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ABSTRACT. There is no unique extension of the standard notion of probabilistic indepen-
dence to the case where probabilities are indeterminate or imprecisely specified. Epistemic
independence is an extension that formalises the intuitive idea of mutual irrelevance between
different sources of information. This gives epistemic independence very wide scope as
well as appeal: this interpretation of independence is often taken as natural also in precise-
probabilistic contexts. Nevertheless, epistemic independence has received little attention
so far. This paper develops the foundations of this notion for variables assuming values
in finite spaces. We define (epistemically) independent products of marginals (or possibly
conditionals) and show that there always is a unique least-committal such independent
product, which we call the independent natural extension. We supply an explicit formula for
it, and study some of its properties, such as associativity, marginalisation and external addi-
tivity, which are basic tools to work with the independent natural extension. Additionally,
we consider a number of ways in which the standard factorisation formula for indepen-
dence can be generalised to an imprecise-probabilistic context. We show, under some mild
conditions, that when the focus is on least-committal models, using the independent natural
extension is equivalent to imposing a so-called strong factorisation property. This is an
important outcome for applications as it gives a simple tool to make sure that inferences are
consistent with epistemic independence judgements. We discuss the potential of our results
for applications in Artificial Intelligence by recalling recent work by some of us, where
the independent natural extension was applied to graphical models. It has allowed, for the
first time, the development of an exact linear-time algorithm for the imprecise probability
updating of credal trees.

1. INTRODUCTION

Background and motivation. This is a paper on the notion of independence in probability
theory. Anyone interested in or familiar with uncertain reasoning or statistics knows how
fundamental this notion is. But what is independence?

Most of us have been taught that two variables X1 and X2 are independent when their
joint probability distribution P{1,2} factorises as the product of its marginals P1 and P2. This
is the formalist route that defines independence through a mathematical property of the joint,
and that has its roots in the Kolmogorovian, measure- and integral-theoretic formalisation
of probability theory.

In Artificial Intelligence (AI)—thanks to Judea Pearl in particular [27]—, but also in
the tradition of subjective probability—due to a large extent to Bruno de Finetti [17]—,
independence has much more often an epistemic flavour: it is a subject who regards two
variables as independent, because she judges that learning about the value of any one of
them will not affect her beliefs about the other. This means that the subject assesses that
her conditional beliefs equal her marginal ones: P1(·|X2) = P1 and P2(·|X1) = P2, in more
mathematical parlance.

That the epistemic approach has become so popular, should not be all that surprising. The
formalist approach comes with the idea that independence is something given, which might
hold or not: it is just a property of the joint. On the epistemic view, however, independence

Key words and phrases. Epistemic irrelevance, epistemic independence, independent natural extension, strong
product, factorisation, coherent lower previsions.

Preliminary work on the subject of this paper has appeared in the conferences IPMU 2010 [15] and SMPS 2010
[14].

1



2 GERT DE COOMAN, ENRIQUE MIRANDA, AND MARCO ZAFFALON

is something we are (to some extent) in control of. And this control is essential in order to
aggregate simple, independent components into complex multivariate models.

It might be argued that the difference between the two approaches is mostly philosophical:
in fact, the two routes are known to be formally equivalent.1 But it turns out that we lose
this formal equivalence as soon as we consider probabilities that may be imprecisely
specified, meaning that the available information is conveniently expressed through sets of
probabilities (sets of mass functions). In this case the two routes diverge also mathematically,
as we shall see further on. This is exemplified by the existence of the different notions of
strong and epistemic independence, respectively.2 Of these two, strong independence has
been most thoroughly investigated in the literature. Studies of epistemic independence are
confined to a relatively small number of papers [6, 10, 26, 29] inspired by Peter Walley’s
[30, Section 9.3] seminal ideas. We mention in particular Paolo Vicig’s interesting study
[29], for the case of coherent lower probabilities (which may be defined on infinite spaces),
of some of the notions considered in this paper as well.

This situation is somewhat unfortunate as the scope of strong independence is relatively
narrow: in fact, its justification seems to rely on a sensitivity analysis interpretation of
imprecise probabilities. On this interpretation, one assumes that there exists some (kind of
‘ideal’ or ‘true’) precise probability PT

{1,2} for the variables X1 and X2 that satisfies stochastic
independence, and that, due to the lack of time or other resources, can only be partially
specified or assessed. Then one considers all the precise-probabilistic models P{1,2} that
are consistent with the partial assessments and that satisfy stochastic independence. Taken
together, they constitute the set of probabilities for the problem under consideration. This
set models a subject’s (partial) ignorance about the true model PT

{1,2}.
It is questionable that this sensitivity analysis interpretation is broadly applicable, for

the simple reason that it hinges on the assumption of the existence of the underlying ‘true’
probability PT

{1,2}. Consider the situation where we wish to model an expert’s beliefs: the
expert usually does not know much about ideal probabilities, and what she tells us is simply
that information about one variable does not influence her beliefs about the other. Moreover,
we could well argue that expert knowledge is inherently imprecise to some extent, no matter
the resources that we employ to capture it.3 Therefore, why not take the expert at her word
and model only the information she provides us about the mutual irrelevance of the two
variables under consideration? After all, forcing a sensitivity analysis interpretation here
would amount to adding unwarranted assumptions, which may lead us to draw stronger
conclusions than those the expert herself might be prepared to get to.

In order to model such mutual irrelevance, we need a different understanding of imprecise
probability models that does not (necessarily) rely on precise probability as a more primitive
notion: Walley’s behavioural theory of imprecise probability [30], which models beliefs
by looking at a subject’s buying and selling prices for gambles. The perceived mutual
irrelevance of two sources of information can be formalised easily in this framework: we
state that the subject is not going to change her prices for gambles that depend on one
variable, when the other variable is observed. This turns out to be still equivalent to modelling
the problem through a set of precise probabilities P{1,2} but, in contradistinction with the
case of sensitivity analysis, not all those probabilities satisfy stochastic independence in
general. The reason for this is that epistemic independence is a property of the set of
probabilities that cannot be explained through the properties of the precise probabilities that
make up the set. This point is not without importance, as it shows that buying and selling
prices for gambles are actually a more primitive and fundamental notion in a theory of
personal probability.

1There may be subtleties, however, related to events of probability zero. See Refs. [6, Notes 5 and 6 in
Section 3], [30, Sections 6.5 and 6.10] and [1] for more information.

2Other possible ways to define independence under imprecise probability are given in Ref. [2].
3See [30, Chapter 5] for a detailed exposition of this view.
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This illustrates that a behavioural theory of probability and the notion of epistemic
independence fit nicely together. It also indicates that epistemic independence has a very
wide scope, as it needs to meet fewer requirements than strong independence in order to
be employed. That being so, why has strong independence been studied and applied much
more extensively than its epistemic counterpart, even in work based on Walley’s approach?
This is probably due to a number of concurring factors: (i) a tendency in the literature to
extend stochastic independence, perhaps somewhat uncritically, in a straightforward way
to imprecise probabilities; (ii) the fact that epistemic independence does not appear to be
as well-behaved as strong independence, for instance with respect to the graphoid axioms
[6];4 and, perhaps more importantly, (iii) the lack of formal tools for handling epistemic
independence assessments. To give a telling illustration of this last point: epistemically
independent products have so far been given a formal definition [30, Section 9.3] only for
the case of two variables X1 and X2.

Aims and contributions. In the present paper, then, we intend to address and remedy
this lack of formal tools by providing a firm foundation for, and a thorough mathematical
discussion of, epistemic independence in the case of a finite number of variables Xn taking
values in finite sets Xn, n ∈ N. Perhaps surprisingly, this will also shed positive new
light on the second of the above-mentioned factors: it will allow us to show that, despite
the apparently negative results in Ref. [6], epistemic independence can actually be used
effectively in at least some types of graphical models. We will come back to this issue later
in this Introduction.

We ground our analysis in the conceptual and formal framework of coherent lower
previsions, which are lower expectation functionals equivalent to closed convex sets of
probability mass functions. In the case of precise probabilities, we refer to an expectation
functional as a linear prevision. Section 2 gives a brief introduction to coherent lower
previsions and reports basic results that will be used in the rest of the paper. It should make
the paper as self-contained as is reasonably achievable within the scope of a research paper.

The real work starts in Section 3, where we introduce and discuss several generalisations
to coherent lower previsions of the standard notion of factorisation: productivity, which
was used by some of us in Ref. [12] to derive a very general law of large numbers, fac-
torisation and strong factorisation, which we needed in our research on credal networks
(an imprecise-probabilistic graphical model) [11], the Kuznetsov and strong Kuznetsov
properties, originating in the work of the Russian mathematician Vladimir Kuznetsov [19],
and also studied by Fabio Cozman [3]. It is useful to keep in mind that the ‘strong’ versions
of these properties involve factorisations over any subsets of variables, while the ‘plain’
ones are the special case obtained when some of the subsets are singletons. For linear
previsions—the precise-probability models—all these properties coincide with the classical
notion of stochastic independence. For the more general lower previsions, we investigate
how these notions are related, and we show that the strong product—the product that arises
through strong independence—is strongly factorising.

In Section 4, we go over to the epistemic side. We introduce two notions: many-to-many
independence, where a subject judges that learning about the value that any subset of the
variables {Xn : n ∈ N} assumes will not affect her beliefs about the values of any other
disjoint subset; and the weaker notion of many-to-one independence, where she judges
that learning about the value that any subset of the variables assumes will not affect her
beliefs about the value of any remaining single variable. This leads to the definition of
two corresponding types of independent products. We prove some useful associativity
and marginalisation properties for these, which form a basis for building them recursively,
and prove a very useful theorem that immediately allows all these notions, as well as the
results in the rest of the paper, to be extended to the case of conditional independence.

4But also see Ref. [26] for a discussion with less negative conclusions.
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Moreover, we show that the strong product is one particular many-to-many (and therefore
many-to-one) independent product, and that it is the only such independent product when
the given marginals are linear previsions.

There is no such uniqueness in the more general case of marginal lower previsions: the
strong product is only one of the generally infinitely many possible independent products.
In Section 5, we focus on the pointwise smallest of all these: the least-committal many-to-
many, and the least-committal many-to-one, independent products of given marginals. It is
an important, and quite involved, result of our analysis that these two smallest independent
products turn out to always exist, and to coincide. We call this common smallest independent
product the independent natural extension of the given marginals. It generalises, to any
finite number of variables, a definition given by Walley for two variables [30, Section 9.3].5

We then go on to derive an explicit and constructive formula for the independent natural ex-
tension, and we prove that it too satisfies useful associativity and marginalisation properties,
and that it is externally additive. We work out interesting particular cases in some detail.

The relation with the more formal factorisation properties considered in Section 3 comes
to the fore in our important next result: that the independent natural extension is strongly
factorising. We go somewhat further in Section 7, where we show that, quite naturally,
any factorising lower prevision must be a many-to-one independent product. Under some
mild conditions, we also show that any strongly factorising lower prevision must be a
many-to-many independent product. And since we already know that the smallest many-
to-one independent product is the independent natural extension, we deduce that when
looking for least-committal models, it is immaterial whether we focus on factorisation or
on being an independent product. This outcome might be very important in applications,
as it allows one to work with the independent natural extension simply by imposing a
(strong) factorisation property while searching for least-committal models. On the more
theoretical side, it constitutes a solid bridge between the formalist and epistemic approaches
to independence.

We believe these results give epistemic independence an opportunity to become a com-
petitive alternative to more consolidated notions of independence. But how can epistemic
independence be used in specific examples, and are there advantages to doing so? We
present an interesting case study in Section 8, where we survey and discuss some of our
recent work on credal trees [11]. These constitute a special case of credal networks [4],
which in turn extend Bayesian nets to deal with imprecise probabilities. Traditionally, the
extension is achieved by replacing the precise-probabilistic parameters of a Bayesian net
with imprecise ones, and by re-interpreting the Markov condition through strong rather than
stochastic independence. But we have already argued that this might not be the best choice
in all cases. For this reason, the work in Ref. [11] imposes an epistemic Markov condition on
directed trees. We discuss this condition and provide some examples, showing that it makes
certain variables in the tree become epistemically many-to-many independent. Moreover,
we show how the independent natural extension, and its properties proved here, are crucial
stepping stones that allow us to construct the least-committal joint model over the tree that
arises out of the parameters through the epistemic Markov condition. This particular type
of joint allows for the development of an exact linear-time message-passing algorithm that
performs imprecise-probabilistic updating of the epistemic tree. That this is at all possible,
is rather surprising because of the above-mentioned perceived incompatibilities between
epistemic independence and the graphoid axioms. It shows that epistemic independence has
a significant role to play in probabilistic-graphical models.

We summarise our views on the results of this paper in Section 9. Appendices A and B
respectively collect the proofs of all results, and the counter-examples needed to explore the
relations between the many notions we introduce and study.

5In the simple case of two variables, there is no need to distinguish between many-to-one and many-to-many
independence.
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2. COHERENT LOWER PREVISIONS

Let us give a brief overview of the concepts and results from the theory of coherent
lower previsions that we use in this paper. We refer to Ref. [30] for an in-depth study, and
to Ref. [21] for a survey.

2.1. Lower and upper previsions. Consider a variable X taking values in some possibility
space X, which we assume in this paper to be finite. The theory of coherent lower previsions
aims to model uncertainty about the value of X by means of lower and upper previsions
of gambles. A gamble is a real-valued function on X, and we denote by L (X) the set
of all gambles on X. This set is a linear space under pointwise addition of gambles, and
pointwise multiplication of gambles with real numbers. For any subset A of L (X), we
denote by posi(A ) the set of all positive linear combinations of gambles in A :

posi(A ) :=
{ n

∑
k=1

λk fk : fk ∈A ,λk > 0,n > 0
}
.

We call A a convex cone if it is closed under positive linear combinations, meaning that
posi(A ) = A .

For any two gambles f and g on a set X, we write ‘ f ≥ g’ if (∀x ∈X) f (x)≥ g(x), and
‘ f > g’ if f ≥ g and f 6= g. A gamble f > 0 is called positive. A gamble g ≤ 0 is called
non-positive. L (X)6=0 denotes the set of all non-zero gambles, L (X)>0 the convex cone
of all positive gambles, and L (X)≤0 the convex cone of all non-positive gambles on X.

A lower prevision is a real-valued functional P defined on L (X). The lower prevision
P is said to be coherent when it satisfies the following three conditions:

C1. P( f )≥min f for all f ∈L (X);
C2. P(λ f ) = λP( f ) for all f ∈L (X) and real λ ≥ 0;
C3. P( f +g)≥ P( f )+P(g) for all f ,g ∈L (X).

The conjugate of a lower prevision P is called an upper prevision. It is denoted by P, and
defined by P( f ) :=−P(− f ) for any gamble f on X.

One interesting particular case of lower previsions are the vacuous ones. Given a
non-empty subset A of X, the vacuous lower prevision PA relative to A is given by
PA( f ) = minx∈A f (x). It serves as an appropriate model for those situations where the
only information we have about X is that it takes a value in the set A.

2.2. Linear previsions and envelope theorems. A coherent lower prevision P on L (X)
satisfying P( f +g) = P( f )+P(g) for all f ,g ∈L (X) is called a linear prevision, and is
usually denoted by P. It corresponds to an expectation operator associated with the additive
probability that is its restriction to events. We denote the set of all linear previsions on
L (X) by P(X). For any linear prevision P on L (X), the corresponding mass function p
is defined by p(x) := P(I{x}), x ∈X, where I{x} denotes the indicator of the singleton {x}.
Then of course P( f ) = ∑x∈X f (x)p(x).

Linear previsions can also be used to characterise the notion of coherence for lower
previsions: a lower prevision P is coherent if and only if it is the lower envelope of the
closed convex set of dominating linear previsions

M (P) := {P∈ P(X) : (∀ f ∈L (X))P( f )≥ P( f )} ,
so we have

P( f ) = min{P( f ) : P∈M (P)} .
This is also equivalent to requiring that P should be the lower envelope of the set of extreme
points of M (P), which we denote by ext(M (P)):

P( f ) = min{P( f ) : P∈ ext(M (P))} ,
where P is an extreme point of M (P) when it cannot be written as a non-trivial convex
combination of two different elements of M (P).
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2.3. Conditional lower previsions. Next, consider a number of variables Xn, n∈N, taking
values in the respective finite sets Xn. Here N is some finite index set.

For every subset R of N, we denote by XR the tuple of variables (with one component
for each r ∈ R) that takes values in the Cartesian product XR :=×r∈RXr. This Cartesian
product is the set of all maps xR from R to

⋃
r∈R Xr such that xr := xR(r) ∈Xr for all r ∈ R.

The elements of XR are generically denoted by xR or zR, with corresponding components
xr := xR(r) or zr := zR(r), r ∈ R. We will always assume that the variables Xr are logically
independent, which means that for each non-empty subset R of N, XR may assume all values
in XR.

We must pay particular attention to the case R = /0. By definition, X /0 is the set of all
maps from /0 to

⋃
r∈ /0 Xr = /0. It contains only one element x /0: the empty map. This means

that there is no uncertainty about the value of the variable X/0: it can assume only one value
(the empty map). Moreover I{x /0} = 1.

We also denote by L (XR) the set of gambles defined on XR. We will frequently use
the simplifying device of identifying a gamble fR on XR with its cylindrical extension to
XN , which is the gamble f̃R defined by f̃R(xN) := fR(xR) for all xN ∈XN , where xR is the
restriction (i.e., the projection) of xN to XR. To give an example, if K ⊆L (XN), this trick
allows us to consider K ∩L (XR) as the set of those gambles in K that depend only (at
most) on the variable XR. As another example, this device allows us to identify the gambles
I{xR} and I{xR}×XN\R , and therefore also the events {xR} and {xR}×XN\R. More generally,
for any event A⊆XR, we can identify the gambles IA and IA×XN\R , and therefore also the
events A and A×XN\R. In the same spirit, a lower prevision on all gambles in L (XR) can
be identified with a lower prevision defined on the set of corresponding gambles on XN , a
subset of L (XN). If in particular R is the empty-set, then L (X /0) corresponds to the set of
real numbers, which we can also identify with the set of constant gambles on XN .

If PN is a coherent lower prevision on L (XN), then for any non-empty subset R of N
we can consider its XR-marginal PR as the coherent lower prevision on L (XR) defined by
PR( f ) := PN( f ) for all gambles f on XR: the restriction of PN to gambles that depend only
(at most) on XR.

Given two disjoint subsets O and I of N, we define a conditional lower prevision
PO∪I(·|XI) as a special two-place function. For any xI ∈XI , PO∪I(·|xI) is a real functional
on the set L (XO∪I) of all gambles on XO∪I . For any gamble f on XO∪I , PO∪I( f |xI) is the
lower prevision of f , conditional on XI = xI . Moreover, the object PO∪I( f |XI) is considered
as the gamble on XI that assumes the value PO∪I( f |xI) in xI .

We are allowing for I and O to be empty, mainly for the sake of generality and elegance in
mathematical formulation and proofs. If I = /0, then XI = X/0 assumes its only possible value
(the empty map x /0) with certainty, so conditioning on X/0 = x /0 amounts to not conditioning
at all, and PO∪I( f |XI) is then essentially the same thing as an unconditional lower prevision
PO. We will come back to the other case O = /0 shortly.

We now turn to the most important rationality criteria for such conditional lower pre-
visions. The conditional lower prevision PO∪I(·|XI) is called separately coherent when
it satisfies the following three conditions for all xI ∈XI , non-negative λ and gambles
f ,g ∈L (XO∪I):

SC1. PO∪I( f |xI)≥minxO∈XO f (xO,xI);
SC2. PO∪I(λ f |xI) = λPO∪I( f |xI);
SC3. PO∪I( f +g|xI)≥ PO∪I( f |xI)+PO∪I(g|xI).

When SC3 is satisfied with equality for all f ,g ∈L (XO∪I), then PO∪I(·|XI) is called a
conditional linear prevision, and usually denoted by PO∪I(·|XI). It is an expectation operator
with respect to a conditional probability (or mass function).

An important consequence of separate coherence is that

PO∪I(g|xI) = PO∪I(g(·,xI)|xI) and PO∪I( f g|XI) = f PO∪I(g|XI) (1)
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for all xI ∈XI , all non-negative gambles f on XI and all gambles g on XO∪I [30, Theo-
rems 6.2.4 and 6.2.6(l)]. The first equality tells us that PO∪I(·|xI) is completely determi-
ned by its behaviour on L (XO), and we will therefore often identify PO∪I(·|xI) with a
lower prevision on L (XO). To prove (1), observe that if h1(·,xI) = h2(·,xI) then it fol-
lows from SC1 that PO∪I(h1−h2|xI) = PO∪I(h2−h1|xI) = 0, and therefore from SC3
that PO∪I(h1|xI) = PO∪I(h2|xI). The first equality then follows by letting h1 := g and
h2 := g(·,xI).

It is clear from SC1–SC3 that PO∪I(·|XI) is separately coherent if and only if for all
xI ∈XI , PO∪I(·|xI) is a coherent lower prevision on L (XO) and moreover Condition (1)
holds [this second condition turns out to be equivalent to requiring that PO∪I({xI}|xI) = 1
for every xI ∈XI].

In the degenerate case that O = /0, separate coherence guarantees that PO∪I( f |xI) = f (xI)
and therefore PO∪I( f |XI) = f for all f ∈ L (XI). When I = /0, separate coherence of
PO∪I(·|XI) = PO reduces to coherence of the unconditional lower prevision PO.

2.4. The behavioural interpretation. The coherence concepts introduced above may
be better understood in terms of the behavioural interpretation of (conditional) lower
previsions.6 If we see a gamble f as an uncertain reward, then the lower prevision P( f ) can
be interpreted as a subject’s supremum acceptable price for buying the gamble f , in the
sense that it is the supremum real µ such that she considers the transaction f −µ , which is
equivalent to buying f for a price µ , to be desirable. It follows that she considers it desirable
to buy f for any price P( f )− ε , ε > 0. Similarly, we can regard her upper prevision P( f )
for f her infimum acceptable selling price for f , in the sense that it is the infimum real µ

such that she considers the transaction µ− f , which is equivalent to selling f for a price
µ , to be desirable. In particular, she considers it desirable to sell f for any price P( f )+ ε ,
ε > 0. And a linear prevision P( f ) corresponds to the case where her supremum acceptable
buying price for the gamble f coincides with her infimum acceptable selling price, meaning
that she expresses a preference between buying and selling the gamble f for a price µ for
almost all prices µ .

If we follow this interpretation, we can similarly interpret a subject’s conditional lower
prevision for a gamble f conditional on a value xI as her current supremum acceptable
buying price for f if she were to find out (at some later point) that XI = xI .

A coherent unconditional lower prevision P is one for which we cannot raise the supre-
mum acceptable buying price P( f ) for any gamble f by taking into account the implications
of other desirable transactions. A separately coherent conditional lower prevision PO∪I(·|XI)
is one where a similar requirement holds for every conditioning event XI = xI , and where
moreover our subject is currently disposed to betting at all odds on the event XI = xI if she
were to observe it at some later point.

2.5. Coherence and weak coherence. We now turn from separate to joint coherence. For
any gamble f on XO∪I and any xI ∈XI , we define

GO∪I( f |xI) := I{xI}[ f −PO∪I( f |XI)] = I{xI}[ f (·,xI)−PO∪I( f (·,xI)|xI)]

and

GO∪I( f |XI) := f−PO∪I( f |XI)= ∑
xI∈XI

GO∪I( f |xI)= ∑
xI∈XI

I{xI}[ f (·,xI)−PO∪I( f (·,xI)|xI)].

Taking into account the behavioural interpretation of conditional lower previsions sum-
marised in Section 2.4, we may regard GO∪I( f |xI) as an almost-desirable gamble, in the
sense that for every ε > 0, the gamble GO∪I( f |xI)+ εI{xI} corresponds to buying f for
a price PO∪I( f |xI) + ε , contingent on the event {xI}. And since taking finite sums of
almost-desirable gambles produces almost-desirable gambles, so should GO∪I( f |XI) be.

6See Refs. [30, 32] for more details.
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Observe that GO∪I( f |XI) is always equal to 0 when O = /0. We also define, for any
gamble f on XO∪I , the XI-support suppI( f ) of f as the set of elements of XI where the
partial gamble f (·,xI) is non-zero:

suppI( f ) :=
{

xI ∈XI : I{xI} f 6= 0
}
= {xI ∈XI : f (·,xI) 6= 0} .

This support suppI( f ) is a subset of XI , but as we already mentioned before, it will be
convenient to identify it with the subset suppI( f )×XN\I of XN .

Consider disjoint subsets O j and I j of N. A collection of (separately coherent) conditional
linear previsions PO j∪I j(·|XI j) defined on the sets of gambles L (XO j∪I j), j ∈ {1, . . . ,m}
is called (strongly) coherent if for all f j ∈ L (XO j∪I j), j ∈ {1, . . . ,m}, there is some
zN ∈

⋃m
j=1 suppI j

( f j) such that:[ m

∑
j=1

GO j∪I j( f j|XI j)

]
(zN)≥ 0. (2)

The (separately coherent) conditional lower previsions PO j∪I j
(·|XI j) defined on the sets

of gambles L (XO j∪I j), j ∈ {1, . . . ,m} are called coherent if and only if they are lower

envelopes of a collection
{

Pλ
O j∪I j

(·|XI j) : λ ∈ Λ

}
of coherent conditional linear previsions.

This is equivalent to requiring that for all f j ∈L (XO j∪I j) where j ∈ {1, . . . ,m}, all k ∈
{1, . . . ,m}, all xIk ∈XIk and all g ∈L (XOk∪Ik), there is some zN ∈ {xIk}∪

⋃m
j=1 suppI j

( f j)

such that: [ m

∑
j=1

GO j∪I j( f j|XI j)−GOk∪Ik(g|xIk)

]
(zN)≥ 0. (3)

We say that the conditional lower previsions PO j∪I j
(·|XI j) are weakly coherent if for

all f j ∈ L (XO j∪I j) where j ∈ {1, . . . ,m}, all k ∈ {1, . . . ,m}, all xIk ∈ XIk and all g ∈
L (XOk∪Ik), there is some zN ∈XN such that:[ m

∑
j=1

GO j∪I j( f j|XI j)−GOk∪Ik(g|xIk)

]
(zN)≥ 0.

This condition requires that our subject should not be able to raise her supremum acceptable
buying price POk∪Ik(g|xIk) for a gamble g contingent on {xIk} by taking into account the
implications of other conditional assessments. However, under the behavioural interpretation,
a collection of weakly coherent conditional lower previsions can still present some forms
of inconsistency with one another. See Refs. [30, Chapter 7], [22] and [31] for discussion.
These inconsistencies are eliminated by the stronger notion of coherence given by Eq. (3),
where we focus only on the elements in the supports of the gambles.

If the conditional lower previsions PO j∪I j
(·|XI j) are coherent, then they are clearly also

weakly coherent. The following characterisation of weak coherence will be useful. The
equivalence between the first two statements was proved in Ref. [24, Theorem 1], while
the equivalence between the second and third statements is a consequence of Ref. [30,
Section 6.5.4].

Theorem 1. The conditional lower previsions PO j∪I j
(·|XI j), j = 1, . . . ,m, are weakly co-

herent if and only if there is some coherent lower prevision PN on L (XN) satisfying any
(and hence all) of the following equivalent conditions:

(a) PN and PO j∪I j
(·|XI j), j = 1, . . . ,m are weakly coherent;

(b) For all j = 1, . . . ,m, PN and PO j∪I j
(·|XI j) are pairwise coherent;

(c) For all j = 1, . . . ,m, all xI j ∈XI j and all gambles f on XO j∪I j :

PN(GO j∪I j( f |xI j)) = 0. (GBR)
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The last condition in this theorem is called the Generalised Bayes Rule, and reduces to
Bayes’s rule in the case of linear conditional and unconditional previsions. A consequence
of (GBR) in our context is that

PN(PO j∪I j( f |XI j))≥ PN( f )≥ PN(PO j∪I j
( f |XI j)) for every gamble f on XO j∪I j . (4)

We will also use the following result in our argumentation.

Theorem 2 (Reduction Theorem [30, Theorem 7.1.5]). Let PO j∪I j
(·|XI j) be separately

coherent conditional lower previsions defined on the sets of gambles L (XO j∪I j) with I j 6= /0
for all j = 1, . . . ,m, and let PN be a coherent lower prevision on L (XN). Then PN and
PO j∪I j

(·|XI j), j = 1, . . . ,m are coherent if and only if the following two conditions hold:

(a) PN and PO j∪I j
(·|XI j), j = 1, . . . ,m are weakly coherent;

(b) PO j∪I j
(·|XI j), j = 1, . . . ,m are coherent.

2.6. Natural and regular extension. Let PO j∪I j
(·|XI j) be coherent conditional lower pre-

visions defined on the sets of gambles L (XO j∪I j), j = 1, . . . ,m. If we now consider any
disjoint subsets O and I of N, the natural extension PO∪I(·|XI) of these conditional lower
previsions is defined on L (XO∪I) by

EO∪I( f |xI) := sup
{

µ :
[ m

∑
j=1

GO j∪I j(g j|XI j)− I{xI}( f −µ)

]
< 0

on {xI}∪
m⋃

j=1

suppI j
(g j) for some g j ∈L (XO j∪I j)

}
for all f ∈ L (XO∪I) and all xI ∈XI . EO∪I( f |xI) represents the supremum acceptable
buying price for a gamble f contingent on {xI} that can be derived from the assessments
in PO j∪I j

(·|XI j), j = 1, . . . ,m using arguments of coherence. See Refs. [30, Chapter 8], [22]
and [31] for additional information.

In particular, the unconditional natural extension of PO j∪I j
(·|XI j), j = 1, . . . ,m is given

by

EN( f ) := sup
{

min
[

f −
m

∑
j=1

GO j∪I j(g j|XI j)

]
: g j ∈L (XO j∪I j)

}
, (5)

for all gambles f on XN , and it is the pointwise smallest coherent lower prevision that is
coherent with the PO j∪I j

(·|XI j), j = 1, . . . ,m.
Another particular case of interest is when we want to derive conditional lower previsions

from unconditional ones. Consider a subset I of N, and a coherent lower prevision PN on
XN . The natural extension EN(·|XI) of PN to a lower prevision on L (XN) conditional on
XI is given by

EN( f |xI) =

{
max

{
µ ∈ R : PN(I{xI}[ f −µ])≥ 0

}
if PN({xI})> 0

minzN\I∈XN\I f (zN\I ,xI) if PN({xI}) = 0.

It defines a separately coherent conditional lower prevision that is also coherent with PN ,
and it is indeed the smallest such conditional lower prevision.

On the other hand, the regular extension R(·|XI) of PN to a lower prevision on L (XN)
conditional on XI is given by

RN( f |xI) :=

{
max

{
µ ∈ R : PN(I{xI}[ f −µ])≥ 0

}
if PN({xI})> 0

minzN\I∈XN\I f (zN\I ,xI) if PN({xI}) = 0.

The natural and regular extensions coincide unless PN({xI})> PN({xI}) = 0, in which case
we may have RN( f |xI)> EN( f |xI). In fact, when PN({xI})> 0 there is a unique value of
PN( f |xI) satisfying (GBR) with respect to PN , but this is no longer true if PN({xI}) = 0.
See Refs. [22, 25] for additional information.
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The regular extension defines a separately coherent conditional lower prevision that is
also coherent with PN , and we will have occasion to use it as a tool for deriving conditio-
nal lower previsions from unconditional ones. The following result, which follows from
Theorem 6 in Ref. [22], makes regular extension especially useful in this respect:

Theorem 3. Let PN be a coherent lower prevision on L (XN). Consider disjoint O j and
I j for j = 1, . . . ,m. Assume that PN({xI j}) > 0 for all xI j ∈XI j , and define PO j∪I j

(·|XI j)

using regular extension for j = 1, . . . ,m. Then PN is coherent with the conditional lower
previsions PO1∪I1(·|XI1), . . . , POm∪Im(·|XIm).

3. THE FORMAL APPROACH TO INDEPENDENCE

3.1. Basic definitions. Consider a number of (logically independent) variables Xn, n ∈ N,
assuming values in the respective finite sets Xn. Here N is some finite index set. We assume
that for each of these variables Xn, we have an uncertainty model for the values that it
assumes in Xn, in the form of a coherent lower prevision Pn on the set L (Xn) of all
gambles (real-valued maps) on Xn.

We begin our discussion of independence by following the formalist route: we introduce
a number of interesting generalisations of the notion of an independent product of linear
previsions.

The first is a stronger, symmetrised version of the notion of ‘forward factorisation’ that
was introduced elsewhere [12].

Definition 1 (Productivity). Consider a coherent lower prevision PN on L (XN). We call
this lower prevision productive if for all disjoint subsets7 I and O of N, all g ∈L (XO) and
all non-negative f ∈L (XI), PN( f [g−PN(g)])≥ 0.

The intuition behind this definition is that a coherent lower prevision PN is productive
if multiplying an almost-desirable gamble on XO (the gamble g−PN(g), which has lower
prevision zero) with any non-negative gamble f that depends on a different variable XI ,
preserves its almost-desirability, in the sense that the lower prevision of the product is
non-negative. In other words, if we construct a gamble on XO∪I by piecing together almost-
desirable gambles from L (XO), we obtain a gamble that is still almost-desirable.

A lower envelope PN of productive coherent lower previsions Pλ , λ ∈ Λ is again
productive: for all disjoint subsets I and O of N, all g ∈ L (XO) and all non-negative
f ∈L (XI), we have that Pλ ( f [g−PN(g)])≥ Pλ ( f [g−Pλ (g)])≥ 0, and therefore indeed
PN( f [g−PN(g)])≥ 0.

In a paper [12] on laws of large numbers for coherent lower previsions, which generalises
and subsumes most known versions in the literature, we have proved that the condition for
forward irrelevance8 (which is implied by the present productivity condition) is sufficient for
a weak law of large numbers to hold. So we are led to the following immediate conclusion.

Theorem 4 (Weak law of large numbers [12, Theorem 2]). Let the coherent lower prevision
PN on L (XN) be productive. Let ε > 0 and consider arbitrary gambles hn on Xn, n ∈ N.
Let B be a common bound for the ranges of these gambles and let minhn ≤ mn ≤ PN(hn)≤
PN(hn)≤Mn ≤maxhn for all n ∈ N. Then

PN

({
xN ∈XN : ∑

n∈N

mn

|N|
− ε ≤ ∑

n∈N

hn(xn)

|N|
≤ ∑

n∈N

Mn

|N|
+ ε

})
≥ 1−2exp

(
−|N|ε

2

4B2

)
.

Next comes a version of a condition that has proved quite useful in the context of research
on credal networks [11], which we shall discuss in Section 8.

7The coherence of PN guarantees that for empty I or O the corresponding condition is trivially satisfied.
8This condition is a particular instance of the epistemic irrelevance we discuss in Section 4: if we consider

n variables X1, . . . , Xn, then for all k = 2, . . . ,n the variables X1, . . . , Xk−1 are epistemically irrelevant to Xk. See
Ref. [12, 13] for more information.
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Definition 2 (Factorisation). Consider a coherent lower prevision PN on L (XN). We call
this lower prevision

(i) factorising9 if for all o ∈ N and all I ⊆ N \ {o},10 all fo ∈L (Xo) and all non-
negative fi ∈L (Xi), i ∈ I, PN( fI fo) = PN( fIPN( fo)), where fI := ∏i∈I fi;

(ii) strongly factorising if PN( f g) = PN( f PN(g)) for all g ∈L (XO) and non-negative
f ∈L (XI), where I and O are any 11 disjoint subsets of N.

It will at this point be useful to introduce the following notation. Consider a real interval
a := [a,a] and a real number b, then

a�b :=

{
ab if b≥ 0
ab if b≤ 0.

Also, we denote by P( f ) the interval [P( f ),P( f )].
It follows from the coherence of PN that given a factorising (respectively strongly facto-

rising) coherent lower prevision we also get PN( fIPN( fo)) = PN( fI)�PN( fo) (respectively
PN( f PN(g)) = PN( f )�PN(g)) in Definition 2. We then have the following characterisa-
tions of factorising lower previsions, based on their coherence and conjugacy properties.

Proposition 5. A coherent lower prevision PN on L (XN) is factorising if and only if for
all o ∈ N, all fo ∈L (Xo) and all non-negative fi ∈L (Xi), i ∈ N \{o}, any (and hence
all) of the following equivalent conditions holds:

(i) PN(∏n∈N fn) = PN(PN( fo)∏i∈N\{o} fi) = PN(∏i∈N\{o} fi)�PN( fo);

(ii) PN(∏n∈N fn) =

{
PN( fo)∏i∈N\{o}PN( fi) if PN( fo)≥ 0
PN( fo)∏i∈N\{o}PN( fi) if PN( fo)≤ 0.

The difference between factorisation and strong factorisation lies in the types of products
considered: in the first case, we only consider gambles that are products of non-negative
gambles each depending on a single variable, while in the second case the non-negative
gamble considered need not be such a product.

Finally, there is the property that the late Russian mathematician Vladimir Kuznetsov
first drew attention to [19]. In order to define it, we use � to denote the (commutative and
associative) interval product operator defined by:

[a,b]� [c,d] := {xy : x ∈ [a,b] and y ∈ [c,d]}
= [min{ac,ad,bc,bd},max{ac,ad,bc,bd}] for all a≤ b and c≤ d in R.

Definition 3 (Kuznetsov product). Consider a coherent lower prevision PN on L (XN).
We call this lower prevision

(i) a Kuznetsov product, or simply, Kuznetsov, if PN(∏n∈N fn) =�n∈NPN( fn) for all
fn ∈L (Xn), n ∈ N.

(ii) a strong Kuznetsov product, or simply, strongly Kuznetsov, if PN( f g) = PN( f )�
PN(g) for all g ∈ L (XO) and all f ∈ L (XI), where I and O are any disjoint
subsets of N.11

These two properties are based on the sensitivity analysis interpretation of coherent lower
previsions: if we consider a product of gambles and for each of gamble we have an interval
of possible values for its expectation, the Kuznetsov property implies that the interval of
possible values for the expectation of the product coincides with the product of the intervals
of the expectations of the different gambles. As before, the difference between being a

9The present notion of factorisation when restricted to lower probabilities and events, is called strict factorisa-
tion in Ref. [29].

10The coherence of PN guarantees that for empty I the corresponding condition is trivially satisfied.
11The coherence of PN guarantees that for empty I or O the corresponding condition is trivially satisfied.
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Kuznetsov product and being a strong Kuznetsov product resides in whether the gambles
we are multiplying depend on one variable only or on several variables at once.

We will show later that all the properties introduced above generalise the factorisation
property of precise probabilities to the imprecise case. Here are the general relationships
between them:

Proposition 6. Consider a coherent lower prevision PN on L (XN). Then

PN is strongly Kuznetsov ⇒ PN is strongly factorising ⇒ PN is productive

⇓ ⇓
PN is Kuznetsov ⇒ PN is factorising.

The intuition behind these implications is the following (see Appendix A for a detailed
proof). On the one hand, being strongly Kuznetsov clearly implies being Kuznetsov, and
strong factorisation implies factorisation, because we allow for more involved products
of gambles in the definition of the former. On the other hand, the factorisation conditions
focus on the lower prevision only, whereas the Kuznetsov ones involve both lower and the
upper previsions, and therefore give rise to stronger conditions. And finally, it follows from
its definition that a strongly factorising coherent lower prevision satisfies the condition of
productivity with equality instead of with inequality.

In Appendix B we present examples showing that the converses of the implications in
this proposition do not hold in general. Specifically, in Example 3 we give a coherent lower
prevision that satisfies productivity but none of the other properties; in Example 5 we give a
coherent lower prevision that is strongly factorising (and as a consequence also factorising
and productive) but not Kuznetsov (and therefore not strongly Kuznetsov); and in Example 6
we have a factorising coherent lower prevision that satisfies none of the other properties. The
only related open problem at this point is whether being Kuznetsov is generally equivalent
to being strongly Kuznetsov.

We will show that the independent natural extension from Section 5 is strongly factorising
but not Kuznetsov in general. In the rest of this section, we look at a number of special cases
that will prove instrumental in what follows. In particular, the strong product we will study
in Section 3.3 satisfies all the properties we have introduced here.

3.2. The product of linear previsions. If we have linear previsions Pn on L (Xn) with
corresponding mass functions pn, then their product SN :=×n∈NPn is the linear prevision
on L (XN) defined as

SN( f ) = ∑
xN∈XN

f (xN) ∏
n∈N

pn(xn) for all f ∈L (XN). (6)

For any non-empty subset R of N, we also denote by SR :=×r∈RPr the product of the linear
previsions Pr, r ∈ R.

Useful, and immediate, are the following marginalisation and associativity properties
of the product of linear previsions. They imply that for linear previsions all the properties
introduced in Section 3.1 coincide.

Proposition 7. Consider arbitrary linear previsions Pn on L (Xn), n ∈ N.
(i) For any non-empty subset R of N, SR is the XR-marginal of SN: SN(g) = SR(g) for

all gambles g on XR;
(ii) For any partition N1 and N2 of N, ×n∈N1∪N2Pn = (×n∈N1Pn)× (×n∈N2Pn), or in

other words, SN = SN1 ×SN2 .
Moreover, for any linear prevision PN on L (XN), the following statements are equivalent:

(a) PN =×n∈NPn is the product of its marginals Pn;
(b) PN(∏n∈N fn) = ∏n∈N Pn( fn) for all fn ∈L (Xn), n ∈ N;
(c) PN is strongly Kuznetsov;
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(d) PN is Kuznetsov;
(e) PN is strongly factorising;
(f) PN is factorising;
(g) PN is productive.

3.3. The strong product of coherent lower previsions. In a similar vein, if we have
coherent lower previsions Pn on L (Xn), then their so-called strong product [30, Sec-
tion 9.3.5]12 SN :=×n∈NPn is defined as the coherent lower prevision on L (XN) that is
the lower envelope of the set of independent products {×n∈NPn : (∀n ∈ N)Pn ∈M (Pn)}, or
equivalently, of the set {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))}. So for every f ∈L (XN):

SN( f ) = inf{×n∈NPn( f ) : (∀n ∈ N)Pn ∈M (Pn)} (7)

= inf{×n∈NPn( f ) : (∀n ∈ N)Pn ∈ ext(M (Pn))} . (8)

For any non-empty subset R of N, we also denote by SR :=×r∈RPr the strong product of the
coherent lower previsions Pr, r ∈ R. Like the product of linear previsions, the strong product
of lower previsions satisfies the following marginalisation and associativity properties, and
also all the properties defined in Section 3.1:13

Proposition 8. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N.
(i) For any non-empty subset R of N, SR is the XR-marginal of SN: SN(g) = SR(g) for

all gambles g on XR;
(ii) ext(M (SN)) = {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))};

(iii) For any partition N1 and N2 of N, ×n∈N1∪N2Pn = (×n∈N1Pn)× (×n∈N2Pn), or in
other words, SN = SN1

×SN2
.

(iv) The strong product SN is strongly Kuznetsov, and therefore also Kuznetsov, strongly
factorising, factorising and productive.

The nice characterisation of the set ext(M (SN)) in the second statement guarantees that the
infima in Eqs. (7) and (8) are actually minima. This set of extreme points may be infinite
even when dealing with finite Xn, n ∈ N, and therefore hence the second statement is not
immediate. In addition, this result guarantees, amongst other things, that the strong product
satisfies the weak law of large numbers of Theorem 4.

This marks a preliminary end to our formalist discussion of independence for coherent
lower previsions. In the next section, we turn to the treatment of independence following an
epistemic and coherentist approach, where independence is considered to be an assessment
a subject makes. The more formalist thread will be taken up again in Section 6.

4. EPISTEMIC IRRELEVANCE AND INDEPENDENCE

Consider two disjoint subsets I and O of N. We say that a subject judges that XI is
epistemically irrelevant to XO when she assumes that learning which value XI assumes in
XI will not affect her beliefs about XO. Taking into account the behavioural interpretation
of coherent lower previsions summarised in Section 2.4, this means that the subject’s
supremum acceptable buying price for a gamble f contingent on the event that XI = xI
coincides with her supremum acceptable buying price for f , irrespective of the value xI ∈XI
that is observed.

Now assume that our subject has a coherent lower prevision PN on L (XN). If she
assesses that XI is epistemically irrelevant to XO, this implies that she can infer from her
joint model PN the following conditional model PO∪I(·|XI) on the set L (XO∪I):

PO∪I(h|xI) := PN(h(·,xI)) for all gambles h on XO∪I and all xI ∈XI .

12Walley [30, Section 9.3.5] calls this lower prevision the type-1 product. The term ‘strong product’ seems to
go back to Cozman [3].

13For the case of two variables (N = {1,2}), Cozman [3] was the first to prove that the strong product is
Kuznetsov.
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So an assessment of epistemic irrelevance is useful because it allows us to derive conditional
lower previsions from unconditional ones. It follows from the comments in Section 2 that
such an assessment is trivial when either O or I is the empty set. Similarly, if the gamble h
depends only on XO, then the conditional lower prevision for h conditional on some value
xI ∈XI coincides with the unconditional lower prevision of h.

It should be clear from the previous discussion that epistemic irrelevance is an asymmetric
notion: we only require that XI is epistemically irrelevant to XO; and this does not necessarily
imply that XO should be epistemically irrelevant to XI . Refs. [6, 13] include thorough
discussions of this point, along with examples illustrating how such asymmetries may
appear in concrete cases. Because of this, it becomes necessary to pay special attention to
the mutual irrelevance of two or more variables. We then talk about epistemic independence,
a suitably symmetrised version of epistemic irrelevance.

4.1. Epistemic many-to-many independence. We say that a subject judges the variables
Xn, n ∈ N, to be epistemically many-to-many independent when she assumes that learning
the value of any number of these variables will not affect her beliefs about the others. In
other words, if she judges for any disjoint subsets I and O of N that XI is epistemically
irrelevant to XO.

Again, if our subject has a coherent lower prevision PN on L (XN), and she assesses
that the variables Xn, n ∈ N, are epistemically many-to-many independent, then she can infer
from her joint model PN a family of conditional models

I (PN) := {PO∪I(·|XI) : I and O disjoint subsets of N} ,
where PO∪I(·|XI) is the coherent lower prevision on L (XO∪I) given by:

PO∪I(h|xI) := PN(h(·,xI)) for all gambles h on XO∪I and all xI ∈XI .

The crucial idea that the arguments in this paper hinge on, is that a coherent lower prevision
PN expresses independence when it does not lead to incoherence when combined with
an assessment of epistemic independence: the lower prevision PN and the conditional
supremum acceptable buying prices derived from it using epistemic independence should
not violate the consistency conditions introduced in Section 2.

Definition 4 (Many-to-many independence). A coherent lower prevision PN on L (XN)
is called many-to-many independent if it is coherent with the family of conditional lower
previsions I (PN). For a collection of coherent lower previsions Pn on L (Xn), n ∈ N, any
many-to-many independent coherent lower prevision PN on L (XN) that coincides with
the Pn on their domains L (Xn), n ∈ N, is called a many-to-many independent product of
these marginals.

As we show in the following example, this requirement of coherence of the unconditional
and resulting conditional models is by no means trivial: not all coherent lower previsions
PN express—are compatible with an assessment of—epistemic independence.

Example 1 (Independence is not trivial). Consider X1 = X2 = {0,1}, and let P{1,2} be
the linear prevision determined by P{1,2}({(0,0)}) = P{1,2}({(1,1)}) = 1/2. Consider the
gamble f := I{1} on X1, so P{1,2}( f ) = 1/2. On the other hand, with x2 = 1, we get

P{1,2}(I{x2}[ f −P{1,2}( f )]) =
1
2
− 1

2
· 1

2
=

1
4
6= 0.

This shows that P{1,2} is not coherent with the conditional prevision P{1,2}(·|X2), and as a
consequence it is not many-to-many independent. �

That a coherent lower prevision is not a many-to-many independent product need not
mean that it cannot be coherently updated: in the case of Example 1, we can always do so
by applying Bayes’s rule. What it does mean is that it cannot be coherently updated in such
a way that at the same time the epistemic independence conditions are satisfied.
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We shall see examples further on that seem to suggest that being a many-to-many
independent product might be too weak a requirement in certain situations: Example 3 in
Appendix B establishes the existence of a non-vacuous many-to-many independent product
with vacuous marginals, and intuition might suggest that an independent product of vacuous
marginals should be vacuous. The reason why such examples exist, is that coherence with
the conditional lower previsions induced by the marginals can sometimes be very easy to
satisfy, as Proposition 26 further on will show. Because of this, it might be thought useful to
require, in addition, some of the factorisation conditions from Section 3. We come back to
this issue in the Conclusions.

4.2. Epistemic many-to-one independence. There is a weaker notion of independence
that we will consider here, which is mainly useful as a kind of catalyst, facilitating our
search for the many-to-many independent products we are really after. We will coin the
term ‘epistemic many-to-one independence’ to identify it. We say that a subject judges the
variables Xn, n ∈ N, to be epistemically many-to-one independent when she assumes that
learning the value of any number of these variables will not affect her beliefs about any
single other. In other words, if she judges for any o ∈ N and any subset I of N \{o} that XI
is epistemically irrelevant to Xo.

Once again, if our subject has a coherent lower prevision PN on L (XN), and she assesses
that the variables Xn, n ∈ N, are epistemically many-to-one independent, then she can infer
from her joint model PN a family of conditional models

N (Pn,n ∈ N) :=
{

P{o}∪I(·|XI) : o ∈ N and I ⊆ N \{o}
}
,

where P{o}∪I(·|XI) is the coherent lower prevision on L (X{o}∪I) given by:

P{o}∪I(h|xI) := PN(h(·,xI)) = Po(h(·,xI)) for all h ∈L (X{o}∪I) and xI ∈XI , (9)

where of course Po is the Xo-marginal lower prevision of PN . In the set N (Pn,n ∈ N) we
are also allowing for empty I, in which case the conditional lower prevision P{o}∪I(·|XI)
reduces to the marginal Po. So we see that the family of conditional lower previsions
N (Pn,n ∈ N) only depends on the joint model PN through its Xn-marginals Pn, n ∈ N
(which, of course, explains our notation for it). This allows us, in particular, to define the
family N (Pn,n ∈ N) also starting from coherent lower previsions Pn on L (Xn), rather
than from a joint PN . The distinction between the two cases will be clear from the context.
We use this observation in the definition of the many-to-one independent product of given
marginals:

Definition 5. A coherent lower prevision PN on L (XN) with marginals Pn,n∈N, is called
many-to-one independent if it is coherent with the family N (Pn,n ∈ N). For a collection
of coherent lower previsions Pn on L (Xn), n ∈ N, any coherent lower prevision PN on
L (XN) that is coherent with the family N (Pn,n ∈ N) is called a many-to-one independent
product of these lower previsions Pn.

If a coherent lower prevision PN is many-to-many independent, then it is also many-to-one
independent: if PN is coherent with the family I (PN), it is certainly also coherent with
the subfamily N (Pn,n ∈ N) of I (PN). Trivially, both conditions are equivalent when
N = {1,2}, and as a consequence we can also use Example 1 to conclude that also many-to-
one independence is not trivial. However, many-to-many and many-to-one independence are
generally not equivalent when the set N has more than two elements: an explicit example is
provided in Example 6 in Appendix B.

Any many-to-one independent product of the coherent lower previsions Pn, n ∈ N, must
have these lower previsions as its marginals. This follows by applying the coherence condi-
tion in particular to the pairs PN and P{n}∪ /0(·|X/0), as will be made explicit in Corollary 15.
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4.3. Useful basic properties. A basic coherence result [30, Theorem 7.1.6] states that
taking lower envelopes of a family of coherent conditional lower previsions produces
coherent conditional lower previsions. As a consequence, if we consider a family Pλ

N , λ ∈Λ,
of many-to-one independent products, then for each λ the lower prevision Pλ

N is coherent
with the family of conditional lower previsions N (Pλ

n ,n ∈ N). By taking lower envelopes,
we deduce that PN := infλ∈Λ Pλ

N is coherent with the lower envelopes of N (Pλ
n ,n ∈ N),

which are precisely the family N (Pn,n ∈ N) of conditional lower previsions that can be
derived from PN using epistemic irrelevance: the marginal lower previsions of PN are the
lower envelopes of the marginal lower previsions of Pλ

N . Hence, PN is also a many-to-
one independent product. A similar argument shows that many-to-many independence is
preserved by taking lower envelopes.

We also have the following marginalisation and associativity properties.

Proposition 9. Consider arbitrary coherent lower previsions Pn, n ∈ N. Let PN be any
many-to-one independent product and QN any many-to-many independent product of the
marginals Pn, n ∈ N. Let R and S be any subsets of N.

(i) The XR-marginal PR of PN is a many-to-one independent product of its marginals
Pr, r ∈ R;

(ii) The XR-marginal QR of QN is a many-to-many independent product of its marginals
Pr, r ∈ R;

(iii) If R and S constitute a partition of N, then QN is a many-to-many independent
product of its XR-marginal QR and its XS-marginal QS.

The associativity property in (iii) follows immediately from the definition of a many-to-
many independent product, and means that the joint model still satisfies many-to-many
independence with respect to the marginals QR and QS; we have established a similar
property for strong independence in Proposition 8. To see that an analogous property does
not generally hold for many-to-one products, consider the coherent lower prevision QN in
Example 6 in Appendix B.

To conclude, we consider the case where all the lower previsions we want to combine
into an independent joint model are actually linear previsions. The following result shows
that our definitions of many-to-one and many-to-many independent products extend the
existing ones for linear previsions. It will also provide the basis for Proposition 12, which
will allow us to kick-start the discussion in Section 5.

Proposition 10. Any linear previsions Pn on L (Xn), n ∈ N, have a unique many-to-many
independent product and a unique many-to-one independent product, and both are equal to
the (strong) product SN :=×n∈NPn.

4.4. Conditional independence. Besides the variables Xn, n ∈ N, considered so far, we
now consider another variable Y assuming values in a finite set Y . We assume the variables
XN and Y to be logically independent: the variable (XN ,Y ) can assume all values in the
Cartesian product XN×Y .

We also consider separately coherent conditional lower previsions PO∪I(·|XI ,Y ) on
L (XO∪I×Y ) where I and O are disjoint subsets of N. It is important to realise that in all
these conditional lower previsions, the variable Y consistently appears as a conditioning
variable.

We can use this set-up to generalise the notions of epistemic irrelevance and independence
to those of conditional epistemic irrelevance and independence. As an example, consider
two disjoint subsets I and O of N. We say that a subject judges that XI is epistemically
irrelevant to XO, conditional on Y , when she assumes that when knowing the value of Y ,
learning in addition which value XI assumes in XI will not affect her beliefs about XO.

Assume that our subject has a separately coherent conditional lower prevision PN(·|Y )
on L (XN×Y ). If she assesses that XI is epistemically irrelevant to XO conditional on Y ,
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this implies that she can infer from her model PN(·|Y ) a conditional model PO∪I(·|XI ,Y ) on
the set L (XO∪I×Y ) given by

PO∪I(h|xI ,y) := PN(h(·,xI ,y)|y) for all h ∈L (XO∪I×Y ) and all (xI ,y) ∈XI×Y .

We can now extend the entire discussion in this and the next section to the conditional
case. We will, however, refrain from doing so explicitly, or in any detail. Rather, we present
a result that simply reduces problems of conditional epistemic irrelevance and independence,
as formulated above, to a collection of problems of epistemic irrelevance and independence.
This will allow us to immediately and automatically extend all the results in this and the next
section from the case of independence to that of independence conditional on the additional
variable Y .

With any conditional lower prevision PO∪I(·|XI ,Y ) on L (XO∪I×Y ), we associate a
collection of (separately coherent) conditional lower previsions Qy

O∪I(·|XI) on L (XO∪I),
one for each y in Y , defined by

Qy
O∪I( f |xI) := PO∪I( f |xI ,y) = PO∪I( f (·,xI)|xI ,y) for all f ∈L (XO∪I) and xI ∈XI .

(10)
We can reduce the problem of checking the coherence of a collection of conditional lower
previsions POk∪Ik(·|XIk ,Y ), k = 1, . . . ,m to a number |Y | of coherence problems that are
simpler, in the sense that the conditioning variable Y disappears from them; we have, for
each y ∈ Y , to check the coherence of the collection Qy

Ok∪Ik
(·|XIk), k = 1, . . . ,m.

Theorem 11 (Elimination of common conditioning variables). Consider m arbitrary but
different pairs of disjoint subsets Ok and Ik of N, k = 1, . . . ,m. Consider separately coherent
conditional lower previsions POk∪Ik(·|XIk ,Y ) on L (XOk∪Ik×Y ), k = 1, . . . ,m, and for each
y ∈ Y , the corresponding separately coherent Qy

Ok∪Ik
(·|XIk) on L (XOk∪Ik), k = 1, . . . ,m.

Then the following statements are equivalent:

(i) The collection POk∪Ik(·|XIk ,Y ), k = 1, . . . ,m is coherent;
(ii) For each y in Y , the collection Qy

Ok∪Ik
(·|XIk), k = 1, . . . ,m is coherent.

5. INDEPENDENT NATURAL EXTENSION

A number of examples in Appendix B show that, when we leave linear for lower
previsions, many-to-one and many-to-many independent products are generally speaking
not unique.

What we want to do in this section, then, is to show that any collection of coherent
marginals always has a pointwise smallest many-to-one, and a pointwise smallest many-to-
many, independent product, and that these products coincide.

We begin by observing that there always is at least one many-to-many (and therefore
also many-to-one) independent product:

Proposition 12. Consider coherent lower previsions Pn on L (Xn), n ∈ N. Then their
strong product ×n∈NPn is a many-to-many and many-to-one independent product of the
marginals Pn.

5.1. Definition of the many-to-one independent natural extension. Although the notion
of epistemic many-to-many independence seems to be the more intuitively appealing and
useful of the two, it turns out to be easier to approach the study with many-to-one inde-
pendent products. So, for the time being, we concentrate on the latter notion of independence,
which is related to the collection of conditional lower previsions:

N (Pn,n ∈ N) =
{

P{o}∪I(·|XI) : o ∈ N and I ⊆ N \{o}
}
,

where the conditional lower previsions are given by Eq. (9). Proposition 12 is instrumental
in establishing the following crucial observation.
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Proposition 13. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N. Then
the collection N (Pn,n ∈ N) of conditional lower previsions P{o}∪I(·|XI) is coherent.

As an immediate consequence, we see that checking whether a joint lower prevision is a
many-to-one independent product is a fairly straightforward matter.

Corollary 14. Consider a coherent lower prevision PN on L (XN), and coherent lower
previsions Pn on L (Xn), n ∈ N. Then PN is a many-to-one independent product of the Pn,
n ∈ N, if and only if any (and hence all) of the following equivalent conditions is satisfied:

(i) PN is weakly coherent with the collection N (Pn,n ∈ N) of conditional lower
previsions P{o}∪I(·|XI);

(ii) PN(I{xI}[g−Po(g)]) = 0 for all o ∈ N, all I ⊆ N \{o}, all gambles g on Xo and
all xI ∈XI .

If we apply Condition (ii) in this corollary to the special case where I is the empty set,
we deduce immediately that any (many-to-one) independent product of a number of lower
previsions must have these lower previsions as its marginals:

Corollary 15. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N. If the
coherent lower prevision PN on L (XN) is a many-to-one independent product of these
lower previsions Pn, then for all n ∈ N, Pn is the Xn-marginal of PN: PN(g) = Pn(g) for
all gambles g on Xn.

Because all the sets Xn are finite, we can invoke Walley’s Finite Extension Theorem [30,
Theorem 8.1.9] to derive from Proposition 13 that there always is a pointwise smallest joint
coherent lower prevision EN that is coherent with the coherent family N (Pn,n ∈ N). This
leads to the following definition.

Definition 6 (Many-to-one independent natural extension). Consider arbitrary coherent
lower previsions Pn on L (Xn), n ∈ N. We call the pointwise smallest coherent lower
prevision that is coherent with the family of conditional lower previsions N (Pn,n ∈ N)
the many-to-one independent natural extension of the marginals Pn, and we denote it by
⊗n∈NPn, or alternatively by EN when it is clear from the context what the marginals are.

Alternatively, and equivalently, the many-to-one independent natural extension of the
marginals Pn is the pointwise smallest many-to-one independent coherent lower prevision
on L (XN) whose marginals coincide with the given Pn. We gather from Corollary 14
that ⊗n∈NPn is also the smallest coherent lower prevision that is weakly coherent with the
conditional lower previsions in N (Pn,n ∈ N).

Since the strong product ×n∈NPn is a many-to-one independent product of the marginals
Pn, n ∈ N, by Proposition 12, it has to dominate the many-to-one independent natural exten-
sion ⊗n∈NPn: ×n∈NPn ≥⊗n∈NPn. These products do not coincide in general: Walley [30,
Section 9.3.4] discusses an example where the many-to-one independent natural extension is
not a lower envelope of independent linear products, and as a consequence cannot coincide
with the strong product.

On the other hand, the strong product is not generally the greatest many-to-one inde-
pendent product of given marginals, as we show in Example 3 in Appendix B.

5.2. Immediate properties of the many-to-one independent natural extension. It will
pay to study this many-to-one independent natural extension in greater detail. We begin
by deriving a workable expression for it. By definition, EN is the smallest joint coherent
lower prevision on L (XN) that is coherent with the family of conditional lower previsions
N (Pn,n∈N), so we can infer from Walley’s Finite Extension Theorem [30, Theorem 8.1.9]
that EN is the natural extension of the coherent collection N (Pn,n∈N) to an unconditional
(joint) lower prevision. Using Eq. (5), we find that it is given by:

EN( f ) = sup

{
min

[
f −∑

o∈N,I⊆N\{o}
G{o}∪I(gI,o|XI)

]
: gI,o ∈L (X{o}∪I),o ∈ N, I ⊆ N \{o}

}
,
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for all gambles f on XN , where we let

G{o}∪I(gI,o|XI) := ∑
xI∈XI

I{xI}[gI,o−P{o}∪I(gi,o|XI)]= ∑
xI∈XI

I{xI}[gI,o(·,xI)−Po(gI,o(·,xI))].

Therefore we find that:

EN( f ) = sup
gI,o∈L (X{o}∪I)

o∈N,I⊆N\{o}

min
zN∈XN

[
f (zN)− ∑

o∈N,I⊆N\{o}
[gI,o(zo,zI)−Po(gI,o(·,zI))]

]
. (11)

We first show that we can simplify this expression, by restricting the I in the supremum to
their largest possible values.

Theorem 16. Consider coherent lower previsions Pn on L (Xn), n ∈ N. Then for all
gambles f on XN:

EN( f ) = sup
hn∈L (XN)

n∈N

min
zN∈XN

[
f (zN)− ∑

n∈N
[hn(zN)−Pn(hn(·,zN\{n}))]

]
. (12)

The coherent lower prevision in Eq. (12) is actually the natural extension of the following
coherent family of conditional lower previsions:

Next(Pn,n ∈ N) :=
{

P{n}∪N\{n}(·|XN\{n}) : n ∈ N
}
⊆N (Pn,n ∈ N).

Relying on this expression for the independent natural extension, it is fairly straightforward
to show that it has the following monotonicity property.

Proposition 17. Let Pn and Qn be coherent lower previsions on L (Xn) such that Pn ≤Qn,
n ∈ N. Then ⊗n∈NPn ≤⊗n∈NQn.

5.3. Marginalising and conditioning the many-to-one independent natural extension.
Let us consider the coherent lower previsions Pn on L (Xn), n ∈ N. For any non-empty
subset R of N, we denote the independent natural extension of the marginal lower previsions
Pr, r ∈ R, by ER =⊗r∈RPr. This ER turns out to be the XR-marginal of EN =⊗n∈NPn.

Theorem 18. Consider a non-empty subset R of N. Then EN( f ) = ER( f ) for all gambles
f on XR.

The argumentation leading to this marginalisation property also allows us to prove the
following result.

Proposition 19. EN is productive. Moreover, EN(I{xI}[g−EO(g)]) = 0 for all disjoint
subsets I and O of N, all xI ∈XI and all g ∈L (XO).

This implies that the independent natural extension EN satisfies the law of large numbers of
Theorem 4. So does, therefore, any (many-to-one or many-to-many) independent product of
these marginals, as it must dominate EN , even though, as we show in Appendix B, not all
such independent products are productive!

Let us now define, for any disjoint subsets I and O of N, the conditional lower previsions
EO∪I(·|XI) on the set L (XO∪I) as follows:

EO∪I(h|xI) := EN(h(·,xI)) = EO(h(·,xI)) for all h ∈L (XO∪I) and xI ∈XI , (13)

where the last equality follows from Theorem 18. This allows us to infer from the many-to-
one independent natural extension EN a family of conditional models

I (EN) := {EO∪I(·|XI) : I and O disjoint subsets of N} ,
Interestingly, EN is coherent with the family I (EN), and therefore:

Theorem 20. EN is a many-to-many independent product of the coherent lower previsions
Pn, n ∈ N.
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Since any many-to-many independent product is in particular also a many-to-one inde-
pendent product, we are led to the following immediate conclusion:

Theorem 21 (Independent natural extension). The many-to-one independent natural ex-
tension EN =⊗n∈NPn of the coherent lower previsions Pn, n ∈ N, is also their pointwise
smallest many-to-many independent product. We can therefore simply call it the independent
natural extension of the marginals Pn.

The independent natural extension is not only a many-to-one and many-to-many inde-
pendent product of its marginals: it is also a factorising lower prevision.

Theorem 22. Consider coherent lower previsions Pn on L (Xn), n ∈ N. Then their inde-
pendent natural extension ⊗n∈NPn is factorising.

To show that it is also strongly factorising, it seems easiest to first show that it has an
associativity property that is similar to the one discussed in Propositions 8 and 9.

5.4. Associativity of the independent natural extension. Assume that N is the union of
two disjoint sets N1 and N2. Then it is natural to ask whether taking the independent natural
extension is an associative operation, i.e., whether

⊗n∈N1∪N2Pn = (⊗n∈N1Pn)⊗ (⊗n∈N2Pn)?

Let us look at this formulation from a slightly different angle. We can consider the tuple
XN1 as a variable assuming values in the set XN1 , and EN1

:=⊗n∈N1Pn as the corresponding
‘marginal’ lower prevision on L (XN1). Similarly, we can consider the tuple XN2 as a
variable assuming values in XN2 , and EN2

:= ⊗n∈N2Pn as the corresponding ‘marginal’
lower prevision on L (XN2). We now consider the joint variable X{N1,N2} assuming values
in X{N1,N2}, and the independent natural extension E{N1,N2} := EN1

⊗EN2
= (⊗n∈N1Pn)⊗

(⊗n∈N2Pn) of these two ‘marginals’. Since the variable XN1∪N2 is (essentially) the same as
the variable X{N1,N2}, the natural question to ask is, whether EN1∪N2

= E{N1,N2}?

Theorem 23. Consider arbitrary coherent lower previsions Pn on L (Xn), n∈N. Consider
a partition N1 and N2 of N, then ⊗n∈N1∪N2Pn = (⊗n∈N1Pn)⊗ (⊗n∈N2Pn).

One important and fairly immediate consequence of this associativity is that it allows us
to derive from the factorising character of the independent natural extension that it is also
strongly factorising:

Theorem 24. Consider coherent lower previsions Pn on L (Xn), n ∈ N. Then their inde-
pendent natural extension ⊗n∈NPn is strongly factorising.

5.5. Interesting special cases. When some of the marginals are linear or vacuous, the
expression for the independent natural extension in Eq. (12) simplifies to a great extent.
Because of the associativity result in Theorem 23, it suffices to consider the case of two
variables X1 and X2, so we let N = {1,2}.

When one of the marginals is linear, all independent products coincide:

Proposition 25. Let P1 be any linear prevision on L (X1), and let P2 be any coherent
lower prevision on L (X2). Let P{1,2} be any independent product of P1 and P2. Then for
all gambles f on X1×X2:

P{1,2}( f ) = (P1×P2)( f ) = (P1⊗P2)( f ) = P2(P1( f )),

where P1( f ) is the gamble on X2 defined by P1( f )(x2) := P1( f (·,x2)) for all x2 ∈X2.

On the other hand, when one of the marginals is vacuous, then the strong product and
the independent natural extension are also guaranteed to coincide:

Proposition 26. Let PA1
1 be the vacuous lower prevision on L (X1) relative to the non-

empty set A1 ⊆X1, and let P2 be any coherent lower prevision on L (X2). For all gambles
f on X1×X2:
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(i) (PA1
1 ×P2)( f ) = (PA1

1 ⊗P2)( f ) = minx1∈A1 P2( f (x1, ·)).
(ii) If P is a factorising coherent lower prevision with these marginals, then

P( f ) = (PA1
1 ×P2)( f ) = (PA1

1 ⊗P2)( f ) = min
x1∈A1

P2( f (x1, ·)).

(iii) If P2 = PA2
2 is the vacuous lower prevision on L (X2) relative to the non-empty

set A2 ⊆ X2, then any coherent lower prevision with these marginals P is an
independent product of PA1

1 and PA2
2 .

In contrast with what we might come to expect from Proposition 25, when one of the
marginals is vacuous, we cannot guarantee that all independent products coincide: see
Example 3 in Appendix B. This implies that the second statement of Proposition 26 cannot
be extended from factorising coherent lower previsions to independent products.14

6. EXTERNAL ADDITIVITY

We can now bring what we have learnt about the independent natural extension to bear on
our discussion of the more formalist approaches to independence. In the following section,
we investigate the connections between epistemic independence and factorisation. Here,
we discuss weakened versions for lower previsions of the additivity property that all linear
previsions have. Vicig [29] discusses a related but weaker notion of external n-monotonicity
for the case of coherent lower probabilities.

Definition 7 (External additivity). Consider a coherent lower prevision PN on L (XN). We
call this lower prevision:

(i) externally additive if for all non-empty R ⊆ N and all gambles fr on Xr, r ∈ R,
PN(∑r∈R fr) = ∑r∈R PN( fr);

(ii) strongly externally additive if PN( f +g) = PN( f )+PN(g) for all f ∈L (XI) and
g ∈L (XO), where I and O are any disjoint subsets15 of N.

Clearly, strong external additivity implies external additivity. The latter is called summation
independence by Cozman [3], who also gives, for the case N = {1,2}, a proof for the
external additivity of the strong product [3, Theorem 1]. We generalise his result by proving
that both the strong product and the epistemic natural extension are generally (strongly)
externally additive.

Proposition 27. Consider arbitrary coherent lower previsions Pn, n ∈ N. Then both their
strong product SN and their independent natural extension EN are strongly externally
additive, and therefore also externally additive.

It follows from the definition that any convex combination of (strongly) externally additive
coherent lower previsions is again (strongly) externally additive. In fact, looking at the
proof of this result in Appendix A, we see that any many-to-one independent product of the
given marginals that is dominated by the strong product is also externally additive. To see
that this does not extend to all many-to-one independent products, consider Example 3 in
Appendix B.

On the other hand, Example 4 in the same appendix shows that the properties of external
additivity and strong external additivity are not equivalent. It also shows that not all many-to-
one independent products between the independent natural extension and the strong product
are strongly externally additive.

14It also explains why the lower prevision in Example 3 of Appendix B cannot be factorising.
15The coherence of PN guarantees that for empty I or O the corresponding condition is trivially satisfied.
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7. FACTORISATION AND INDEPENDENCE

Since we know from Proposition 8(iv) that the strong product is factorising, we wonder
if we can use factorising lower previsions as many-to-one independent products. That this
is indeed the case is proved in the following theorem:

Theorem 28. Consider an arbitrary coherent lower prevision PN on L (XN). If it is
factorising, then it is a many-to-one independent product of its marginals Pn, n ∈ N.

It is therefore natural to ask whether, by extension, all strongly factorising lower previ-
sions are many-to-many independent. While we have not been able to answer this question
in its full generality, we are able to show that this is indeed the case under fairly weak
additional positivity conditions.

Recall that for a factorising (or indeed any) coherent lower prevision PN on L (XN) to be
an independent product, it must be strongly coherent with the family I (PN) of conditional
lower previsions. It turns out that at least the weak coherence is never an issue.

Theorem 29. Consider a coherent lower prevision PN on L (XN). If it is strongly factori-
sing, then it is weakly coherent with the family I (PN).

Next, we turn to deriving a sufficient condition for a strongly factorising lower prevision
PN on L (XN) to be also many-to-many independent, so strongly coherent with the family
I (PN). For any non-empty subset I of N, we see at once that

PN(×i∈IAi) = ∏
i∈I

PN(Ai) and PN(×i∈IAi) = ∏
i∈I

PN(Ai),

where Ai ⊆Xi for all i∈ I. Now suppose we want to condition PN on an observation XI = xI ,
where I is some subset of N. To this end, we calculate the regular extension, as discussed in
Section 2.6:

R(h|xI) := max
{

µ ∈ R : PN(I{xI}[h−µ])≥ 0
}
,

where h is any gamble on XO and O is any subset of N \ I. If PN is strongly factorising, we
see that

PN(I{xI}[h−µ]) = PN(I{xI}PN(h−µ)) = PN(I{xI}(PN(h)−µ))

=

{
PN({xI})(PN(h)−µ) if PN(h)≥ µ

PN({xI})(PN(h)−µ) if PN(h)≤ µ,

so we conclude that

R(h|xI) = PN(h) as soon as PN({xI})> 0.

This means that, heuristically speaking and under some positivity assumptions, the condi-
tional lower previsions that are found by conditioning a strongly factorising joint lower
prevision using regular extension, reflect the irrelevance conditions that are involved in the
definition of many-to-many independence. Taking into account that, from Theorem 3, the
conditional lower previsions derived by regular extension are strongly coherent, we deduce
the following:

Theorem 30. Let PN be a strongly factorising coherent lower prevision. If PN({xI})> 0
for every {xI} ∈XI , then PN is many-to-many independent.

It is an open problem at this point whether this positivity condition is really necessary.
Since the independent natural extension is the pointwise smallest many-to-one inde-

pendent product of given marginals, and since we have shown in Proposition 8(iv) that
the strong product is in particular Kuznetsov, we deduce that the smallest many-to-one
independent product that is still Kuznetsov lies between the independent natural extension
and the strong product. For the case N = {1,2}, this was also established by Cozman [3].

Concerning the other conditions introduced in Section 3, we point out the following:
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Proposition 31. Consider arbitrary coherent lower previsions Pn on L (Xn), n ∈ N, and
let Q1 and Q2 be coherent lower previsions on L (XN) with these marginals Pn. Let Q3
be any coherent lower prevision on L (XN) such that Q1 ≤ Q3 ≤ Q2. Then the following
statements hold:

(i) If Q1 and Q2 are many-to-one independent products, then so is Q3;
(ii) If Q1 and Q2 are factorising, then so is Q3;

(iii) If Q1 and Q2 are Kuznetsov, then so is Q3;
(iv) If Q2 is externally additive, then so is Q3.

We deduce that a convex combination of many-to-one independent products of the same
given marginals is again a many-to-one independent product of these marginals. A similar
result holds for factorising or Kuznetsov lower previsions.

It is also interesting to investigate the connections between independent products and the
notion of productivity.

Proposition 32. Consider a coherent lower prevision PN on L (XN). Then the following
statements are equivalent:

(i) PN is weakly coherent with I (PN);
(ii) PN is productive.

In addition, any many-to-many independent lower prevision is productive, and any produc-
tive coherent lower prevision is many-to-one independent. Moreover, if PN({xI})> 0 for
every xI ∈XI and every subset I of N, then PN is many-to-many independent if and only if
it is productive.

We conclude that productivity, which is sufficient for the law of large numbers in Theo-
rem 4 to hold, is intermediate between being a many-to-one and being a many-to-many
independent product, and is equivalent to many-to-many independence when all the condi-
tioning events have positive lower probability. Example 6 in Appendix B shows that not
all many-to-one independent lower previsions are productive, and that many-to-one and
many-to-many independence are not equivalent even if the conditioning events all have
positive lower probability.

8. AN APPLICATION: PROBABILISTIC INFERENCE IN IMPRECISE MARKOV TREES

Independence is at the very heart of much research done in Artificial Intelligence. In this
section we show how the independent natural extension affects a very traditional domain
of AI: probabilistic graphical models. We do so by reviewing and discussing a model and
algorithm recently introduced elsewhere by some of us [11]. The coherence results that are
at the core of that algorithm rely quite heavily on the properties of the independent natural
extension proved in this paper16, such as its being the smallest many-to-many independent
product, its marginalisation and associativity properties, and its being strongly factorising.

8.1. Background notions and notation. As is widely known, a graphical model consists
of a graph enriched with specific probabilistic information. One such model is a Bayesian
network [27]. Here a directed graph represents variables through nodes, and independence
statements between them by arcs. Conditional probabilities are associated with the nodes of
the graph.

Let us make this more precise by introducing some notation. We tailor the notation to
the case of tree topologies, which are the focus of our attention: every node of the graph has
exactly one parent, with the exception of one node, called root, which has no parents.

We call T the set of the nodes s of the tree, and we denote the root node by �. For any
node s, we denote its mother node by m(s). The root � has no mother node, and we use the
convention m(�) = /0. For each node s, we denote the set of its children by C(s). If C(s) = /0,

16The paper was written jointly with the present one, but published earlier due to circumstance.
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then we call s a leaf, or terminal node. Moreover, D(s) denotes the set of descendants of s
(its successors in the graph). We also use the notation ↓s := D(s)∪{s} for the sub-tree with
root s. Similarly, we let ↓S :=

⋃
{↓s : s ∈ S} for any subset S⊆ T . For any node s, its set of

non-parent non-descendants is then given by s := T \ ({m(s)}∪↓s).
With each node s of the tree, there is associated a variable Xs. We adopt the usual notation

and assumptions for the variables in the tree. In particular, variable Xs takes values in
the corresponding non-empty finite set Xs, and we assume all variables to be logically
independent.

At this point we can define the probabilistic information in a Bayesian net more precisely:
a generic node s is equipped with a mass function for Xs conditional on Xm(s) = zm(s), for
all zm(s) ∈Xm(s). We can rephrase this in the language of previsions by saying that each
node s has a (separately coherent) conditional linear prevision Qs(·|Xm(s)) on L (Xs): for
each possible value zm(s) of the variable Xm(s) associated with its mother node m(s), we
have a linear prevision Qs(·|zm(s)) for the value of Xs, conditional on Xm(s) = zm(s).

17 We
call Qs(·|Xm(s)) a local uncertainty model.

The tree together with the local uncertainty models provides a compact way to define a
joint probability mass function over XT . This follows from the Markov condition, which
is also what provides the graphical model with a probabilistic semantics: conditional on
its mother variable Xm(s), variable Xs is assumed to be independent of its non-parent non-
descendant variables Xs. Again, in terms of lower previsions, this means that the graphical
model is an equivalent representation of a global uncertainty model PT , that is, a linear
prevision defined on L (XT ).

The global uncertainty model is then used for inference, which most often amounts
to computing posterior beliefs (i.e., probabilities or expectations) for a query variable Xs
conditional on XE = xE , where E is a non-empty subset of T whose variables are in the
known state xE . This task is called updating. Updating is performed by applying Bayes’s
rule to the global uncertainty model while exploiting the structure of the graph in order to
perform the computation as efficiently as possible. In fact, the computation of updating on a
tree-shaped Bayesian network is an easy task, which is solved exactly in time linear in the
size of the tree.

8.2. Epistemic trees. Bayesian networks have been extended to deal with imprecisely
specified probabilities. The resulting models are called credal networks [4]. The extension
is achieved primarily by replacing the local uncertainty models of Bayesian networks with
imprecise ones: in the most common case, this means that each mass function required to
specify a Bayesian net is replaced by a closed convex set of mass functions. In the language
of previsions, in a credal network each node s is equipped with a (separately coherent)
conditional lower prevision Qs(·|Xm(s)) on L (Xs): for each possible value zm(s) of the
variable Xm(s) associated with its mother node m(s), we have a coherent lower prevision
Qs(·|zm(s)) for the value of Xs, conditional on Xm(s) = zm(s).

As in Bayesian networks, these local uncertainty models need to be combined into a
global uncertainty model that is later used for (imprecise-probabilistic) inference. The
Markov condition still plays the leading role in this process, but has to be modified to take
into account the specific notion of independence (or irrelevance) that the graph is assumed
to represent.

The traditional approach in the literature focuses on strong independence: in this case,
conditional on its mother variable Xm(s), a variable Xs is assumed to be strongly independent
of its non-parent non-descendant variables Xs. The global uncertainty model PT obtained
through this so-called strong Markov condition, is called the strong extension. The strong
extension comes with a sensitivity analysis interpretation: in fact, each of its extreme points

17In the root, this corresponds to having an unconditional local uncertainty model Q� for X�: a linear prevision
on L (X�).
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can be regarded as arising from a Bayesian network with the same graph as the credal net,
and whose local uncertainty models dominate the local uncertainty models of the credal
network. In other words, a credal network under strong independence can be regarded as
the set of all the Bayesian networks that are compatible with the probabilities that have been
imprecisely specified in the design of the credal net.

But the sensitivity analysis interpretation of an imprecise probability model is not always
applicable, as we have discussed in the Introduction with reference to modelling expert
knowledge. In this case an assumption of epistemic irrelevance may allow one to represent
more faithfully an expert’s beliefs.18 This point is especially important because modelling
expert knowledge is among the main motivations for using credal networks (as well as
Bayesian nets).

This lead has been followed in Ref. [11] by looking at the following type of Markov
condition based on epistemic irrelevance:

CI. Consider any node s in the tree T , any subset S of its set of children C(s), and the
set S :=

⋂
c∈S c of their common non-parent non-descendants. Then conditional on

the variable Xs, the non-parent non-descendant variables XS are assumed to be
epistemically irrelevant to the variables X↓S associated with the children in S and
their descendants.

This condition turns T into a credal tree under epistemic irrelevance, which we call impre-
cise Markov tree.

Before we proceed, let us briefly address a technical question: the form of CI might look
unusual when compared to the common statement of the Markov condition. In fact, CI seems
to impose a wider set of irrelevances, focusing as it does on sets of children of s, and on the
related subtrees, rather than on a single child. But this difference is only apparent, because
the strong Markov condition, as well as the precise-probabilistic Markov condition, can be
reformulated equivalently in a completely similar way: the apparent additional irrelevances
(or independencies) are actually implied by those in the standard Markov condition [use
d-separation to see that s blocks all the relevant paths]. Whether or not this is the case
when we use epistemic irrelevance is not obvious to us at present; this is due to epistemic
irrelevance being a relatively weak notion for imprecise probability models. For this reason,
CI is formulated by imposing all the additional epistemic irrelevances explicitly.

We now shed more light on two immediate consequences of CI.
First, consider some non-terminal node s different from �, and its mother variable Xm(s).

We infer from CI that this mother variable Xm(s) is epistemically irrelevant to the variable
X↓C(s) conditional on Xs:

Xm(s)

Xs

X↓c1
. . . X↓cn

or equivalently,

Xm(s)

Xs

X↓C(s)

It is worth stressing that such is not necessarily the case when we reason in the opposite
way: CI does not imply that X↓C(s) is epistemically irrelevant to Xm(s) in case we observe Xs.
This kind of symmetrised irrelevance (that is, independence) can be imposed too, but its
treatment is much more involved and problematical from the algorithmic side, because it
complicates the construction of the global model tremendously. In addition, we would argue
that the irrelevances imposed by CI are more natural than their symmetrised counterparts
for directed graphical models. We will come back to this point in Section 8.4.

18Obviously, there may be cases where strong independence is justified in order to model an expert’s knowledge.
Moreover, strong independence could provide a good approximation to more accurate models, even when it is not
entirely appropriate.
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Next, consider some node s. Then CI tells us that for any two children c1,c2 ∈C(s) of s,
the variable X↓c1 is epistemically irrelevant to the variable X↓c2 , conditional on Xs.

Xs

X↓c1
. . . X↓c2

It even tells us that for any two disjoint non-empty sets S1 ⊆C(s) and S2 ⊆C(s) of children
of s, the variable X↓S1 is epistemically irrelevant to X↓S2 , conditional on Xs. In contradistinc-
tion with the previous example, here we see that the symmetrised irrelevance conditions
(here between children) originate spontaneously from CI: we conclude that, conditional
on a node, its children c (or rather, the variables associated with their sub-trees ↓c) are
epistemically many-to-many independent.

This is the specific point where our present work on the independent natural extension
meets credal trees. If we want to obtain the most conservative global model that arises
through coherence from the local models and the statements of conditional irrelevance
implied by CI, then we need to compute the independent natural extension in order to
summarise the information carried by the variables associated with the sub-trees ↓c, with
c ∈C(s).

8.3. Constructing the most conservative global model. Let us illustrate how to construct
the most conservative global model for the variables in the tree that extends the local models
and expresses all conditional irrelevancies encoded by the imprecise Markov tree through
CI. Consider the following fragment of the tree.

Xm(s)

Xs

X↓c1 X↓c2
. . . X↓cn

Qs(·|Xm(s))

P↓ck
(·|Xs)

Here we denote by P↓ck
(·|Xs) the lower prevision on L (X↓ck) that is the most conservative

global model for X↓ck constructed from CI and the local models in the subtree with root
ck. This is a conditional global model as it depends on the value of Xs. For the time being,
we assume that such conditional global models related to the children of s exist and have
already been computed. Since we know from the foregoing discussion that the X↓c1 , . . . ,
X↓cn are many-to-many independent conditional on Xs, we can compute their independent
natural extension ⊗c∈C(s)P↓c(·|Xs), which is a conditional lower prevision P↓C(s)(·|Xs) on
L (X↓C(s)). We can reorganise the graph accordingly by clustering all the children into a
single node.

Xm(s)

Xs

X↓C(s)

Qs(·|Xm(s))

⊗c∈C(s)P↓c(·|Xs) =: P↓C(s)(·|Xs)

At this point, the local model Qs(·|Xm(s)) must be combined with P↓C(s)(·|Xs) into a least-
committal (pointwise smallest) global conditional model about X↓s. This is achieved by
taking their marginal extension19

Qs(P↓C(s)(·|X{m(s),s})|Xm(s)) = Qs(P↓C(s)(·|Xs)|Xm(s));

19Marginal extension is, in the special case of precise probability models, also known as the law of total
probability, or the law or iterated expectations.
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see Refs. [23] and [30, Section 6.7.2] for more details. Graphically:
Xm(s)

X↓s Qs(P↓C(s)(·|Xs)|Xm(s)) =: P↓s(·|Xm(s))

It is clear that this process can be iterated by starting from the leaves of the tree and letting
P↓t(·|Xm(t)) := Qt(·|Xm(t)) for all leaves t, and working our way recursively up to the root.
When we eventually get to the root, this process yields a global model P↓�(·|Xm(�)) =: PT .

A central theorem in Ref. [11] then guarantees that, under mild positivity conditions
on the local upper previsions, PT is the most conservative (pointwise smallest) joint lower
prevision that coherently extends the local models and that expresses all the conditional
irrelevance statements implied by CI. This remarkable result relies quite heavily on the
independent natural extension and its properties, as introduced and studied in this paper.
The particular properties that are crucial in establishing it are: that it is the smallest many-
to-many independent product (Theorem 21), that it is strongly factorising (Theorem 24),
that it satisfies some marginalisation and associativity properties (Theorems 18 and 23), and
that all of this can be extended to the conditional setup (Theorem 11).

These results have important implications for imprecise-probabilistic graphical models
under epistemic irrelevance. They show that epistemic irrelevance can be used in the context
of at least some graphical models in much the same way as stochastic independence or
strong independence. In fact, not only does the work in Ref. [11] show by construction that
the ‘epistemic extension’ PT generally exists, but it goes further by using it to derive an
efficient algorithm for updating in imprecise Markov trees—another name for credal trees.
Similarly to the traditional algorithms for Bayesian nets, it works in a distributed fashion by
passing (imprecise-)probabilistic messages along the nodes of the tree until it converges
and thus yields the (exact) updated lower previsions of interest. Moreover, it works in time
linear in the size of the tree, as is the case with the more traditional algorithms for precise
probabilities.

8.4. Some remarks. The results obtained with imprecise Markov trees are particularly
interesting because it had been uncertain until quite recently whether or not epistemic
irrelevance could be used to design efficient algorithms in graphical models. This is related
to epistemic irrelevance being not as well-behaved as other independence notions with
respect to the graphoid axioms; see in particular Ref. [6], but also Ref. [26] for a more
positive view. Part of the interest in these results is due to complexity reasons. Computation
in credal nets based on strong independence is substantially harder than the case of Bayesian
nets: it is an NP-hard task even on polytrees20 [9]. What complexity updating credal trees
under strong independence has, is still an open problem, but preliminary analyses indicate
that this task could be NP-hard too [8]. If this were to be confirmed, we should have a clear
example where epistemic irrelevance leads to simpler models of computation than strong
independence.

On the other hand, we should take into account that these positive results have been
obtained in the case of tree topologies. The expressivity of trees should not be overlooked
because, for example, updating problems in Bayesian networks can be solved through the
well-known join tree structure (this is an undirected tree, but it can be as well represented
in a directed way with minor changes).21 And yet, it does not seem likely that something
similar can be done under epistemic irrelevance. The crucial point here is that when we
convert a polytree into a (directed) join tree, we shall be obliged to invert the direction of
some arcs. This is easy to see by considering a V-shaped graph made of two chains that

20These are directed graphs that become (undirected) trees after dropping the orientations of the arcs.
21This was observed by Pearl already at the time of the original proposal by Lauritzen and Spiegelhalter, see

Ref. [20, p. 211].
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converge into a node. The problem is that the epistemic irrelevances coded by the original
V-shaped polytree will not imply in general those related to the inverted arcs in the directed
tree, simply because epistemic irrelevance is an asymmetric notion. Therefore, imprecise
Markov trees do not seem suited to be exploited as tools for solving updating problems
in more general credal networks under epistemic irrelevance. This situation could perhaps
change if condition CI were reformulated to code symmetric irrelevances (that is, epistemic
independencies): in this case inverting the arcs should cause no problems. However, as we
already suggested above, the development of efficient algorithms for trees under such a
modified (strengthened) Markov condition appears to be quite problematic, because the
condition complicates the computation of the joint model. All these considerations lead us
to conjecture that the extension of the existing results from trees to polytrees might require
a substantial increase in computational complexity.

Still, there is another direction, relying on tree topologies, that appears to be particularly
promising for addressing interesting problems under epistemic irrelevance. It is based on
the observation that discrete-time sequential processes are very often represented by hidden
Markov models [28], which are special trees in the language of graphical models. Hidden
Markov models have a number of applications, often related to some kind of recognition:
speech, gesture, or word recognition. Technically, this is achieved by computing sequences
of hidden variables (states) from the observation of sequences of other, manifest, variables
(outputs). In fact, in order to turn credal trees into workable imprecise hidden Markov
models, the additional complication that needs to be faced is that of querying the tree for
the joint value of the hidden variables, rather than for a single one. Recent work [7] has
shown that, fortunately, such a task can be solved again exactly and with a complexity that
is essentially the same as that required for precise-probabilistic hidden Markov models.
Once again, the key to this result is the use of the independent natural extension and its
properties, as developed here.

9. CONCLUSIONS

We have worked out the foundations of epistemic independence, a generalisation of sto-
chastic independence to imprecise probabilities. This has led to a definition of independent
products, and in particular to the especially interesting and useful notion of independent
natural extension. Like the strong product, or any other independent product, for that matter,
it captures the idea of mutual irrelevance between sources of information. But it is the most
conservative independent product to do so, which indicates that it is the only one that is
based solely on this mutual irrelevance (and coherence, of course).22 We see that, because it
encompasses all these types of independent product, the notion of epistemic independence
has very wide scope.

We have carried out our study by focusing on variables assuming values in finite spaces,
and have followed two different routes. On the one hand, we have considered generalisations
to imprecise probabilities of the factorisation formula: productivity, (strong) factorisation,
being (strongly) Kuznetsov. On the other, we have defined many-to-one and many-to-many
independent products of marginals, or, possibly, conditionals, based on a behavioural notion
of symmetrised epistemic irrelevance, or in other words, epistemic independence. We have
shown that the two routes are tightly interwoven, as factorisation implies many-to-one
independence and strong factorisation implies many-to-many independence (under weak
positivity assumptions). The most important notion of this paper, the independent natural
extension, has been shown to be the smallest many-to-many (and many-to-one) independent
product. It also satisfies useful basic properties related to marginalisation, associativity, and
external additivity.

22The ‘extra information’ entering the strong product seems to be the underlying assumption of an ideal precise
model. In order to make the strong product the smallest coherent independent product, the notion of coherence
would have to be strengthened.
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What the independent natural extension embodies, in other words, is a way to coherently
extend marginal imprecise probability models into a joint model using symmetrised episte-
mic irrelevance judgements alone. As far as practical applications are concerned, this task is
simplified by our next important result: under mild conditions, using the independent natural
extension is equivalent to imposing strong factorisation when looking for least-committal
models. In fact, this is the crucial result that has allowed the independent natural extension
to be used successfully in graphical models in Ref. [11], as we have discussed above.

All these results appear here, at this level of generality, for the first time. It is natural to
wonder what they might eventually lead us to.

As far as applications are concerned, we see much scope for epistemic independence. As
already indicated, the domain of graphical models is particularly worth of consideration
in this respect. Future research could, as mentioned in Section 8.4, try to extend the work
in Ref. [11] to more general graphs, such as polytrees. The recent development of an
efficient algorithm for the exact computation of state sequences in imprecise hidden Markov
models [7] (which are special imprecise Markov trees) should favour the emergence of
new interesting applications exploiting epistemic independence. Another potential domain
of application could be probabilistic logic, and in particular the extensions that have been
proposed to embed independence [5]. This would lead to approaches to probabilistic logic
allowing both for imprecise probabilities and epistemic independence judgements.

As regards more technical questions arising from this paper, we summarise the main
problems that remain open at this stage.

Primo, in Proposition 6, we have established relationships—in fact, implications—
between the different factorisation conditions introduced in Section 3. In Appendix B,
we give a number of counterexamples that show that none of the converse implications hold
in general, except for one of them: we still do not know whether the Kuznetsov and strong
Kuznetsov conditions are generally equivalent.

Secundo, in Section 4 we have introduced many-to-one and many-to-many independent
products, and we have shown in Appendix B that the second of these notions is more
restrictive. But let us look at the connections between these epistemic notions and the
more formal conditions introduced in Section 3. We have proved that a factorising coherent
lower prevision (and as a consequence also one that is strongly factorising, Kuznetsov or
strongly Kuznetsov) is many-to-one independent, although in Appendix B we can see that
the converse is not true in general. We also show in Appendix B that not every many-to-
many independent product is factorising (and therefore it need not be Kuznetsov, strongly
factorising or strongly Kuznetsov). But we do not know whether a strongly factorising
coherent lower prevision is necessarily many-to-many independent.

Tertio, we have established in Section 5 that the independent natural extension is the
smallest many-to-one independent product of given marginals, and that it also is the smallest
product that is factorising, strongly factorising, or many-to-many independent. We show in
Appendix B that it is neither the smallest Kuznetsov nor the smallest strongly Kuznetsov
product. Another example of this is given in Ref. [3], where it is shown that the least-
committal Kuznetsov product of given marginals may be different from the strong product.

Quarto, and related to this, we show in Example 3 that there are many-to-many inde-
pendent products that dominate the strong product, but our next conjecture, that the strong
product could be the greatest factorising product of given marginals, still remains to be
proved or disproved. If the conjecture were to hold, then the strong product would also be
the greatest strongly factorising, Kuznetsov and strongly Kuznetsov product. Related to this,
it might be argued that the coherent lower prevision in Example 3 represents a somewhat
pathological situation, and that it points to the fact that considering only many-to-many
independence as our main requirement could be too weak. One possibility would be to
restrict ourselves to many-to-many independent products which satisfy one of the facto-
risation conditions we have introduced in this paper; this seems to be in accordance with
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the results in Section 5.5, which show that the coherent lower prevision in Example 3 is
not factorising, and that for those marginals the only factorising product is the intuitive
one. Hence, we may focus for instance on factorising coherent lower previsions, or on
many-to-many independent products which are at the same time strongly factorising.

Finally, we do not know whether all factorising coherent lower previsions are externally
additive, nor whether all strongly factorising coherent lower previsions are. These open
problems could be related to our conjecture about the strong product being the greatest
factorising lower prevision with given marginals.
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APPENDIX A. PROOFS OF RESULTS

Proof of Proposition 5. We first show that PN is factorising if and only if (i) holds. Since the
direct implication is trivial, it suffices to prove the converse. Consider o ∈ N, fo ∈L (Xo)
and non-negative fi ∈L (Xi) for i ∈ I, where I is any subset of N that does not include o.
Let f j be the gamble with the constant value 1, for every j /∈ I∪{o}. We deduce from (i)
that

PN( fo ∏
i∈I

fi) = PN( fo ∏
i 6=o

fi) = PN(PN( fo)∏
i6=o

fi) = PN(PN( fo)∏
i∈I

fi),

so PN is factorising.
Next, we prove that (i) and (ii) are equivalent. Let, for notational simplicity, fR :=∏r∈R fr

for any subset R of N.
(i)⇒(ii). If PN( fo) ≥ 0, then the coherence of PN tells us that PN(PN( fo) fN\{o}) =

PN( fo)PN( fN\{o}). Similarly, if PN( fo)≤ 0, then

PN(PN( fo) fN\{o}) =−PN(−PN( fo) fN\{o}) = PN( fo)PN( fN\{o}).

It now suffices to establish the equalities PN( fN\{o}) = ∏i∈N\{o}PN( fi) and PN( fN\{o}) =

∏i∈N\{o}PN( fi). These follow easily by applying induction on the number of the elements
in the product.

(ii)⇒(i). By letting fo := 1, we infer from (ii) that PN( fN\{o}) = ∏i∈N\{o}PN( fi), and
by letting fo :=−1, that PN( fN\{o}) = ∏i∈N\{o}PN( fi). Going back to general fo, we now
derive from (ii) and the coherence of PN that, when PN( fo)≥ 0:

PN( fo)∏
i∈N\{o}

PN( fi) = PN( fo)PN( fN\{o}) = PN(PN( fo) fN\{o}),

and that when PN( fo)≤ 0:

PN( fo)∏
i∈N\{o}

PN( fi) =PN( fo)PN( fN\{o}) =−PN(−PN( fo) fN\{o}) =PN(PN( fo) fN\{o}). �
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Proof of Proposition 6. First, assume that PN is strongly Kuznetsov. We show that PN is
strongly factorising. Consider disjoint subsets I and O of N, a gamble g on XO and a
non-negative gamble f on XI . Since PN( f )≥ PN( f )≥ 0 and PN(g)≥ PN(g), we infer that

PN( f g) = PN( f )�PN(g)

= [min{PN( f )PN(g),PN( f )PN(g)},max{PN( f )PN(g),PN( f )PN(g)}]

=


[PN( f )PN(g),PN( f )PN(g)] if PN(g)≥ 0
[PN( f )PN(g),PN( f )PN(g)] if PN(g)≤ 0≤ PN(g)
[PN( f )PN(g),PN( f )PN(g)] if PN(g)≤ 0,

and by considering the lower interval bounds, we see that PN is indeed strongly factorising.
Next, assume that PN is strongly factorising. We show that PN is productive. Consider

disjoint subsets I and O of N, a gamble g on XO and a non-negative gamble f on XI . Then
it follows from the fact that PN is strongly factorising and coherent that

PN( f [g−PN(g)]) = PN( f PN(g−PN(g))) = PN( f [PN(g)−PN(g)]) = 0,

so PN is indeed productive.
The proofs of the remaining implications are either similar, or trivial. �

Proof of Proposition 7. The first part of the proposition is immediate. For the second, use
the first to see that (c) and (d) are equivalent, and that (e) and (f) are equivalent. For the
other equivalences, use the self-conjugacy and coherence of PN . �

Proof of Proposition 8. The first statement is an immediate consequence of Eq. (8) and
Proposition 7(i).

We turn to the proof of the second statement. We first show that the set ext(M (SN)) is
included in {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))}. The sets M (Pn), n ∈ N, are closed [in
the topology of pointwise convergence, or equivalently, in the Euclidean topology, because
we are working in finite-dimensional linear spaces]. So the Cartesian product ×n∈NM (Pn)
is closed in the product topology. Since it is clear from Eq. (6) that taking a product of
linear previsions is a continuous operation with respect to these topologies, it follows that
the set of linear previsions M := {×n∈NPn : (∀n ∈ N)Pn ∈M (Pn)} is closed. It follows
from Walley’s weak* compactness theorem [30, Theorem 3.6.1] that since SN is the lower
envelope of M , the convex compact set M (SN) is equal to the closed convex hull of its
subset M . It then follows from the extended form of the Krein–Milman Theorem in Ref. [18,
p. 74] that ext(M (SN))⊆M (because M is closed). Suppose ex absurdo that some extreme
point SN =×n∈NQn of M (SN) does not belong to {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))}.
Then there must be some r ∈ N such that Qr is not an extreme point of M (Pr), so there are
different Q1

r and Q2
r in M (Pr) and α ∈ (0,1) such that Pr = αQ1

r +(1−α)Q2
r . But then

SN =αQ1
N +(1−α)Q2

N , where Q1
N := (×n6=rPn)×Q1

r ∈M and Q2
N := (×n6=rPn)×Q2

r ∈M .
Since M ⊆M (SN), this contradicts that SN is an extreme point of M (SN). We deduce that
indeed ext(M (SN))⊆ {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))}.

On to the converse inequality {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))} ⊆ ext(M (SN)).
Consider arbitrary Pn ∈ ext(M (Pn)) for all n∈N. Then SN :=×n∈NPn ∈M (SN) by Eq. (8).
It follows from Minkowski’s theorem (or Krein–Milman Theorem in finite dimensions)
that SN is a convex combination of elements of ext(M (SN)): there are m≥ 1, non-negative
real α1, . . . , αm such that ∑

m
k=1 αk = 1 and Q1

N , . . . , Qm
N in ext(M (SN)) such that SN =

∑
m
k=1 αkQk

N . If m = 1 then clearly SN ∈ ext(M (SN)), so we may assume without loss of
generality that m > 1.

Consider any n ∈ N, then it follows by marginalisation that Pn = ∑
m
k=1 αkQk

n, where
Qk

n is the Xn-marginal of Qk
N , k = 1, . . . ,m. [That the Xn-marginal of SN is Pn follows

from Proposition 7(i).] Since Qk
N ∈M (SN) we find that Qk

N(g) ≥ SN(g) = Pn(g) for any
g ∈ L (Xn), where the equality follows from (i). This implies that Qk

n ∈M (Pn), k =
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1, . . . ,m. But since we assumed that Pn ∈ ext(M (Pn)) and m > 1, we must have that
Q1

n = · · ·= Qm
n = Pn.

Since this holds for all n ∈ N, and since we already know from the argumentation above
[ext(M (SN))⊆M ] that Qk

N =×n∈NQk
n for k = 1, . . . ,m, we see that Q1

N = · · ·= Qm
N = SN

and therefore SN ∈ ext(M (SN)).
The third statement is an immediate consequence of (ii) and Proposition 7(ii).
Let us finally prove the fourth statement. Consider arbitrary disjoint proper subsets I

and O of N, gambles f ∈L (XI) and g ∈L (XO). It follows from the third statement,
Eqs. (7)&(8), Proposition 7 and conjugacy that

SN( f g) = min{PI( f )PO(g) : PI ∈M (SI) and PO ∈M (SO)}
SN( f g) = max{PI( f )PO(g) : PI ∈M (SI) and PO ∈M (SO)} .

This clearly implies that

SN( f g) = min
{

ab : a ∈ SI( f ) and b ∈ SO(g)
}

SN( f g) = max
{

ab : a ∈ SI( f ) and b ∈ SO(g)
}
,

or in other words SN( f g) = SI( f )�SO(g). Now use the first statement and conjugacy to
find that SI( f ) = SN( f ) and SO(g) = SN(g).

The rest of the proof now follows from Proposition 6. �

Proof of Proposition 9. The proof of (i) is an easy consequence of the coherence condition:
if PN is coherent with the family of conditional lower previsions N (Pn,n ∈ N), then its
restriction to L (XR) is coherent with the subfamily N (Pr,r ∈ R) containing restrictions
of certain elements of N (Pn,n ∈ N).

The argumentation for (ii) is similar.
For (iii), we have to prove that QN , QN(·|XR) and QN(·|XS) are coherent, where for

instance
QN( f |xR) := QN( f (·,xR)) for all xR ∈XR and f ∈L (XN).

Since both QN(·|XR) and QN(·|XS) belong to I (QN), this follows from the coherence of
QN with I (QN). �

Proof of Proposition 10. We first show that SN is a many-to-many independent product of
its marginals. It will then automatically follow that SN is a many-to-one independent product
of its marginals as well. This will establish that arbitrary linear previsions Pn on L (Xn),
n ∈ N, always have many-to-many and many-to-one independent products.

To show that SN is a many-to-many independent product of its marginals, we use
Theorem 2. This means that we need to prove that (a) the family of conditional lower
previsions I (SN) is coherent; and (b) that the joint model SN is weakly coherent with the
family I (SN).

We begin with (a). Because we are dealing with linear previsions, coherence is equivalent
to the condition in Equation (2). Assume ex absurdo that there are fO,I ∈L (XO∪I) for all
disjoint subsets I and O of N, and δ > 0 such that

∑
O,I

GO∪I( fO,I |XI)≤−δ IA (14)

and A :=
⋃

O,I suppI( fO,I) 6= /0.
There are two possibilities. The first is that Pn({xn})> 0 for all xn ∈Xn and all n ∈ N.

Since SN is linear and strongly factorising, it follows that

SN(GO∪I( fO,I |XI)) = ∑
xI∈XI

SN
(
I{xI}[ fO,I(·,xI)−SN( fO,I(·,xI))]

)
= ∑

xI∈XI

SN({xI}) ·0 = 0.

Then, if we apply SN to both sides of the inequality in Eq. (14), we get that SN(A) = 0,
which contradicts the assumption that Pn({xn})> 0 for all xn ∈Xn and all n ∈ N.
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The second possibility is that there are n ∈ N and xn ∈ Xn such that Pn({xn}) = 0.
Consider any ε ∈ (0,1). For all n ∈ N, let An := {xn ∈Xn : Pn({xn}) = 0}, and let Pε

n be
the linear prevision on L (Xn) defined by

Pε
n ({xn}) :=

{
ε/|An| if xn ∈ An

(1− ε)Pn({xn}) otherwise

when An is non-empty, and Pε
n := Pn when An is empty. Let Sε

N be the product of the linear
previsions Pε

n , n ∈ N. Then for every I, O and xI ∈XI , it holds that, with obvious notations:

|GO∪I( fO,I |xI)−Gε
O∪I( fO,I |xI)|= I{xI} |SN( fI,O(·,xI))−Sε

N( fO,I(·,xI))|
≤ I{xI}ε |XN |max | fO,I | ,

whence

|GO∪I( fO,I |XI)−Gε
O∪I( fO,I |XI)| ≤ ∑

xI∈suppI( fO,I)

|GO∪I( fO,I |xI)−Gε
O∪I( fO,I |xI)|

≤ IAε |XN |max | fO,I | ,

recalling that A =
⋃

O,I suppI( fO,I). By summing over all disjoint subsets O, I of N, we
obtain that∣∣∣∣∑

O,I
GO∪I( fO,I |XI)−Gε

O∪I( fO,I |XI)

∣∣∣∣≤ IAε |XN |∑
O,I

max | fO,I |=: IAεK.

If we let 0 < ε < min{δ/2K,1}, then we infer that

∑
O,I

Gε
O∪I( fO,I |XI)≤−

δ

2
IA.

As before, applying Sε
N to both sides of this inequality leads to Sε

N(A) = 0, a contradiction.
Next, we turn to (b). By Theorem 1, we must establish the coherence of SN with each

conditional linear prevision SO∪I(·|XI) (taken separately) for each pair of disjoint subsets I
and O of N, or equivalently, that SN(I{xI}[ f −SO∪I( f |xI)]) = 0 for all f ∈L (XO) and all
xI ∈XI . We see that indeed:

SN(I{xI}[ f −SO( f |xI)]) = SN(I{xI}[ f −SN( f )]) = SN({xI})SN( f −SN( f )) = 0,

where the first equality follows from the definition of the conditional linear prevision
SO∪I(·|XI), and the second one because SN is linear and strongly factorising.

To complete the proof, we show that SN is the only joint coherent lower prevision that
is a many-to-one independent product of the marginals Pn, n ∈ N. Since any many-to-
many independent product of the marginals Pn, n ∈ N, is in particular also a many-to-one
independent product of these marginals, it will then also follow that SN is the only joint
coherent lower prevision that is a many-to-many independent product of these marginals.

Consider any linear prevision PN that is a many-to-one independent product of the margi-
nals Pn, n ∈ N. Fix o ∈ N and I ⊆ N \{o}, g ∈L (Xo) and non-negative fi ∈L (Xi), i ∈ I.
Let fI := ∏i∈I fi. By assumption PN and P{o}∪I(·|XI) are coherent, and therefore we infer
from (GBR) that PN(I{xI}[g−PN(g)])= 0 for every xI ∈XI . Hence also PN( fI [g−PN(g)])=
∑xi∈XI fI(xI)PN(I{xI}[g−PN(g)]) = 0, where the first equality is due to the linearity of PN .
It follows that PN is factorising, and applying Proposition 7, we deduce that it coincides
with the product SN .

Finally, assume that the lower prevision PN is a many-to-one independent product of
the marginals Pn, n ∈ N. So PN is coherent with the family of conditional linear previ-
sions N (Pn,n ∈ N), so it must be a lower envelope of linear previsions PN coherent with
N (Pn,n ∈ N) by the lower envelope theorem [30, Theorem 8.1.10], given that the spaces
Xn, n ∈ N are finite. Since we have seen above that there is a unique linear prevision SN
coherent with N (Pn,n ∈ N), we deduce that PN = SN . �
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Proof of Theorem 11. (i)⇒(ii). Fix y in Y . We show that the conditional lower previsions
Qy

Ok∪Ik
(·|XIk), k = 1, . . . ,m are coherent. Consider arbitrary gambles fk on XOk∪Ik , k =

1, . . . ,m, and arbitrary j ∈ {1, . . . ,m}, xI j ∈XI j and f ′ ∈L (XO j∪I j). Let gk := I{y} fk ∈
L (XOk∪Ik ×Y ) and g′ := I{y} f ′ ∈L (XO j∪I j ×Y ). Then it follows from Eq. (10) that,
with obvious notations, for all zN in XN :

Gy
Ok∪Ik

( fk|XIk)(zN) = fk(zOk ,zIk)−Qy
Ok∪Ik

( fk(·,zIk)|zIk)

= gk(zOk ,zIk ,y)−POk∪Ik(gk(·,zIk ,y)|zIk ,y) = GOk∪Ik(gk|XIk ,Y )(zN ,y),

and similarly,

Gy
O j∪I j

( f ′|xI j)(zN) = I{xI j }
(zI j)[ f

′(zO j ,xI j)−Qy
O j∪I j

( f ′(·,xI j)|xI j)]

= I{xI j }
(zI j)I{y}(y)[g

′(zO j ,xI j ,y)−PO j∪I j
(g′(·,xI j ,y)|xI j ,y)]

= GO j∪I j(g
′|xI j ,y)(zN ,y),

and therefore[ m

∑
k=1

Gy
Ok∪Ik

( fk|XIk)−Gy
O j∪I j

( f ′|xI j)

]
(zN)

=

[ m

∑
k=1

GOk∪Ik(gk|XIk ,Y )−GO j∪I j(g
′|xI j ,y)

]
(zN ,y).

Moreover, it follows, again with obvious notations, that

suppIk(gk) :=
{
(xIk ,u) ∈XIk ×Y : gk(·,xIk ,u) 6= 0

}
= suppIk( fk)×{y}

and therefore

{(xI j ,y)}∪
m⋃

k=1

suppIk(gk) =

(
{xI j}∪

m⋃
k=1

suppIk( fk)

)
×{y}.

Using this equality and (i), we find that there is some zN ∈ {xI j}∪
⋃m

k=1 suppIk( fk) such that
[∑m

k=1 GOk∪Ik(gk|XIk ,Y )−GO j∪I j(g
′|xI j ,y)](zN ,y)≥ 0, and therefore [∑m

k=1 Gy
Ok∪Ik

( fk|XIk)−
Gy

O j∪I j
( f ′|xI j)](zN) ≥ 0. This implies that the collection Qy

Ok∪Ik
(·|XIk), k = 1, . . . ,m is co-

herent. Since y is arbitrary, (ii) holds.
(ii)⇒(i). Consider arbitrary gk ∈ L (XOk∪Ik ×Y ), k = 1, . . . ,m, as well as arbitrary

j ∈ {1, . . . ,m}, (xI j ,y) ∈XI j ×Y and g′ ∈L (XO j∪I j ×Y ). We have to prove that there
is some (zN ,u) in {(xI j ,y)}∪

⋃m
k=1 suppIk(gk) such that[ m

∑
k=1

GOk∪Ik(gk|XIk ,Y )−GO j∪I j(g
′|xI j ,y)

]
(zN ,u)≥ 0.

Let fk := gk(·,y) ∈L (XOk∪Ik) and f ′ := g′(·,y) ∈L (XO j∪I j). Then it holds for all zN ∈
XN that

Gy
Ok∪Ik

( fk|XIk)(zN) = fk(zOk ,zIk)−Qy
Ok∪Ik

( fk(·,zIk)|zIk)

= gk(zOk ,zIk ,y)−POk∪Ik(gk(·,zIk ,y)|zIk ,y) = GOk∪Ik(gk|XIk ,Y )(zN ,y),

and similarly,

Gy
O j∪I j

( f ′|xI j)(zN) = I{xI j }
(zI j)[ f

′(zO j ,xI j)−Qy
O j∪I j

( f ′(·,xI j)|xI j)]

= I{xI j }
(zI j)I{y}(y)[g

′(zO j ,xI j ,y)−PO j∪I j
(g′(·,xI j ,y)|xI j ,y)]

= GO j∪I j(g
′|xI j ,y)(zN ,y),
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and therefore[ m

∑
k=1

Gy
Ok∪Ik

( fk|XIk)−Gy
O j∪I j

( f ′|xI j)

]
(zN)

=

[ m

∑
k=1

GOk∪Ik(gk|XIk ,Y )−GO j∪I j(g
′|xI j ,y)

]
(zN ,y).

Since the collection Qy
Ok∪Ik

(·|XIk), k = 1, . . . ,m is coherent, we infer that there is some zN ∈
{xI j}∪

⋃m
k=1 suppIk( fk) such that [∑m

k=1 GOk∪Ik(gk|XIk ,Y )−GO j∪I j(g
′|xI j ,y)](zN ,y) ≥ 0. It

therefore suffices to prove that

(zN ,y) ∈ {(xI j ,y)}∪
m⋃

k=1

suppIk(gk).

This certainly holds if zI j = xI j . If not, then there must be some k ∈ {1, . . . ,m} such that
zN ∈ suppIk( fk), meaning that 0 6= fk(·,zIk)= gk(·,zIk ,y), so indeed (zN ,y)∈ suppIk(gk). �

Proof of Proposition 12. It follows from its definition that the strong product is a lower
envelope of product linear previsions. By Proposition 10, it is therefore a lower envelope
of many-to-many independent (respectively many-to-one independent) products. Since
both of these two properties are preserved by taking lower envelopes, ×n∈NPn is also a
many-to-many and many-to-one independent product. �

Proof of Proposition 13. We infer from Proposition 12 that the strong product ×n∈NPn is
coherent with the collection N (Pn,n ∈ N). This implies in particular that N (Pn,n ∈ N) is
itself coherent. �

Proof of Corollary 14. By Proposition 13, the collection N (Pn,n ∈ N) is coherent. Theo-
rem 2 then tells us that PN is coherent with N (Pn,n∈N) if and only if it is weakly coherent
with N (Pn,n ∈ N). Taking into account Theorem 1, this holds if and only if for every
o ∈ N and I ⊆ N \{o},

PN(I{xI}[ f −P{o}∪I( f |xI)]) = 0 for all f ∈L (X{o}∪I) and all xI ∈XI .

Now use Eq. (9) to find that

I{xI}[ f −P{o}∪I( f |xI)] = I{xI}[ f (·,xI)−Po( f (·,xI))]. �

Proof of Theorem 16. Denote the right-hand side in Eq. (12) by QN( f ). It follows easily
from Eq. (11) that EN( f )≥ QN( f ), so we concentrate on the converse inequality. Consider
any real α < EN( f ), then there are gambles gI,o in L (X{o}∪I) for all o∈N and I ⊆N \{o}
such that

min
zN∈XN

[
f (zN)− ∑

o∈N,I⊆N\{o}
[gI,o(zo,zI)−Po(gI,o(·,zI))]

]
≥ α. (15)

For every n in N, define the gamble hn on XN by hn := ∑I⊆N\{n} gI,n. Then for all zN ∈XN ,
hn(zN) = ∑I⊆N\{n} gI,n(zn,zI) and

Pn(hn(·,zN\{n})) = Pn

(
∑

I⊆N\{n}
gI,n(·,zI)

)
≥ ∑

I⊆N\{n}
Pn(gI,n(·,zI)),

where the inequality follows from the coherence of Pn. We then infer from Eq. (15) and the
definition of QN( f ) that

QN( f )≥ min
zN∈XN

[
f (zN)− ∑

n∈N
[hn(zN)−Pn(hn(·,zN\{n}))]

]
≥ α.

Since this inequality holds for all real α < EN( f ), we see that indeed QN( f )≥ EN( f ). �
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Next, we turn to the proof of Theorem 18. In order to do this, it will be very helpful to
work with sets of so-called strictly desirable gambles [30]. For every n ∈ N, consider the
following subset of L (Xn):

An := { f ∈L (Xn) : f > 0 or Pn( f )> 0} ;

we use these sets to define the following subsets of L (XR), where R is any non-empty
subset of N:

A R
r :=

{
f ∈L (XR)6=0 : (∀xR\{r} ∈XR\{r}) f (·,xR\{r}) ∈Ar ∪{0}

}
, r ∈ R.

We also define, for any subset S of N:

ES := posi
(

L (XS)>0∪
⋃
s∈S

A S
s

)
. (16)

For S = /0, this leads to E /0 = L (X /0)>0, which we have identified with the set of positive
real numbers.

We begin by proving a crucial property of all these sets An, A N
n and EN in Lemma 35. In

order to prove this result, and a few more involved ones further on, we need the following
lemmas, one of which is a convenient version of the separating hyperplane theorem:

Lemma 33. Consider a finite subset A of L (X). Then 0 /∈ posi(L (X)>0∪A ) if and
only if there is some linear prevision P on L (X) with mass function p such that P( f ) =
∑x∈X p(x) f (x)> 0 for all f ∈A and p(x)> 0 for all x ∈X.

Proof of Lemma 33. It clearly suffices to prove necessity. Since 0 /∈ posi(L (X)>0∪A ),
we infer applying a version of the separating hyperplane theorem in finite-dimensional
spaces23 that there is a linear functional Λ on L (X) such that

(∀x ∈X)Λ(I{x})> 0 and (∀ f ∈A )Λ( f )> 0.

Then Λ(X) = ∑x∈X) Λ(I{x}) > 0, and if we let P := Λ/Λ(X) then P is clearly a linear
prevision on L (X) for which P( f )> 0 for all f ∈A . Moreover, for any x ∈X, p(x) =
P(I{x}) = Λ(I{x})/Λ(X)> 0. �

Lemma 34. Consider a convex cone A of gambles on X such that max f > 0 for all
f ∈A . Consider any non-zero gamble g on X. If g /∈A then 0 /∈ posi(A ∪{−g}).

Proof. Consider a non-zero gamble g /∈ A , and assume ex absurdo that 0 ∈ posi(A ∪
{−g}). Then it follows from the assumptions that there are m > 0, λk > 0, fk ∈ A ,
k = 1, . . . ,m and µ > 0 such that 0 = ∑

m
k=1 λk fk + µ(−g). Hence g ∈ posi(A ) = A , a

contradiction. �

Lemma 35. Let S be any subset of N, and let R be any non-empty subset of N. Consider
any n ∈ N and r ∈ R.

(i) An is a convex cone such that L (Xn)>0 ⊆An and L (Xn)≤0∩An = /0:
(ii) A R

r is a convex cone such that L (XR)>0 ⊆A R
r and L (XR)≤0∩A R

r = /0;
(iii) ES is a convex cone such that L (XS)>0 ⊆ ES and L (XS)≤0∩ES = /0.

Proof. (i). Immediate: use the coherence of the lower prevision Pn.
(ii). Consider any f ∈ L (XR)>0. Then for all zR\{r} ∈XR\{r}, f (·,zR\{r}) ≥ 0 and

therefore f (·,zR\{r}) ∈An∪{0}. Since moreover f 6= 0, it follows that f ∈A R
r . This shows

that L (XR)>0 ⊆A R
r .

To prove that A R
r is a convex cone, it clearly suffices to show that 0 /∈ posi(A R

r ).
Assume ex absurdo that there are m > 0, λk > 0 and fk ∈A R

r such that 0 = ∑
m
k=1 λk fk. Fix

any zR\{r} ∈XR\{r}. Then 0 = ∑
m
k=1 λk fk(·,zN\{n}), and it follows from (i) that this can only

23We use the version in Appendix E.1 of Ref. [30], for the special choice V := A ∪{I{x} : x ∈X} and
W := {0}.
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happen if all fk(·,zR\{r}) = 0. But since this holds for all zR\{r} ∈XR\{r}, we infer that all
fk = 0, a contradiction. Hence A N

n is indeed a convex cone.
Finally, consider f ∈L (XR)≤0 and assume that f ∈A R

r . It already follows from the
reasoning above that f < 0, and therefore also − f ∈ A R

r . Therefore 0 = f + (− f ) ∈
A R

r since A R
r is a convex cone [closed under addition], a contradiction. Hence indeed

L (XR)≤0∩A R
r = /0.

(iii). It clearly suffices to prove that L (XS)≤0 ∩ES = /0. This is trivially so if S = /0,
so let us assume that S is non-empty. Let f ∈ L (XS)≤0 and assume ex absurdo that
f ∈ ES. Then there are λs ≥ 0, µ ≥ 0, fs ∈A S

s and g > 0 such that f = µg+∑s∈S λs fs and
max{µ,maxs∈S λs}> 0.

Fix any s ∈ S. Let A :=
{

fs(·,zS\{s}) : zS\{s} ∈XS\{s}, fs(·,zS\{s}) 6= 0
}

, then it follows
from the assumptions that A is a finite non-empty subset of As, and therefore it follows
from (i) and Lemma 33 that there is a linear prevision Ps on L (Xs) with mass function ps
such that {

(∀xs ∈Xs)ps(xs)> 0

(∀zS\{s} ∈XS\{s})( fs(·,zS\{s}) 6= 0⇒ Ps( fs(·,zS\{s}))> 0).

We conclude that if we define the gamble gs on XS\{s} by gs(zS\{s}) := Ps( fs(·,zS\{s})) for
all zS\{s} in XS\{s}, then gs > 0.

Since we can do this for all s ∈ S, we can define a mass function pS on XS by letting
pS(zS) :=∏s∈S ps(zs)> 0 for all zS ∈XS. The corresponding linear prevision PS is of course
the product linear prevision ×s∈SPs of the marginal linear previsions Ps. But then it follows
from the reasoning and assumptions above that

PS( f ) = µPS(g)+∑
s∈S

λsPS( fs) = µPS(g)+∑
s∈S

λsPS(gs)> 0,

because PS(g)> 0 and all PS(gs)> 0, whereas f ≤ 0 leads us to conclude that PS( f )≤ 0, a
contradiction. �

It turns out that there is a very close relationship between the set of gambles EN and the
many-to-one independent natural extension EN :

Lemma 36. For all f ∈L (XN), EN( f ) = sup{α : f −α ∈ EN}.

Proof. Let, for the sake of notational simplicity, QN( f ) := sup{α : f −α ∈ EN}, then we
have to prove that EN( f ) = QN( f ).

Consider any real α such that f −α ∈ EN . Then there are non-negative µ and λn, g > 0
and fn ∈ A N

n such that f −α = µg+∑n∈N λn fn with max{µ,maxn∈N λn} > 0. We infer
from fn ∈ A N

n that fn(·,zN\{n}) ∈ An ∪{0} for all zN\{n} ∈XN\{n}, so we conclude by
considering gn := λn fn ∈L (XN) that λn fn(·,zN\{n})≥ gn(·,zN\{n})−Pn(gn(·,zN\{n})) for
all zN\{n} ∈XN\{n}, and therefore

λn fn(zN)≥ gn(zN)−Pn(gn(·,zN\{n})) for all zN ∈XN and all n ∈ N.

So we find that

f (zN)−α ≥ ∑
n∈N

[gn(zN)−Pn(gn(·,zN\{n}))] for all zN ∈XN ,

and therefore α ≤ EN( f ). Hence QN( f )≤ EN( f ).
Conversely, let α < EN( f ), then there are ε > 0 and gn ∈L (XN), n ∈ N, such that

α + ε |N| ≤ f (zN)− ∑
n∈N

[gn(zN)−Pn(gn(·,zN\{n}))] for all zN ∈XN ,

or in other words f −α ≥ ∑n∈N hn, where we let hn(zN) := gn(zN)−Pn(gn(·,zN\{n}))+ ε

for all zN ∈ XN . This implies that hn(·,zN\{n}) ∈ An for all zN\{n} ∈ XN\{n}, whence
hn ∈ A N

n , and therefore f −α ∈ EN . We infer that α ≤ QN( f ) and therefore also that
EN( f )≤ QN( f ). �
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We now show that for any subset R of N, ER is the set of those gambles in EN that depend
at most on the variables XR, and not on XN\R.

Lemma 37. For every subset R of N, ER = EN ∩L (XR).

Proof. The result is trivial for R = /0 and R = N. Let us therefore assume that both R and
N \R are proper subsets of N. Recall from Section 2 that we are interpreting gambles on
XR as special gambles on XN . Keeping this in mind, it is obvious that A R

r ⊆A N
r for all

r ∈ R, and therefore ER ⊆ EN . So we already find that ER ⊆ EN ∩L (XR).
We prove the converse inequality. Let f ∈ EN ∩L (XR) and assume ex absurdo that

f /∈ ER. It follows from Lemma 35(iii) that f 6= 0. Since f ∈ EN , there are S⊆ N, fs ∈A N
s ,

s ∈ S and g ∈L (XN) with g ≥ 0 such that f = g+∑s∈S fs. Clearly S \R 6= /0, because
S\R = /0 would imply that, with xN\R any element of XN\R, f = f (·,xN\R) = g(·,xN\R)+

∑s∈S∩R fs(·,xN\R) ∈ ER, since we infer from Lemma 38 below that fs(·,xN\R) ∈A R
s ∪{0}

for all s ∈ S∩R.
It follows from Lemma 35(iii) and Lemma 34 and f /∈ ER that 0 /∈ posi(ER ∪{− f}).

Let A :=
{

fs(·,zN\R) : s ∈ S∩R,zN\R ∈XN\R, fs(·,zN\R) 6= 0
}

. Then A is clearly a finite
subset of ER [to see this, use a similar argument as above, involving Lemma 38], so we
deduce from Lemma 35(iii) and Lemma 33 that there is some linear prevision PR on L (XR)
with mass function pR such that

(∀xR ∈XR)pR(xR)> 0

(∀s ∈ S∩R)(∀zN\R ∈XN\R)PR( fs(·,zN\R))≥ 0

PR( f )< 0.

We then infer from f = f (·,zN\R) = g(·,zN\R)+∑s∈S∩R fs(·,zN\R)+∑s∈S\R fs(·,zN\R) that
for all zN\R in XN\R:

0 > PR( f )−PR(g(·,zN\R))− ∑
s∈S∩R

PR( fs(·,zN\R)) = ∑
s∈S\R

PR( fs(·,zN\R))

= ∑
s∈S\R

∑
xR∈XR

pR(xR) fs(xR,zN\R)).

The gambles fs(xR, ·) on XN\R [where xR ∈XR and s ∈ S\R] can clearly not all be zero,
and the non-zero ones belong to EN\R by Lemma 38. Since EN\R is closed under positive
linear combinations by Lemma 35, the gamble h := ∑s∈N\R ∑xR∈XR pR(xR) fs(xR, ·) is an
element of EN\R that is everywhere strictly negative. But on the other hand we should have
that maxh > 0 by Lemma 35(iii), a contradiction. We may therefore conclude that indeed
f ∈ ER. �

Lemma 38. Consider an arbitrary non-empty subset R of N and let r ∈ R. Then f (·,xN\R)∈
A R

r ∪{0} for all f ∈A N
r and all xN\R ∈XN\R.

Proof. Fix f ∈A N
r and xN\R ∈XN\R and consider the gamble g := f (·,xN\R) on XR. Then

it follows from the assumptions that for all xR\{r} ∈XR\{r}:

g(·,xR\{r}) = f (·,xR\{r},xN\R) = f (·,xN\{r}) ∈Ar ∪{0},

whence indeed g ∈A R
r ∪{0}. �

Proof of Theorem 18. Use Lemma 36 and the fact that f −α ∈ EN ⇔ f −α ∈ ER for all
f ∈L (XR), by Lemma 37. �

Next, consider an arbitrary subset R of N and consider, for each xR ∈XR, the set of
gambles:

EN |xR :=
{

f ∈L (XN\R) : I{xR} f ∈ EN
}
.

Note that if R is the empty set then we obtain trivially that EN |x /0 = EN .
Then the set EN satisfies the following interesting epistemic irrelevance condition:
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Lemma 39. For every subset R of N and every xN\R ∈XN\R, EN |xN\R = ER.

Proof. The proof is similar to that of Lemma 37. Again, it is trivial for R = /0 or R = N,
so we turn to the case where both R and N \R are proper subsets of N. We first show that
EN |xN\R ⊇ ER. Consider any gamble f ∈ ER, so there are non-negative λr and µ , fr ∈A R

r
for all r ∈ R and g∈L (XR)>0 such that f = µg+∑r∈R λr fr, with max{µ,maxr∈R λr}> 0.
Fix r ∈ R and let f ′r := I{xN\R} fr ∈L (XN). Then f ′r 6= 0, and for all zN\{r} ∈XN\{r}, it
follows from the definition of A R

r that

f ′r(·,zN\{r}) = I{xN\R}(zN\R) fr(·,zR\{r}) ∈Ar ∪{0},

and therefore the definition of A N
r tells us that f ′r ∈A N

r . Similarly, if we let g′ := I{xN\R}g ∈
L (XN), then g′ > 0. Hence I{xN\R} f = µg′+∑r∈R λr f ′r , and therefore I{xN\R} f ∈ EN .

We now turn to the converse inequality EN |xN\R ⊆ ER. Consider any gamble f ∈L (XR)
such that I{xN\R} f belongs to EN and assume ex absurdo that f /∈ ER. Since I{xN\R} f ∈ EN ,
there are S⊆N, fs ∈A N

s , s∈ S and g∈L (XN) with g≥ 0 such that I{xN\R} f = g+∑s∈S fs.
Clearly S\R 6= /0, because S\R = /0 would imply that f = g(·,xN\R)+∑s∈S∩R fs(·,xN\R) ∈
ER, since Lemma 38 shows that fs(·,xN\R) ∈A R

s for all s ∈ S∩R.
It follows from Lemma 35(iii), Lemma 34 and f /∈ ER that 0 /∈ posi(ER ∪{− f}). Let

A :=
{

fs(·,xN\R) : s ∈ S∩R, fs(·,xN\R) 6= 0
}

. Then A is clearly a finite subset of ER [to
see this, use a similar argument as above, involving Lemma 38], so we deduce from
Lemma 33 that there is some linear prevision PR on L (XR) with mass function pR such
that 

(∀xR ∈XR)pR(xR)> 0

(∀s ∈ S∩R)PR( fs(·,xN\R))≥ 0

PR( f )< 0.

We then infer from f = g(·,xN\R)+∑s∈S∩R fs(·,xN\R)+∑s∈S\R fs(·,xN\R) that:

0 > PR( f )−PR(g(·,xN\R))− ∑
s∈S∩R

PR( fs(·,xN\R)) = ∑
s∈S\R

PR( fs(·,xN\R))

= ∑
s∈S\R

∑
xR∈XR

pR(xR) fs(xR,xN\R)).

Similarly, since 0= g(·,zN\R)+∑s∈S∩R fs(·,zN\R)+∑s∈S\R fs(·,zN\R) for all zN\R ∈XN\R\
{xN\R}, we infer that:

0≥−PR(g(·,zN\R))− ∑
s∈S∩R

PR( fs(·,zN\R)) = ∑
s∈S\R

PR( fs(·,zN\R))

= ∑
s∈S\R

∑
xR∈XR

pR(xR) fs(xR,zN\R)).

Hence
h := ∑

s∈S\R
∑

xR∈XR

pR(xR) fs(xR, ·)< 0.

The gambles fs(xR, ·) on XN\R [where xR ∈XR and s ∈ S\R] can clearly not all be zero,
and the non-zero ones belong to EN\R by Lemma 38. Since EN\R is closed under positive
linear combinations by Lemma 35, the gamble h < 0 is an element of EN\R. But on the other
hand we should have that maxh > 0 by Lemma 35(iii), a contradiction. We may therefore
conclude that indeed f ∈ ER. �

From this lemma, we deduce the following:

Lemma 40. Consider any subset R of N. Then f g ∈ EN for all f ∈L (XN\R)>0 and all
g ∈ ER.
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Proof. Consider any g ∈ ER and any f ∈L (XN\R)>0. Then it follows from Lemma 39 that
I{xN\R}g ∈ EN for all xN\R ∈XN\R. But EN is closed under positive linear combinations by
Lemma 35, and there is at least one xN\R ∈XN\R for which f (xN\R)> 0, so we deduce that
f g = ∑xN\R∈XN\R f (xN\R)I{xN\R}g is essentially a positive linear combination of gambles in
EN , and therefore also belongs to EN . �

Proof of Proposition 19. We begin by showing that EN is productive. First, consider ar-
bitrary disjoint proper subsets I and O of N, xI ∈ XI , g ∈ L (XO) and non-negative
f ∈L (XI), and let us prove that EN( f [g−EN(g)])≥ 0.

Fix α > 0 and β > 0, then f +β > 0 and g−EO(g)+β ∈ EO, by Lemma 36 [where
we replace the set N with O]. Hence ( f +α)[g−EO(g)+β ] ∈ EO∪I ⊆ EN , by Lemmas 40
[where we replace N with O∪ I and R with O] and 37. Then Lemma 36 tells us that
EN(( f +α)[g−EO(g)+β ])≥ 0. If we now invoke the coherence of the lower prevision
EN , we see that

0≤ EN(( f +α)[g−EO(g)+β ])

≤ EN( f [g−EO(g)])+βEN( f )+α[EN(g)−EO(g)+β ].

Since this holds for all α > 0 and all β > 0, we infer that EN( f [g−EN(g)]) = EN( f [g−
EO(g)])≥ 0, where the equality follows from Theorem 18. Hence EN is indeed productive.

Next let us consider the special cases where I or O are empty. If I = /0, then we obtain
EN( f [g−EN(g)]) = f (EN(g)−EN(g)) = 0, since f is then a non-negative real number. If
on the other hand O = /0, then EN( f [g−EN(g)]) = EN( f ·0) = 0, since in this case g is a
real number.

This implies in particular that EN(I{xI}[g−EO(g)])≥ 0 for arbitrary disjoint subsets I and
O of N. Assume ex absurdo that EN(I{xI}[g−EO(g)])> 0. By Lemma 36, there is some α >
0 such that I{xI}[g−EO(g)]−α ∈ EN . Since I{xI}[g−EO(g)−α]≥ I{xI}[g−EO(g)]−α ,
this implies that I{xI}[g− EN(g)− α] ∈ EN . By Lemmas 39 and 37, this implies that
g−EO(g)−α ∈ EO. But then Lemma 36 implies that −α = EO(g−EO(g)−α) ≥ 0, a
contradiction. Hence indeed EN(I{xI}[g−EO(g)]) = 0. �

Proof of Theorem 20. By Theorem 2, it suffices to prove that (a) EN is weakly coherent
with the family I (EN); and that (b) the family I (EN) is coherent.

We begin by showing that (a) EN is weakly coherent with the family I (EN). Consider
any disjoint subsets I and O of N. Taking into account Theorem 1, it suffices to show that
EN(I{xI}[ f −EO∪I( f |xI)]) = 0 for all xI ∈XI and all f ∈L (XO∪I). If we look at Eq. (13),
we see that this amounts to proving that EN(I{xI}[g−EO(g)]) = 0 for all xI ∈XI and all
g ∈L (XO). Now use Proposition 19.

To finish the proof, we show that (b) the family I (EN) is coherent. Assume ex absurdo
that there are fO,I ∈L (XO∪I) for all disjoint subsets I and O of N, disjoint subsets I∗ and
O∗ of N, g ∈L (XO∗∪I∗), xI∗ ∈XI∗ and δ > 0 such that

∑
O,I

GO∪I( fO,I |XI)−GO∗∪I∗(g|xI∗)≤−δ IA,

where A := {xI∗}∪
⋃

O,I suppI( fO,I). But KIA ≥ I{xI∗}+∑O,I IsuppI( fO,I) for some natural
number K > 0, so there is some ε := δ/K > 0 such that−δ IA ≤−εI{xI∗}−∑O,I εIsuppI( fO,I)

and therefore also [see Theorem 18]:

I{xI∗}[g(·,xI∗)−EO∗(g(·,xI∗))− ε]≥∑
O,I

[GO∪I( fO,I |XI)+ εIsuppI( fO,I)]. (17)

For arbitrary disjoint I and O, it follows from the definition of suppI( fO,I) and Theorem 18
that

GO∪I( fO,I |XI)+ εIsuppI( fO,I) = ∑
xI∈suppI( fO,I)

I{xI}[ fO,I(·,xI)−EO( fO,I(·,xI))+ ε], .
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so we infer from Lemmas 36 and 40 that the gamble GO∪I( fO,I |XI)+εIsuppI( fO,I) belongs to
the convex cone EN . So does, therefore, the right-hand side in Eq. (17). As a consequence,
I{xI∗}[g(·,xI∗)−EO∗(g(·,xI∗))−ε]∈ EN , so we infer from Lemmas 39 and 37 that g(·,xI∗)−
EO∗(g(·,xI∗))− ε ∈ EO∗ . But then Lemma 36 and the coherence of EO∗ lead to −ε =
EO∗(g(·,xI∗)−EO∗(g(·,xI∗))− ε)≥ 0, a contradiction. �

Proof of Theorem 22. Denote the independent natural extension ⊗n∈NPn by EN , and the
strong product ×n∈NPn by SN . We use the characterisation of factorisation in Proposition 5,
and we take into account that for all n ∈ N and fn ∈L (Xn), EN( fn) = SN( fn) = Pn( fn).

We begin by proving an auxiliary result, namely that

EN

(
∏
i∈I

fi

)
= ∏

i∈I
Pi( fi) for all non-negative fi ∈L (Xi), i ∈ I, (H1

I )

for all subsets I of N. We give a proof by induction. It is clear from the coherence of EN
that the statement (H1

I ) holds for I = /0. Next, assume that (H1
I ) holds for I = M, where M is

some subset of N that does not coincide with N [this is the induction hypothesis]. Then the
statement is proved if we can show that (H1

I ) holds for I = M′ := M∪{n}, where n is any
element of the non-empty set N \M.

So consider any non-negative fi ∈ L (Xi), i ∈ M′. Let, for ease of notation, fM :=
∏i∈M fi, so ∏i∈M′ fi = fM fn. Because of the induction hypothesis, EN( fM) = ∏i∈M Pi( fi),
so we have to show that EN( fM fn) = EN( fM)Pn( fn). Because the strong product is factori-
sing [see Proposition 8 and Proposition 5], we also have that SN( fM) = ∏i∈M Pi( fi), and
therefore EN( fM) = SN( fM).

Since EN is dominated by the (many-to-one independent) strong product SN [see Defini-
tion 6 and Proposition 12], and because the strong product is factorising [see Proposition8
and Proposition 5], we see that

EN( fM fn)≤ SN( fM fn) = SN( fM)Pn( fn) = EN( fM)Pn( fn).

We now prove the converse inequality. Recall from its definition that EN is coherent with
the conditional lower prevision P{n}∪M(·|XM) on L (X{n}∪M) defined by

P{n}∪M(h|xM) := Pn(h(·,xM)) for all h ∈L (X{n}∪M) and all xM ∈XM, (18)

so it follows that:

EN( fM fn)≥ EN(P{n}∪M( fM fn|XM)) = EN( fMPn( fn)) = EN( fM)Pn( fn).

Here, the inequality follows from the coherence of EN with Pn(·|XM) and Eq. (4), the first
equality from the fact that Pn( fM fn|XM) = fMPn( fn|XM) by Eq. (1) and Eq. (18), and the
last equality from the coherence of EN and the fact that Pn( fn) ≥ 0. This completes the
proof of the auxiliary result.

The proof that EN is factorising goes along similar lines. Fix any o in N and any
I ⊆N \{o}, any fo ∈L (Xo), and non-negative fi ∈L (Xi), i∈ I. Let, for ease of notation,
fI := ∏i∈I fi. Then we already know from the argumentation above that EN( fI) = SN( fI) =

∏i∈I Pi( fi). We have to show that EN( fo fI) = EN( fIPo( fo)).
As before, since EN is dominated by the (many-to-one independent) strong product SN ,

and because the strong product is factorising, we see that

EN( fo fI)≤ SN( fo fI) = SN( fI)�Po( fo) = EN( fI)�Po( fo) = EN( fIPo( fo)).

We now prove the converse inequality. Recall from its definition that EN is coherent with
the conditional lower prevision P{o}∪I(·|XI) on L (Xo) defined by

Po(h|xI) := Po(h(·,xI)) for all h ∈L (X{o}∪I) and all xI ∈XI , (19)

so it follows that:

EN( fo fI)≥ EN(P{o}∪I( fo fI |XI)) = EN( fIP{o}∪I( fo|XI)) = EN( fIPo( fo)).
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Here, similarly as before, the inequality follows from the coherence of EN with Po(·|XI) and
Eq. (4), the first equality from the fact that P{o}∪I( fo fI |XI) = fIP{o}∪I( fo|XI) by Eq. (1),
and the second equality from Eq. (19). �

Proof of Theorem 23. We construct the set E{N1,N2} after the fashion of Eq. (16). We let

AN1
:=
{

f ∈L (XN1) : f > 0 or EN1
( f )> 0

}
and

A
{N1,N2}

N1
:=
{

f ∈L (X{N1,N2})6=0 : (∀zN2 ∈XN2) f (·,zN2) ∈AN1
∪{0}

}
and similarly for AN2

and A
{N1,N2}

N2
. Then

E{N1,N2} := posi
(
L (X{N1,N2})>0∪A

{N1,N2}
N1

∪A
{N1,N2}

N2

)
. (20)

We infer from Lemma 36 that AN1
⊆ EN1 and AN2

⊆ EN2 . Now let f1 ∈ A
{N1,N2}

N1
and

consider any zN2 ∈ XN2 . Then f1(·,zN2) ∈ EN1 ∪ {0}, and therefore24 I{zN2}
f1(·,zN2) ∈

EN1∪N2 ∪{0} by Lemma 40. Since f1 6= 0 and EN1∪N2 is a convex cone by Lemma 35(iii),
it follows that f1 = ∑zN2∈XN2

I{zN2}
f1(·,zN2) ∈ EN1∪N2 . Hence A

{N1,N2}
N1

⊆ EN1∪N2 and si-

milarly, A
{N1,N2}

N2
⊆ EN1∪N2 , so we infer from Eq. (20) that E{N1,N2} ⊆ EN1∪N2 . Hence

E{N1,N2} ≤ EN1∪N2
, by Lemma 36.

For the converse inequality, it suffices to prove that E{N1,N2} is an independent many-
to-one product of the marginals Pn, n ∈ N1 ∪N2. We use Corollary 14(ii). Consider any
o ∈ N1∪N2, any I ⊆ (N1∪N2)\{o}, any g ∈L (Xo), and any xI ∈XI . We have to prove
that E{N1,N2}(I{xI}[g−Po(g)]) = 0. Let I1 := I∩N1 and I2 := I∩N2. We may assume without
loss of generality that o ∈ N2. Since the independent natural extension is factorising [by
Theorem 22], we find that indeed

E{N1,N2}(I{xI}[g−Po(g)]) = E{N1,N2}(I{xI1}
I{xI2}

[g−Po(g)])

= EN1
(I{xI1}

)�EN2
(I{xI2}

[g−Po(g)]) = EN1
(I{xI1}

)�0 = 0,

where the third equality follows from Corollary 14(ii). �

Proof of Theorem 24. Consider arbitrary disjoint subsets I and O of N, an arbitrary gamble
g on XO and an arbitrary non-negative gamble f on XI . We have to show that EN( f g) =
EN( f EN(g)). Consider any partition N1 and N2 of N such that I ⊆ N1 and O⊆ N2. Since
the independent natural extension E{N1,N2} = EN1

⊗EN2
of EN1

and EN2
is factorising by

Theorem 22, we see that E{N1,N2}( f g) = E{N1,N2}( f E{N1,N2}(g)). Now use Theorem 23 to
find that this implies that indeed EN( f g) = EN( f EN(g)). �

Proof of Proposition 25. Let P{1,2} be any (many-to-one) independent product of P1 and
P2, and consider the conditional linear prevision P{1,2}(·|X2) on L (X{1,2}) defined by

P{1,2}( f |x2) := P1( f (·,x2)) for all f ∈L (X{1,2}) and x2 ∈X2.

Then P{1,2} is in particular coherent with P{1,2}(·|X2). Fix f in L (X{1,2}). It follows
from Eq. (4) and the self-conjugacy of P{1,2}(·|X2) that P{1,2}( f ) = P{1,2}(P{1,2}( f |X2)).
Moreover, it follows from Corollary 15 that P2 is the X2-marginal of P{1,2}, so P{1,2}( f ) =
P2(P{1,2}( f |X2)) = P2(P1( f )). This holds in particular for PN = (P1×P2) and PN = (P1⊗
P2). �

24We can identify a gamble on X{N1 ,N2} in a trivial way with a unique corresponding gamble on XN1∪N2 .
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Proof of Proposition 26. Let P{1,2}(·|X1) be the conditional lower prevision on L (X{1,2})
defined by

P{1,2}( f |x1) := P2( f (x1, ·)) for all f ∈L (X{1,2}) and x1 ∈X1.

Then the independent natural extension PA1
1 ⊗ P2 is coherent with P{1,2}(·|X1), so we

infer from Eq. (4) that PA1
1 ⊗P2 ≥ (PA1

1 ⊗P2)(P{1,2}(·|X1)) = PA1
1 (P{1,2}(·|X1)), where the

equality follows from Corollary 15. So we find that

(PA1
1 ×P2)( f )≥ (PA1

1 ⊗P2)( f )≥ min
x1∈A1

P2( f (x1, ·))

for every gamble f on X1×X2.
To prove that the equalities hold, consider any gamble f on X{1,2}. Since A1 is finite there

is some x∗1 ∈ A1 such that P2( f (x∗1, ·)) = minx1∈A1 P2( f (x1, ·)). Moreover, it follows from
the coherence of the lower prevision P2 that there is some linear prevision P2 ∈ ext(M (P2))

such that P2( f (x∗1, ·)) = P2( f (x∗1, ·)). Let P1 := P{x
∗
1}

1 denote the (degenerate) linear prevision
on L (X1), all of whose probability mass lies in x∗1. Observe that P1 ∈ ext(M (PA1

1 )). Then
the definition of the strong product implies that

min
x1∈A1

P2( f (x1, ·)) = P2( f (x∗1, ·)) = P2( f (x∗1, ·)) = (P1×P2)( f )≥ (PA1
1 ×P2)( f ).

We turn to the second statement. Let P be any factorising product of PA1
1 and P2. Consider

any gamble f ∈L (X{1,2}), and let us show that the equalities hold. It suffices to give a proof
for non-negative f , since for arbitrary gambles we only need to add a non-negative constant
[coherence guarantees that we can take additive real numbers out of the lower prevision
operator]. Let a1 and b1 be elements of A1 such that P2( f (a1, ·)) = minx1∈A1 P2( f (x1, ·))
and P2( f (b1, ·)) = maxx1∈A1 P2( f (x1, ·)). Then

P( f −P2( f (a1, ·)))

= P
(

∑
x1∈X1

I{x1}[ f (x1, ·)−P2( f (a1, ·))]
)

≥ ∑
x1∈X1

P(I{x1}[ f (x1, ·)−P2( f (a1, ·))])

= ∑
x1∈A1

P(I{x1}[ f (x1, ·)−P2( f (a1, ·))])+ ∑
x1∈Ac

1

P(I{x1}[ f (x1, ·)−P2( f (a1, ·))])

= ∑
x1∈A1

P1(I{x1})[P2( f (x1, ·))−P2( f (a1, ·))]+0≥ 0,

where the first inequality follows from the coherence of P and the last equality holds
because P is assumed to be factorising and because P1({x1}) = P1({x1}) = 0 for every
x1 /∈ A1. Hence P( f ) ≥ minx1∈A1 P2( f (x1, ·)). Using the conjugacy between P and P, we
get P( f )≤maxx1∈A1 P2( f (x1, ·)).

On the other hand,

P2( f (b1, ·)) = P1({b1})P2( f (b1, ·)) = P(I{b1} f (b1, ·))≤ P( f )≤ max
x1∈A1

P2( f (x1, ·)),

where the first equality holds because P1({b1}) = 1, and the second because P is assumed
to be factorising. The first inequality holds because f is non-negative. We conclude that
for any gamble f on X{1,2}, P( f ) = maxx1∈A1 P2( f (x1, ·)), and therefore also P( f ) =
minx1∈A1 P2( f (x1, ·)), by conjugacy.

We conclude with a proof for the third statement. Assume that P2 is the vacuous lower
prevision PA2

2 with respect to A2, and let P be any coherent lower prevision on L (X{1,2})

with marginals PA1
1 and PA2

2 . Because it is coherent, P satisfies

P(A1×A2) = 1−P(Ac
1×X2∪X1×Ac

2)≥ 1−PA1
1 (Ac

1)−PA2
2 (Ac

2) = 1,
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and therefore it dominates the vacuous lower prevision PA1×A2
{1,2} relative to A1×A2, which

also is the independent natural extension PA1
1 ⊗PA2

2 of PA1
1 and PA2

2 , by the second statement.
There are now two possibilities. Either A1 has more than one element. To prove that P is

an independent product of PA1
1 and PA2

2 , we use Corollary 14(ii). Consider any z1 ∈X1 and
any gamble f on X2. If z1 /∈ A1, then we find by inspection that PA1×A2

{1,2} (I{z1}[ f −P2( f )]) =

PA1×A2
{1,2} (I{z1}[ f −P2( f )]) = 0, and therefore P(I{z1}[ f −P2( f )]) = 0. If z1 ∈ A1, then

0 = PA1×A2
{1,2} (I{z1}[ f −P2( f )])≤ P(I{x1}[ f −P2( f )])

≤ P(I{x1}[max f −min f ]) = [max f −min f ]PA1
1 ({x1}) = 0.

Here, the first and the last equalities hold because A1 has more than one element.
Or A1 has only one element x1, and then Lemma 41 implies that P( f ) = PA2

2 ( f (x1, ·))
for all gambles f on X1×X2, so there is only one coherent lower prevision that has these
marginals. But in this case the marginal PA1

1 is a linear prevision, and Proposition 25 tells us
that the marginals PA1

1 and PA2
2 have only one independent product, and it is equal to P. �

Lemma 41. Let P{x1}
1 be the vacuous lower prevision on L (X1) relative to the singleton

{x1} ⊆X1, and let P2 be any coherent lower prevision on L (X2). Let P be any coherent
lower prevision with these marginals. Then P is unique and given by P( f ) = P2( f (x1, ·))
for all gambles f on X1×X2.

Proof. First of all, consider any gamble g on X1×X2 and any z1 ∈X1 \{x1}. We show
that P(I{z1}g) = P(I{z1}g) = 0. Indeed, by coherence of P:

0 = P{x1}
1 (I{z1})ming(z1, ·) = P{x1}

1 (I{z1})ming(z1, ·)
≤ P(I{z1}g(z1, ·)) = P(I{z1}g)

≤ P(I{z1}g) = P(I{z1}g(z1, ·))

≤ P{x1}
1 (I{z1})maxg(z1, ·) = P{x1}

1 (I{z1})maxg(z1, ·) = 0.

For any gamble f on X1×X2 we then infer from the coherence of P that

P(I{x1} f ) = P(I{x1} f )+ ∑
z1∈X1\{x1}

P(I{z1} f )

≤ P
(

∑
z1∈X1

I{z1} f
)
= P( f )

≤ P(I{x1} f )+ ∑
z1∈X1\{x1}

P(I{z1} f ) = P(I{x1} f ).

But this tells us that indeed

P( f ) = P(I{x1} f ) = P(I{x1} f (x1, ·)) = P( f (x1, ·)) = P2( f (x1, ·)). �

Proof of Proposition 27. We begin with the strong product. Because of its marginalisation
and associativity properties [Proposition 8], it clearly suffices to consider the case N = {1,2},
and to show that S{1,2} is externally additive. So consider arbitrary f1 in L (X1) and f2 in
L (X2), then indeed:

SN( f1 + f2) = inf{(P1×P2)( f1 + f2) : P1 ∈ ext(M (P1)) and P2 ∈ ext(M (P2))}
= inf{P1( f1)+P2( f2) : P1 ∈ ext(M (P1)) and P2 ∈ ext(M (P2))}
= inf{P1( f1) : P1 ∈ ext(M (P1))}+ inf{P2( f2) : P2 ∈ ext(M (P2))}
= P1( f1)+P2( f2).

We finish by considering the independent natural extension. Here too, because of its
marginalisation and associativity properties [Theorems 18 and 23], it clearly suffices to
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consider the case N = {1,2}, and to show that E{1,2} is externally additive. So consider
arbitrary f1 in L (X1) and f2 in L (X2). Since we know that E{1,2} is dominated by S{1,2},
we see that E{1,2}( f1 + f2) ≤ S{1,2}( f1 + f2) = P1( f1) +P2( f2). To prove the converse
inequality, it suffices to use the coherence of E{1,2} to deduce that

E{1,2}( f1 + f2)≥ E{1,2}( f1)+E{1,2}( f2) = P1( f1)+P2( f2),

where the equality follows from Corollary 15. �

Proof of Theorem 28. We use Corollary 14(ii). Consider arbitrary o ∈ N, I ⊆ N \{o}, xI ∈
XI and g ∈L (Xo). Then, since PN is factorising and has Xo-marginal Po:

PN(I{xI}[g−Po(g)]) = PN(I{xI}PN(g−Po(g))) = PN(0) = 0. �

Proof of Theorem 29. By Theorem 1, PN is weakly coherent with the family I (PN) if
and only if it is pairwise coherent with each of its members. Let us therefore establish the
coherence of PN with each conditional lower prevision PO(·|XI) (taken separately, for each
pair of disjoint subsets I and O of N). Again using Theorem 1, we see we have to show that

PN(I{xI}[ f −PO( f |xI)]) = 0 for all f ∈L (XO) and all xI ∈XI .

We see that indeed:

PN(I{xI}[ f −PO( f |xI)]) = PN(I{xI}[ f −PN( f )]) = PN(I{xI}PN( f −PN( f ))) = PN(0) = 0,

where the first equality follows from the definition of the conditional lower prevision
PO(·|XI), and the second one from the strongly factorising character of PN . �

Proof of Proposition 31. To prove (i), we use Corollary 14(ii). Observe that Q1, Q2 and
Q3 all have the same marginals Pn. Consider arbitrary o ∈ N, I ⊆ N \ {o}, xI ∈XI and
g ∈L (Xo). Then it follows from the inequalities Q1 ≤ Q3 ≤ Q2 that

0 = Q1(I{xI}[g−Po(g)])≤ Q3(I{xI}[g−Po(g)])≤ Q2(I{xI}[g−Po(g)]) = 0,

where the equalities hold because Q1 and Q2 are many-to-one independent products. We
deduce that Q3 is a many-to-one independent product too.

To prove (ii), consider arbitrary o ∈ N, I ⊆ N \ {o}, fo ∈ L (Xo) and non-negative
fi ∈ L (Xi), i ∈ N \ {o}. Let, for ease of notation fI := ∏i∈I fi. Since Q1 and Q2 are
factorising, we deduce from Proposition 5 that Q1( fI) = ∏i∈I Pi( fi) = Q2( fI) and Q1( fI) =

∏i∈I Pi( fi) = Q2( fI), whence Q3( fI) = ∏i∈I Pi( fi) and Q3( fI) = ∏i∈I Pi( fi). Moreover,

Q1( fI)�Po( fo) = Q1( fo fI)≤ Q3( fo fI)≤ Q2( fo fI) = Q2( fI)�Po( fo).

Hence Q3( fo fI) = Q3( fI)�Po( fo) = Q3( fIPo( fo)). Applying Proposition 5 again, we
deduce that Q3 is also factorising.

The proof of (iii) is similar to that of (ii). Finally, to prove (iv) use that the inequality
Q3(∑r∈R fr)≥∑r∈R Pr( fr) follows from the super-additivity of the coherent lower prevision
Q3, and that the converse inequality follows from Q3 ≤ Q2. �

Proof of Proposition 32. (i)⇒(ii). Assume that PN is weakly coherent with the family
I (PN). Consider any disjoint proper subsets I and O of N, g ∈L (XO) and non-negative
f ∈ L (XI). By Theorem 1, it follows from the assumption that PN is coherent with
PO∪I(·|XI), and this implies the equality PN(I{xI}[g−PN(g)]) = 0 for every xI ∈XI . The
coherence [super-additivity] of PN and the non-negativity of f then imply that:

PN( f [g−PN(g)])≥ ∑
xI∈XI

f (xI)PN(I{xI}[g−PN(g)]) = 0.

Hence PN is productive.
(ii)⇒(i). Assume PN is productive. Consider any disjoint proper subsets I and O of

N, g ∈L (XO) and non-negative f ∈L (XI). The assumption implies in particular that
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PN(I{xI}[g−PN(g)])≥ 0 for all xI ∈XI and all g ∈L (XO). If there were some xI ∈XI
such that PN(I{xI}[g−PN(g)])> 0, then the coherence of PN would imply that

0 = PN(g−PN(g)) = PN

(
∑

xI∈XI

I{xI}[g−PN(g)]
)
≥ ∑

xI∈XI

PN(I{xI}[g−PN(g)])> 0,

a contradiction. So we infer from Theorem 1 that PN is weakly coherent with the family
I (PN).

To complete the proof, if PN is many-to-many independent then it is in strongly, and
therefore also weakly, coherent with the family I (PN), and therefore productive as well.
On the other hand, the first part of this proposition, together with Corollary 14, shows that
if PN is productive it is in particular many-to-one independent. Finally, the last statement is
a consequence of Ref. [22, Theorem 11], which shows that all the conditioning events have
positive lower probability then weak and strong coherence are equivalent. �

APPENDIX B. COUNTEREXAMPLES

In this Appendix, we have gathered a few examples with additional information on the
notions introduced in this paper.

Example 2 (Factorisation properties are not preserved by taking lower envelopes). Let
N := {1,2} and X1 :=X2 := {0,1}. Consider the linear marginals P1 and Q1 for X1 defined
by P1({0}) := P1({1}) := 1/2, Q1({1}) := 1 and Q1({0}) := 0. Similarly, consider the
linear marginals P2 and Q2 for X2 defined by P2({0}) := P2({1}) := 1/2, Q2({1}) := 1 and
Q2({0}) := 0.

Let P{1,2} be the product of P1 and P2, and let Q{1,2} be the product of Q1 and Q2. It
follows from Proposition 7 that P{1,2} and Q{1,2} are factorising and therefore strongly
factorising [for N = {1,2}, these notions are equivalent].

Now let P{1,2} be the lower envelope of P{1,2} and Q{1,2}. Consider the gamble f := I{0}
on X1 and the gamble g := I{0}− I{1} on X2. Then P1( f ) = 1/2, Q1( f ) = 0, P2(g) = 0 and
Q2(g) =−1, and therefore

P{1,2}( f g) = min{P{1,2}( f g),Q{1,2}( f g)}= min
{

1
2
·0,0 ·−1

}
= min{0,0}= 0,

while P{1,2}(g) = min{P2(g),Q2(g)}= min{0,−1}=−1, and

P{1,2}( f P{1,2}(g)) = P{1,2}(− f ) = min{P1(− f ),Q1(− f )}= min
{
−1

2
,0
}
=−1

2
.

Hence P{1,2} is not (strongly) factorising. �

Example 3 (The strong product is not the greatest independent product; many-to-many
independent ; factorising; many-to-many independent ; externally additive; productive
; strongly factorising). Consider the possibility spaces X1 = X2 = {0,1}, and let P1
and P2 be the vacuous lower previsions on L (X1) and L (X2), respectively. From the
second statement in Proposition 26, the strong product S{1,2} := P1×P2 is the vacuous
lower prevision on L (X{1,2}), and it coincides with the independent natural extension
E{1,2} := P1⊗P2.

Let Q{1,2} be the vacuous lower prevision relative to {(0,0),(1,1)}. This lower prevision
strictly dominates the strong product S{1,2}: we have for instance that

Q{1,2}({(0,0),(1,1)}) = 1 > 0 = S{1,2}({(0,0),(1,1)}).

Yet Q{1,2} is a many-to-one independent product of the marginals P1 and P2. [Since N =

{1,2} it is then also many-to-many independent.] To prove this, use the third statement in
Proposition 26. Applying Proposition 32, it is productive too.
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The lower prevision Q{1,2} is not factorising. To see this, consider the non-negative
gambles f := I{1}+ I{0,1} on X1 and g := I{0}+ I{0,1} on X2. Then Q{1,2}( f g) = min{2 ·
1,1 ·2} = 2, whereas Q{1,2}( f )Q{1,2}(g) = 1 ·1 = 1. As a consequence, it is not strongly
factorising either.

On the other hand, if we consider the gambles f1 := I{0} on X1 and f2 := I{1} on X2
we see that f1 + f2 ≥ I{(0,0),(1,1)} and therefore Q{1,2}( f1 + f2) = 1 > 0 = P1( f1)+P2( f2).
This shows that not every many-to-many independent product is externally additive. �

Example 4 (Externally additive ; strongly externally additive; factorising ; strongly
factorising). Let N := {1,2,3} and consider the binary variables X1, X2 and X3 assuming
values in X1 = X2 = X3 = {0,1}. Consider the corresponding marginal lower previsions
P1, P2 and P3 given by

P j( f j) :=
1
2

f j(0)+
2
5

f j(1)+
1

10
min{ f j(0), f j(1)} for f j ∈L (X j) and j = 1,2,3.

Walley [30, Example 9.3.4] has shown that the independent natural extension E{1,2} of
P1 and P2 is the lower envelope of the set of linear previsions Pk with mass functions pk,
k = 1, . . . ,6 given by

k pk(1,1) pk(1,0) pk(0,1) pk(0,0)
1 1/4 1/4 1/4 1/4

2 1/5 1/5 3/10 3/10

3 1/5 3/10 1/5 3/10

4 4/25 6/25 6/25 9/25

5 2/11 3/11 3/11 3/11

6 2/9 2/9 2/9 1/3.

On the other hand, the strong product S{1,2} of P1 and P2 is the lower envelope of the set
of linear previsions {P1,P2,P3,P4}.

Let P7 and P8 be the linear previsions on X3 whose respective mass functions p7 and
p8 are determined by p7(1) = 2/5 and p8(1) = 1/2, so P3 is the lower envelope of P7 and P8.
Let Q{1,2,3} be the lower envelope of the following set of linear previsions on L (X{1,2,3}):

{P1×P7,P2×P7,P3×P7,P4×P7,P1×P8,P2×P8,P3×P8,P4×P8,P5×P8}.

Then Q{1,2,3} = min{S{1,2,3},P5×P8}, where S{1,2,3} is the strong product of P1, P2 and P3:
because of the associativity of the strong product, established in Proposition 8, the strong
product S{1,2,3} is the lower envelope of the set of linear previsions:

{P1×P7,P2×P7,P3×P7,P4×P7,P1×P8,P2×P8,P3×P8,P4×P8}.

To see that Q{1,2,3} is not strongly externally additive, let f be the indicator of the set
{(0,0),(1,1)}×X3 and let g be the indicator of the set X{1,2}×{1}. Then

Q{1,2,3}( f )+Q{1,2,3}(g) = P5({(0,0),(1,1)})+P7({1}) =
5

11
+

2
5
=

47
55

,

whereas

Q{1,2,3}( f +g) = min{S{1,2,3}( f +g),P5×P8( f +g)}

= min{S{1,2,3}( f +g),P5({(0,0),(1,1)})+P8({1})}

= min
{

1
2
+

2
5
,

5
11

+
1
2

}
=

9
10

>
47
55

.

Let us show that Q{1,2,3} is not productive, from which it follows, taking into account
Proposition 6, that it is not strongly factorising either. Let f be minus the indicator of the
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set {1}×X{2,3} and g minus the indicator of the set X1×{1}×X3. Then it follows that

Q{1,2,3}(g) = min{S{1,2,3}(g),P5×P8(g)}

= min{−S{1,2}(X1×{1}),−P5(X1×{1})}

= min
{
−1

2
,− 5

11

}
=−1

2
,

and as a consequence

Q{1,2,3}( f [g−Q{1,2,3}(g)])≤ P5×P8( f [g−Q{1,2,3}(g)])

= P5({(1,1)})−
1
2

P5({1}×X2)

=
2
11
− 1

2
5

11
=− 1

22
< 0.

We now show that, nevertheless, Q{1,2,3} is externally additive. For this, use that Q{1,2,3}
is dominated by S{1,2,3} and that both these coherent lower previsions have P1, P2 and P3
as their marginals, and apply Proposition 31(iv).

Now, the associativity of the independent natural extension [Theorem 23] and its being
dominated by the strong product imply that

E{1,2,3} ≤ E{1,2}⊗P3 ≤ E{1,2}×P3 = min
{

Pi×Pj : i = 1, . . . ,6, j = 7,8
}
≤ Q{1,2,3}.

Applying Proposition 31(i), we deduce that Q{1,2,3} is a many-to-one independent product,
and from Proposition 31(ii) we infer that it is factorising. �

Example 5 (Factorising ; Kuznetsov; strongly factorising ; strongly Kuznetsov). Consi-
der two binary variables X1, X2 assuming values in the set X1 = X2 = {0,1}. Let P1,P2
be the marginal lower previsions from Example 4. Consider the gambles f := I{0}− I{1}
on X1 and g := I{0}− I{1} on X2. Then P1( f ) = P2(g) = 0 and P1( f ) = P2(g) = 1/5. As a
consequence, P1( f )�P2(g) = [0,1/25], whereas, considering the linear previsions P1, . . . ,P6
in that example, we see that their independent natural extension provides the following
value for the lower bound:

E{1,2}( f g) = min
{

0,0,0,
1

25
,− 1

11
,

1
9

}
=− 1

11
.

This shows that the independent natural extension E{1,2}, which is factorising by Theo-
rem 22, is not Kuznetsov. Moreover, in this example where N = {1,2}, factorisation is
equivalent to strong factorisation, and being Kuznetsov is equivalent to being strongly
Kuznetsov. �

Example 6 (Many-to-one independent ; many-to-many independent; factorising ; stron-
gly factorising). Let N := {1,2,3} and consider the binary variables X1, X2 and X3 assuming
values in X1 = X2 = X3 = {0,1}, and consider the corresponding marginal lower previ-
sions P1, P2 and P3 given by

P j( f j) :=
1
2

f j(0)+
2
5

f j(1)+
1
10

min{ f j(0), f j(1)} for all f j ∈L (X j)

for j = 1,2,3. Let E{1,2,3} denote their independent natural extension and S{1,2,3} their
strong product.

Define the coherent lower prevision Q{1,2,3} on L (X{1,2,3}) as the convex mixture
Q{1,2,3} := 1/2(E{1,2,3}+S{1,2,3}). It follows from Proposition 31 that Q{1,2,3} is factorising,
and a many-to-one independent product. We are going to prove that Q{1,2,3} is not a many-
to-many independent product. It will then follow from Theorem 29 that it is not strongly
factorising either.



50 GERT DE COOMAN, ENRIQUE MIRANDA, AND MARCO ZAFFALON

Consider the conditional lower prevision Q{1,2,3}(·|X3) derived from the joint lower
prevision Q{1,2,3} using the epistemic irrelevance of X3 to X{1,2}:

Q{1,2,3}( f |x3) := Q{1,2,3}( f (·,x3)) for all x3 ∈X3 and all f ∈L (X{1,2,3}).

In order to show that it Q{1,2,3} is not a many-to-many independent product, it suffices
to show that it is not weakly coherent with this conditional lower prevision Q{1,2,3}(·|X3).
Consider the event A := {(0,0),(1,1)} that X1 = X2, and the corresponding indicator g := IA
on X{1,2}. It follows from Ref. [30, Example 9.3.4] that E{1,2,3}(A) = 5/11 and S{1,2,3}(A) =
1/2, so

Q{1,2,3}(A) =
1
2
(E{1,2,3}(A)+S{1,2,3}(A)) =

1
2

(
1
2
+

5
11

)
=

21
44

.

Let x3 = 0. Since both E{1,2,3} and S{1,2,3} are strongly factorising [by Theorem 24 and
Proposition 8(iv), respectively], we see that

E{1,2,3}(I{x3}[g−Q{1,2,3}(g)]) = P3({0})E{1,2,3}(g−Q{1,2,3}(g))

=
3
5

(
5

11
− 21

44

)
=− 3

220
,

whereas

S{1,2,3}(I{x3}[g−Q{1,2,3}(g)]) = P3({0})S{1,2,3}(g−Q{1,2,3}(g)) =
1
2

(
1
2
− 21

44

)
=

1
88

.

As a consequence, we deduce that

Q{1,2,3}(I{x3}[g−Q{1,2,3}(g)]) =
1
2

(
− 3

220
+

1
88

)
=− 1

880
< 0,

so Q{1,2,3} is not coherent with Q{1,2,3}(·|X3). This also shows that Q{1,2,3} is not productive,
applying Proposition 32.

Finally, note that, from Example 5 we can deduce that the independent natural extension
E{1,2,3} is not Kuznetsov, and since Q{1,2,3} has the same marginals we deduce that it is not
Kuznetsov either: it suffices to take the same gambles f and g from that example. �

This example shows that if we consider a many-to-one independent product QN of some
given marginals Pn, n ∈ N, and a partition of N given by sets R and S, then QN need not be
coherent with the conditional lower previsions QR∪S(·|XS) and QR∪S(·|XR). In this sense the
associativity properties satisfied by the strong product and the independent natural extension
do not extend towards their convex combinations.
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