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ABSTRACT. We prove weak and strong laws of large numbers for coherent lower previ-
sions, where the lower prevision of a random variable is given a behavioural interpretation
as a subject’s supremum acceptable price for buying it. Our laws are a consequence of
the rationality criterion of coherence, and they can be proven under assumptions that are
surprisingly weak when compared to the standard formulation of the laws in more classical
approaches to probability theory.

1. INTRODUCTION

In order to set the stage for this paper, let us briefly recall a simple derivation for
Bernoulli’s weak law of large numbers. Consider N successive tosses of the same coin.
The outcome for the k-th toss is denoted by Xk, k = 1, . . . ,N. This is a random vari-
able, taking values in the set {−1,1}, where −1 stands for ‘tails’ and +1 for ‘heads’.
We denote by p the probability for any toss to result in ‘heads’. The common expected
value µ of the outcomes Xk is then given by µ = 2p− 1, and their common variance
σ2 by σ2 = 4p(1− p) ≤ 1. We are interested in the sample mean, which is the ran-
dom variable SN = 1

N ∑
N
k=1 Xk whose expectation is µ . If we make the extra assumption

that the successive outcomes Xk are independent, then the variance σ2
N of SN is given by

σ2
N = σ2/N ≤ 1/N, and if we use Chebychev’s inequality, we find for any ε > 0 that the

probability that |SN−µ|> ε is bounded as follows

P({|SN−µ|> ε})≤ σ2
N

ε2 ≤
1

Nε2 . (1)

This tells us that for any ε > 0, the probability P({|SN − µ| > ε}) tends to zero as the
number of observations N goes to infinity, and we say that the sample mean SN converges
in probability to the expectation µ . If we let Yk = 1+Xk

2 , then the random variable 1
N ∑

N
k=1 Yk

represents the frequency of ‘heads’ in N tosses. We may rewrite Eq. (1) as P({| 1N ∑
N
k=1 Yk−

p|> ε})≤ 1/4Nε2, and this tells us that the frequency of ‘heads’ converges in probability
to the probability p of ‘heads’.

This convergence result is the weak law of large numbers in the context of a binomial
process as originally envisaged by Bernoulli (1713). It can be generalised in a number of
ways. We can look at random variables that may assume more than two (and possibly an in-
finite number of) values. We can also try and replace the convergence in probability by the
stronger almost sure convergence. In standard, measure-theoretic probability theory, this
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has led to the so-called strong law of large numbers, due to Borel (1909) and Kolmogorov
(1930). In essence, this law states that if we look at an infinite sequence of random vari-
ables Xk with bounded variance, then the sample mean Sk will converge to µ almost surely,
i.e., with probability one. Finally, we can weaken or modify the independence assump-
tion, and this has led to the well-known martingale convergence theorems, due to Ville
(1939) and Doob (1953), and the ergodic theorems, going back to Birkhoff (1932) and von
Neumann (1932). Clearly, Bernoulli’s law has been the starting point for many important
developments in modern, measure-theoretic probability theory (Kallenberg, 2002). At the
same time, because it so obviously connects frequencies and probabilities, it has been a
source of inspiration for the frequentist interpretation of probability theory.

But Bernoulli’s law is perhaps easier to interpret on the subjective, behavioural account
of probability theory, championed by de Finetti (1974–1975). Here, a subject’s probability
for an event is his fair rate for betting on the event, and the law (1) has the following
interpretation: if a subject’s probability for ‘heads’ is p, and he judges the tosses of the
coin to be independent, then the rationality criterion of coherence requires him to bet on
the event {|SN −µ|> ε} at rates smaller than 1

Nε2 . Specifying a higher betting rate would
make him subject to a sure loss.1

In the case of coin tossing, specifying the expectation µ completely determines the
probability distribution of the random variable Xk, because it can only assume two values.
This is no longer true for more general random variables, and this observation points to a
possible generalisation of Bernoulli’s law that so far seems to have received little explicit
attention in the literature. What can be said about the probability that |SN − µ| > ε when
the probability distributions of the random variables Xk aren’t fully specified, but when, as
in the Bernoulli case, only the expectation µ of these random variables is given?

In the present paper, we go even further than this. As with the more standard versions
of the laws of large numbers, it seems easier to interpret our results in terms of the rational
behaviour of a subject. A bounded random variable Xk can be interpreted as a random
(or unknown) reward, expressed in terms of some predetermined linear utility. A subject’s
lower prevision m for Xk is the supremum price for which he is willing to buy the random
reward Xk, and his upper prevision M for Xk is his infimum price for selling Xk. In con-
tradistinction with the Bayesian approach to probability theory, we don’t assume that lower
and upper previsions coincide, leading to a prevision or fair price for Xk (de Finetti, 1974–
1975), but we do require, as in the Bayesian theory, that lower and upper previsions satisfy
some basic rationality, or coherence, criteria. In Section 2, we present the basic ideas be-
hind the behavioural theory of coherent lower previsions, which goes back to Smith (1961)
and Williams (1975), and was brought to a recent synthesis by Walley (1991).

We shall prove laws of large numbers that make precise the following loosely formu-
lated statement:2 if a subject gives a lower prevision m for the bounded random variables
Xk, k = 1, . . . ,N, and assesses that he can’t learn from the past, in the sense that obser-
vations of the variables X1, . . . , Xk−1 don’t affect the lower prevision for Xk, k = 2, . . . ,N,
then the rationality requirement of coherence implies that he should bet on the event that
the sample mean SN dominates the lower prevision m at rates that increase to one as the
number of observations N increases to infinity. So if a subject doesn’t learn from past

1Because it represents an upper bound that needn’t be tight, the inequality gives a necessary condition for
avoiding a sure loss that needn’t be sufficient.

2Our subsequent treatment is more general in that we don’t assume that all variables have the same lower
prevision m, but the resulting laws are more difficult to summarise in an intuitive manner.
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observations, and specifies a lower prevision for a single observation, then, loosely formu-
lated, coherence implies that he should also believe that the sample mean will eventually
dominate this lower prevision. Our law therefore provides a connection between lower pre-
visions and sample means. A similar (dual) statement can be given for upper previsions.

By our analysis, we establish that laws of large numbers can be formulated under con-
ditions that are much weaker than what is usually assumed. This will be explained in much
more detail in the following sections, but it behoves us here to at least indicate in what way
our assumptions are indeed much weaker.

Above, we have summarised our results using the behavioural interpretation of lower
previsions as supremum buying prices. But they can also be given a Bayesian sensitivity
analysis interpretation, which makes it easier to compare them to the standard probabilistic
results. On the sensitivity analysis view, the uncertainty about a random variable Xk is ide-
ally described by some probability distribution, which may not be well known. Specifying
the lower prevision m for the Xk amounts to providing a lower bound for the expectation
of Xk under this ideal distribution, or equivalently, it amounts to specifying the set M of
those probability distributions for which the associated expectation of Xk dominates m. So
by specifying m, we state that the ideal probability distribution belongs to the set M , but
nothing more. And secondly, and more importantly, we model the assessment that the
subject can’t learn from past observations by stating only that the lower prevision for Xk
doesn’t change (remains equal to m) after we observe the outcomes X1, . . . , Xk−1. In the
standard, precise probabilistic approach, independence implies that the entire probability
distribution for Xk doesn’t change after observing X1, . . . , Xk−1. This is a much stronger
assumption than ours, at least if the random variables Xk can assume more than two values!
To put it differently, after observing X1, . . . , Xk−1 our model for the uncertainty about Xk
will still be the set of distributions M . So all that is known is that the ideal updated dis-
tribution still belongs to M . But we make no claim that this ideal distribution will be the
same for all the possible values of X1, . . . , Xk−1, nor that it should be the same for all times
k! So, in the end, we have sets M of possible values for the ideal marginal and updated
distributions, and we can combine them by applying Bayes rule to all possible combina-
tions, in the usual Bayesian sensitivity analysis fashion. In this way, we end up with a set
of candidates for the ideal joint probability distribution of all the variables X1, . . . , XN . We
prove (amongst other things) that the probability of the event {SN ≥ m− ε} goes to one as
N increases, in a uniform way for all candidate joint distributions.

How do we proceed to derive our results? In Section 2 we give a brief introduction to
the basic ideas behind the theory of coherent lower previsions, and we explain how these
lower previsions can be identified with sets of (finitely additive) probability measures.

In Section 3, we prove our very general version of the weak law of large numbers for
coherent lower previsions that satisfy a so-called forward factorisation condition. We want
to stress here that this law is a quite general mathematical result, which holds regardless of
the interpretation given to coherent lower previsions.

We discuss a number of possible interpretations of our weak law, as well as specific
special cases in Section 4, where we show that our results subsume much of the previous
work in the field. Also, in Theorem 4, we give an alternative general formulation of our
weak law in terms of (sets of) precise probabilities. This should be easily understandable
by, and possibly relevant to, anyone interested in probability theory, on any interpretation.

Interestingly, we can use our weak law to prove versions of the strong law, which is
what we do in Section 5. In the last section, we once again draw attention to the more
salient features of our approach, and point to possible further generalisations.
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2. COHERENT LOWER AND UPPER PREVISIONS

In this section, we present a succinct overview of the relevant main ideas underlying the
behavioural theory of imprecise probabilities, in order to make it easier for the reader to
understand the main ideas of the paper. We refer to (Walley, 1991) for extensive discussion
and motivation, and for many of the results and formulae that we shall use below.

2.1. Basic notation and behavioural interpretation. Consider a subject who is uncertain
about something, say, the value that a random variable X assumes in a set of possible values
X . Then a bounded real-valued function on X is called a gamble on X , and the set of all
gambles on X is denoted by L (X ). We interpret a gamble as an uncertain reward: if the
value of the random variable X turns out to be x ∈X , then the corresponding reward will
be f (x) (positive or negative), expressed in units of some (predetermined) linear utility.

The subject’s lower prevision P( f ) for a gamble f is defined as his supremum acceptable
price for buying f , i.e., it is the highest price µ such that the subject will accept to buy f for
all prices strictly smaller than µ (buying f for a price α is the same thing as accepting the
uncertain reward f −α). Similarly, a subject’s upper prevision P( f ) for f is his infimum
acceptable selling price for f . Clearly, P( f ) =−P(− f ) since selling f for a price α is the
same thing as buying − f for the price −α . This conjugacy relation implies that we can
limit our attention to lower previsions: any result for lower previsions can immediately be
reformulated in terms of upper previsions.

A subset A of X is called an event, and it can be identified with its indicator (function)
IA, which is a gamble on X . The lower probability P(A) of A is nothing but the lower
prevision P(IA) of its indicator, and it represents the supremum acceptable price for buying
A. Similarly, the upper probability P(A) of A is the infimum acceptable price for selling A.
In the case of events it is perhaps more intuitive to regard their lower and upper probabilities
as betting rates: the lower probability of A, which is the supremum value of α such that
IA−α is an acceptable gamble for our subject, can also be seen as his supremum acceptable
betting rate on the event A. Similarly, the upper probability of A can also be seen as one
minus our subject’s supremum acceptable betting rate against A. Note that in this case
the conjugacy relation between upper and lower previsions becomes P(A) = 1−P(Ac) for
any A ⊆X . In what follows, we don’t distinguish between events A and their indicators
IA, and we shall freely move from one notation to another. We shall also, whenever we
deem it convenient, switch between the equivalent notations P(A) and P(IA): lower/upper
probabilities are just special lower/upper previsions.

2.2. Rationality requirements. Assume that the subject has given lower prevision assess-
ments P( f ) for all gambles f in some set of gambles K ⊆L (X ), which needn’t have
any predefined structure. We can then consider P as a real-valued function with domain
K , and we call this function a lower prevision on K . Since the assessments present in P
represent commitments of the subject to act in certain ways, they are subject to a number
of rationality requirements. The strongest such requirement is that the lower prevision P
should be coherent. Coherence means first of all that the subject’s assessments avoid sure
loss: for any n in the set of positive natural numbers N and for any f1, . . . , fn in K we
require that

sup
x∈X

[ n

∑
k=1

[ fk(x)−P( fk)]
]
≥ 0.
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Otherwise, there would be some ε > 0 such that for all x in X , ∑
n
k=1[ fk(x)−P( fk)+ ε]≤

−ε , i.e., the net reward of buying the gambles fk for the acceptable prices P( fk)−ε is sure
to lead to a loss of at least ε , whatever the value of the random variable X .

But coherence also means that if we consider any f in K , we can’t force the subject
to accept f for a price strictly higher than his specified supremum buying price P( f ), by
exploiting buying transactions implicit in his lower previsions P( fk) for a finite number of
gambles fk in K , which he is committed to accept. More explicitly, we also require that
for any natural numbers n≥ 0 and m≥ 1, and f0, . . . , fn in K :

sup
x∈X

[ n

∑
k=1

[ fk(x)−P( fk)]−m[ f0(x)−P( f0)]
]
≥ 0.

Otherwise, there would exist ε > 0 such that m[ f0− [P( f0)+ ε]] pointwise dominates the
acceptable combination of buying transactions ∑

n
k=1[ fk−P( fk)+ ε], and is therefore ac-

ceptable as well. This would mean that by combining these acceptable transactions derived
from his assessments, the subject can be effectively forced to buy f0 at the price P( f0)+ε ,
which is strictly higher than the supremum acceptable buying price P( f0) that he has spec-
ified for it. This is an inconsistency that is to be avoided.

Coherent lower previsions P satisfy a number of basic properties. For instance, given
gambles f and g in K , real µ and non-negative real λ , coherence implies that the following
properties hold, whenever the gambles that appear are in the domain K of P:
(C1) P( f )≥ infx∈X f (x);
(C2) P( f +g)≥ P( f )+P(g) [super-additivity];
(C3) P(λ f ) = λP( f ) [positive homogeneity];
(C4) P(λ f + µ) = λP( f )+ µ .
Other properties can be found in (Walley, 1991, Section 2.6). It is important to mention
here that when K is a linear space, coherence is equivalent to (C1)–(C3).

2.3. Natural extension. We can always extend a coherent lower prevision P defined on
a set of gambles K to a coherent lower prevision E on the set of all gambles L (X ),
through a procedure called natural extension. The natural extension E of P is defined as
the pointwise smallest coherent lower prevision on L (X ) that coincides on K with P. It
is given for all f ∈L (X ) by

E( f ) = sup
f1,..., fn∈K

µ1,...,µn≥0,n≥0

inf
x∈X

[
f (x)−

n

∑
k=1

µk[ fk(x)−P( fk)]
]
,

where the µ1, . . . , µn in the suprema are non-negative real numbers. The natural extension
summarises the behavioural implications of P: E( f ) is the supremum buying price for f
that can be derived from the lower prevision P by arguments of coherence alone. We see
from its definition that it is the supremum of all prices that the subject can be effectively
forced to buy the gamble f for, by combining finite numbers of buying transactions implicit
in his lower prevision assessments P. Note that E will not be in general the unique coherent
extension of P to L (X ); but any other coherent extension will pointwise dominate E and
will therefore model behavioural dispositions not present in P.

2.4. Relation to precise probability theory. When P( f ) = P( f ), the subject’s supremum
buying price coincides with his infimum selling price, and this common value is a prevision
or fair price for the gamble f , in the sense of de Finetti (1974–1975). This means that our
subject is disposed to buy the gamble f for any price µ < P( f ), and to sell it for any price
µ ′ > P( f ) (but he may be undecided about his behaviour for µ = P( f )). A prevision P
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defined on a set of gambles K is called a linear prevision if it is coherent both as a lower
and as an upper prevision.

A linear prevision P on the set L (X ) can also be characterised as a linear functional
that is positive (if f ≥ 0 then P( f ) ≥ 0) and has unit norm (P(IX ) = 1). Its restriction to
events is a finitely additive probability. Moreover, any finitely additive probability defined
on the set ℘(X ) of all events can be uniquely extended to a linear prevision on L (X ).
For this reason, we shall identify linear previsions on L (X ) with finitely additive prob-
abilities on ℘(X ). We denote by P(X ) the set of all linear previsions on L (X ), or
equivalently, of all finitely additive probabilities on ℘(X ).

Linear previsions are the precise probability models, and we call coherent lower and
upper previsions imprecise probability models. That linear previsions are only required to
be finitely additive, and not σ -additive, derives from the finitary character of the coherence
requirement. Throughout the paper, we shall work with finitely additive probabilities, and
only bring in σ -additivity when we think it’s absolutely necessary.

The notions of avoiding sure loss, coherence, and natural extension can be characterised
in terms of sets of linear previsions. Consider a lower prevision P defined on a set of
gambles K . Its set of dominating linear previsions M (P) is given by

M (P) = {P ∈ P(X ) : (∀ f ∈K )P( f )≥ P( f )}. (2)

Then P avoids sure loss if and only if M (P) 6= /0, i.e., if it has a dominating linear pre-
vision. P is coherent if and only if P( f ) = min{P( f ) : P ∈M (P)} for all f in K ,
i.e., if it is the lower envelope of M (P). And the natural extension E of P is given by
E( f ) = min{P( f ) : P ∈M (P)} for all f in L (X ). This means that we have the im-
portant equality M (E) = M (P), another way of expressing that the natural extension E
carries essentially the same information as the coherent lower prevision P. Moreover, the
lower envelope of any set of linear previsions is always a coherent lower prevision.

We can use these relationships to formulate the results (limit laws) for coherent lower
previsions in the rest of the paper in terms of their dominating linear previsions. They
provide coherent lower previsions with a Bayesian sensitivity analysis interpretation, as
opposed to the more direct behavioural one given above: we may assume the existence
of an ideal (but unknown) precise probability model PT on L (X ), and represent our
imperfect knowledge about PT by means of a set of possible candidates M for PT . The
information given by this set is equivalent to the one provided by its lower envelope P,
which is given by P( f ) = minP∈M P( f ) for all f ∈L (X ). This lower envelope P is a
coherent lower prevision; and indeed, PT ∈M is equivalent to PT ≥ P.

2.5. Joint and marginal lower previsions. Now consider a number of random variables
X1, X2, . . . , XN that may assume values in the respective sets X1, X2, . . . , XN . We assume
that these variables are logically independent: the joint random variable (X1, . . . ,XN) may
assume all values in the product set X N := X1×X2× . . .XN . A subject’s coherent lower
prevision PN on a subset K of L (X N) is a model for his uncertainty about the value
that the joint random variable (X1, . . . ,XN) assumes in X N , and we call it a joint lower
prevision.

For k = 1, . . . ,N, we can associate with PN its so-called Xk-marginal (lower prevision)
Pk, defined by Pk(g) = PN(g′) for all gambles g on Xk, such that the corresponding gamble
g′ on X N , defined by g′(x1, . . . ,xN) = g(xk) for all (x1, . . . ,xN) in X N , belongs to K . The
gamble g′ is constant on the sets X1×·· ·×{xk}· · ·×XN , and we call it Xk-measurable.
In what follows, we shall identify g and g′, and simply write PN(g) rather than PN(g′).
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The marginal Pk is the corresponding model for the subject’s uncertainty about the value
that Xk assumes in Xk, irrespective of what values the remaining N−1 random variables
assume. The coherence of the joint lower prevision PN clearly implies the coherence of its
marginals Pk. If PN is in particular a linear prevision on L (X N), its marginals are linear
previsions too.

Conversely, assume we start with N coherent marginal lower previsions Pk, defined on
the respective domains Kk ⊆L (Xk). We can interpret Kk as a set of gambles on X N that
are Xk-measurable. Any coherent joint lower prevision defined on a set K of gambles on
X N that includes the Kk and that coincides with the Pk on their respective domains, i.e.,
has marginals Pk, will be called a product of the lower previsions Pk. We shall come across
various ways of defining such products further on in the paper. It should be stressed here
that, in contradistinction with Walley (1991, Section 9.3.1), we don’t intend the mere term
‘product’ to imply that the variables Xk are assumed to be independent in any way. On our
approach, there may be many types of products, some of which may be associated with
certain types of interdependence between the random variables Xk.

3. A WEAK LAW OF LARGE NUMBERS

3.1. Formulation. We are now ready to turn to the most general formulation of our weak
law of large numbers. We consider N random variables Xk taking values in respective sets
Xk. As before, we assume these random values to be logically independent, meaning that
the joint random variable (X1, . . . ,XN) may assume all values in the product set X N :=
X1×X2×·· ·×XN . We also consider a coherent joint lower prevision PN on L (X N).

Definition 1. A joint lower prevision PN on L (X N) is called forward factorising if
PN(g[h−PN(h)])≥ 0 for all k ∈ {1, . . . ,N}, all g ∈L+(X k−1) and all h ∈L (Xk).

We have used the notations X k for the product set ×k
`=1X` and L+(X k) for the set of

non-negative gambles on X k. For k = 0, there is some abuse of notation: we let X 0 := /0,
and we identify L+(X 0) = L+( /0) with the set R+ of non-negative real numbers. The
corresponding inequality for k = 0 is implied by the coherence of PN .

Why do we use the term ‘forward factorising’? It is easy to see that for joint linear
previsions PN , the condition is equivalent to PN(gh) = PN(g)PN(h) for all g in L (X k−1)
and all h in L (Xk), where k ∈ {1, . . . ,N}: for the direct implication, apply the condition
to g− infg and h and use the linearity of PN to deduce that PN(gh)≥ PN(g)PN(h) for all g
in L (X k−1) and all h in L (Xk), and then use this with −g, h to deduce the equality; the
converse implication is trivial. This means that the linear prevision PN factorises on prod-
ucts of gambles, where one of the factors refers to the ‘present time k’, and the other factor
refers to the ‘entire past 1, . . . ,k−1’. Our condition will turn out to be the appropriate
generalisation of this idea to coherent joint lower previsions.

It is for forward factorising coherent joint lower previsions that we shall formulate our
weak law of large numbers. The following theorem is instrumental in proving it, but as we
shall see in Section 4, it is of some interest in itself as well.

Theorem 1. Let PN be a coherent joint lower prevision on L (X N). Then PN is forward
factorising if and only if

PN( f )≥ inf
x∈X N

[
f (x)−

N

∑
k=1

nk

∑
jk=1

gk jk(x1, . . . ,xk−1)[hk jk(xk)−mk jk ]
]

(3)

for all gambles f on X N , all nk ≥ 0, all hk jk ∈L (Xk), all gk jk ∈L+(X k−1), and all
mk jk ≤ PN(hk jk), where jk ∈ {1 . . . ,nk} and k ∈ {1, . . . ,N}.
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Remark 1. We can see from the proof of Theorem 1 (see Section A.1 in the Appendix)
that if we only require the forward factorising property to hold for strictly positive g and
arbitrary h, then it is equivalent to condition (3), but now restricted to hk jk ∈L (Xk) and
strictly positive gk jk ∈L+(X k−1).

Now consider, for each random variable Xk a gamble hk on its set of possible values
Xk. Let B be a common bound for the ranges of these gambles, i.e., suphk− infhk ≤ B
for all k ∈ {1, . . . ,N}. Then the ‘sample mean’ 1

N ∑
N
k=1 hk is a gamble whose range is also

bounded by B. Given ε > 0, we are interested in the lower probability of the event{
1
N

N

∑
k=1

PN(hk)− ε ≤ 1
N

N

∑
k=1

hk ≤
1
N

N

∑
k=1

P(hk)+ ε

}
:=
{

x ∈X N :
1
N

N

∑
k=1

PN(hk)− ε ≤ 1
N

N

∑
k=1

hk(xk)≤
1
N

N

∑
k=1

P(hk)+ ε

}
that the sample mean lies, up to ε , between the average of the lower previsions PN(hk)
and the average of the upper previsions PN(hk) of these gambles. If the coherent lower
prevision PN is forward factorising, then the lower probability of this event goes to one as
N increases to infinity: in fact, we have the following result.

Theorem 2 (Weak law of large numbers – general version). Let PN be a lower prevision
on L (X N) that is coherent and forward factorising. Let ε > 0 and consider arbitrary
gambles hk on Xk. Let B be a common bound for the ranges of these gambles and let
infhk ≤ mk ≤ PN(hk)≤ PN(hk)≤Mk ≤ suphk. Then

PN
({

1
N

N

∑
k=1

mk− ε ≤ 1
N

N

∑
k=1

hk ≤
1
N

N

∑
k=1

Mk + ε

})
≥ 1−2exp

(
− Nε2

4B2

)
.

This is a general mathematical result, valid on any interpretation that might be given to a
lower prevision. It holds for all functionals PN on L (X N) that are coherent [in the sense
that they satisfy the mathematical conditions (C1)–(C3)] and forward factorising.

Remark 2. We can infer from the proof of this theorem (in Section A.2 of the Appendix)
that we actually have two limit laws. If we only specify upper bounds Mk for the upper
previsions P(hk) then we can prove that

PN
({

1
N

N

∑
k=1

(hk(xk)−Mk)≤ ε

})
≥ 1− exp

(
− Nε2

4B2

)
,

and if we only specify lower bounds mk for the lower previsions PN(hk) then we can prove
that

PN
({

1
N

N

∑
k=1

(hk(xk)−mk)≥−ε

})
≥ 1− exp

(
− Nε2

4B2

)
,

for all ε > 0. If we specify both, we get Theorem 2.

Remark 3. In our definition of a forward factorising lower prevision, we require that the
‘factorisation’ inequality PN(g[h−P(h)]) ≥ 0 should be satisfied for all g in L+(X k−1)
and all gambles h in L (Xk). But when we want to prove a weak law of large numbers
in more specific situations, we can sometimes weaken the factorisation requirement. For
instance, when the sets Xk are bounded subsets of R, and we want to prove the weak law
for a restricted choice of the gambles hk, e.g., Borel measurable ones, then we may deduce
from our method of proof in Section A.2, that we only need the factorisation property to
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hold for Borel measurable g and h. When, even more restrictively, we only want a weak
law for the case that the gambles hk are identity maps, we can do with the identity map for
h and continuous, or even polynomial, g in the forward factorisation inequality.

3.2. Special cases. Let us look at the specific formulation of our weak law in a number of
particular special cases: (i) the classical case of independent variables; and (ii) when the
random variables Xk are related to the occurrence of events. We begin with the first case.

Consider the case of independent and identically distributed bounded random variables
Xk: all random variables are real, and have the same distribution P, which in this classical
case is assumed to be a σ -additive probability measure defined on the Borel σ -field B
on R. The distribution of the joint random variable is the usual product measure PN on
the product algebra BN . We have then that mk = Mk = µ = EP(Xk), where EP is the
expectation operator associated with P. We denote the common variance of the Xk by
σ2 = EP((Xk− µ)2). Since there exists a common bound B for the ranges of the random
variables Xk, B2 is then a bound for σ2. Let us denote

DN =
1
N

N

∑
k=1

(Xk−µ).

Then EPN (DN) = 0, where EPN is the expectation operator associated with the (indepen-
dent) product measure PN . Also EPN (D2

N)≤ B2

N , so we infer from Chebychev’s inequality
that

EPN ({|DN(x)| ≤ ε})≥ 1− B2

Nε2 ,

and we deduce that EPN ({|DN(x)| ≤ ε}) goes to one as N goes to infinity. This is the usual
Chebychev bound found in many probability textbooks; see (Ash and Doléans-Dade, 2000)
and also (Shafer and Vovk, 2001), where this same bound is derived in a way that is similar
to our derivation of Theorem 2 in the Section A.2 of the Appendix.

But since the expectation operator EPN is forward factorising,3 we can also use our
formulation of the weak law, which provides a different upper bound, 1−2exp(−Nε2

4B2 ). In

Figure 1, we compare the functions 2exp(−x/4) and 1
x (where x = Nε2

B2 ) in a loglog plot.
It is seen that our new bound is far superior to the one given by Chebychev’s inequality
for large enough Nε2/B2 (more than 10). This will be important in the next section, where
it will ultimately allow us to derive a finitary version of the strong law of large numbers
directly from the weak one. Curiously, perhaps, the form of our bound corresponds much
better (up to a factor in the exponential) to Hoeffding’s (1963) inequality for N independent
bounded random variables X1, . . . , XN , which can be written as

P
({

1
N

N

∑
k=1

(Xk−µk)≤−ε

})
≤ exp

(
− 2Nε2

B2

)
,

where µk is the expected value of Xk.
Next, consider N logically independent events Ak for which a subject has specified lower

and upper probabilities P(Ak) and P(Ak), k = 1, . . . ,N. Consider the random variables
Xk = IAk , then each Xk assumes values in Xk = {0,1}. Let PN be any coherent and forward
factorising lower prevision on L (X N) that extends these lower and upper probability

3Actually, since this operator is only defined on measurable functions, it is forward factorising only on mea-
surable gambles. But that is enough to apply our weak law: we use only a specific type of measurable gamble in
its proof; see Remark 3 and Section A.2 of the Appendix.
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FIGURE 1. Comparison of the bounds 2exp(−Nε2

4B2 ) (full line) and
B2/Nε2 (dashed line) as a function of Nε2/B2 in a loglog plot.

assessments. Then PN(Xk) = P(Ak), and similarly PN(Xk) = P(Ak). Since B = 1 in this
case, our weak law tells us in particular that

PN
({

1
N

N

∑
k=1

P(Ak)− ε ≤ 1
N

N

∑
k=1

IAk ≤
1
N

N

∑
k=1

P(Ak)+ ε

})
≥ 1−2exp

(
− Nε2

4

)
.

This version of the weak law therefore relates the lower and upper probabilities of the
events Ak to the ‘frequency of occurrence’ 1

N ∑
N
k=1 IAk .

4. INTERPRETATION

We now turn to a discussion of the significance of our weak law. We present various
ways of interpreting it by considering a diversity of situations where we are naturally led
to consider joint lower previsions that are forward factorising.

We consider N random variables Xk, taking values in the respective sets Xk, and gam-
bles hk on Xk, k = 1, . . . ,N. A subject specifies a lower prevision mk and an upper prevision
Mk for each gamble hk, which only depends on the value of the k-th random variable. In
addition, he assesses that he isn’t learning from previous observations by expressing that
his lower and upper previsions for the gamble hk won’t change after observing the values
of the previous variables X1, . . . , Xk−1; and this for all k = 1, . . . ,N.

On a behavioural interpretation, this means that our subject has specified N marginal
lower previsions Pk on the domains Kk := {hk,−hk} ⊆L (Xk), given by

mk = Pk(hk) and Mk = Pk(hk) =−Pk(−hk). (4)

That the lower and upper previsions of hk depending on the value of Xk don’t change after
learning the values of previous variables X1, . . . , Xk−1 can be expressed using so-called
forward epistemic irrelevance assessments

P(hk|x1, . . . ,xk−1) = mk and P(−hk|x1, . . . ,xk−1) =−P(hk|x1, . . . ,xk−1) =−Mk, (5)

for 2 ≤ k ≤ N and for all x1, . . . ,xk−1 in X k−1. The left hand sides of these expressions
represent conditional lower previsions, i.e., the subject’s supremum buying prices for the
relevant gambles hk and −hk conditional on the observation of the values (x1, . . . ,xk−1) of
the previous random variables.



LAWS OF LARGE NUMBERS FOR COHERENT LOWER PREVISIONS 11

We shall now consider various joint lower previsions PN on L (X N) that are compati-
ble with these assessments (4) and (5), in the sense that (i) they are ‘products’ of the mar-
ginal lower previsions Pk, meaning that they coincide with them: PN(hk) = Pk(hk) = mk
and PN(−hk) = Pk(−hk) =−Mk; and (ii) they reproduce, in some specific sense, the epis-
temic irrelevance assessments (5).

4.1. The forward irrelevant natural extension. We have shown elsewhere (De Cooman
and Miranda, 2006) that the point-wise smallest (behaviourally most conservative) joint
lower prevision on L (X N) that is coherent4 with the assessments (4) and (5), is given by
the so-called forward irrelevant natural extension EN of the marginals Pk. An immediate
application of the general results in (De Cooman and Miranda, 2006, Proposition 4) also
allows us to conclude that this EN is actually forward factorising, and given by

EN( f ) = sup
gk,hk∈L+(X k−1)

k=1,...,N

inf
x∈X N

[
f (x)

−
N

∑
k=1

[gk(x1, . . . ,xk−1)(xk−mk)+hk(x1, . . . ,xk−1)(Mk− xk)]
]
,

for all gambles f on X N . A comparison with Eq. (3) in Theorem 1 tells us that EN is actu-
ally the point-wise smallest (most conservative) product of the marginal lower previsions
Pk that is still forward factorising. An immediate application of Theorem 2 then tells us
that

EN
({

1
N

N

∑
k=1

mk− ε ≤ 1
N

N

∑
k=1

hk ≤
1
N

N

∑
k=1

Mk + ε

})
≥ 1−2exp

(
− Nε2

4B2

)
.

where B is any common bound for the ranges of the gambles hk. Summarising, we find the
following result.

Theorem 3 (Weak law of large numbers – behavioural version). Consider any gambles
hk on Xk with a common bound B for their ranges, and assume that a subject (i) assesses
lower previsions mk and upper previsions Mk for these gambles hk, where infhk ≤ mk ≤
Mk ≤ suphk, and (ii) assesses that these lower and upper previsions won’t change upon
learning the values of previous random variables X1, . . . , Xk−1, k = 1, . . . ,N. Then coher-
ence requires him to bet on the event { 1

N ∑
N
k=1 mk − ε ≤ 1

N ∑
N
k=1 hk ≤ 1

N ∑
N
k=1 Mk + ε} at

rates that are at least 1−2exp(−Nε2/4B2), for all ε > 0.

The conditions for applying this version of the weak law are very weak: our subject
need only give (coherent) lower and upper prevision assessments for the gambles hk that
lie in [mk,Mk]; he needn’t give assessments for any other gambles. Or he may give lower
and upper previsions for a number of other gambles, and the only requirement is then that
the implied lower and upper previsions (by natural extension) for hk should lie in [mk,Mk].
Moreover, he need only assess that his lower and upper previsions for the gambles hk, and
these two numbers alone, are not affected by observing the values of the previous random
variables X1, . . . , Xk−1.

Of course, any reader who doesn’t really care for lower previsions, or the associated
coherence requirements, or more generally for Walley’s behavioural approach to probabil-
ity, may at this point rightfully wonder why he or she should bother about this version of

4We refer to Walley’s notion of coherence of conditional and unconditional lower previsions, which is intro-
duced and studied in Walley (1991, Chapter 7).
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our law. We now proceed to show that our result can be given another, sensitivity analy-
sis interpretation. This shows our law to be of potential interest for anyone dealing with
probability theory, on any interpretation.

4.2. The forward irrelevant product and the sensitivity analysis version. Any product
lower prevision PN of marginal lower previsions Pk can be seen as some specific way to
combine these marginals into a joint lower prevision. One such product is the forward
irrelevant natural extension EN discussed above. It combines these marginals in such a
way that it is as conservative as possible, while still remaining coherent with the forward
epistemic irrelevance assessments (5).

But any product lower prevision PN that dominates EN automatically also satisfies
PN({ 1

N ∑
N
k=1 mk− ε ≤ 1

N ∑
N
k=1 hk ≤ 1

N ∑
N
k=1 Mk + ε}) ≥ 1− 2exp(−Nε2/4B2), and there-

fore leads to a version of the weak law of large numbers. We now give an interesting
procedure for constructing such a product, with a nice sensitivity analysis interpretation.

Consider the set Mk of all (marginal) linear previsions, or equivalently, finitely additive
probability measures, Pk on L (Xk) that are compatible with the given lower and upper
previsions assessments, in the sense that

Mk := {Pk ∈ P(Xk) : mk ≤ Pk(hk)≤Mk}. (6)

We denote the lower envelope of the set of linear previsions Mk by Ek, i.e., Ek( fk) =
min{Pk( f ) : Pk ∈Mk} for all gambles fk on Xk.

Let P1 be any element of M (P1), and for 2 ≤ k ≤ N and any (x1, . . . ,xk−1) in X k−1,
let Pk(·|x1, . . . ,xk−1) be any element of M (Pk), where these sets are defined by Eq. (2).
This leads to our considering a marginal linear prevision P1 on L (X1) and conditional
linear previsions Pk(·|Xk−1) on L (X k), defined as follows: for any gamble gk on X k,
Pk(gk|Xk−1) is the gamble on X k−1 that assumes the value

Pk(gk(x1, . . . ,xk−1, ·)|x1, . . . ,xk−1) (7)

in the element (x1, . . . ,xk−1) of X k−1, for 2≤ k ≤ N. Let, for any gamble f on X N ,

P( f ) = P1(P2(. . .(PN( f |XN−1)) . . . |X1)), (8)

i.e., apply, in the usual fashion, Bayes’s rule to combine the marginal linear prevision P1
and the conditional linear previsions P2(·|X1), . . . , PN(·|XN−1) into the joint linear previ-
sion PN on L (X N). See (Miranda and de Cooman, 2007, Section 4) for more details on
this construction procedure.

We can repeat this procedure to end up with a joint linear prevision PN for any possible
choice of the linear previsions P1 and Pk(·|Xk−1),k = 2, . . . ,N.5 In this way, we end up
with a set of joint linear previsions on L (X N) that is completely characterised by its lower
envelope, which we shall denote by MN . In another paper (De Cooman and Miranda, 2006,
Section 3.4), we have called this coherent joint lower prevision MN the forward irrelevant
product of the marginals Pk. We have shown there that this lower prevision can also be
found directly in terms of the marginal lower envelopes Ek as follows:

MN(h) = E1(E2(. . .(EN(h)) . . .)),

for any gamble h on X N . Here we are using the general convention that for any gamble
g on X k, Ek(g) denotes the gamble on X k−1, whose value in an element (x1, . . . ,xk−1)
of X k−1 is given by Ek(g(x1, . . . ,xk−1, ·)). In other words, EN(h) is the gamble on X N−1

5This is similar to the definition of integrals from strategies by Dubins and Savage (1965, Chapter 2).
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that is obtained by ‘integrating out’ the last variable, i.e., the gamble that assumes the value
EN(h(x1, . . . ,xN−1, ·)) in the element (x1, . . . ,xN−1) of X N−1, and so on.

It is easy to see (De Cooman and Miranda, 2006, Proposition 4) that MN is really a
product of the marginals Pk (coincides with the Pk on the gambles hk and −hk), and that
it is forward factorising. This implies that it generally dominates the forward irrelevant
natural extension EN .6 So does therefore any joint linear prevision PN constructed in the
manner described above. This leads at once to the following interesting result.

Theorem 4 (Weak law of large numbers – sensitivity analysis version). Consider any
gambles hk on Xk with a common bound B on their ranges, and assume that a subject
assesses lower previsions mk and upper previsions Mk for these gambles hk, where infhk ≤
mk ≤Mk ≤ suphk. Then any joint linear prevision PN on L (X N) that is constructed from
the marginal linear previsions in the sets M (Pk) = {Pk : mk ≤ Pk(hk)≤Mk} in the manner
described above, using Eqs. (7)–(9), will satisfy, for all ε > 0,

PN
({

1
N

N

∑
k=1

mk− ε ≤ 1
N

N

∑
k=1

hk ≤
1
N

N

∑
k=1

Mk + ε

})
≥ 1−2exp

(
− Nε2

4B2

)
.

Of course, a similar result holds if we combine marginal linear previsions from sets M ′
k

that are subsets of the Mk obtained from Eq. (7), meaning that we base ourselves on
assessments which imply that for the corresponding lower envelopes E ′k(hk) ≥ mk and
E ′k(−hk)≥−Mk.

4.3. The strong product. Consider again the procedure, described in the previous section,
for obtaining joint linear previsions PN from the marginal linear previsions Pk in the sets
Mk. If we now consistently take the same linear prevision P(·|x1, . . . ,xk−1) = Pk for all
(x1, . . . ,xk−1) in X k−1, or in other words, let PN be the forward irrelevant product of the
marginal linear previsions Pk, then we end up with a set of joint linear previsions that is only
a subset of the one considered previously. Its lower envelope is a product of the marginal
lower previsions Pk, and is usually called their strong, or type-I product; see Walley (1991,
Section 9.3.5) and Couso et al. (2000). It therefore dominates both their forward irrelevant
product and their forward irrelevant natural extension. Indeed, it is easy to see that it is
also forward factorising. For this strong product (and any of the PN constructed above) we
therefore have the same upper bound 1−2exp(−Nε2/4B2) for the corresponding (lower)
probability of the event { 1

N ∑
N
k=1 mk− ε ≤ 1

N ∑
N
k=1 hk ≤ 1

N ∑
N
k=1 Mk + ε}.

4.4. The Kuznetsov product. In a quite interesting, but relatively unknown book (in Rus-
sian) on interval probability, Kuznetsov (1991) proves a number of limit laws, and in par-
ticular a strong law of large numbers, for interval probabilities. The assumption he needs
for proving these laws, is essentially that the random variables Xk satisfy a special kind of
independence condition, which we shall call Kuznetsov independence. In order to relate
this condition to the forward factorising property considered in this paper, let us focus on
the case of two random variables. The extension to the case of more than two variables is
then more or less straightforward, using induction. Consider a coherent joint lower previ-
sion P2 on L (X1×X2) that models the available knowledge about the value of the joint
random variable (X1,X2) in X1×X2. We say that the random variables X1 and X2 are
Kuznetsov independent if for all gambles f on X1 and g on X2:

P2( f g) = min{P2( f )P2(g),P2( f )P2(g),P2( f )P2(g),P2( f )P2(g)},

6In De Cooman and Miranda (2006, Theorem 3), we show that MN actually coincides with EN whenever the
sets Xk are finite.
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i.e., if [P2( f g),P2( f g)] is the interval product of [P2( f ),P2( f )] and [P2(g),P2(g)]. A
detailed discussion of Kuznetsov independence can be found in (Cozman, 2000, 2003).

We show in the Appendix (see Section A.3) that if X1 and X2 are Kuznetsov independent,
then the coherent joint lower prevision P2 is forward factorising. Therefore, Kuznetsov’s
results are implied by our law of large numbers.7

5. A STRONG LAW OF LARGE NUMBERS

5.1. Preliminary work. We turn now towards a strong law of large numbers, where we
are dealing with a sequence of random variables Xk taking values in sets Xk, k ≥ 1. We
also consider a corresponding sequence of gambles hk on Xk that is uniformly bounded,
in the sense that there should exist some real number B such that suphk− infhk ≤ B for all
k≥ 1. We also consider two sequences of real numbers mk and Mk such that infhk ≤mk ≤
Mk ≤ suphk for all k ≥ 1.

We shall be concentrating on an arbitrary sequence of coherent joint lower previsions
PN on L (X N), N ≥ 1 such that

(S1) mk ≤PN(hk)≤PN(hk)≤Mk for all N ≥ 1 and k = 1, . . . ,N, where PN is the conjugate
upper prevision of PN .

(S2) For each N ≥ 1, PN is forward factorising. This implies that for these joint lower
previsions PN our weak law of large numbers in the form of Theorem 2 holds.

(S3) This sequence of lower previsions is consistent: PN is the X N-marginal of its suc-
cessors PN+`, `≥ 1, N ≥ 1.

As discussed in the previous section, these PN could for instance be forward irrelevant nat-
ural extensions EN of marginal assessments Pk(hk) = mk and Pk(hk) = Mk, k ≥ 1, or their
forward irrelevant products MN , (epistemically) independent products, type-1 products,
products that are Kuznetsov independent, or even linear previsions in M (EN) or M (MN),
. . . The conclusions that we shall reach further on will be valid for any such choice.

The first step in our study is necessarily the investigation of the behavioural conse-
quences of the sequence of lower previsions PN . We shall summarise the information
present in the PN , N ≥ 1 by means of a coherent lower prevision PN defined on some
set of gambles K N ⊆L (X N), where of course, X N = ×k∈NXk is the set of all maps
(sequences) x from N to

⋃
k∈N Xk satisfying xk = x(k) ∈Xk for all k ∈ N.

To this end, we must first define the following projection and extension operators. For
any natural numbers N1 ≤ N2, we define the projection projN2,N1

by

projN2,N1
: X N2 →X N1 : x 7→ x|N1 ,

where x|N1 is the element of X N1 whose components are the first N1 components of the N2-
tuple x. Similarly, we define the cylindrical extension extN1,N2 : L (X N1)→L (X N2) as
follows: for any f ∈L (X N1), extN1,N2( f ) is a gamble on X N2 , such that for any x∈X N2 ,
extN1,N2( f ) · x = f (projN2,N1

(x)) = f (x|N1), or in other words, extN1,N2( f ) = f ◦ projN2,N1
.

Observe that extN1,N2( f ) is essentially the same gamble as f , but defined on the larger
space X N2 . In a completely similar way, we can define the operators projN,N and extN,N
for any natural number N. For instance, projN,N maps any sequence x in X N to the N-tuple
containing its N first elements.

We now define a set of gambles K N on X N and a lower prevision PN on X N as
follows: a gamble f belongs to K N if and only if f = extN,N(g) for some g ∈L (X N)

7The ‘weak law’ version of his result follows from our weak law, and the ‘strong law’ version from our
discussion of the strong law in Section 5, and in particular the considerations about σ -additivity in Section 5.3.
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and some N ≥ 1, and then we define PN( f ) = PN(g). This definition of PN is consistent,
because we assumed that the sequence of lower previsions PN is consistent. It is clear that
PN represents exactly the same information as all the lower previsions PN taken together.
Observe that PN is coherent, because the PN are. In order to find the behavioural conse-
quences of all these lower previsions PN , we need to consider the natural extension EN of
PN to the set L (X N) of all gambles on X N. We show in the Appendix (Section A.4) that
it is given by:

EN( f ) = sup
N∈N

PN(projN,N
( f )) = lim

N→∞
PN(projN,N

( f )), (9)

for all gambles f on X N, and similarly,

EN( f ) = inf
N∈N

PN(projN,N( f )) = lim
N→∞

PN(projN,N( f )), (10)

where for any y in X N ,

projN,N
( f )(y) = inf

projN,N(x)=y
f (x) and projN,N( f )(y) = sup

projN,N(x)=y
f (x).

This natural extension can also be formulated in terms of linear previsions. Consider,
for each N ∈ N, the set

M (PN) = {PN ∈ P(X N) : (∀ f ∈L (X N))PN( f )≤ PN( f )}

of those linear previsions PN on L (X N) that dominate the lower prevision PN on its
domain L (X N). The set M (PN) = M (EN) can be easily expressed in terms of the
M (PN), by means of the following marginalisation operators: for any N ∈ N, let the
map marN,N : P(X N)→ P(X N) be defined by marN,N(PN) = PN ◦ extN,N, for all PN in
P(X N), or in other words, the linear prevision marN,N(PN) is the X N-marginal of the
linear prevision PN.

Theorem 5. Let PN , N ≥ 1, be the sequence of coherent lower previsions considered
above, and let PN be the equivalent lower prevision defined on the set K N of gambles on
X N. Then M (EN) = M (PN) =

⋂
N∈N mar−1

N,N(M (PN)), where mar−1
N,N(M (PN)) is the

set of linear previsions on L (X N) whose X N-marginals belong to M (PN).

In other words, the natural extension EN is the lower envelope of all the linear previsions
on L (X N) whose X N-marginals belong to M (PN), i.e., dominate PN , for all N ≥ 1. See
the Appendix (section A.5) for a proof.

5.2. Derivation of the strong law.

5.2.1. The classical case. In order to get some idea about what it is we want to achieve, let
us consider the classical law of large numbers for the uniformly bounded Borel measurable
gambles hk. Here it is assumed that each marginal lower prevision Pk is a σ -additive
probability measure Pk defined on the Borel σ -field Bk on the bounded subset Xk of R.
The random variables are assumed to be stochastically independent, which means that for
each N ≥ 1, the behaviour of the random variable XN is described by the product PN of the
marginals P1, . . . , PN , which is a σ -additive probability measure defined on the product σ -
field BN of the Borel σ -fields B1, . . . , BN . By the Daniell-Kolmogorov Theorem, these
products PN have a unique σ -additive extension Pσ to the σ -field BN generated by the
field F =

⋃
N≥1 proj−1

N,N(BN) of all measurable cylinders.
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Let µk :=
∫
Xk

hk dPk, and consider, for ε > 0, the following subsets of X N:

∆r,ε,p :=
{

limsup
N→∞

1
N

N

∑
k=1

(hk−µk) > ε

}
=
{

x ∈X N : limsup
N→∞

1
N

N

∑
k=1

(hk(xk)−µk) > ε

}
and

∆`,ε,p :=
{

liminf
N→∞

1
N

N

∑
k=1

(hk−µk) <−ε

}
=
{

x∈X N : liminf
N→∞

1
N

N

∑
k=1

(hk(xk)−µk) <−ε

}
.

These are the sets of sequences whose averages are at a distance greater than ε from the
averages of the means µk infinitely often. The classical strong law of large numbers for
σ -additive probabilities establishes the almost sure (Pσ ) convergence of 1

N ∑
N
k=1(hk− µk)

to zero, or, equivalently, that for all ε > 0, Pσ (∆r,ε,p) = Pσ (∆`,ε,p) = 0.

5.2.2. A first attempt. Let us now return to the context established in Section 5.1. It has
been established already some time ago (Walley and Fine, 1982) that in the case of impre-
cise marginals, we can’t expect almost sure convergence of the sequence 1

N ∑
N
k=1 hk, even

under much stronger independence conditions than the forward factorisation (related to
forward epistemic irrelevance) we are imposing here. For this reason, we shall look at the
limit inferior and the limit superior of such sequences separately, and consider the sets

∆r,ε :=
{

limsup
N→∞

1
N

N

∑
k=1

(hk−Mk) > ε

}
and ∆`,ε :=

{
liminf

N→∞

1
N

N

∑
k=1

(hk−mk) <−ε

}
,

where ε > 0. These are the sets of sequences whose averages are at a distance greater than
ε from the averages of the bounds infinitely often. At first sight, our goal would then be to
prove that for all ε:

EN(∆`,ε) = EN(∆r,ε) = 0. (11)

However, the following result tells us that, unless in trivial cases, natural extension is too
weak for a strong law of large numbers to be formulated in terms of it. An earlier hint
about such a result can be found in (Dubins, 1974). This result holds, regardless of the
coherent lower previsions PN ; they may even be linear previsions.

Theorem 6. Let PN , N ≥ 1, be a sequence of coherent lower previsions satisfying the
conditions (S1)–(S3) in Section 5.1, and let EN be their natural extension to all gambles
on X N. Then

(i) if ∆r,ε 6= X N then EN(∆r,ε) = 0 and if ∆r,ε 6= /0 then EN(∆r,ε) = 1; and similarly
(ii) if ∆`,ε 6= X N then EN(∆`,ε) = 0 and if ∆`,ε 6= /0 then EN(∆`,ε) = 1.

In other words, if ∆`,ε and ∆r,ε are proper subsets of X N, then the natural extension EN is
vacuous (completely uninformative) on these sets.

The behavioural interpretation of this result is the following: if a subject has lower previ-
sions PN , N ≥ 1 as described in Section 5.1, then coherence alone imposes no restrictions
on his betting rates for the (proper) events ∆`,ε and ∆r,ε : they can lie anywhere between
zero and one. This obliterates all hope of formulating a strong law of large numbers involv-
ing the natural extension EN in the form (12). This happens even if the lower previsions
PN are linear. The formulation (12) of the strong law of large numbers will only hold if the
sets ∆r,ε and ∆`,ε eventually become empty for ε small enough.8

8But as soon as suphk > Mk and infhk < mk for all k the sets ∆r,ε and ∆`,ε will be non-empty for all ε > 0.
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5.2.3. Precise marginals. It is instructive to interpret Theorem 6, in the classical case
that all coherent joint lower previsions PN are forward irrelevant products of σ -additive
probability measures Pk. More precisely, we assume that we have marginal σ -additive
probability measures Pk defined on a σ -field Bk on Xk. Consider their product measure
PN defined on the product BN of the σ -fields B1, . . . , BN , then it is easy to see [use the
results in (De Cooman and Miranda, 2006)] that the forward irrelevant product MN of these
probability measures will satisfy

MN( f ) =
∫

Xk

f dPN ,

for all BN-measurable gambles f . In other words, the forward irrelevant product MN of
these marginals is a linear prevision on the set of all BN-measurable gambles. Observe
that M (MN) ⊆M (PN), where we denote by M (PN) the set of all linear previsions on
L (X N), or equivalently all finitely additive probabilities on ℘(X N), that coincide with
the probability measure PN on BN . We denote by Pσ the unique σ -additive extension of
the products PN to the σ -field BN. Because in this case mk = Mk = µk =

∫
hk dPk, we find

that ∆r,ε,p = ∆r,ε , and ∆`,ε,p = ∆`,ε . The classical strong law of large numbers therefore
tells us that Pσ (∆r,ε) = Pσ (∆`,ε) = 0. We shall prove a more general result, see Eq. (13).

But we know by Theorem 5 that the natural extension EN of the forward irrelevant
products MN is the lower envelope of all finitely additive extensions to X N of the linear
previsions in M (MN), and is therefore a lower envelope of finitely additive extensions of
PN to X N. Among these extensions, Pσ is the only one that is actually σ -additive on BN,
and this Pσ is zero on the sets ∆r,ε and ∆`,ε . It is an essential consequence of Theorem 6
that the other extensions in M (EN), which are only finitely additive and not σ -additive,
can assume any value between zero and one on the sets ∆r,ε and ∆`,ε . For discussions of
similar phenomena in more general contexts, we refer to (Walley, 1991, Corollary 3.4.3)
and (Bhaskara Rao and Bhaskara Rao, 1983, Section 3.3).

So we can surmise that the reason why we aren’t able to prove a strong law involving
the natural extension EN, is that it is an extension based on the essentially finitary notion
of coherence, and therefore a lower envelope of probabilities that are only guaranteed to
be finitely additive. This leads us to the formulation of a weaker, finitary formulation of
the strong law of large numbers. It was suggested by Dubins (1974) (see also de Finetti
(1974–1975, Section 7.5) and Gnedenko (1975, Section 34)), as follows: For all ε > 0,
there is an integer N such that, for all positive integers k,

Pσ

({
x ∈X N : (∃n ∈ [N,N + k])|1

n

n

∑
`=1

x`|> ε

})
< ε.

This finitary version also holds for all finitely additive extensions of the PN , and it is there-
fore not really surprising that in our more general context, we can prove a generalisation.

5.2.4. Finitary formulation of the strong law.

Theorem 7 (Strong law – finitary version). Consider the sequence of coherent lower pre-
visions PN , N ≥ 1, introduced in Section 5.1 and satisfying (S1)–(S3), and let EN be their
natural extension to all gambles on X N. Then for every ε > 0, there is some N(ε) such
that for all integer N ≥ N(ε) and for all positive integer k,

EN
(N+k⋃

n=N

{
1
n

n

∑
`=1

(h`−M`) > ε

})
< ε and EN

(N+k⋃
n=N

{
1
n

n

∑
`=1

(h`−m`) <−ε

})
< ε.
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The behavioural interpretation of this law, loosely speaking, is the following: given a
sequence of uniformly bounded gambles hk on random variables Xk with associated upper
previsions Mk, the requirements of coherence and epistemic irrelevance together imply
that we should bet at rates greater than 1− ε against the N-th average of these variables
exceeding the N-th average of their upper previsions by more than ε , if this average is
considered for a ‘sufficiently large’ number of variables.

As we can see from the proof in Section A.7 of the Appendix, the N(ε) we found
essentially increases as ε−2 for small enough ε . Perhaps surprisingly, this strong law fol-
lows from the weak one: In the proof we use a method that resembles the (Borel-)Cantelli
lemma, which involves the summation of the bounds exp(−kε2/4B2) of Theorem 2 for all
k greater than some N. A similar course of reasoning using the Chebychev bound 1/kε2

wouldn’t allow us to establish this result, as the corresponding sum is infinite.

5.3. Further comments on the strong law. Let us show next how Theorem 7 subsumes
a number of strong laws in the literature: (i) the classical strong law for σ -additive prob-
abilities; (ii) the strong law for independent and indistinguishable distributions by Epstein
and Schneider (2003); and (iii) the strong law for capacities established by Maccheroni
and Marinacci (2005).

Consider the case that there are elements Pσ of M (EN) that are σ -additive on the σ -
field BN. Then Theorem 7 implies that:

Pσ

({
limsup

n

1
n

n

∑
`=1

(h`−M`) > 0
})

= Pσ

({
liminf

n

1
n

n

∑
`=1

(h`−m`) < 0
})

= 0; (12)

see the Appendix, Section A.8 for a proof. Consequently, if we denote by EN
σ the upper

envelope of all the elements of M (EN) that are σ -additive on the σ -field BN, we get

EN
σ

({
limsup

n

1
n

n

∑
`=1

(h`−M`) > 0
})

= EN
σ

({
liminf

n

1
n

n

∑
`=1

(h`−m`) < 0
})

= 0. (13)

So we can get to a form of the strong law in the spirit of the discussion in Section 5.2.2
(see Eq. (12)) if we restrict ourselves to the linear previsions in M (EN) = M (PN) that are
σ -additive on BN.

If in particular mk = Mk = m for all k ≥ 1, this tells us that the sequence 1
n ∑

n
k=1 Xk

converges almost surely (Pσ ) to m, for all σ -additive extensions Pσ to BN of the linear
previsions PN , N ≥ 1, constructed from the marginal linear previsions in the sets

M (Pk) = {Pk : Pk(Xk) = m}, k = 1, . . . ,N

using the construction mentioned in Section 4.2. This shows that the finitary version es-
tablished in our last theorem is indeed a significant extension of the classical strong law of
large numbers for bounded random variables.

This discussion also shows that the results in this section are more general than the
strong law of large numbers for so-called ‘independent and indistinguishably distributed
variables’ proven by Epstein and Schneider (2003). These authors have essentially proven
that Eq. (14) holds in the special case where the gambles hk are identity maps on random
variables Xk that may assume only a finite number of values, and the joint lower previsions
PN are forward irrelevant natural extensions/products of identical coherent marginal lower
previsions Pk that satisfy Pk(Xk)≥ m and Pk(Xk)≤M, and that moreover are 2-monotone
(or super-modular). Our analysis shows that none of these extra (italicised) requirements
is essential.
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In a similar vein, this analysis allows us to prove in a simple way a significantly more
general version of a law of large numbers for completely (or totally) monotone capacities
that was first proven by Maccheroni and Marinacci (2005). 9

Indeed, consider a sequence of random variables Xk taking values in the respective sets
Xk. Each set X k is provided with a topology, and with a Borel σ -field Bk generated by
the open sets in that topology. The product σ -field BN of the Borel σ -fields Bk is actually
the Borel σ -field generated by the open sets in the product topology on X N. Consider
uniformly bounded and Borel measurable gambles hk on Xk, and a lower probability PN

defined on the product σ -field BN, that satisfies the following properties.

(M1) PN( /0) = 0 and PN(X N) = 1.
(M2) PN is 2-monotone, meaning that for any A and B in BN, (i) PN(A)≤ PN(B) if A⊆ B;

and (ii) PN(A∪B)+PN(A∩B)≥ PN(A)+PN(B).
(M3) PN(A×B) ≥ PN(A)×PN(B) for all Bk−1-measurable subsets A of X k−1 and all

Bk-measurable subsets of Xk, and all k ≥ 1.
(M4) PN(Bn) ↑ PN(X N) when Bn is an increasing sequence of elements of BN that con-

verges to X N.

It follows from a result by Walley (1981) that (M1) and (M2) imply that PN is a coherent
lower probability on BN, and that its natural extension EN to gambles is given by

EN( f ) := inf f +
∫ sup f

inf f
PN
∗ ({ f > α})dα

for all f ∈L (X N), where the lower probability PN
∗ is defined on all subsets of X N as the

inner set function of PN, meaning that

PN
∗ (A) := sup{PN(B) : B⊆ A,B ∈BN}

for all A⊆X N. In particular, we find for the Borel measurable gambles hk on Xk that

mk := EN(hk) = infhk +
∫ suphk

infhk

PN
∗ ({hk > α})dα = infhk +

∫ suphk

infhk

PN({hk > α})dα,

and similarly

Mk := EN(hk) = infhk +
∫ suphk

infhk

PN({hk > α})dα.

Theorem 8 (Strong law of large numbers for capacities). Consider any lower probability
PN on BN that satisfies (M1)–(M4). Then the X N-marginals EN of its natural extension
EN to all gambles on X N satisfy (S1)–(S3). Hence, for every ε > 0, there is some N(ε)
such that for all N ≥ N(ε) and all k > 0 in N, PN(

⋃N+k
n=N{ 1

n ∑
n
`=1(h`−M`) > ε}) < ε , and

PN(
⋃N+k

n=N{ 1
n ∑

n
`=1(h`−m`) < −ε}) < ε . Moreover, for any σ -additive probability Pσ in

M (PN) we see that Eq. (13) holds.

Under some additional conditions, PN will actually be the lower envelope of all σ -additive
probabilities Pσ in M (PN), which means that PN({limsupn

1
n ∑

n
`=1(h`−M`) > 0}) = 0,

and similarly PN({liminfn
1
n ∑

n
`=1(h`−m`) < 0}) = 0. The additional conditions listed by

Maccheroni and Marinacci are sufficient to prove just that lower envelope result.

9These authors require, in addition to complete monotonicity, some additional continuity properties that we
don’t need here. See Maccheroni and Marinacci (2005, Section 2) for more details.
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6. DISCUSSION

Why do we believe that the results presented here merit attention?
First of all, our sufficient condition for the existence of a weak law (forward factorisa-

tion) is really weak. We only require, loosely speaking, that if we consider a non-negative
mixture of a gamble with lower prevision 0, this mixture has non-negative lower prevision.
We have shown that this holds in particular when we make marginal assessments about a
number of variables and consider an assumption of forward epistemic irrelevance.

But this (stronger) assumption of forward epistemic irrelevance, is by itself already quite
weak. It only requires that the lower and upper previsions for the variables Xk (and these
two numbers alone) don’t change after observing values of the previous variables. We can
of course deduce weak laws of large numbers from it under stronger conditions, such as
epistemic independence, or independence on the Bayesian sensitivity analysis interpreta-
tion, which leads to type-1 (or strong) products: any of these assessments will provide us
with a more specific, or equivalently less conservative, upper and lower probability model.
This implies that our formulation of the laws of large numbers is more general, or is based
on weaker assumptions, than a number of other formulations in the literature, in particular
work by Walley and Fine (1982), Kuznetsov (1991), and Epstein and Schneider (2003).

The classical formulation of the laws of large numbers requires the measurability of the
involved random variables with respect to some σ -field on the initial space, and the σ -
additivity of the probability measure defined on that space. The approach followed in this
paper weakens also these two requirements by working within the behavioural theory of
imprecise probabilities. We consider lower and upper previsions defined on sets of gambles
which needn’t have any predefined structure, and in particular show that measurability isn’t
necessary in order to derive laws of large numbers. Nevertheless, we show when deriving
the strong law that it is not difficult to define a suitable σ -field if we want to relate our
results to the more classical ones.

The suppression of the hypothesis of σ -additivity in favour of the finite additivity is,
however, more involved. Although the weak law can be derived without any continuity as-
sumption, in the case of the strong law, where we study the behaviour of infinite sequences,
we find that the lower and upper previsions modelling our behavioural assessments are in
general too conservative. It turns out that we must replace the classical version of the strong
law by a finitary formulation which, in the case of σ -additive probabilities, is equivalent
to it. With hindsight, it is only logical that, under the general coherentist (finitary) setting
considered in this paper, a strong law of large numbers for upper and lower previsions, or
sets of finitely additive probabilities, can only be formulated in terms of the behaviour of
finite sequences (albeit arbitrarily large), because it is this behaviour that is used to deter-
mine the natural extension on X N. It is also interesting to remark that this finitary version
can be proven because we have tightened, in our formulation of the weak law, the bounds
derived in the classical approach using Chebychev’s inequality.

Finally, we want to point out that there is one important limitation for our laws of large
numbers: the variables Xk should be bounded. The main reason for this is that, so far,
the theory of coherent lower previsions is only able to deal with gambles, i.e., bounded
functions of a random variable. However, there are some recent developments (Troffaes
and De Cooman, 2002a,b) that deal with extending the theory of lower previsions in order
to deal with unbounded functions of random variables, so there is some hope at least that
the limitation of boundedness will eventually be overcome.
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APPENDIX A. PROOFS OF THEOREMS

In this appendix, we have gathered all of the more technical developments. We believe
the actual proofs of results related to the weak and strong laws are fairly straightforward.

A.1. Proof of Theorem 1. We first prove that the condition (3) is necessary. Consider
any f ∈L (X N), nk ≥ 0, hk jk ∈L (Xk), gk jk ∈L+(X k−1), and mk jk ≤ PN(hk jk), where
jk ∈ {1 . . . ,nk} and k ∈ {1, . . . ,N}. Define the gambles g and h on X N by g(x) :=
∑

N
k=1 ∑

nk
jk=1 gk jk(x1, . . . ,xk−1)[hk jk(xk)−mk jk ] for all x ∈ X N and h := f − g. We have

to prove that PN( f )≥ infh. Indeed:

PN( f ) = PN(h+g)≥ PN(h)+
N

∑
k=1

nk

∑
jk=1

PN(gk jk [hk jk −mk jk ])

≥ infh+
N

∑
k=1

nk

∑
jk=1

PN(gk jk [hk jk −PN(hk jk)])≥ infh,

where the first inequality follows from the coherence [use (C2)] of PN , the second also
from the coherence of PN [use (C1) to see that PN(h) ≥ infh, and use (C1) and (C2) to
show that PN is monotone, whence PN(gk jk [hk jk−mk jk ])≥ PN(gk jk [hk jk−PN(hk jk)])], and
the last inequality from the fact that PN is forward factorising.

Next, we show that condition (3) is sufficient. Take k in {1, . . . ,N}, g in L+(X k−1)
and h in L (Xk). In (3), let f := g[h−PN(h)], let all n` := 0 for all ` 6= k, let nk := 1,
hk1 := h, gk1 := g and mk1 = PN(gk1) = PN(g), then we find that indeed

PN(g[h−PN(h)])≥ inf
[
g[h−PN(h)]−g[h−PN(h)]

]
= 0.

A.2. Proof of Theorem 2. Fix N ≥ 1 and ε > 0. Observe that

−B≤ hk(xk)−mk ≤ B and −B≤ hk(xk)−Mk ≤ B. (14)

This implies that we may restrict ourselves without loss of generality to the case ε < B,
since for other values the proof is trivial. It is easier to work with the conjugate upper
prevision P of P. Consider the sets

∆r,ε,N :=
{

1
N

N

∑
k=1

hk ≤
1
N

N

∑
k=1

Mk + ε

}
and ∆`,ε,N :=

{
1
N

N

∑
k=1

mk− ε ≤ 1
N

N

∑
k=1

hk

}
.

Let ∆ε,N = ∆r,ε,N ∩∆`,ε,N . Consider P(∆c
r,ε,N) = 1−P(∆r,ε,N), for which we have, by ap-

plying Theorem 1 in its conjugate form to this special case, that

P(∆c
r,ε,N)≤ sup

x∈X N

[
I∆c

r,ε,N
(x)+

N

∑
k=1

gk(x1, . . . ,xk−1)(Mk−hk(xk))
]
,

for any choice of the non-negative gambles gk on X k−1. We construct an upper bound for
P(∆c

r,ε,N) by judiciously choosing the functions gk. Our choice is inspired by a combination
of ideas discussed in (Shafer and Vovk, 2001, Lemma 3.3). Fix β ≥ 0 and δ > 0, let g1 :=
δβ and let, for all 2≤ k≤ N and (x1, . . . ,xk−1) in X k−1, gk(x1, . . . ,xk−1) := δβ ∏

k−1
i=1 [1+

δ (hi(xi)−Mi)]. Then it follows after some manipulations that

N

∑
k=1

gk(x1, . . . ,xk−1)(Mk−hk(xk)) = β −β

N

∏
k=1

[1+δ (hk(xk)−Mk)].
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Recalling (15), we see that if we let 0 < δ < 1
2B , then all the gk are guaranteed to be

non-negative (as well as bounded), and they can be used to calculate an upper bound for
P(∆c

r,ε,N). We then find that

P(∆c
r,ε,N)≤ β + sup

x∈X N

[
I∆c

r,ε,N
(x)−β

N

∏
k=1

[1+δ (hk(xk)−Mk)
]
.

If for β ≥ 0 the supremum on the right hand side is non-positive, we have that P(∆c
r,ε,N)≤

β ; hence, we can use such β to provide an upper bound for P(∆c
r,ε,N). The only condition

to be imposed on β is therefore that if x ∈ ∆c
r,ε,N , or in other words if

1
N

N

∑
k=1

(hk(xk)−Mk) > ε, (15)

then we must have β ∏
N
k=1[1+δ (hk(xk)−Mk)]≥ 1, or equivalently,

lnβ +
N

∑
k=1

ln[1+δ (hk(xk)−Mk)]≥ 0. (16)

Since ln(1+x)≥ x−x2 for x >− 1
2 , and since δ (hk(xk)−Mk)≥−δB >− 1

2 by our previ-
ous choice for δ , we find, also using Eq. (15),

N

∑
k=1

ln[1+δ (hk(xk)−Mk)]≥
N

∑
k=1

δ (hk(xk)−Mk)−
N

∑
k=1

[δ (hk(xk)−Mk)]2

≥ δ

N

∑
k=1

(hk(xk)−Mk)−δ
2NB2

= Nδ

[
1
N

N

∑
k=1

(hk(xk)−Mk)−B2
δ

]
.

Recalling (16), we find that for all x ∈ ∆c
r,ε,N , ∑

N
k=1 ln[1+δ (hk(xk)−Mk)] > Nδ (ε−B2δ ).

Choose β such that lnβ + Nδ (ε −B2δ ) ≥ 0, or equivalently β ≥ exp(−Nδ (ε −B2δ )),
then requirement (17) will indeed be satisfied for x ∈ ∆c

r,ε,N . The tightest bound is achieved

for δ = ε

2B2 , so we see that P(∆c
r,ε,N)≤ exp(−Nε2

4B2 ). We previously required that δ < 1
2B , so

if we use this value for δ , we find that we have indeed proven this inequality for ε < B. In a
similar way, we can prove that P(∆c

`,ε,N)≤ exp(−Nε2

4B2 ), and therefore, using the coherence
(sub-additivity) of P,

P(∆c
ε,N) = P(∆c

r,ε,N ∪∆
c
ε,N)≤ P(∆c

`,ε,N)+P(∆c
r,ε,N)≤ 2exp

(
− Nε2

4B2

)
.

By passing back to the lower prevision P we find that indeed P(∆ε,N)≥ 1−2exp(−Nε2

4B2 ).

A.3. Proof of the claims about Kuznetsov independence in Section 4.4. Consider any
non-negative gamble g on X1 and any gamble h on X2. Then 0≤ P2(g)≤ P2(g) by coher-
ence, and also P2(h−P(h)) = P2(h)−P2(h) = 0 and P2(h−P2(h)) = P2(h)−P2(h)≥ 0.
Consequently it follows from the Kuznetsov independence of X1 and X2 that P2(g[h−
P(h)]) is equal to

min{P2(g)P2(h−P(h)),P2(g)P2(h−P(h)),P2(g)P2(h−P(h)g),P2(g)P2(h−P(h))}

= min{0,P2(g)P2(h−P2(h),P2(g)P2(h−P(h)) = 0,
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so P2 is forward factorising.

A.4. Proof of Eq. (10). We first prove the formula for EN(h). Since EN is the natural
extension of PN, we have by definition that

EN(h) = sup
fk∈K N,λk≥0
k=1,...,n,n≥0

inf
x∈X N

[
h(x)−

n

∑
k=1

λk[ fk(x)−PN( fk)]
]
.

Now it follows from the definition of PN and K N that for any choice of the natural number
n ≥ 0 and gambles f1, . . . , fn in K N, there are natural numbers m1, . . . , mn and gambles
g1 on X m1 , . . . , gn on X mn such that fk = extmk,N(gk) and PN( fk) = Pmk(gk), for k =
1, . . . ,n. Let M = max{m1, . . . ,mn}, and consider the gambles h1 = extm1,M(g1), . . . , hn =
extmn,M(gn) on X M . Then obviously

fk = extmk,N(gk) = extM,N(extmk,M(gk)) = extM,N(hk) = hk ◦projN,M,

and the consistency of the joint lower previsions PN , N ≥ 1, implies the equality PM(hk) =
Pmk(gk) = PN( fk), for k = 1, . . . ,n. As a result, we find that

inf
x∈X N

[
h(x)−

n

∑
k=1

λk

[
fk(x)−PN( fk)

]]
= inf

x∈X N

[
h(x)−

n

∑
k=1

λk
[
hk(projN,M(x))−PM(hk)

]]
= inf

y∈X M
inf

x∈proj−1
N,M({y})

[
h(x)−

n

∑
k=1

λk
[
hk(projN,M(x))−PM(hk)

]]

= inf
y∈X M

[
inf

x∈proj−1
N,M({y})

h(x)−
n

∑
k=1

λk
[
hk(y)−PM(hk)

]]
≤ PM(projN,M

(h))≤ sup
N∈N

PN(projN,N
(h)),

where the next to last inequality follows from the coherence of PM and the definition of
projN,M

(h). Consequently EN(h) ≤ supN∈N PN(projN,N
(h)). Let us prove the converse

inequality. From the definition of PN and K N, we have, for any natural number N ≥ 1,

EN(h) = sup
fk∈K N,λk≥0
k=1,...,n,n≥0

inf
x∈X N

[
h(x)−

n

∑
k=1

λk

[
fk(x)−PN( fk)

]]

≥ sup
fk∈extN,N(L (X N)),λk≥0

k=1,...,n,n≥0

inf
x∈X N

[
h(x)−

n

∑
k=1

λk

[
fk(x)−PN( fk)

]]

= sup
gk∈L (X N),λk≥0

k=1,...,n,n≥0

inf
x∈X N

[
h(x)−

n

∑
k=1

λk
[
gk(projN,N(x))−PN(gk)

]]

= sup
gk∈L (X N),λk≥0

k=1,...,n,n≥0

inf
y∈X N

[
projN,N

(h)(y)−
n

∑
k=1

λk
[
gk(y)−PN(gk)

]]

= PN(projN,N
(h)),
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where the last equality follows from the fact that the lower prevision PN is coherent on
L (X N), and therefore coincides with its natural extension on this domain. Consequently,
EN(h) ≥ supN∈N PN(projN,N

(h)). This completes the proof for EN. The proof for EN

follows immediately by conjugacy.

A.5. Proof of Theorem 5. A crucial step in the proof lies in the observation that since PN

is a coherent lower prevision, we have that M (PN) = M (EN). Consider a linear prevision
PN on L (X N). Then PN ∈M (PN) = M (EN) if and only if

(∀ f ∈L (X N))PN( f )≥ EN( f ) (17)

and this is equivalent to (∀ f ∈L (X N))(∀N ∈ N)PN( f )≥ PN(projN,N
( f )). Observe that

for any N ∈ N, for any gamble f on X N and for any gamble g on X N , we also have
that f ≥ extN,N(projN,N

( f )) and g = projN,N
(extN,N(g)). So (∀ f ∈ L (X N))PN( f ) ≥

PN(projN,N
( f )) is equivalent to (∀g ∈L (X N))PN(extN,N(g))≥ PN(g). Since, by defini-

tion, marN,N(PN) = PN ◦ extN,N, we see that (18) is equivalent to (∀N ∈ N)marN,N(PN) ∈
M (PN), and this completes the proof.

A.6. Proof of Theorem 6. We give the proof for ∆r,ε and for lower probabilities. The rest
of the proof is analogous. Observe that, because of Eq. (10),

EN(∆r,ε) = sup
N∈N

PN(projN,N
(∆r,ε)),

where for all N ≥ 1, projN,N
(∆r,ε) = {y ∈X N : ∆

c
r,ε ∩ proj−1

N,N({y}) = /0}. First, assume

that ∆r,ε 6= X N, or equivalently, that ∆
c
r,ε 6= /0, and consider any x in ∆

c
r,ε , then

limsup
N→∞

1
N

N

∑
k=1

(hk(xk)−Mk)≤ ε.

Fix N ≥ 1 and consider any y ∈X N . If we replace the first N components of x by y, then
this does not affect the limsup in the above expression. If we denote the sequence thus
obtained from x by x′, this means that x′ ∈ ∆

c
r,ε and moreover projN,N(x′) = y. This tells us

that y 6∈ projN,N
(∆r,ε), and therefore projN,N

(∆r,ε) = /0, whence indeed EN(∆r,ε) = 0.

A.7. Proof of Theorem 7. We only prove the first inequality. The proof of the second
inequality is then completely analogous. Define, for N ≥ 1 and k ≥ 0, the set

∆r,ε,N,k =
N+k⋃
n=N

{
1
n

n

∑
`=1

(h`−M`) > ε

}
.

Then clearly, using the notations established in our proof of the weak law (see Section A.2),
we get ∆r,ε,N,k =

⋃N+k
n=N proj−1

N,n(∆
c
r,ε,n), and, using the coherence (sub-additivity) of the up-

per prevision EN, we derive that

EN(∆r,ε,N,k)≤
N+k

∑
n=N

EN(proj−1
N,n(∆

c
r,ε,n)) =

N+k

∑
n=N

Pn(∆c
r,ε,n),

where the equality follows from Eq. (11), the consistency [(S3)] of the joint lower pre-
visions Pk (and hence the consistency of the conjugate upper previsions Pk) and the fact
that for m ≥ n, projN,m(proj−1

N,n(∆
c
r,ε,n)) = proj−1

m,n(∆
c
r,ε,n). Since the joint lower previsions
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Pn satisfy our weak law [by (S1) and (S2)], we get that Pn(∆c
r,ε,n) ≤ exp(−nλ ), where

λ = ε2/4B2. So we find that

EN(∆r,ε,N,k)≤
N+k

∑
n=N

e−nλ = e−Nλ
k

∑
n=0

e−nλ = e−Nλ 1− e−(k+1)λ

1− e−λ
<

e−Nλ

1− e−λ
.

This means that if we let N = N(ε) be determined by

e−N(ε) ε2

4B2
1

1− e−
ε2

4B2

= ε or equivalently N(ε) =−4B2

ε2 lnε(1− e−
ε2

4B2 ),

then we have indeed that EN(∆r,ε,N,k) < ε for N ≥ N(ε) and all k ≥ 0. Observe that N(ε)
increases as ε−2 for small enough ε .

A.8. Proof of Eq. (13). Consider the sets ∆r = {x∈X N : limsupN
1
N ∑

N
`=1(x`−M`) > 0}

and ∆r,ε,n = {x ∈X N : 1
n ∑

n
`=1(x`−M`) > ε}. Check that ∆r =

⋂
m≥1

⋂
N≥1

⋃
n≥N ∆r, 1

m ,n.

Since Pσ is lower continuous, we find that Pσ (∆r) = infm≥1 infN≥1 Pσ (
⋃

n≥N ∆r, 1
m ,n). On

the other hand, we infer from Theorem 7 and the upper continuity of Pσ that for every
m≥ 1 there is some N(m)≥ 1 such that infN≥1 Pσ (

⋃
n≥N ∆r, 1

m ,n)≤Pσ (
⋃

n≥N(m) ∆r, 1
m ,n)≤

1
m ,

whence indeed Pσ (∆r) = 0.

A.9. Proof of Theorem 8. The consistency requirement (S3) holds trivially, by construc-
tion. Consider any sequence of Bk measurable gambles hk on Xk, then

mk = infhk +
∫ suphk

infhk

PN({hk > α})dα = infhk +
∫ suphk

infhk

PN({hk > α})dα = EN(hk)

and similarly Mk = EN(hk) for all N ≥ k. This shows that (S1) holds. We now show that
(S2) holds in the sense that all the EN are forward factorising when we restrict ourselves
to Borel measurable gambles. Consider a strictly positive gamble gk on X k−1 that is
measurable with respect to the product σ -field Bk−1 and any gamble hk on Xk that is
Bk-measurable. Then we know that for any n≥ 1 and any real α ,

{gk[hk−EN(hk)] > α} ⊇
{

gk >
1
n

}
∩{hk > EN(hk)+nα}

and therefore, using the coherence (monotonicity) of PN and (M3), we find that

EN
(
{gk[hk−EN(hk)] > α}

)
≥ EN

({
gk >

1
n

}
∩{hk > EN(hk)+nα}

)
≥ PN

({
gk >

1
n

})
PN
(
{hk > EN(hk)+nα}

)
Now it follows from (M1) and (M4) that, taking into account that gk is strictly positive,
limn→∞ PN({gk > 1

n}) = 1, and since hk is bounded, we also find that, using (M1) again,

lim
n→∞

PN({hk > EN(hk)+nα}) =

{
0 if α > 0
1 if α < 0.

As a result

EN({gk[hk−EN(hk)] > α})≥

{
0 if α > 0
1 if α < 0.
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Now since gk is positive, we find that infgk[hk−EN(hk)]≤ gk[infhk−EN(hk)]≤ 0, where
the last inequality follows from the coherence of EN. Similarly, supgk[hk −EN(hk)] ≥
gk[suphk−EN(hk)]≥ 0. Hence

EN(gk[hk−EN(hk)])

≥ infgk[hk−EN(hk)]+
∫ 0

infgk[hk−EN(hk)]
1dα +

∫ supgk[hk−EN(hk)]

0
0dα = 0.

This shows that (S2) holds if we restrict ourselves to Borel measurable gambles gk and hk,
where the gk are strictly positive everywhere. But this is enough for our proof of the weak
law to work, see Remark 1 and the fact that in the proof of our weak law (Section A.2), we
only use strictly positive and measurable gk. The rest of the proof is now immediate.
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