk, we have a coherent lower prevision
Pk defined on a finite subset Kk = { f 1

k , . . . , f mk
k } of L (Xk). We may assume without

loss of generality that the Kk contain no constant gambles. Then, for any gkhk ∈ K k

and (x1, . . . ,xk−1) ∈X k−1, the gamble gkhk(x1, . . . ,xk−1, ·) belongs by definition to K ∗
k ,

and consequently there are non-negative λ(x1,...,xk−1)khk
, real µ(x1,...,xk−1)khk

and gambles
g(x1,...,xk−1)khk

in Kk such that

gkhk(x1, . . . ,xk−1, ·) = λ(x1,...,xk−1)khk
g(x1,...,xk−1)khk

+ µ(x1,...,xk−1)khk
.

Hence

gkhk(x1, . . . ,xk−1, ·)−Pk(gkhk |x1, . . . ,xk−1)

= λ(x1,...,xk−1)khk
g(x1,...,xk−1)khk

+ µ(x1,...,xk−1)khk

− [λ(x1,...,xk−1)khk
Pk(g(x1,...,xk−1)khk

)+ µ(x1,...,xk−1)khk
]

= λ(x1,...,xk−1)khk
[g(x1,...,xk−1)khk

−Pk(g(x1,...,xk−1)khk
)].

Define the gamble λ
j

khk
on X k−1 by

λ
j

khk
(x1, . . . ,xk−1) =

{
λ(x1,...,xk−1)khk

if g(x1,...,xk−1)khk
= f j

k

0 otherwise,

for all (x1, . . . ,xk−1) in X k−1, j = 1, . . . ,mk. Let us show that λ
j

khk
is indeed a gam-

ble, i.e., that it is bounded. Since f j
k is not a constant gamble by assumption, there

are x1
k and x2

k in Xk such that f j
k (x1

k)− f j
k (x2

k) > 0. Now, if λ
j

khk
(x1, . . . ,xk−1) were not
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bounded, there would exist, for any natural number M, some (x1, . . . ,xk−1) in X k−1 such
that λ

j
khk

(x1, . . . ,xk−1) > M. But then

gkhk(x1, . . . ,xk−1,x1
k)−gkhk(x1, . . . ,xk−1,x2

k)

= λ
j

khk
(x1, . . . ,xk−1)( f j

k (x1
k)− f j

k (x2
k)) > M( f j

k (x1
k)− f j

k (x2
k)),

and this would imply that gkhk isn’t bounded, a contradiction. Now,

gkhk(x1, . . . ,xk)−Pk(gkhk |(x1, . . . ,xk−1)) =
mk

∑
j=1

λ
j

khk
(x1, . . . ,xk−1)( f j

k (xk)−Pk( f j
k )),

whence
nk

∑
hk=1

[gkhk(x1, . . . ,xk)−Pk(gkhk |(x1, . . . ,xk−1))]

=
mk

∑
j=1

[ f j
k (xk)−Pk( f j

k )]
nk

∑
hk=1

λ
j

khk
(x1, . . . ,xk−1)

and consequently

EN( f ) = sup
gkhk
∈K k

hk=1,...,nk,k=1,...,N

inf
x∈X N

[
f (x)−

N

∑
k=1

nk

∑
hk=1

G(gkhk |X
k−1)

]

≤ sup
λ

jk
k ∈L

+(X k−1)
jk=1,...,mk,k=1,...,N

inf
x∈X N

[
f (x)−

N

∑
k=1

mk

∑
j=1

λ
jk

k (x1, . . . ,xk−1)[ f j
k (xk)−Pk( f j

k )]
]
.

The converse inequality follows taking into account that for any λ
jk

k in L +(X k−1), the
gamble gk jk in X k given by gk jk = λ

jk
k f j

k belongs to K k. This shows that we can indeed
calculate the forward irrelevant natural extension EN using Eq. (18).

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their many comments, which were quite help-
ful in making this paper clearer, shorter and more readable.

REFERENCES

K. P. S. Bhaskara Rao and M. Bhaskara Rao. Theory of Charges. Academic Press, London,
1983.

G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–295, 1953–1954.
I. Couso, S. Moral, and P. Walley. Examples of independence for imprecise probabilities.

Risk Decision and Policy, 5:165–181, 2000.
G. de Cooman. Integration and conditioning in numerical possibility theory. Annals of

Mathematics and Artificial Intelligence, 32:87–123, 2001.
G. de Cooman and D. Aeyels. Supremum preserving upper probabilities. Information

Sciences, 118:173–212, 1999.
G. de Cooman and D. Aeyels. A random set description of a possibility measure and

its natural extension. IEEE Transactions on Systems, Man and Cybernetics—Part A:
Systems and Humans, 30:124–130, 2000.



28 GERT DE COOMAN AND ENRIQUE MIRANDA

G. de Cooman and E. Miranda. Laws of large numbers for coherent lower previsions.
Journal of Statistical Planning and Inference, 2006. Submitted for publication.

G. de Cooman and M. C. M. Troffaes. Coherent lower previsions in systems modelling:
products and aggregation rules. Reliability Engineering and System Safety, 85:113–134,
2004.

B. de Finetti. Teoria delle Probabilità. Einaudi, Turin, 1970.
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