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1 Introduction

Consider a subject who is making N > 0 successive observations of a certain phe-
nomenon. We represent these observations by N random variables Xi, ..., Xy. By
random variable, we mean a variable about whose value the subject may entertain
certain beliefs. We assume that at each successive instant k, the actual value of the
random variables X} can be determined in principle. To fix ideas, our subject might
be looking for frogs in the Amazon forest, and then X is the species of the k-th
frog he comes across. Or, he might, as an archetypical example, be drawing balls
without replacement from an urn, in which case X; could designate the color of the
k-th ball taken from the urn.

In the type of predictive inference we consider here, our subject in some way uses
zero or more observations Xi, ..., X, made previously, i.e., those up to a certain
instant n € {0,1,...,N — 1}, to predict, or make inferences about, the values of the
future, or as yet unmade, observations X,,.1, ..., Xy. Here, we only consider the
problem of immediate prediction: he is only trying to predict, or make inferences
about, the value of the next observation X, .

We are particularly interested in the problem of making such predictive inferences
under prior ignorance: initially, before making any observation, our subject knows
very little or nothing about what produces these observations. In the urn example,
this is the situation where he does not know the composition of the urn, e.g., how
many balls there are, or what their colors are. What we do assume, however, is that
our subject makes an assessment of exchangeability to the effect that the order in
which a sequence of observations has been made does not matter for his predictions.

In such a situation, a subject usually determines, beforehand, a non-empty finite set
Z of possible values, also called categories for the random variables Xj. It is then
sometimes held, especially by advocates of a logical interpretation to probability,
that our subject’s beliefs should be represented by some given family of predictive
probability mass functions. Such a predictive family is made up of real-valued maps
p’%l(|m) on 2", which give, foreachn =0,...,N —1 and each = (x1,...,x,) in
2", the so-called predictive probability mass function for the (n + 1)-th observa-
tion, given the values (X1,...,X,) = (x1,...,X,) = @ of the n previous observations.
Any such family should in particular reflect the above-mentioned exchangeability
assessment. Cases in point are the Laplace—Bayes Rule of Succession in the case
of two categories [1], or Carnap’s more general A-calculus [2].

The inferences in Carnap’s A-calculus, to give but one example, can strongly de-
pend on the number of elements in the set 2. This may well be considered un-
desirable. If for instance, we consider drawing balls from an urn, predictive infer-
ences about whether the next ball will be ‘red or green’ ideally should not depend
on whether we assume beforehand that the possible categories are ‘red’, ‘green’,



‘blue’ and ‘any other color’, or whether we take them to be ‘red or green’, ‘blue’,
‘vellow’ and ‘any other color’. This desirable property was called representation
invariance by Peter Walley [3], who showed that it is satisfied by the so-called
Imprecise Dirichlet-Multinomial Model (or IDMM for short [4]). The IDMM can
be seen as a special system of predictive lower previsions and it is a (predictive)
cousin of the parametric Imprecise Dirichlet Model (or IDM [3]). Lower previsions
are behavioral belief models that generalize the more classical Bayesian ones, such
as probability mass functions, or previsions. We assume that the reader is familiar
with the basic aspects of the theory of coherent lower previsions [5]. Relatively
short introductions can be found in papers by Walley [6] and by ourselves [7,8].

Here, we intend to study general systems of such predictive lower previsions. In
Section 2, we give a general definition of such predictive systems and study a
number of properties they can satisfy, such as coherence and exchangeability. In
Section 3, we study the property of representation insensitivity for predictive sys-
tems, which is a stronger version of Walley’s representation invariance, tailored
to making inferences under prior ignorance. We show in Section 4 that there are
representation insensitive and exchangeable predictive systems, by giving two ex-
amples. These two can be used to generate so-called mixing predictive systems,
which are studied in Section 5. Among these mixing predictive systems, the ones
corresponding to an IDMM take a special place, as they are the only ones to satisfy
all the above-mentioned properties and an extra one, called specificity, related to
behavior under conditioning. In the Conclusions, we list a number of interesting,
as yet unresolved, questions. We have gathered proofs in an Appendix.

2 Predictive families and systems
2.1 Families of predictive lower previsions

First assume that, before the subject starts making the observations X, he fixes a
non-empty and finite set 2~ of possible values for all the random variables X;. We
now want to represent his beliefs about the value of the (n+ 1)-th observation X, 11,
if he came to observe the sequence of values = (x1,...,x,) € 2" for the first n
random variables, or in other words, if he came to know that X;, =x; fork=1,...,n.
The model we propose for this is a lower prevision P’ '(-|z) on the set £ (") of
all gambles on 2. Let us first make clear what this means.

A gamble f on Z is a real-valued map on Z". It represents an uncertain reward,
expressed in terms of some predetermined linear utility scale. When interpreted as
a gamble on the outcome X, 1, it yields a (possibly negative) reward of f(x) utiles
if the value of the next variable X, | turns out to be the category x in 2 . The
set of all gambles on 2 is denoted by £ (2"). The lower prevision P’ L(f|)



of any gamble f on 2 is the subject’s supremum acceptable price for buying
this gamble, or in other words, the highest r such that he accepts the uncertain
reward f(X,,1)— p for all p < r, conditional on his having observed the values
x = (x1,...,x,) for the first n variables (Xi,...,X,). His corresponding predictive
upper prevision, or infimum selling price for f, is then given by the conjugacy

relationship: f"};l(ﬂm) = —B’}?l(—ﬂm)-

A specific class of gambles is related to events, i.e., subsets A of 2 . This is the
class of indicators /4 that map any element of A to one and all other elements of .2
to zero. A lower prevision that is defined on (indicators of) events only is called a
lower probability, and we often write P! (A|z) instead of P’ (I4|z). The reader
may wonder at this point why we work with the seemingly more complicated lan-
guage of gambles and lower previsions, rather than with that of events and lower
probabilities. The main reason is that, as Walley has shown [5], the former is much
more expressive: in contradistinction with a coherent prevision, a coherent lower
prevision is not completely characterized by the values it assumes on events.

By the predictive lower prevision P’ (-|x), which models beliefs about the value
of the next random variable X, | given the observations (X1, ...,X,) = &, we mean
the real-valued functional, defined on the set of all gambles .Z(.Z"), that assigns
to any gamble f its predictive lower prevision P, Y(f|z). We assume that the
subject has such a predictive lower prevision P'3f '(-|&) for all « in 2™ and all
ne€{0,...,N—1}, where N > 0 is some fixed positive integer, representing the
maximum or total number of observations we are interested in. For n = 0, there
is some slight abuse of notation here, because we then actually have an uncondi-
tional predictive lower prevision B}%- on £ (Z") for the first observation Xj, and no
observations have yet been made. We are thus led to the following definition.

Definition 1 (Family of predictive lower previsions) Consider a finite and non-
empty set of categories Z . An Z -family of predictive lower previsions, or predic-
tive 2 -family for short, for up to N > 0 observations is a set of predictive lower
previsions 6% := {B’g](\w) xeX"andn=0,...,.N—1}.

It is useful to consider the special case, mentioned in the Introduction, and quite
common in the literature, of a family of predictive lower previsions of which all
members P, I(|) are actually linear or coherent previsions Pt L(-|z), i.e, such
that for each n =0,...,N — 1 and @ € 2" there is some predictive (probability)
mass function p’gl(m) on £ such that p'gl(dm) >0and Y c o p’gl(dw) =1,
and where for all gambles f on 2", Pit!(f|x) = ¥ c o f(2)P"" (zx). Such lin-
ear previsions are the Bayesian belief models usually encountered in the literature
(see for instance de Finetti’s book [9]). We can use Bayes’s rule to combine these
predictive mass functions into unique joint mass functions p",- on 2" := x| 2,
given by

n—1
Pl () = ply (a1, xa) = [ P57 (e, ox),
k=0



forall x = (xq,...,x,) in Z"andn=1,...,N. This leads to unique corresponding
linear previsions P on £ (2™"), the set of gambles g on 2", given by

Pl (g) = Zg,{ng(iv)p"%(w) (1)

For n = N, we call Pgw the joint linear prevision associated with the given predic-
tive family of linear previsions. It models beliefs about the values that the random
variables (X1, ...,Xy) assume jointly in 2V,

2.2 Systems of predictive lower previsions

When a subject is using a family of predictive lower previsions Ggf, this means
he has assumed beforehand that the random variables X, ..., Xy all take values
in the set 2. It cannot, therefore, be excluded at this point that his inferences, as
represented by the predictive lower previsions P'3 I(-|z), strongly depend on the
choice of the set of possible values £ . Any initial choice of 2" may lead to an
essentially very different predictive family G%-. In order to be able to deal with this
possible dependence mathematically, we now define predictive systems as follows.

Definition 2 (System of predictive lower previsions) Fix N > 0. Consider for any
finite non-empty set of categories Z an Z -family Ggf of predictive lower previ-
sions B’gl (:|). The set o™ := {(Figvg : 2 is a finite and non-empty set} is called a
system of predictive lower previsions, or predictive system for short, for up to N
observations. We denote by £V the set of all such predictive systems.

It is such predictive systems whose properties we intend to study. For two predictive
systems o and A" we say that 6" is less committal, or more conservative, than
AN, and we denote this by o™ < AV, if each predictive lower prevision P’ L)
in oV is point-wise dominated by the corresponding predictive lower prevision
QW (|z) in AN: PE(flz) < @4 (fla) for all gambles f on 2. The reason
for this terminology should be clear: a subject using predictive system A" will be

buying gambles f on 2" at supremum prices Q’Eﬁ L(f|x) that are at least as high as

the supremum prices P’} Y(f|z) of a subject using predictive system o™

The binary relation < on XV is a partial order: it is reflexive, anti-symmetric and
transitive. A non-empty subset {G{,V tye F} of ¥ may have an infimum (or great-

est lower bound) with respect to this partial order, and whenever it exists, this
infimum corresponds to taking lower envelopes: if we fix 2", n and x, then the
corresponding predictive lower prevision in the infimum predictive system is the
lower envelope infyer Ij’%}yﬂm) of the corresponding predictive lower previsions

Pt 1)/ (|) in the predictive systems G{,V ,verl.



2.3 Coherence requirements

As is usually done for belief models, we impose certain consistency, or rationality,
requirements on the members P’ (|) of a predictive system o .

Definition 3 (Coherence) A system of predictive lower previsions is called coher-
ent if it is the infimum of a collection of systems of predictive linear previsions.

This is equivalent to requiring, for each choice of 2", that the conditional lower pre-
visions B@l (‘|) forn=0,...,N—1and z € 2" should satisfy Walley’s (joint)
coherence condition.®> Coherence is in the present context* also equivalent to re-
quiring that the predictive lower previsions P’ (:|z) should be (separately) co-
herent, meaning that for each finite and non-empty set 2, n=0,...,N—1 and x
in 27", P’y !(-|) should satisfy, for all gambles f and g on .2 and all real A > 0:

(C1) E’; Y(f|2) > inf f [accepting sure gains];
(C2) Py (f +glw) > Py (fl) + Py (g]2) [super-additivity;
(C3) B’}ZEI (Af|x) = lf’;ﬁ;l (f|x) [positive homogeneity].

2.4 Exchangeability and regular exchangeability

Next, we show how to formulate an assessment of exchangeability of the random
variables Xi, ..., Xy in terms of a system of predictive lower previsions. A sub-
ject would make such an assessment if he believed that the order in which these
variables are observed is not important. Let us make this idea more precise.

We begin with the definition of exchangeability for a precise predictive system,
i.e., a system of predictive linear previsions. For each choice of .2, the precise 2 -
family G% has a unique joint linear prevision Pévg on .Z(2N), defined by Eq. (1),
which describes beliefs about what values the joint random variable (Xj,...,Xy)
assumes in 2N. We then call the precise predictive system exchangeable if all the
associated joint linear previsions Pgé are. Formally, consider the set of all per-

mutations of {1,...,N}. With any such permutation 7 we can associate a per-
mutation of 2"V, also denoted by 7, that maps any x = (xq,...,xy) in 2V to
T = (x,,(l), . ,xﬂ(N)). Similarly, with any gamble f on .2V, we can consider

3 See Walley’s book [5]: Section 6.2 for separate coherence, Section 7.1.4 for (joint) co-
herence of conditional lower previsions, and Section K3 for Williams’s Theorem. Since
the random variables X are assumed to only take on a finite number of values, Walley’s
coherence condition here coincides with the one first suggested by Williams [10].

4 This follows from our generalized Marginal Extension Theorem for random variables
[11, Theorem 4]: for any random variables X1, ..., Xy, any separately coherent conditional
lower previsions Py, P>(-|X1), ..., Py(-|X1,...,Xn—1) are automatically (jointly) coherent.



the permuted gamble 7w f := f o, or in other words (7 f)(x) = f(mx). We then
require that P).(mf) = P}.(f) for any such permutation 7 and any gamble f
on 2N. Equivalently, in terms of the joint mass function plzg, we require that
pYy-(mx) = p-(x) for all  in 2™V and all permutations 7. See de Finetti’s work
[9,12] for more details and discussion of exchangeability for linear previsions.

We adopt the following definition of exchangeability for general predictive systems.

Definition 4 (Exchangeability) A system of predictive lower previsions is called
exchangeable if it is the infimum of a collection of exchangeable systems of predic-
tive linear previsions. We denote by (XY, =) the set of all exchangeable predictive
systems for up to N observations, with the same order =< as defined on (N, =<).

It follows at once from this definition that the infimum of any non-empty collection
of exchangeable predictive systems is still exchangeable, as an infimum of infima
(and therefore an infimum itself) of collections of exchangeable systems of predic-
tive linear previsions. This means that the partially ordered set (XY, <) is a com-
plete semi-lattice [13, Sections 3.19-3.20]. We next turn to a stronger requirement,
introduced mainly for reasons of mathematical convenience.

Definition 5 (Regular exchangeability) A system of predictive lower previsions is
called regularly exchangeable if it is the infimum of some collection G{,V ,YeTL, of
exchangeable systems of predictive linear previsions, where for all finite non-empty
Zyallxin 2V, and all yinT, p{;]g)l,(w) =1 Plzit}y(xk“ Ix1,...,x¢) > 0.

The term regular reminds of the notion of regular extension considered by Walley
[5, Appendix J]. Regular exchangeability implies that every predictive lower previ-

sion P’y I(|) is the lower envelope of the predictive linear previsions P? ;,( |z),

uniquely derived from the joint linear previsions Pgw v by applying Bayes’s rule:

Py (fI N-n) Pl (x,z)
Xy Hapx 2 . n+1 X\
,or equivalently p"~ (z|lx) = —*——
ngy({a:} x ZN-n) 25y p’jﬁ{#(m)

Y

Py (fle) =

since the probability p- (@) := ngy({a:} x 2'N=1) of the conditioning event
is non-zero. All regularly exchangeable predictive systems are in particular also
exchangeable and coherent. A precise exchangeable predictive system is regularly
exchangeable if and only if p’;’g L) > 0forall z € 27V~ and all finite non-empty
sets 2 : regular exchangeability is a stricter requirement than exchangeability.

The number of times T;(x) := [{k € {1,...,n}: x; = z}| that a given category z in
Z has been observed in some sample x € 2" of length 0 < n < N, is of special
importance when there is regular exchangeability. Consider the counting map Ty
that maps samples x of length n to the 2 -tuple T2 (x) whose components are
T.(x), z€ 2. Ty (x) tells us how often each of the elements of 2" appears in
the sample «, and as « varies over 2", Ty (x) assumes all values in the set of



count vectors N - :={m € NJ : Y¥.c o-m, = n}. Here Ny denotes the set of non-
negative integers (including zero). It is easy to see that any two samples x and y of
length n have the same count vector Ty () = Ty (y) if and only if there is some
permutation 7 of {1,...,n} such that y = ma. This leads to the following result.

Proposition 1 In a precise exchangeable predictive system o™, consider any finite

non-empty set ,0<n<N—1,and x and y in Z™" such that Ty (x) =Ty (y).
Then plty-(x) = plly-(y). And if p'y- () = ply-(y) > O, then P4 () = P5E (Jy).

As an immediate corollary, we see that in any regularly exchangeable predictive
system, the predictive lower previsions P’ '(:|z) only depend on the sample x
through its count vector m = Ty (x): for any other sample y such that Ty (y) =
m, it holds that P! (-|z) = Bgl(-|y) and we use the notation B’;lﬂm) for
B’:@f I(:|&) in order to reflect this. In fact, from now on we only consider predictive
systems—be they regularly exchangeable or not—for which the predictive lower
previsions only depend on the observed samples through their count vectors, or in
other words, for which the count vectors are sufficient statistics.

Regular exchangeability allows us to prove the following inequality, which has
far-reaching consequences. We denote by e, the count vector in .4, 9} whose z-
component is one and all of whose other components are zero; it corresponds to the
case where we have a single observation of a category z in 2.

Proposition 2 In a regularly exchangeable predictive system oV, it holds for all
finite and non-empty sets 2, all 0 <n <N —2, all m in N} and all gambles f
on & thatf’%l(ﬂm) > B’gl(ﬂ’%z(ﬂm%—e.ﬂm). Here B’gz(f|m+e.) denotes
the gamble on 2 that assumes the value E’;z(ﬂm +e)inze 2.

3 Representation invariance and representation insensitivity

We now turn to Walley’s notion of representation invariance; see his IDM paper [3]
for detailed discussion and motivation. Representation invariance could also, and
perhaps preferably so, be called pooling invariance. Consider a set of categories 2,
and a partition . of 2. Each element S of such a partition corresponds to a single
new category, that consists of all the elements x € S being pooled, i.e., consid-
ered as one. Denote by S(x) the unique element of the partition . that a cate-
gory x € 2 belongs to. So we consider S as a map from 2 to .. If a gamble g
on 2 does not differentiate between pooled categories, or in other words, is con-
stant on the elements of .7, this means that there is some gamble f on .# such that
g = foS. Similarly, with a sample © = (x1,...,x,) € 2", there corresponds a sam-
ple Sz := (S(x1),...,S(x,)) € %" of pooled categories. We can of course consider
the partition .7 as a set of categories, and then representation invariance requires
that P (fo Sjx) = Pf (f|Sz): for gambles that do not differentiate between



pooled categories, it should not matter whether we consider predictive inferences
for the set of original categories .2, or for the set of pooled categories ..

Besides pooling invariance, we can also require renaming invariance: as long as no
confusion can arise, it should not matter for a subject’s predictive inferences what
names he gives to the different categories. This may seem too trivial to even men-
tion, and as far as we know, it is always implicitly taken for granted in predictive in-
ference. But it will be well to devote some attention to it here, in order to distinguish
it from the category permutation invariance to be discussed shortly, with which it is
easily confused if we do not pay proper attention. If we have a renaming bijection A
between a set of categories .2 and a set of renamed categories %', where we clearly
distinguish between the elements of .2~ and those of %, then with a gamble f on the
set of renamed categories, there corresponds a gamble f oA on the set of original
categories .2 . Similarly, with a sample = (x1,...,x,) of original categories, there
corresponds a sample of renamed categories Ax := (A(x1),...,A(xy,)). Clearly, we
should then require that P »-(foA|x) = Py (f|A ).

We have already stated in the Introduction that we are especially interested in pre-
dictive inference where a subject starts from a state of prior ignorance. In such a
state, he has no reason to distinguish between the different elements of any set of
categories 2 he has chosen. To formalize this idea, consider a permutation @ of the
elements of .2".° With any gamble f on .2, there corresponds a permuted gamble
fo®m@. Similarly, with an observed sample x in 2", there corresponds a permuted
sample @« := (@ (xy),...,®(x,)). If a subject has no reason to distinguish between
categories z and their images @z, this means that B’};l (fom|z)=P% (fl@z). We
call this property category permutation invariance.® Formally, it closely resembles
renaming invariance, but whereas the latter is a trivial requirement, category permu-
tation invariance can only be justified when our subject has no reason to distinguish
between the categories, which may for instance happen when he is in a state of
prior ignorance. To draw attention to the difference between the two in a somewhat
loose manner: category permutation invariance allows confusion between new and
old categories, something which renaming invariance carefully avoids.

We call representation insensitivity the combination of representation, renaming
and category permutation invariance. It means that predictive inferences remain
essentially unchanged when we transform the set of categories, or in other words
that they are essentially insensitive to the choice of representation, i.e., category
set. It is not difficult to see that representation insensitivity can be formally char-
acterized as follows. Consider two non-empty and finite sets of categories 2~

> This permutation @ of the elements of .2, or in other words of the categories, should
be contrasted with the permutation 7 of the order of the observations, i.e., of the time set
{1,...,N}, considered in Section 2.4 in order to define exchangeability.

% This requirement is related to the notion of (weak) permutation invariance that two of us
studied in much detail in a paper [7] dealing with symmetry in uncertainty modeling.



and %, and a so-called relabeling map p: 2 — % that is onto, i.e., such that
Y =p(Z):={p(x): x € Z}. Then with any gamble f on ¢ there corresponds a
gamble fop on 2. Similarly, with an observed sample x in 2™, there corresponds
a transformed sample px := (p(x1),...,p(x,)) in . Representation insensitivity
for immediate prediction then means that P’ L foplx)= Py L flpx).

3.1 Definition and basic properties

For any gamble f on a finite non-empty set of categories 2, its range f(2") :=
{f(x): x € 2"} can again be considered as a set of categories, and f itself can be
seen as a relabeling map. With any m in .4} there corresponds a count vector m/

in e/i?zx) defined by ml = Y f(r)=rmy for all rin f(27). Clearly, if  is a sam-
ple with count vector m, then the relabeled sample fx = (f(x),...,f(x,)) has

count vector m/. Representation insensitivity is then equivalent to the following
requirement, which we take as its definition, because of its simplicity and elegance.

Definition 6 (Representation insensitivity) A predictive system o is representa-
tion insensitive if for all 0 < n < N — 1, all finite non-empty sets Z and %, all
m € Ny and m' € N, and all gambles f on X and g on % such that f(Z") =
8(Z), the following implication holds: m! = m'¢ = P/ (flm) = P4 (g|m)).

Clearly, a predictive system o” is representation insensitive if and only if for all
finite and non-empty sets 27, all0 <n < N—1,allm € .4} and all f € Z(Z):

Py (flm) = Py (idgor) [mY), 2)

where id;(4-) denotes the identity map (gamble) on f (Z"). The predictive lower
prevision P'%f L(f|m) then depends on £(.2") and m/ only, and not directly on .2,

f and m. To put it more explicitly, P, Y(f|m) only depends on the values that f
may assume, and on the number of times each value has been observed.

We denote by Zg . the set of all exchangeable predictive systems that are repre-

sentation insensitive. It is a subset of the class XY of all exchangeable predictive
systems, and it inherits the order <. Clearly, taking (non-empty) infima preserves
representation insensitivity, so <Z’ev » =) is a complete semi-lattice as well. We shall
see further on in Theorem 6 that these two structures have the same bottom (the

vacuous representation insensitive and exchangeable predictive system).

We are interested in finding, and studying the properties of, predictive systems that
are both exchangeable (and therefore coherent) and representation insensitive. We
believe performing such a study to be quite important, and we report on our first
attempts to do so in the rest of this paper.

10



3.2 The lower probability function

With any predictive system ¢, we can associate a map @z~ defined on the subset

{(n,m): 0<m <n<N-—1} of N3 by

(pGN<nam) = Blzgj}(ld{o,l} |n - mam)'

Why this map is important, becomes clear if we look at predictive systems that are
representation insensitive. Consider any proper event @ # A C %, then it follows
by applying Eq. (2) with f = I4, that

P (Alm) = B’{'Sf}}(id{o,u [n—ma,map),= Qg (n,my) 3)

where my :=) .4 m;. SO we see that in a representation insensitive predictive sys-
tem, the lower probability @~ (n,m) of observing an event (that is neither consid-
ered to be impossible nor necessary) does not depend on the embedding set 2™ nor
on the event itself, but only on the total number of previous observations 7, and on
the number of times m that the event has been observed before. Something similar
holds for the upper probability of observing a non-trivial event: by conjugacy,

Pl (Alm) = 1= PN AC)m) = 1= @on(n,mac) = 1 — @on (m,n—ma),  (4)
where A€ denotes the set-theoretic complement of the event A. This property 7 of
representation insensitive predictive systems is reminiscent of Johnson’s sufficient-
ness postulate [16] (we use Zabell’s terminology [17]), which requires that the
probability that the next observation will be some category x is a function fy(n,my)
that depends only on x, on the number of times m, that this category x has been ob-
served before, and on the total number of previous observations n. Representation
insensitivity is stronger: it entails that the function @~ that ‘corresponds to’ the f;
is the same for all categories x in all possible finite and non-empty sets 2.

We call @~ the lower probability function of the predictive system o . To alleviate
the notational complexity, we suppress the index and simply write ¢, whenever it
is clear which predictive system we are talking about. Let us now consider any
predictive system o that is representation insensitive and exchangeable. We show
in the next section that there are such predictive systems. But first we look at a
number of interesting properties for the associated lower probability function ¢.

Proposition 3 Let N > 0 and let 6V be a representation insensitive and coherent
predictive system with lower probability function ¢. Then

7 Another interesting property of the map @ is that it completely determines the values
of the predictive system on gambles for those predictive systems which have the addi-
tional property of 2-monotonicity. This is for instance the case of the mixing predictive
systems we shall study in Section 5. A thorough and general study of the condition of
2-monotonicity for lower previsions can be found in [14,15].
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1. @ is [0,1]-bounded: 0 < @(n,k) < 1forall0 <k<n<N-1.

2. @ is super-additive in its second argument: @(n,k+¢) > @(n,k) + @(n,t) for
all non-negative integers n, k and 0 such thatk+/0¢ <n <N —1.

3. o(n,0)=0forall0<n<N-—1.

4. o(n,k) > ko(n,1)forl <k<n<N-1,
and 0 <ne(n,1)<lforl <n<N-1.

5. @ is non-decreasing in its second argument:
on,k+1) > @(nk) for0<k<n<N-1.

If oV is moreover regularly exchangeable, then

6. (n,k) > o(n+1.k)+@(n,k)[@(n+1,k+1)—@(n+1,k)]
for0<k<n<N-2
7. @ is non-increasing in its first argument:
o(n+1,k) < @(n,k) for0<k<n<N-2.
8. o(n,1)>on+1,1)[1+¢n,1)]forl <n<N-2.
9. Suppose that (n,1) > 0 and define s, := m —nforl <n<N-1.
Then s, >0, ¢(n,1) = 1/(s, +n) and s, is non-decreasing.

The s, that appear in this proposition will later, in Section 5.2, turn out to be con-
stant (independent of the number of observations n) under special additional as-
sumptions, and will there play the role of the hyper-parameter s in the IDMM.

In particular, these results, together with Eqgs. (3) and (4), allow us to draw in-
teresting and intuitively appealing conclusions about predictive lower and upper
probabilities, which are valid in any representation insensitive and coherent pre-
dictive system: (i) the lower probability of observing an event that has not been
observed before is zero, and the upper probability of observing an event that has
always been observed before is one [Proposition 3.3]; and (ii) if the number of ob-
servations remains fixed, then both the lower and the upper probability of observing
an event again do not decrease if the number of times the event has already been
observed increases [Proposition 3.5]. In predictive systems that are moreover regu-
larly exchangeable, we also see that (iii) if the number of times an event has been
observed remains the same as the number of observations increases, then the lower
probability for observing the event again does not increase [Proposition 3.7].

When the predictive system we consider consists solely of families of predictive
linear previsions (apart perhaps from predictive lower previsions for dealing with
zero previous observations), we can use the additivity of linear previsions, instead
of the mere super-additivity of (separately) coherent lower previsions used previ-
ously, to get stronger versions of parts of Proposition 3.

Corollary 4 Consider a representation insensitive and coherent predictive system

o™, with a lower probability function @, and such that all the predictive lower
previsions B’;lﬂm) for 0 < n <N — 1 are linear previsions. Then the following

12



statements hold for all0 <n <N —1:

1. o(nk+2)=@(n,k)+ @(n,l) forall k,¢ > 0 such that k+ ¢ < n;
2. ¢(n,k) =ke(n,1) forall 0 <k <n.

4 Are there representation insensitive and exchangeable predictive systems?

We have not yet proven that our notions of representation insensitivity and ex-
changeability for predictive system are compatible, or in other words, we do not
know yet if there are any predictive systems that are both representation insensi-
tive and exchangeable (let alone regularly so). We remedy this situation here by
establishing the existence of two ‘extreme’ types of representation insensitive and
exchangeable predictive systems, one of which is also regularly exchangeable.

Consider, for any predictive system o that is both representation insensitive and
exchangeable, the predictive lower previsions for n = 0. These are actually un-
conditional lower previsions B}% on .Z(Z"), modeling our beliefs about the first
observation X, i.e., when no observations have yet been made. It follows right
away from Proposition 3 and Eqgs. (3) and (4) that for any proper subset A of 2",
P',-(A) = ¢(0,0) =0. Since P!, is assumed to be a (separately) coherent lower pre-
vision, Proposition 5 below then guarantees that B}% (f) = min f, for any gamble f
on 2. So all the B}% in a representation insensitive and exchangeable predictive
system must be so-called vacuous lower previsions.® This means that there is no
choice for the first predictions. It also means that it is impossible to achieve repre-
sentation insensitivity in any precise predictive system (but see Theorem 7 further
on for a predictive system that comes close).

Proposition 5 Consider an arbitrary non-empty set 2 . Let P be a coherent lower
prevision on £ (Z") such that P(A) =0 for all A C % . Then P is the vacuous
lower prevision on 2", meaning that for all gambles f on 2, P(f) = inf f.

This leads us to consider the so-called vacuous predictive system vV where all
predictive lower previsions are vacuous: for all 0 < n < N — 1, all finite non-empty
sets 27, all m € .47} and all gambles f on 2, I_”gl(ﬂm) :=min f.

Theorem 6 The vacuous predictive system VY is regularly exchangeable and rep-
resentation insensitive. It is the bottom of the complete semi-lattice <Z£:Vri7 =<). Its
lower probability function is given by ¢(n,m) =0for0 <m <n <N —1.

8 This result was proven, in another way, by Walley [5, Section 5.5.1], when he argued
that his Embedding and Symmetry Principles under coherence only leave room for the
vacuous lower prevision. In the special case that there are no prior observations (n = 0), the
Embedding Principle is related to representation invariance, and the Symmetry Principle to
what we have called category permutation invariance.
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In the vacuous predictive system the predictive lower previsions P’} (-|m) do not
depend on the number of observations 7, nor on the observed count vectors m. A
subject who is using the vacuous predictive system is not learning anything from
the observations. In particular, we see that representation insensitivity and (regular)
exchangeability do not guarantee that we become more committal as we have more
information at our disposal. Indeed, with the vacuous predictive system, whatever
our subject has observed before, he always remains fully uncommittal. If we want
a predictive system where something is really being learned from the data, it seems
we need to make some ‘leap of faith’, and add something to our assessments that is
not a mere consequence of exchangeability and representation insensitivity.

Are there less trivial examples of exchangeable and representation insensitive pre-
dictive systems? We know that we must make the vacuous choice for n = 0, but is
there, for instance, a way to make the predictive lower previsions precise, or linear,
for n > 0?7 The following theorem tells us there is only one such predictive system.

Theorem 7 Consider a predictive system where for any 0 <n < N — 1 all the pre-
dictive lower previsions P'" Y(-|m) are actually linear previsions Pt L(|m). If this
predictive system is representation insensitive, then

P (flm) =S5 (flm) = Y f2)22 5)

2€X

forall 0 <n <N — 1, all finite non-empty sets Z°, all m € Ny and all gambles
f on Z'. For its lower probability function ¢, we then have ¢(n,k) = %for all
0 <k <nandn>0. Moreover, the predictive previsions given by Eq. (5), together
with the vacuous lower previsions for n = 0, constitute a representation insensitive
and exchangeable (but not regularly so) predictive system ©".

We call the predictive system 7" described in Theorem 7 the Haldane predic-
tive system. The name refers to the fact that a Bayesian inference model with a
multinomial likelihood function using Haldane’s (improper) prior (see, e.g., Jef-
freys [18, p. 123]) would lead to these predictive previsions for n > 0. The fact that
the lower probability function of Haldane predictive system is always ¢(n,k) = ’ﬁ‘
forall 0 <k <n<N-—1andn > 0, together with Corollary 4, implies that state-
ments 6 and 8 in Proposition 3 hold with equality in this case. Moreover, we have
s, = 0 for all n > 0. Note that in this case the lower probability function coincides
with the classical frequentist estimation: the (lower and upper) probability for an

event that has been observed k times in 7 trials is equal to %

It is an interesting consequence of Walley’s Marginal Extension Theorem [5, Sec-
tion 6.7.3] that for any finite and non-empty .2, the only joint lower prevision
on Z(ZN) that is coherent with the Haldane predictive 2 -family is given by
I_ngg (g) = min,c 4 g(z,...,z) for all gambles g on .2"V.° The Haldane predictive

® This implies that the Haldane predictive system is not regularly exchangeable: any dom-
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system only seems to be coherent with a joint lower prevision B%; which expresses
that our subject is certain that all variables X; will assume the same value, but where
he is completely ignorant about what that common value is.

This is related to another observation: we deduce from Proposition 3.3 that in the
Haldane predictive system, when n > 0 then not only the lower probability but also
the upper probability of observing an event that has not been observed before is
zero! This models that a subject is practically certain (because prepared to bet at all
odds on the fact) that any event that has not been observed in the past will not be ob-
served in the future either. The sampling prevision S’ L(f|m) for a gamble f in this
predictive system is the expectation of f with respect to the observed (sampling)
probability distribution on the set of categories. The Haldane predictive system is
too strongly tied to the observations, and does not allow us to make ‘reasonable’
inferences in a general context. The Haldane and the vacuous predictive systems
are both extreme cases: in the latter the predictive lower previsions are independent
of the observed data, and in the former they depend too strongly on them.

5 Mixing predictive systems

We have found two representation insensitive and exchangeable predictive systems,
and both are not very useful: the first, because it does not allow learning from past
observations, and the second, because its inferences are too strong and we seem to
infer too much from the data. A natural question then is: can we find ‘intermediate’
representation insensitive and exchangeable predictive systems whose behavior is
stronger than the vacuous and weaker than the Haldane predictive system? A simple
way to get further models is to look at convex mixtures. Let us, therefore, consider
a finite sequence € of N numbers €, € [0,1], 0 <n < N — 1, and study the mixing
predictive system G whose predictive lower previsions are given by

P (flm) := &85 (flm) + (1 — &,)min £, (6)

for all 0 < n < N — 1, all finite non-empty sets 2, all m € JV 2 and all gambles
fon 2. As S L(f|m) is only defined for n > 0, and since representation insen-
sitivity and coherence require that B}% should be vacuous, we always let &g = 0
implicitly. We call any such sequence € a mixing sequence, and we denote by ¢¢

the lower probability function of the corresponding mixing predictive system o2,

We are mainly interested in finding mixing predictive systems that are represen-
tation insensitive and (regularly) exchangeable. The following proposition tells us

inating precise exchangeable predictive system satisfies pﬁfg ! (x) =0 for all z € 2N-!
such that Ty (x) =m # (N — 1)e, for all z € 27, and for any such x, the requirements for
regular exchangeability cannot be satisfied.
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that the only real issue lies with exchangeability. Its immediate proof is based on the
simple observation that representation insensitivity is preserved by taking convex
mixtures of any predictive systems.

Proposition 8 For any mixing sequence &, the predictive system Y is still repre-

sentation insensitive. Moreover, let 0 <k <n <N — 1. Then @¢(n,k) = 8,1%, and if

&, >0 then s, = n1 & and €, = s In particular @¢(n,1) = &/n is the lower
probability of observzng a non-trivial event that has been observed once before in

n trials, €, = n@g(n, 1) is the lower probability @g(n,n) of observing a non-trivial
1—@¢(n,n)
: : " : 9e(n.1)

is the ratio of the upper probability of observing an event that has never been ob-

served before to the lower probability of observing a non-trivial event that has been
observed once before, in n trials.

event that has always been observed before (n out of n times), and s, =

We have already argued that, to get away from making vacuous inferences, and
to be able to learn from observations, we need to make some ‘leap of faith’ and
go beyond merely requiring exchangeability and representation insensitivity. One
of the simplest ways to do so, it seems, is to specify the numbers ¢ (n, 1) for n =
1,...,N—1,1i.e., to specify, beforehand, the lower probability of observing any non-
trivial event that has been observed only once in n trials. We can then ask for the
most conservative representation insensitive predictive system that exhibits these
lower probabilities. Interestingly, mixing predictive systems play this part:

Theorem 9 Consider N > 0 and a mixing sequence €. Let " be a representation
insensitive coherent predictive system such that its associated lower probability
function @ satisfies ¢(n,1) > @¢(n,1) =&, /nforall0 <n <N —1. Then oY < oV,

Mixing predictive systems have a special part in this theory, because they are quite
simple, and in some sense most conservative. They are quite simple because, as
Proposition 8 shows, all that is needed to specify them is the values ¢(n, 1) of the
lower probability function, or in other words, the lower probabilities that an event
will occur that has been observed once in n observations. Theorem 9 shows they are
the most conservative coherent and representation insensitive predictive systems
with the given values for ¢(n,1). We shall see that there are mixing predictive
systems with a non-trivial mixing sequence € that are also regularly exchangeable.
First, we establish a necessary condition on € for this to be the case.

5.1 The regular exchangeability of mixing predictive systems

Consider any mixing sequence € and the corresponding mixing predictive system
o Let us first derive a necessary condition that the &, should satisfy for the mix-
ing predictive system to be regularly exchangeable. For the corresponding lower
probability function ¢, it holds by Proposition 8 that @¢(n,k) = 8n§; if we substi-
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tute this in the inequality of Proposition 3.8 we see that it is necessary for regular
exchangeability that the &, should satisfy

S S &
_n> n+1 <1+_n
n

=1,...,N—1. 7
2ot (14 2) =T )

We deduce from this that if one g, is zero, then all of the subsequent &, are zero
as well: if inferences are vacuous after n > 0 observations, they should also remain
vacuous after subsequent ones. Or, to put it more boldly, in regularly exchangeable
mixing predictive systems, if we are going to learn at all from observations, we
have to start doing so from the first observation.

5.2 Predictive inferences for the IDMM

To recover the immediate predictions of the IDMM, it is of particular interest to in-
vestigate for which types of mixing predictive systems, or in other words, for which
mixing sequences €, we generally have an equality rather than only an inequality
in the condition of Proposition 2, i.e., for which

PY(flm) = Py (P2 (flm+e)|m), (8)

for all finite and non-empty 27, all 0 <n <N — 1, all m € .47 and all gambles
f on 2, where the predictive lower previsions P'," L(-|m) are given by Eq. (6).
Using the definition of S'}? ! (flm) and the (separate) coherence [use (C6) in the
Appendix] of P’ I(:|m), we find that this is equivalent to the condition

8n_ Ent1 <1 ﬁ
n n+l

&n ) n=1...N—1, 9)
n

i.e., where we have the equality in (7). Clearly, one &, is zero if and only if all
of them are, which leads to the vacuous predictive system vV. From Theorem 6,
we know this vacuous system to be regularly exchangeable (and representation
insensitive). If we assume on the other hand that €, > 0 forn=1,...,N, and let
Cn:=n/€, =n—+s, > 1, then the above equality can be rewritten as §, 1 = §, + 1,
which implies that there is some s > 0 such that {, = n+ s, or equivalently, s, = s
and consequently, forn =0,1,...,.N —1:

n

n
n+s’

&
" n+s

P (fIm) = 2S5 (flm) + ——minf.  (10)
The predictive lower previsions in Eq. (10) are precisely the ones that can be as-
sociated with the Imprecise Dirichlet-Multinomial Model (or IDMM) with hyper-
parameter s [4, Section 4.1]. We call mixing predictive systems of this type IDMM-
predictive systems. The vacuous predictive system corresponds to letting s — oo.
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Theorem 10 The vacuous predictive system, and the IDMM-predictive systems for
s > 0 are regularly exchangeable and representation insensitive, and they are the
only mixing predictive systems for which the equality (8) holds.

Among the mixing predictive systems, the ones corresponding to the IDMM are also
special in another way, which points to a very peculiar, but in our view intuitively
appealing, property of predictive inferences produced by the IDMM. Indeed, assume
that in addition to observing a count vector m of n observations, we come know in
some way that the (n 4+ 1)-th observation will belong to a proper subset A of 2,
and nothing else—we might suppose for instance that an observation of X;, ;| has
been made, but that it is imperfect, and only allows us to conclude that X, | € A.
Then we can ask what the updated beliefs are, i.e., what P'%f Y(f|m,A) is. Since
I_D’éiﬁl(A]m) = gymp/n > 0 if and only if my > 0 and g, > 0, let us assume that
indeed my4 > 0 and g, > 0, in which case the requirements of coherence allows us
to determine B’}Zﬁl (flm,A) uniquely, using the so-called Generalized Bayes Rule
[5, Section 6.4] on the conditional lower prevision P’ L |m): Pt L(flm,A) is
then the unique real u such that

P14 [f — p]lm) = 0. (11)

We then have the following characterization of IDMM-predictive systems, where
we denote by f4 the restriction of the gamble f to the set A, by my the A-tuple
obtained from m by dropping the components that correspond to elements outside
A. The sum of the components of 114 1s m4.

Theorem 11 (Specificity) The IDMM-predictive systems with s > 0 are the only
mixing predictive systems with all g, >0, n=1,...,N —1 that satisfy the additional
requirement

P (flm,A) = Pt (falma) (12)

foralln=1,...,N —1, all m € ¥}, all gambles f on 2 and all proper subsets
A of Z such that my > .

We find the so-called specificity property of inferences—the term was coined by
Bernard [19], who first studied this property in the context of predictive inference—
characterized by Eq. (12) to be quite peculiar. Indeed, suppose that you have ob-
served n successive outcomes, leading to a count vector m. If you know in addition
that X, ;1 belongs to A, then Eq. (12) tells you that the updated value P Y(f|m,A)
is the same as the one you would get by discarding all the previous observations
producing values outside A, and in effect only retaining the my observations that
were inside A! It is as if knowing that the (n+ 1)-th observation belongs to A allows
you to ignore all the previous observations that happened to lie outside A. This is
intuitively appealing, because it means that if you know that the outcome of the
next observation belongs to A, only the related behavior (the values of f on A and
the previous observations of this set) matter for your prediction.
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6 Conclusions

We have considered the problem of representation insensitivity in immediate pre-
diction. We have defined predictive systems, and the properties we imposed (ex-
changeability and representation insensitivity) have led us to consider mixing pre-
dictive systems and more specifically, IDMM-predictive systems (also satisfying
Eq. (12)). Much more work is needed, however, be able to draw a complete picture
of the issue of representation insensitivity in predictive systems. Indeed, while do-
ing research for this paper, we have come across a multitude of questions that we
have not yet been able to answer, and we list only a few of them here: (i) Are there
(regularly) exchangeable and representation insensitive predictive systems that are
not mixing predictive systems? (i1) Related questions are: are there (regularly) ex-
changeable and representation insensitive predictive systems that, unlike the mixing
systems, are not completely determined by the probabilities ¢ (n, 1) of observing an
event that has been observed only once before in n observations; are there such pre-
dictive systems whose behavior on gambles, unlike that of mixing systems, is not
completely determined by the lower probability function ¢; and are there such pre-
dictive systems whose lower probability function ¢, unlike that of mixing systems,
is not additive in the sense that @ (n,k+¢) = @(n,k) + ¢@(n,£)? (iii) Are there (reg-
ularly) exchangeable and representation insensitive mixing predictive systems that
are not of the IDMM-type. i.e., for which the equalities (8) and (9) are not satisfied?
(iv) Are there (regularly) exchangeable, representation insensitive non-mixing pre-
dictive systems that satisfy Eq. (12)? (v) Can we arrive at stronger conclusions if
we consider that the observations X;, make up an infinite exchangeable sequence?
(vi) Can more definite answers be given if we consider the general, rather than the
immediate, prediction problem?
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Appendix: Proofs of main results

We start by mentioning a few properties of (separately) coherent lower previsions
Pon Z(%), i.e., lower previsions that satisfy (C1)—(C3). It is easy to check that
(C1)—(C3) also imply, for all gambles f and g on 2", and all real u:

(C4) P(f) <supf;
(C5) P(f) < P(g) if f < g [monotonicity];
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(C6) P(f+u)=P(f)+ u [constant additivity].

Proof of Proposition 1 We consider « and y in 2™ such that Ty (x) = Ty (y).
Then there is some permutation 7 of {1,...,n} such that y = mx, so it follows
from exchangeability that p,(y) = P} ({y} x ZN7") = P).({mx} x ZN") =
PY-({x} x ZN~") = p,-(x). We next assume p',-(z) = p,-(y) > 0 to prove that

P (zlz) = p’y- (z]y) for all z € 2. This follows immediately from the equalities
n+1 n+1 _ . n+l

Py Gl py () = p (=, 2) = p5 (y,2) = Pl (zly) Py (), where the second
equality again follows by applying exchangeability. O

Proof of Proposition 2 Consider any m in .47}, and any x such that Ty () = m.
Regular exchangeability tells us that ¢ is the infimum of a collection G{,V v yel
of exchangeable precise predictive systems. Fix any ¥ in I" and consider the corre-
sponding exchangeable joint linear prevision Pgw’y. For any gamble f on 27, de-

fine the corresponding gambles g and g’ on 2N by g(z) = f(zns1 Mgy (215 52n)
and g'(2) = f(zn42)l{2}(21,---,20) for all z = (z1,...,2y) in ZN. Observe that

P%n/(g) = Pg;(ﬂw}}’?%#(w) and that
P‘I’O\[{ y(g/) - Z f()’n+2)l7r§;,2y()’n+2‘w7)’n+1)Pgwr’l},(ynﬂ|a:)p’f%/’y(w)
(Yn+17)’n+2)€%2
=Pl @) Y PRl e )Py i |2)
Y1 EX

2
— Py (@) P (P2 flz, ).

Since the linear prevision P , is exchangeable, we see that Py ,(8) = Py 7,(g’ ).

Hence P@;(ﬂm) = Pg%,(Pg?,(f@, )|x), since p'y- () > 0, by the assumption
of regular exchangeability. Taking the infimum on both sides over all ¥ in I', and

invoking regular exchangeability leads to

1 : 1 : 1 2
P! (fl2) = inf Py (ko) = inf P (P53 e )

; L 2 1 2
> inf Pt (inf Po7 (fla @) = By (B (|, )lee).

Now recall that P! (-|z) = P! (-|m) and B’gfz(-kn,z) = ng(-|m+ez). O

Proof of Proposition 3 Statement 1 follows from (separate) coherence [use (C1)
and (C4)]. To prove statement 2, fix 0 < n < N — 1 and non-negative k and ¢ such
that k 4 ¢ < n. Consider a set 2  with three elements a, b and c, then there is
always an m in .4 such that m, = k and m;, = £ (whence m¢ =n—k—{ 2> 0).
Consider the proper subsets A = {a} and B = {b} of .2, then their union AUB =
{a,b} is a proper subset of .2 and their intersection is empty: AN B = 0. Now use
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the super-additivity of P’ L(:|m) [this follows from (C2)] and then representation
insensitivity to find that indeed

@(n,k+0) = P (AUBIm) > P! (Alm) + P (BIm) = @(n,k) + 9 (n, ().

Statements 3-5 follow trivially from statements 1 and 2. To prove statement 6,
consider a set of categories 2" = {a,b}. Fix 0 <k <n<N—2,andletm c ./}
be such that m, = k and my, = n — k. We apply Proposition 2 with f = Iy, to get
P ({a}im) > PUE (P2 ({a}/m + e.)|m). Now define the gamble g on 2" by
gla) = PP ({a}lm +e,) = @(n+ 1k +1) and g(b) := P4 ({a}|m + ) =
@(n+ 1,k), then it is clear from statement 5 that g(a) > g(b) and therefore, using
g = g(b) +[g(a) — g(b)]I{,y and the (separate) coherence of B’g] (-|m) [use (C3)
and (CO)L, P! ({a}}m) > Pt (glm) = g(b) + [g(a) — g()IPY"' ({a}|m). If we
now recall that P'%f '({a}|m) = @(n,k), we are done. Let us prove statement 7.
Observe that for 0 <k <n<N-2, ¢(n,k) >0and o(n+1,k+1) > @o(n+1,k)
[by statement 5]. Statement 6 then implies that indeed ¢(n,k) > @(n+ 1,k). To
prove 8, apply statement 6 with 1 =k <n < N —2 to find that

o(n,1) > o(n+1,1)+@(n,1)[en+1,2)—@n+1,1)]
>on+1,1)+omn D)20n+1,1)—@n+1,1)]
=on+1,1)[1+0¢(n,1)],

where the second inequality follows from statement 4. We turn to statement 9. Ob-

serve that 1 > @(n,n) > ne(n, 1) by statement 4, whence —— > n and therefore

¢(n,1)
indeed s, > 0. To prove that s, is non-decreasing, apply the inequality in state-
ment 8 for 1 <n < N —2 to get, after division of both sides of the inequality by

o(n+1,1)@(n,1): s +n+1=1/9n+1,1)=1/@(n,1)+1=s,+n+1. O

Proof of Proposition 5 Consider any gamble f on 2", then we have to prove that
P(f) = inf f. Since, as a consequence of the coherence of P [use (C6)], P(f) =
inf f + P(f —inf f), we only need to prove that P(g) = 0, where g is any non-
negative gamble with infg = 0. For any positive integer n, the set A, := {g > }l}
is different from 2" because infg = 0, so the assumption implies that P(A,) = 0.
Since moreover g < %—i—IAn supg, we deduce from the coherence of P [use (C5),

(C3) and (C6)] that 0 < P(g) < % +P(A,)supg = % for all n, whence P(g) =0. O

Proof of Theorem 6 We first prove that vV is regularly exchangeable. Consider the
collection I" of all maps that associate with any non-empty and finite set 2", some
element v(.2") of {a € R : Y cq o= 1}, where R is the set of (strictly) pos-
itive real numbers. For each ~ in I', consider the predictive system C)',]yV of predic-

tive linear previsions Pl ,ly (flx) = Y.c2 %-(Z)f(z), with predictive mass func-

tions p”%'kl,y(z\:c) = 1(%Z) >0, z€ 2. Then it is clear that for all  in 2V ~!,
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pifg ,ly(az) = H;{V 02 p’é} {y(Xk+1 |X1,...,x¢) > 0, and that the vacuous predictive sys-
tem is the infimum of the collection GN ~ € I'. The corresponding joint mass func-
tions pf). _ are given by pl). _(x) = Hzeg ()@ z e 27V, As these only

depend on x through T’y (), the precise predictive systems G,IYV are exchangeable.
Therefore all conditions for regular exchangeability are satisfied. That v is repre-

sentation insensitive, follows immediately from

PN (flm) = min f(x) = min_r= min_idy)(r) = P”(+1 - (idg 2 ) lm7).

xeZ ref(%) ref(Z)

The lower probability function for vV satisfies ¢ (n,m) = min,. {0.1) 1d{0 13(r) =0,
for 0 < m < n < N — 1. Finally, since the vacuous lower prevision is point-wise
dominated by all linear previsions, the predictive system vV, which consists only
of vacuous lower previsions, is the point-wise smallest coherent predictive system.
We deduce that it is the bottom of the structure (Zév »3). O

Proof of Theorem 7 Consider any finite and non-empty set of categories 2, and
let 0 <n <N-—1and m € 47 It follows from representation insensitivity and

the linearity of Py’ !(:|m) that for any gamble f on 2

Py (flm) =Y f@P5 ({zHm) = Y fR)e(nm,), (%)

€eX el

so, taking f to be the constant function 1, it follows that Y ¢ - ¢(n,m;) = 1. Us-
ing another consequence of representation insensitivity and linearity [Corollary 4],
we infer that @(n,m;) = m @(n,1),s0 1 =Y com@(n,1) = @(n,1)Y com;, =
n@(n,1). We see that ¢(n, 1) = 1 for n > 0 and Corollary 4 then implies ¢ (n,k) = &
Substituting this back into Eq. (x) yields Eq. (5).

We still have to show that 7"V is exchangeable and representation insensitive. We
begin with exchangeability, and establish that 7%V is the lower envelope of a specific
collection G ,Y € I of exchangeable systems of predictive linear previsions. Con-
sider the collectlon I' of all maps 7y that associate with any finite and non-empty
set 2", some particular element y(2") of 2". Now define the predictive system
G{,V as follows: the predictive linear previsions are given by P}m,( f)=rfy(2))
for any f € £ (Z"), and by P”“( im) = 8%t (-|/m) [Eq. (5)] for 0 <n <N —1.
The resulting joint linear prevision Pg v has a joint mass function determined by
p{\,’%#(}/(% ),---,Y(Z7)) = L. It is permutation invariant, and therefore the predic-
tive system o2

Y

lower envelope of the collection of exchangeable precise predictive systems oy,

Y €I', and is therefore an exchangeable predictive system. To check that it is rep-

is exchangeable. It is straightforward to check that " is indeed the
N
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resentation insensitive, observe that for any gamble f on 2 andall0 <n <N —1:

Y - Zf e _ gt )(1df \m ). O

Sn+1 flm Z f - s

€2 o er ()

Proof of Theorem 9 Consider the predictive lower previsions B’% L(-jm) that be-
long to the predictive system V. For any non-negative gamble g on .2, it follows
from the (separate) coherence [use (C2) and (C6)] of Bf’% ! (-]m) and representation
insensitivity that

Pyl (gim) > Y (P ({zHm) = Y g(z)e(n,m;)
ed X

and if we use Proposition 3.4 and the assumption, we get

m
Py (glm) > Y g@mep(n1) > & Y 8(2)=F = Sy (glm).
€l €X

Again using the (separate) coherence [(C6)] of B’}; ! (-|m), it follows that for any
gamble f on 2, since f —min f is non-negative,

P (flm) = min f + P! (f — min flm)
> minf+8nSg1(f—minf|m)
= &85 (flm) + (1 — &,) min f.

If we compare this with Eq. (6), we see that P'3f I(-]m) point-wise dominates the
corresponding predictive lower prevision in 6, whence indeed o < o¥. O

Proof of Theorem 10 Consider the IDMM-predictive system defined by fixing
some s > 0 in Eq. (10). From Section 5.2, it only remains to prove that it is reg-
ularly exchangeable. Consider the collection I" of all maps that associate with any
non-empty and finite set 2, some element v(2") of {a €R? : ¥ cp . = 1}.
For each vy in I, consider the system G,]YV of predictive linear previsions

Pyl (flz) = v (f| Ty (x +— Z R

! L (@) = %XZ(%) >0, z€ 2. Then it is

clear that for all & in 27V ~1, p%ﬁ( ) - Ozpl}}l,y(xk“ |x1,...,x;) > 0, and that
the IDMM-predictive system is the infimum of the collection ny\’ ,v €T Itis readily

with predictive mass functions p'y-

checked that the corresponding joint mass functions pﬁg’[ - are given by

1 T.(x)+sy(2) -1
pg’g(‘/(w) - (N+s—1) H ( TZ(.’B) )’

eX
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where (}) = %Hf;ol (r—1i) for real r and k > 0, and (;) = 1. As these only de-
pend on x through Ty (), the precise predictive systems G,IYV are exchangeable.
Therefore all conditions for regular exchangeability are satisfied. O

Proof of Theorem 11 We write down the left-hand side of Eq. (11) using Eq. (6)
and €, = n/(n+s,) > 0 [see Proposition 8]. Since A is a proper subset of .2, this
results in

n My

B@Whv—ub=n+s2]ﬂﬂ—uh;+n+smm@mgﬁﬁrﬂG
n xeA n X
Sn . .
nﬂﬂ erAf ——u 5 min{0,minf(x) — 1}
:%[S’"A“(f ma) — ] —u}.

This value can only be zero if 4 > min f4, so we see that Eq. (11) is equivalent to

ma

= prit A :—SmAJrl min fy.
p =Py (flm,A) A+, (fa ’mA)+mA+sn in fa
ma+1 m ma+1 Sm .
Comparing this to P,* " (fa|ma) = WﬁS AT (fa \mA)—i—mmlan,we see

that P! (f|m,A) is equal to P Y(falma) if and only if

ma (Sn B smA)
(ma +sn)(ma +5m,)

(S0 (falma) —min fa] =o.

We want this equality to hold for all gambles fonall 2", alln=1,...,N—1, all
m € 4., and all proper subsets A of 2" such that my > 0. It is clear that the
condition s, = s for some s >0 and alln =1,...,N — 1 is sufficient. To show that
it is also necessary, fix n € {2,...,N — 1} and choose 2" = {a,b,c}, A = {a,b}, a
gamble f on 2 such that f(a) > f(b) =0, and m € 4} such that my =n—1,

my, = 0 and m. = 1. Then the condition above becomes (sng:ln__ll))(‘(ggn__“:";}ll)_l if (a) =0,

or in other words s, = s,—1. O
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