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Abstract

Compatibility is the problem of checking whether some given probabilistic assessments have a common joint prob-
abilistic model. When the assessments are unconditional, the problem is well established in the literature and finds a
solution through the running intersection property (RIP). This is not the case of conditional assessments. In this paper,
we study the compatibility problem in a very general setting: any possibility space, unrestricted domains, imprecise
(and possibly degenerate) probabilities. We extend the unconditional case to our setting, thus generalising most of
previous results in the literature. The conditional case turns out to be fundamentally different from the unconditional
one. For such a case, we prove that the problem can still be solved in general by RIP but in a more involved way: by
constructing a junction tree and propagating information over it. Still, RIP does not allow us to optimally take advantage
of sparsity: in fact, conditional compatibility can be simplified further by joining junction trees with coherence graphs.

Keywords: Compatibility; coherence; marginal problem; conditional models; probabilistic satisfiability; running
intersection property; junction trees; coherence graphs; imprecise probability; coherent sets of desirable gambles.

1. Introduction1

What is compatibility?2

The marginal problem3

Suppose we are given a few marginal probability functions over some variables: e.g., P1(X1, X2), P2(X2, X3),4

P3(X3, X4, X5). We wonder whether there is a joint probability P (X1, X2, X3, X4, X5) from which we can reproduce5

P1, P2, P3 by marginalisation.6

This is an example of the so-called marginal problem: that of the compatibility of a number of marginal assessments7

with a global model. This problem has received a long-standing interest in the literature, since the seminal works by8

Boole [14], Hoeffding [44], Fréchet [34], Kellerer [51] and Vorobev [88] (see also [20] and the references therein).9

The problem is trivial when the marginal models are defined on disjoint sets of variables: in that case, we could for10

instance determine a compatible joint model by considering the stochastic product of the marginals. However, when11

those sets of variables are not disjoint, then the problem is not trivial anymore. More recent work on this problem12

investigated when some additional constraints are placed on the joint in [76, 80], and has also appeared in other,13

apparently far, contexts, such as quantum mechanics [35] or coalitional game theory [88]. It has also a very nice14

application in problems of polynomial optimisation, where it can dramatically reduce the computational complexity of15

solution algorithms by exploiting sparsity in the problem representation [56].16

Obviously, a necessary condition for the compatibility of a number of marginal assessments is their pairwise17

compatibility, that is, the equality of the marginals over common variables; in our example, this requires that18

P1(X2) = P3(X2) and P2(X3) = P3(X3). (1)
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This in not enough however. In fact, using the theory of hypergraphs, Beeri et al. [5] (see also [60]) established a19

necessary and sufficient condition for pairwise compatibility to imply global compatibility: the running intersection20

property (RIP).1 This requires the existence of a total order on the marginals such that if any two marginals have21

variables in common, then also all the marginals between them in the order contain those variables too. In our example22

the natural order P1, P2, P3 makes it. Therefore Eq. (1) being true makes sure that a compatible P exists. There could23

actually be more than one; the iterative proportional fitting procedure (IPFP)[29] yields a sequence of probabilities that24

converge to the compatible joint that maximises Kullback-Leibler information [19].25

The works above investigate the compatibility of probabilities; when the possibility spaces are infinite, they are26

usually assumed to be countably additive on a suitable σ-field. Another direction of generalisation takes into account27

the possible partial specification of probabilities: for instance say that P1, P2, P3 in the example are only partly known;28

this corresponds to replacing each of them with a set of candidate probabilities. The marginal problem then becomes29

checking whether there is a set of joint probabilities P from which we can recover the marginal (candidate) sets by30

marginalisation.31

Set-based probabilistic modelling goes under the umbrella term of imprecise probabilities [4]. They include models32

of possibility measures [32], belief functions [77] or coherent lower previsions [89], among others. The marginal33

problem has been investigated for some of these models by Studený [82, 83], Vejnarová [86] and Jirousek [49], using34

the IPFP; van der Gaag [36] has dealt with it by propagating inequality constraints over a tree.35

The compatibility problem36

The marginal problem has a generalisation to the conditional case that we shall just call the compatibility problem.37

In this case we have any number of conditional probabilities over a set of variables and the problem is again to verify38

whether they have a compatible joint.39

Instances of the compatibility problem have shown up in Artificial Intelligence in the research concerned with40

probabilistic logic and probabilistic satisfiability [38, 41, 43, 46, 71]; in these cases the focus is on variables with finite41

support (or just events) and solutions algorithms are often based on linear programming—yet probabilistic satisfiability42

is NP-hard [12]. Another approach to satisfiability, originated within de Finetti’s school, is based on ‘full conditional43

measures’ [17, 31]; this model establishes links between conditional probabilities so as to avoid inconsistencies, and44

can equivalently be represented as ‘zero layers’ à la Krauss [54]. This allows in particular to deal with structural45

constraints (also called structural zeroes) between conditional probabilities via sequences of linear programs. With46

similar aims and properties, Walley et al. [91] have addressed a generalised version of probabilistic satisfiability that47

mixes conditional and unconditional information, that allows the assessments to be imprecisely specified, and that is48

not affected by problems due to zero probabilities.49

Note in fact that compatibility needs Bayes’ rule to be verified besides the simple use of marginalisation. But Bayes’50

rule is not applicable in the case of zero-probability events. Neglecting this issue can lead to overlook incompatibilities51

that ‘hide’ under these zero probabilities. The problem can eventually yield wrong inferences and it is particularly52

subtle as it is generally unknown in advance where those zero probabilities happen to be. Cozman and Ianni [18] have53

recently proposed an approach that builds on Walley et al.’s work and that, as such, correctly deals with these problems.54

In a different direction, ten years ago we have observed that the compatibility problem, as well as probabilistic55

satisfiability, can often be simplified taking sparsity into account through a graphical representation called coherence56

graphs [64, Sections 8.2–8.3].57

Compatibility is such a general problem that has a life on its own also in the statistical literature. There we can58

find some early work by Strassen [81], Okner [72] and Kamakura and Wedel [50], and a great bulk of work made by59

Arnold et al. [2, 1, 3] that also consider the case of imprecise information. Kuo and Wang [93] have shown that the60

problem of zero probability is an issue also in the statistical case; in the same year we also have discussed the same61

question in the statistical literature [65]. In addition, we have proved that there is an iterative procedure that converges62

to the compatible joint model; this is somewhat similar in spirit to the IPFP, but our procedure works for the more63

involved conditional case and moreover it yields the entire set of compatible probabilities in the case of imprecision.64

While most work on compatibility focuses on discrete variables, Wang and Ip [92] are a relevant reference for the65

continuous case. Kuo et al. [55] provide one of the most recent works on the subject, with many references therein.66

1In the same year, Lemmer established a condition (a special case of RIP) that, given pairwise compatibility, is sufficient for global compatibility
[59, Section 4.2].
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So there has been much work about compatibility in the conditional case across different communities (that do67

not seem to have talked much to each other). However, and to our surprise, we could not find any work making the68

connection to RIP there, which is even more surprising considered the clear connection that exists with RIP in the69

unconditional case.70

Outline of the paper and main results71

Our aim in this paper is to establish a clear connection between RIP and compatibility in the most general possible72

setting: any possibility space, unrestricted domains (no σ-additivity/measurability problems), imprecise probabilities,73

conditional and unconditional information, no limitations due to zero probabilities.74

To achieve these goals, we base our analysis on the imprecise-probability formalism of coherent sets of desirable75

gambles [89, 94]. As we have recently shown [96, 99], such a formalism is an equivalent reformulation of Bayesian76

decision theory, once it is freed of the precision constraint, with the advantage that it naturally meets all the requirements77

listed above. We introduce sets of desirable gambles in Section 2.78

In the same section, we define compatibility in the unconditional case for sets of desirable gambles and prove in79

Theorem 2 that RIP and pairwise compatibility imply compatibility. This result generalises most of the previous work80

on the marginal problem along the lines discussed at the beginning of this section. We try to clarify this point by first81

specialising our results to sets of probabilities, and then by commenting on the relation of these results with previous82

ones.83

We move to compatibility for the conditional case in Section 3. First, we give a generalised definition of compatibility84

(Definition 18). The definition makes us realise that compatibility is nothing else than strong coherence in Williams-85

Walley’s theory [98, Definition 25], thus enabling us to exploit established tools in such a theory to pursue our aims. This86

turns out to be particularly important since we verify that the conditional case cannot be reduced to the unconditional87

one: in the former, compatibility does not imply pairwise compatibility; pairwise compatibility needs to be replaced by88

Walley’s notion of avoiding partial loss. We go on then to specialise some of these notions for sets of probabilities.89

In Section 4 we give our main results. We start by recalling the notion of tree decomposition related to RIP: i.e., that90

our probabilistic assessments can be represented graphically so as to eventually organise the variables of our problem91

in a junction tree; in such a tree, nodes are clusters of variables (cliques) that satisfy RIP. We give two procedures,92

analogous to the standard ones of collect and distribute evidence, for the propagation of desirable gambles over the tree.93

Then we prove in Theorems 9 and 10 that:94

◦ The first procedure terminates with a coherent set at the root of the tree if and only if our original assessments95

avoid partial loss. This is a first test of compatibility, because if that is not the case, then the original assessments96

are not compatible and we can stop.97

◦ Otherwise, the second procedure yields the marginals of the joint compatible set of desirable gambles that98

extends our original assessments. Then the original assessments are compatible if and only if they coincide with99

such marginals.100

In Appendix A.4 we give also an alternative avenue to the proof of Theorems 9 and 10 based on so-called valuation101

algebras [52, 78]. These are abstract representations of knowledge or information that encode primitive tools for102

distributed computation on a junction tree. Valuation algebras should provide more accessible proofs of distributed103

computation to those unfamiliar with desirability; moreover, such an avenue has turned out to be an opportunity for us104

to discuss more widely the interplay of logic, desirability and algebras.105

Irrespectively of the proof method, let us remark that these results, being valid for desirable gambles, hold also for106

sets of probabilities and in particular for traditional, precise, probability (on any possibility space).107

Let us recall that in the unconditional case, RIP is often regarded as the optimal way to exploit sparsity in a problem108

without loss of information. We show in Section 5 that in the conditional case this is no longer true: there are very109

common situations where we can immediately tell if compatibility holds without having to build a junction tree and110

perform a propagation. We systematise this observation by leveraging on our past work on coherence graphs [64].111

These simplify the verification of coherence by yielding a partition of the original set of assessments into so-called112

superblocks. Here, we extend past results on coherence graphs to desirable gambles and show in Theorem 12 that in113

order to check compatibility it is enough to separately check it on superblocks. In addition we give a procedure to114
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compute the compatible joint. The lesson here is that if we want to get the best out of the conditional case, we have to115

combine coherence graphs with junction trees.116

We give our concluding views in Section 6. Appendix A contains additional remarks and observations. All the117

proofs of the paper have been gathered in Appendix B.118

2. Compatibility of unconditional models119

2.1. Sets of desirable gambles120

The most general model we shall consider in this paper is that of coherent sets of desirable gambles. Let us121

introduce the main notions about this theory; we refer to [4, Chapter 1], [90] and [89, Chapter 3] for further details.122

Definition 1 (Gambles). Consider a possibility spaceX . A gamble onX is a bounded real-valued function f : X → R.123

Gambles are interpreted as uncertain rewards in a linear utility scale. We denote by L(X ) the set of all gambles on X ,124

and by L+(X ) := {f ∈ L(X ) : f ≥ 0, f 6= 0} the set of positive gambles. We shall simplify the notation whenever125

possible by omitting the possibility space X . Thus, we shall write L+ for the positive gambles and moreover use f  0126

in place of f ≥ 0, f 6= 0.127

Definition 2 (Coherence for gambles). A subset D ⊆ L(X ) is called coherent when it satisfies the following axioms:128

D1. L+ ⊆ D [Accepting Partial Gains];129

D2. 0 /∈ D [Avoiding Null Gain];130

D3. f, g ∈ D ⇒ f + g ∈ D [Additivity];131

D4. f ∈ D, λ > 0⇒ λf ∈ D [Positive Homogeneity].132

It follows from these axioms that, if f belongs to a coherent set D and g ≥ f , then also g ∈ D.133

Whenever a set D is not coherent, we can try to extend it into a coherent set by means of the following procedure:134

Definition 3 (Natural extension for gambles). Given a set D ⊆ L(X ), we call135

E := posi(L+ ∪ D), (2)

its natural extension, where posi denotes the set of positive linear combinations of the gambles in the argument.136

The natural extension of a set of desirable gambles D is coherent if and only if it avoids null gain. This motivates137

the following:138

Definition 4 (Avoiding partial loss for gambles). We say that D ⊆ L(X ) avoids partial loss if and only if 0 /∈ E .139

A set that avoids partial loss can always be extended to a coherent set. The natural extension is just the smallest such140

set; it can equivalently be represented as the intersection of all the coherent sets that include D.141

In this paper, we shall investigate the compatibility of the belief assessments that model our knowledge about142

different sets of variables 2 . To see how all these different assessments can be embedded into a unified framework,143

consider non-empty spaces X1, . . . ,Xn. Let N := {1, . . . , n}. For any subset S of N we shall let XS :=×j∈S Xj and144

denote by xS its generic element. We abuse this notation in two extreme cases to keep it simple: if S is a singleton we145

shall not write braces, so X{j} will become Xj (and x{j} will become xj); if S = N we shall just omit it, therefore XS146

will become X (and xN will be written as x). The latter is made also to emphasise that XN = X is, from now on, our147

overall possibility space.3148

2To avoid confusion between our use of the term ‘variables’ and traditional ‘random variables’, let us remark that in this paper variables should
be understood simply as functions taking values in respective possibility spaces Xi, and are essentially just a mathematical convenience. We do not
use random variables in this paper, even though gambles can be thought of as playing their role in the theory of desirability. Thus, if we have two
variables X1, X2 taking values in respective spaces X1,X2, uncertainty about the joint behaviour of (X1, X2) shall be modelled by means of a
coherent set of desirable gambles in L(X1 ×X2).

3We shall thus assume that the underlying variables are logically independent, meaning that any value in the Cartesian product of the spaces
X1, . . . ,Xn is assumed to be possible. For a discussion of the relevance of this hypothesis in compatibility problems, we refer to [10, Section 3.4]
and to [85]. Note that the assumption of logical independence does not preclude the existence of zero probabilities.
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Definition 5 (Projection operator). Given spaces X1, . . . ,Xn and any subset S of N , we denote by πS the projection
operator, given by

πS : X → XS
x ↪→ (xj){j∈S}.

Definition 6 (Measurable gambles). We shall say that a gamble f on X is XS-measurable if and only if

(∀x, y ∈ X : πS(x) = πS(y)) f(x) = f(y).

We shall denote by LS(X ) (or simply LS) the subset of L(X ) given by the XS-measurable gambles. There exists
a one-to-one correspondence between LS(X ) and L(XS), and we will sometimes abuse the notation by writing
D ∩ L(XS) when we mean D ∩ LS(X ) for a given set of gambles D ⊆ L(X ). For clarity, we shall use the notation
posiS when the natural extension is applied with respect to the set of S-measurable gambles, and use posi in case the
natural extension is taken with respect to L(X ). If we consider DS ⊆ LS , then its natural extension with respect to
LS is given by

posiS(L+
S ∪ DS) = posi(L+ ∪ DS) ∩ LS .

Definition 7 (Coherence relative to a set of gambles). We shall say that a set D ⊆ LS(X ) is coherent relative to149

LS(X ) when the set DS ⊆ L(XS) that we can make a one-to-one correspondence with, is coherent.150

Note that coherence of D relative to LN (X ) is just coherence of D, which makes sense given that LN (X ) = L(X ). It151

also follows that if D is coherent relative to LS , then it is a cone: λf ∈ D for every f ∈ D and every λ > 0.152

Definition 8 (Marginal set of gambles). Let D ⊂ L(X ) be a coherent set of desirable gambles and consider a subset153

S of N . The S-marginal of D is the set D ∩ LS .154

It follows that the S-marginal of a coherent set of desirable gambles is coherent relative to the set LS .155

In this paper, we study the problem of the compatibility of a number of partial assessments into a joint model. We156

shall assume that these assessments are modelled by coherent sets of desirable gambles. We consider therefore subsets157

S1, . . . , Sr of {1, . . . , n}, and for every j = 1, . . . , r let Dj be a subset of L(X ) that is coherent with respect to the158

set LSj
(X ) of XSj

-measurable gambles. Our goal is to find conditions that guarantee the existence of a coherent set159

of desirable gambles D that is ‘compatible’ with D1, . . . ,Dr. Let us clarify what we mean by compatibility in this160

context. A more general definition shall be introduced in Section 3.161

Definition 9 (Pairwise compatibility for coherent sets of desirable gambles). We say that coherent sets of desirable
gables Di,Dj , with i 6= j in {1, . . . , r}, are pairwise compatible if and only if

Di ∩ LSj
(X ) = Dj ∩ LSi

(X ).

In other words, those gambles on Di that are Sj-measurable belong to Dj , and viceversa. If we regard our models as162

coming from different sources, the interpretation would be that, if two sources provide an assessment about the same163

gamble f , it cannot be that f is deemed desirable by one of them and not by the other.164

Definition 10 (Compatibility for coherent sets of desirable gambles). D1, . . . ,Dr are said to be compatible if and165

only if there is a coherent set of desirable gambles D on L(X ) that is pairwise compatible with each of them, in the166

sense that D ∩ LSj (X ) = Dj for every j = 1, . . . , r. We also say that D is compatible with D1, . . . ,Dr.167

The following result gives an equivalent expression of compatibility in terms of the notion of natural extension168

from Definition 3:169

Proposition 1. Consider sets of desirable gambles D1, . . . ,Dr such that Dj is coherent relative to LSj
. They are170

compatible if and only if the natural extension E of ∪rj=1Dj satisfies E ∩ LSj = Dj for j = 1, . . . , r.171
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From this we deduce that the notion of compatibility in Definition 10 coincides with what we called strong coherence in172

[98, Definition 25]. A result similar to Proposition 1 was established by Studený in [82, Proposition 1], in the particular173

case when the belief models are possibility measures.174

As we mentioned in the Introduction, it was established by Beeri et al. [5] that a number of marginal probability175

measures that are pairwise compatible are automatically compatible when the sets of variables where they are defined176

satisfy the running intersection property:177

Definition 11 (Running intersection property). The sets of variables S1, . . . , Sr satisfy the running intersection178

property if and only if179

RIP. (∀i = 2, . . . , r)(∃j? < i) Si ∩ (∪j<iSj) = Si ∩ Sj? .180

We next extend this result to the case where our belief models are sets of desirable gambles:181

Theorem 2. If S1, . . . , Sr satisfy RIP and the sets D1, . . . ,Dr are pairwise compatible, then they are compatible.182

This result generalises most of previous work in the literature about compatibility in the unconditional case; we183

discuss this point at some length in Section 2.3. It is also useful to observe that to verify compatibility according184

to Theorem 2 we only need to marginalise and compare given sets of desirable gambles (let us call this the ‘local’185

complexity), which means that the computational complexity of this task will be linear in r. Stated differently, such a186

task will be well solved as long as the local problem will be.187

The following example illustrates the result:188

Example 1. Consider N := {1, 2, 3, 4}, and the sets of variables S1 := {1, 2}, S2 := {1, 3}, S3 := {3, 4}. These sets
of variables satisfy the running intersection property. Therefore, Theorem 2 tells us that if we model our uncertainty
about these variables by means of coherent sets of desirable gambles DS1

,DS2
,DS3

, they will be compatible if and
only if they are pairwise compatible, which in this case means that

DS1
∩ L(X1) = DS2

∩ L(X1) and DS2
∩ L(X3) = DS3

∩ L(X3).

For instance, if we consider binary variables and the sets of desirable gambles

DS1 := {f ∈ L(X1,2) : min{f(0, 1), f(1, 0)} > 0} ∪ L+(XS1),

DS2
:= {f ∈ L(X1,3) : min{f(1, 1), f(0, 1)} > 0} ∪ L+(XS2

),

DS3
:= {f ∈ L(X3,4) : min{f(1, 1), f(1, 0)} > 0} ∪ L+(XS3

),

then pairwise compatibility holds, since we have that

DS1
∩ X1 = DS2

∩ X1 = {f ∈ X1 : min{f(0), f(1)} > 0} ∪ L+(X1) = L+(X1)

and
DS2 ∩ X3 = DS3 ∩ X3 = {f ∈ X3 : f(1) > 0} ∪ L+(X3).

This means that they are also globally compatible. One such compatible joint is their natural extension, which gives

D = {f ∈ L(XN ) : min{f(0, 1, 1, 1), f(0, 1, 1, 0), f(1, 0, 1, 1), f(1, 0, 1, 0)} > 0} ∪ L+. ♦

Remark 1. As suggested by Referee 1, in some cases if our coherent sets of desirable gambles D1, . . . ,Dr represent189

different pieces of information we may not expect them to carry the same information for the common variables; in other190

words, we may look for the existence of a coherent superset of ∪ri=1Di without imposing the pairwise compatibility of191

the sets D1, . . . ,Dr.192

The set ∪ri=1Di has a coherent superset if and only if its natural extension E is coherent, and in that case we obtain193

the compatibility of the sets D′1, . . . ,D′r, where D′j := E ∩ LSj . We then deduce from Proposition 1 and Theorem 2194

that, if S1, . . . , Sr satisfy RIP, then the following are equivalent:195

◦ D1 ∪ · · · ∪ Dr has a coherent superset,196
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◦ E := posi(L+ ∪
⋃r
i=1Di) is coherent,197

◦ D′1, . . . ,D′r are compatible,198

◦ D′1, . . . ,D′r are pairwise compatible,199

where, for every j = 1, . . . , r, D′j := posi(L+ ∪
⋃r
i=1Di) ∩ LSj .200

This is also relevant for the treatment of compatibility we shall make in the conditional case (see Section 3.1 later201

on), where we shall verify whether some set of gambles that we can derive from the conditional assessments avoids202

partial loss. ♦203

2.2. Coherent lower previsions204

A slightly more precise model than coherent sets of desirable gambles are coherent lower previsions [89, Chapter 2].205

These generalise de Finetti’s pioneering work on subjective probability theory [26] to the imprecise case; in fact, as we206

shall see in Proposition 3 below, the compatibility of different sources is equivalent to de Finetti’s notion of coherence,207

extended by Williams and Walley to the imprecise case.208

Definition 12 (Coherent lower and upper previsions). Let D be a coherent set of desirable gambles in L. For all209

f ∈ L, let210

P (f) := sup{µ ∈ R : f − µ ∈ D}; (3)

it is called the lower prevision of f . The conjugate value given by P (f) := −P (−f) is called the upper prevision of f .211

The functionals P , P : L → R are respectively called a coherent lower prevision and a coherent upper prevision.212

A coherent lower prevision satisfies the following conditions for every f, g ∈ L and every λ > 0:213

C1. P (f) ≥ inf f [Accepting Sure Gains];214

C2. P (λf) = λP (f) [Positive Homogeneity];215

C3. P (f + g) ≥ P (f) + P (g) [Superlinearity].216

These conditions are often taken in the literature as axioms of coherent lower previsions whenever they are used as the217

primitive models of uncertainty and are defined on L.218

Definition 13 (Linear prevision). Let P , P be coherent lower and upper previsions on L. If P (f) = P (f) for some219

f ∈ L, then we call the common value the prevision of f and we denote it by P (f). If this happens for all f ∈ L then220

we call the functional P a linear prevision.221

Linear previsions correspond to de Finetti’s previsions, and their restriction to events are finitely additive probabilities.222

A coherent lower prevision P has a set of dominating linear previsions:

M(P ) := {P linear prevision : (∀f ∈ L) P (f) ≥ P (f)},

which turns out to be closed4 and convex. Since each linear prevision is in a one-to-one correspondence with a finitely
additive probability measure (its restriction to events), we can regardM(P ) also as a set of probabilities. Moreover, P
is the lower envelope of the previsions inM(P ):

(∀f ∈ L) P (f) = min{P (f) : P ∈M(P )}.

The coherent upper prevision P is the upper envelope of the same set; as a consequence, P (f) ≤ P (f) for all f ∈ L.223

4In the weak* topology, which is the smallest topology such that all the evaluation functionals given by f(P ) := P (f), where f ∈ L, are
continuous.
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Example 2. If we return to Example 1, we see that the coherent lower previsions associated with the coherent sets of
desirable gambles in that example are given by

(∀f ∈ LS1
) PS1

(f) = min{f(0, 1), f(1, 0)},
(∀f ∈ LS2

) PS2
(f) = min{f(1, 1), f(0, 1)},

(∀f ∈ LS3
) PS3

(f) = min{f(1, 1), f(1, 0)},

which are equivalent to the assessments

P (X1 6= X2) = 1 = P (X3 = 1).

Thus, a compatible coherent lower prevision is the lower envelope of the set of probabilities degenerate on the mass224

functions {(0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 0), (1, 0, 1, 1)}. Note here that DS3 is not the only coherent set of desirable225

gambles that induces PS3
: for instance, we may also use226

D′S3
:= {f : min{f(1, 1), f(1, 0)} > 0} ∪ {f : f(1, 1) = f(1, 0) = 0 < f(0, 0)} ∪ L+

S3
. ♦ (4)

More generally speaking, a lower prevision P defined on a set of gambles K ⊆ L is called coherent if and only if it
is the restriction of a coherent lower prevision Q on L. The smallest such Q is called the natural extension of P , and it
is given by

E(f) := min{P (f) : P linear prevision, (∀g ∈ K) P (g) ≥ P (g)}.

As shown in Example 2, coherent sets of desirable gambles are in general more informative than coherent lower227

previsions, in the sense that there exist different coherent sets of desirable gambles D1 6= D2 inducing the same228

coherent lower prevision by means of Eq. (3); the smallest such set satisfies a property called strict desirability:229

Definition 14 (Strict desirability). A coherent set of gambles D is said to be strictly desirable if it satisfies the230

following condition:231

D0. f ∈ D \ L+ ⇒ (∃δ > 0) f − δ ∈ D [Openness],232

where addition of a gamble with a constant is meant pointwise.233

Strict desirability means that D \ L+ does not include its topological border. By an abuse of terminology, D is said to234

be open too.235

There is a one-to-one correspondence between coherent lower previsions and strictly desirable sets: from P we can236

induce the set237

DP := {f ∈ L : f  0 or P (f) > 0}; (5)

DP is coherent and strictly desirable and moreover induces P through Eq. (3). Moreover, it is the only coherent and238

strictly desirable set to do so.239

Similarly to Definition 8, given a coherent lower prevision on L and a subset of variables S, we call its S-marginal240

the model of the information that P encompasses on the variables in S:241

Definition 15 (Marginal coherent lower prevision). Let P be a coherent lower prevision on L and a non-empty
S ⊆ N . Then the S-marginal coherent lower prevision it induces is given by

PS(f) := P (f)

for all f ∈ LS .242

The S-marginal is simply the restriction of P to LS .243

In terms of coherent lower previsions, the notion of compatibility in Definition 10 means that, given marginal244

coherent lower previsions P 1, . . . , P r with respective domains LS1 , . . . ,LSr , there exists a coherent lower prevision on245

L with these marginals. Pairwise compatibility means that the lower prevision P we can define onK := LS1
∪· · ·∪LSr

246

by P (f) = P j(f) for every f ∈ LSj
is well defined.247

It is immediate then to show that compatibility is equivalent to the coherence of P :248
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Proposition 3. Let P 1, . . . , P r be coherent lower previsions with respective domains LS1 , . . . ,LSr . Assume they are249

pairwise compatible, and let P be the lower prevision they determine on K = ∪ri=1LSi . The following are equivalent:250

(a) P 1, . . . , P r are globally compatible.251

(b) P is a coherent lower prevision on K.252

(c) P 1, . . . , P r are globally compatible with the natural extension E of P .253

From Theorem 2 and the correspondence between coherent lower previsions and sets of desirable gambles, it is not254

difficult to establish the following:5255

Corollary 4. Consider subsets S1, . . . , Sr of {1, . . . , r} satisfying RIP and for every j let P j be a coherent lower256

prevision on LSj
. The following are equivalent:257

(a) P 1, . . . , P r are pairwise compatible.258

(b) There exists a coherent lower prevision P on L with marginals P 1, . . . , P r.259

2.3. Discussion260

As a particular case of Corollary 4, we would obtain the result for linear previsions, that is, expectation operators261

with respect to a probability. We formalise the case of finite spaces that is the most common in the literature:262

Corollary 5. Consider finite possibility spaces X1, . . . ,Xn and subsets S1, . . . , Sr of N . The following are equivalent:263

1. For any pairwise compatible probability measures P1, . . . , Pr on P(XS1), . . . ,P(XSr ), there exists a probability264

measure P on P(X ) with marginals P1, . . . , Pr.265

2. S1, . . . , Sr satisfy the running intersection property.266

In particular, our Corollary 4 can also be applied to possibility measures and belief functions, which were the267

belief models considered in [82], and that can be regarded as particular cases of coherent upper and lower previsions,268

respectively. We also cover [86, Proposition 4.2], with one qualification: instead of pairwise compatibility, Vejnarová269

considers the weaker notion called projectivity, which means that the corresponding sets of probability measures have270

non-empty intersection; this is related to Remark 1.271

Nevertheless, it is important to remark that our result in terms of sets of desirable gambles (resp., coherent lower272

previsions) guarantees the existence of a global set of desirable gambles (resp., coherent lower prevision) whose273

marginals are the belief models we started with. Although this holds in particular if our set of desirable gambles is274

associated for instance with a possibility measure, it does not follow immediately that our global model (that we build275

considering techniques of natural extension) is also associated with a possibility measure; see [82, Example 2] for276

a counterexample. Therefore if one is interested in achieving a global model that belongs to the same family as the277

marginal ones, they should make additional considerations on top of our results.278

Let us finally remark that RIP is necessary for pairwise compatibility to imply compatibility: in fact, Beeri at al.279

show in [5, Theorem 3.4] that if the sets of variables S1, . . . , Sr do not satisfy RIP, then it is possible to find marginal280

probability measures P1, . . . , Pr that are pairwise compatible while not being compatible. This can readily be extended281

to the case where beliefs are expressed in terms of sets of desirable gambles by using the correspondence in Eq. (5).282

3. Compatibility of conditional models283

We consider next a more general framework: that where our assessments are possibly of a conditional nature. Thus,284

given two disjoint subsets O, I of our set of variables N , we assume that we have a belief model about the variables in285

O, given information about the variables in I . The situation considered in Section 2 corresponds to the particular case286

where I is empty: then, what we have is marginal information about the variables in O.287

5As remarked by Referee 1, the key in this next result is that the correspondence between coherent lower previsions and coherent sets of desirable
gambles established in (5) is a monomorpishm, where these two belief models are valuation algebras in which the combination operator corresponds
to the natural extension of the maximum (resp., union), the focusing operator corresponds to marginalisation and the neutral elements are, respectively,
the vacuous coherent lower prevision, P (f) = inf f (∀f ) and the set L+ of non-negative gambles. See [52, Section 3.3.2] for more information.
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3.1. Conditional sets of desirable gambles288

In this section, we consider the case where our belief models are sets of desirable gambles. We need first to extend289

the notion of coherence to the conditional case:290

Definition 16 (Separately coherent conditional sets of desirable gambles). Consider two disjoint subsets I,O of
N with O 6= ∅. A separately coherent conditional set of desirable gambles DO|XI is given by

DO|XI := ∪xI∈XI
DO|xI ,

where, for every xI ∈ XI DO|xI is defined as

DO|xI := {f ∈ L(XO∪I) : f = IXI=xI
f, f(xI , ·) ∈ DxI

O }

for some coherent set of desirable gambles DxI

O ⊂ L(XO) on XO. In case I = ∅, DO|XI is a single coherent set of291

desirable gambles DO.292

Formally, DO|XI is a subset of LO∪I , but it need not be coherent relative to it: it is only coherent once we focus on293

each particular element xI ∈ XI . Nevertheless, for the purposes of this paper we can equivalently work with its natural294

extension on LO∪I , that is given by295

{f ∈ LO∪I : f 6= 0, (∀xI ∈ XI)f(xI , ·) ∈ DO|xI ∪ {0}}, (6)

and that is indeed coherent relative to LO∪I .296

As one particular instance of separately coherent conditional sets of desirable gambles, we have those induced by297

unconditional sets:298

Definition 17 (Induced separately coherent conditional set of desirable gambles). Let D be a coherent set of299

gambles and consider two disjoint subsets I,O of N with O 6= ∅. The separately coherent conditional set of desirable300

gambles induced by D is given by301

DO|XI := ∪xI∈XI
DO|xI , where DO|xI := {f ∈ D ∩ LO∪I : f = IXI=xI

f}. (7)

When I = ∅ Equation (7) reduces to DO := D ∩ LO, i.e., it produces the marginal set of desirable gambles that D302

induces on the set of variables O. Thus, Definition 8 is a particular case of this one.303

Example 3. If we return to Example 2 and in particular to Eq. (4), we can see how the coherent sets of desirable
gambles DS3

and D′S3
, which induce the same coherent lower prevision PS3

, produce different conditional sets of
desirable gambles: we obtain

D4|(X3 = 0) = L+
4 while D′4|(X3 = 0) = {f ∈ L4 : f(0) > 0} ∪ L+

4 .

This shows that coherent sets of desirable gambles are useful for determining conditional assessments, in particular304

when the conditioning event has (lower) probability zero. ♦305

Definition 18 (Compatibility of conditional sets of desirable gambles). Consider disjoint subsets Oj , Ij of N ,306

with Oj 6= ∅, for j = 1, . . . , r, and let DOj
|XIj be a separately coherent conditional set of desirable gambles for307

j = 1, . . . , r. These sets are said to be compatible when there is a coherent set of desirable gambles D that induces308

each of them by means of Eq. (7).309

From our comments above, this definition subsumes Definition 10 as a particular case. It is also a generalisation of310

the notion we called conformity in [68, Definition 11] for the particular case where we have one conditional and one311

unconditional model; the idea is again that there exists a joint model from which we can derive all the assessments.312

As such the notion of compatibility in Definition 18 is nothing else than what we called ‘strong coherence’ in [98,313

Definition 25]: the notion of coherence for a collection of sets of desirable gambles (as opposed to its special case of314

coherence for a single set, as given in Definition 2).315
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Remark 2. Let us remark that, in the context of non-additive measures, which can be regarded as particular cases316

of coherent sets of desirable gambles, we can find many proposals in the literature to induce a conditional model317

from an unconditional one; see for instance [22, 30, 33, 39, 63] and the references therein. The notion we consider318

in Definition 18 for coherent sets of desirable gambles corresponds to Williams-Walley’s generalised Bayes rule and319

can be defended based on their behavioural interpretation of desirability. Note that if we apply this procedure to a320

particular family of non-additive measures, the induced conditional model may not always belong to such a family (this321

is the same issue we mentioned at the end of Section 2): for this reason, if someone wants to focus on some particular322

model, such as possibility measures, it would be necessary to consider some alternative proposals, or—probably more323

sensibly—to approximate the generalised Bayes rule through members of the chosen family. ♦324

One immediate consequence of the above definition is the following result, that is similar to Proposition 1:325

Proposition 6. Consider disjoint subsets Oj , Ij of N , with Oj 6= ∅, for j = 1, . . . , r, and let DOj
|XIj be a separately326

coherent conditional set of desirable gambles for j = 1, . . . , r.327

1. If DO1 |XI1 , . . . ,DOr |XIr are compatible, then ∪rj=1DOj |XIj avoids partial loss.328

2. If DO1 |XI1 , . . . ,DOr |XIr are compatible, the smallest coherent set of desirable gambles that induces DOj |XIj329

by (7) for j = 1, . . . , r is the natural extension E of ∪rj=1DOj
|XIj .330

Example 4. Using the notation of Example 1, consider the following two separately coherent sets of desirable gambles:

D4|X3 := L+
3 and D3|X4 := L+

4 .

These two sets are compatible given that they can both be induced by DS3
in Example 1 via Eq. (7), and as a331

consequence L+
3 ∪ L

+
4 avoids partial loss. DS3

is however not their natural extension since the smallest coherent set332

that induces them is obviously the vacuous set L+
S3

. ♦333

We deduce from Proposition 6 that the verification of compatibility comprises two parts: the first one is whether334

our sets of desirable gambles avoid partial loss; if the answer is positive, we should verify next whether the natural335

extension E of our assessments induces them by means of (7); note that, for this second part, it suffices to know the336

marginals E ∩ LOj∪Ij (X ) for j = 1, . . . , r.337

In this paper, we shall provide two algorithms that will simplify the verification of the condition of avoiding partial338

loss and the computation of the marginals of the natural extension; but before we tackle this problem, we think it is339

important to clarify why we cannot express it more simply in terms of unconditional sets of desirable gambles.340

Indeed, it follows from the above reasoning that, if we want to compute the natural extension of ∪rj=1DOj
|XIj we341

may first compute separately the natural extension of each of the sets DOj
|XIj for j = 1, . . . , r by means of (6). If we342

denote E1, . . . , Er these natural extensions, it follows that E is also the natural extension of ∪rj=1Ej . Thus, we might be343

tempted by trying to reduce the problem to that of the compatibility of E1, . . . , Er, which we have tackled in Section 2,344

and that can be deduced from pairwise compatibility and RIP.345

Unfortunately, such a procedure does not work, because the compatibility of DO1
|XI1 , . . . ,DOr

|XIr does not346

imply the pairwise compatibility of the sets E1, . . . , Er. This is discussed in Appendix A.1.347

Taking this into account, given a number of coherent sets of desirable gambles D1, . . . ,Dr that gather information348

on different sets of variables S1, . . . , Sr, we shall investigate if these sets avoid partial loss, meaning that they have a349

joint coherent superset; but we are not requiring anymore that D ∩ LSj = Dj for every j. Indeed, if the coherent set350

Dj is obtained as the natural extension of a separately coherent conditional set DOj
|XIj , what we should verify next is351

whether the coherent superset D induces DOj
|XIj by means of Eq. (7), and not whether Dj is the marginal of D on352

XOj∪Ij .353

Our first result tells us that if a variable appears only in one of these sets, then our assessments on this variable are354

not relevant for the compatibility problem:355

Proposition 7. Consider subsets S1, . . . , Sr of {1, . . . , n} and sets of desirable gambles D1, . . . ,Dr, where Dj is
coherent relative to LSj

. For every i = 1, . . . , r, let D∗i := Di ∩ LSi∩(∪j 6=iSj). Then:

∪ri=1Di avoids partial loss ⇔ ∪ri=1D∗i avoids partial loss.

This result is actually not surprising: the assessments that are made in only one of our belief models cannot be356

contradicted by any other, and thus will never cause us to violate compatibility.357
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3.2. Conditional lower previsions358

Similarly to what we did in the unconditional case, from our results on the compatibility of (conditional) sets359

of desirable gambles we can derive analogous results for (conditional) lower previsions. Let us recall a number of360

preliminary notions (see [66] for details about the relation of desirable gambles with conditional lower previsions).361

Definition 19 (Coherent conditional lower and upper previsions). Let D be a coherent set of desirable gambles in362

L. Consider two disjoint subsets I,O of N , with O 6= ∅, and xI ∈ XI . For all f ∈ LO∪I , let363

PO(f |xI) := sup{µ ∈ R : IxI
(f − µ) ∈ D} (8)

be the conditional lower prevision of f given xI . The conjugate value given by PO(f |xI) := −PO(−f |xI) is called364

the conditional upper prevision of f . The functionals PO(·|xI), PO(·|xI) : LO∪I → R are respectively called a365

coherent conditional lower prevision and a coherent conditional upper prevision.366

Denote by infxI
f the infimum value that f takes on {xI}. PO(·|xI) satisfies the following conditions for all367

f ∈ LO∪I and all real λ > 0:368

CC1. PO(f |xI) ≥ infxI
f ;369

CC2. PO(λf |xI) = λPO(f |xI);370

CC3. PO(f + g|xI) ≥ PO(f |xI) + PO(g|xI).371

Again, these conditions can be regarded as axioms of coherent conditional lower previsions.372

If we make this procedure for every xI ∈ XI , we obtain the following:373

Definition 20 (Separately coherent conditional lower prevision). Consider two disjoint subsets I,O of N , with
O 6= ∅. For all xI ∈ XI , let PO(·|xI) be a conditional coherent lower prevision. Then we call

PO(·|XI) :=
∑
xI∈XI

IxI
PO(·|xI)

a separately coherent conditional lower prevision.374

For every f ∈ LO∪I , PO(f |XI) is the gamble that takes the value PO(f |xI) in xI ∈ XI ; it is an XI -measurable375

gamble: PO(f |XI) ∈ LI .376

Now consider a finite number of separately coherent conditional lower previsions PO1
(·|XI1), . . . , POr

(·|XIr ) on377

respective domains LO1∪I1 , . . . ,LOr∪Ir . Their joint coherence is defined very naturally as follows:378

Definition 21 (Strong coherence of a collection of separately coherent conditional lower previsions). Given the379

collection PO1
(·|XI1), . . . , POr

(·|XIr ), we say that the conditional lower previsions are (strongly) coherent if and380

only if there is a coherent set of desirable gambles D ⊆ L such that POi
(·|XIi) can be recovered from D through (8),381

for all i = 1, . . . , r.6382

Next we consider the consistency condition of avoiding partial loss, which is weaker than strong coherence; it383

allows us to know when a non-coherent collection of conditional lower previsions can be extended into a coherent one.384

To this end, first we need to introduce the following notion:385

Definition 22 (Dominance of a collection of separately coherent conditional lower previsions). Given two collec-
tions of separately coherent conditional lower previsionsPO1

(·|XI1), . . . ,POr
(·|XIr ) andP ′O1

(·|XI1),. . . ,P ′Or
(·|XIr ),

we say that the latter dominates the former if and only if

(∀i = 1, . . . , r)(∀f ∈ LOi∪Ii)(∀xIi ∈ XIi) P
′
Oi

(f |xIi) ≥ POi
(f |xIi).

6This is what Williams originally called coherence [87, 94].
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We denote dominance for short also as P ′Oi
(·|XIi) ≥ POi

(·|XIi).386

Definition 23 (Avoiding partial loss of a collection of separately coherent conditional lower previsions). Given a387

collection of separately coherent conditional lower previsions, PO1
(·|XI1), . . . , POr

(·|XIr ), we say that the collection388

avoids partial loss if and only if there is a strongly coherent collection P ′O1
(·|XI1), . . . , P ′Or

(·|XIr ) that dominates it.389

Obviously strong coherence implies that a collection avoids partial loss, but not vice versa. In fact, the condition390

of avoiding partial loss is tantamount to the possibility of turning a non-coherent collection into a coherent one, by391

making the assessments more precise. The least-committal way to do so is called the natural extension:392

Definition 24 (Natural extension of a collection of separately coherent conditional lower previsions). Given a393

collection of separately coherent conditional lower previsions that avoids partial loss, PO1
(·|XI1), . . . , POr

(·|XIr ),394

its natural extension is the smallest dominating strongly coherent collection EO1
(·|XI1), . . . , EOr

(·|XIr ) (i.e., the one395

that is dominated by all the dominating ones).396

Similarly to what we mentioned in the unconditional case, two different coherent sets of desirable gambles D1,D2397

may determine the same conditional lower prevision by means of Eq. (8). As a consequence, sets of desirable gambles398

constitute a more general uncertainty model than coherent lower previsions.399

On the other hand, and similarly to Eq. (5), if we work with coherent lower previsions as the primary model, we can400

always make a transformation into sets of desirable gambles: given a separately coherent conditional lower prevision401

P (XO|XI) on LO∪I , the set402

DO|xI := {IxI
(f − P (f |xI) + ε) : f ∈ LO, ε > 0} ∪ {f ∈ L+

O∪I : f = IxI
f} (9)

is a coherent subset of LO∪I . Moreover, the union DO|XI induces P (XO|XI) by means of Eq. (8). Indeed, we have403

the following:404

Proposition 8. Consider separately coherent conditional lower previsions PO1
(·|XI1), . . . , POr

(·|XIr ) with respect-405

ive domains LO1∪I1 , . . . ,LOr∪Ir . Let DO1 |XI1 , . . . ,DOr |XIr be the sets of desirable gambles they induce by means406

of Eq. (9). Define D := ∪rj=1DOj |XIj and let E be its natural extension.407

1. PO1
(·|XI1), . . . , POr

(·|XIr ) avoid partial loss if and only if D avoids partial loss.408

2. PO1
(·|XI1), . . . , POr

(·|XIr ) are strongly coherent if and only if E induces them by means of Eq. (8).409

In fact, it is proven in [67, Theorem 7(2)] that the natural extension E of D induces the natural extensions410

EO1
(·|XI1), . . . , EOr

(·|XIr ) of PO1
(·|XI1), . . . , POr

(·|XIr ).411

Therefore, if we consider a number of separately coherent conditional lower previsions, the definition of compatib-412

ility that is akin to Definition 18 is that of coherence we have given in Definition 21. In fact, we observed already in413

[66, Theorem 11] that Definition 21 corresponds to the specialisation of strong coherence for desirability to the case of414

conditional lower previsions.415

As a consequence, in order to verify compatibility, we should check (a) whether the set of desirable gambles416

determined by the separately coherent conditional lower previsions avoids partial loss; and (b) if its natural extension417

induces the conditional lower previsions by means of Eq. (8). Thus, the problem reduces to the one we have tackled in418

Section 3.1.419

4. Exploiting the power of tree decomposition420

In this section we consider the most general version of the compatibility problem, where we have n variables421

X1, . . . , Xn over which we assess r separately coherent conditional sets of desirable gambles DO1 |XI1 , . . . ,DOr |XIr .422

In the following we shall sometimes focus only on the variables involved in a certain set DOj
|XIj ; we denote the423

qualitative form of their relation by the so-called ‘template’ XOj
|XIj .424

As a running example we consider the following r = 13 templates over n = 15 variables:

X2|X1, X2|X4, X3|X2, X5|X4, X5|X6, X11|X5, {X9, X10}|{X7, X8, X11},
X7|X12, X12|X8, X13|X8, X13|X12, X15|{X13, X14}, X8|X15. (10)

13



The problem now is how to check the compatibility of DO1 |XI1 , . . . ,DOr |XIr . One issue is that if we let as usual425

Sj := Oj ∪ Ij for all j, RIP will not hold in general. However, it is well-known that we can enable RIP to hold by426

representing the templates through a graph and then proceeding by a so-called tree decomposition [42].427

The procedure of tree decomposition has a long history and is related to the possibility of optimally decomposing a428

problem into smaller ones. The solutions of these smaller problems are then aggregated back to obtain the solution of429

the original problem, in a dynamic-programming fashion [11]. There is a wealth of applications of tree decomposition in430

Artificial Intelligence: e.g., in probabilistic inference [27, 48, 58], constraint satisfaction [28, 100], matrix decomposition431

[13, 73]. We are now going to add our generalised version of the compatibility problem to the list of problems that can432

be solved by tree decomposition.433

Let us then proceed in the traditional way towards a tree decomposition. First, we create the so-called ‘domain434

graph’ (we are borrowing some terminology from [47]):435

Definition 25 (Domain graph). Given templatesXO1 |XI1 , . . . , XOr |XIr over n variables, the corresponding domain436

graph is an undirected graph with n nodes such that node i is associated with variable Xi, for all i = 1, . . . , n. Two437

nodes are connected in the domain graph if and only if there is a template j such that both nodes’ indexes belong to Sj .438

The domain graph for the running example is shown in Figure 1.

X1 X4X2

X3 X6

X5

X11

X7

X8

X10 X9

X12 X14X13

X15

Figure 1: Domain graph for the running example.

439

The next definition gives an important property that domain graphs may satisfy:440

Definition 26 (Triangulated graph). An undirected graph is triangulated if and only if all cycles of length greater441

than three are cut by a chord (the graph is also called chordal in this case).442

It is easy to check that the domain graph of the running example is indeed triangulated (for instance, observe that the443

cycle X8 −X12 −X13 −X15, of length four, is cut by cord X8 −X13).444

Now we need some additional notion from graph theory:445

Definition 27 (Clique). An undirected graph’s cliques are its fully connected subgraphs; a clique is said to be maximal446

if and only if it is not contained in any other clique.447

For instance, in the running example the subgraph made of nodes {X7, X8} is a clique, which, in turn, is contained in448

the maximal clique {X7, X8, X9, X10, X11}.449

That the graph is chordal implies that the maximal cliques of the domain graph can be arranged in a join tree (see,450

e.g., [47, Theorem 4.4]).451

Definition 28 (Join tree). A join tree is an undirected tree whose nodes correspond to the cliques of a domain graph452

(each node contains the set of variables of the related clique), and with the property that whenever a variable belongs453

to two nodes, it belongs also to all the nodes in the path between them.454

The latter property is actually the graphical version of RIP, in the sense that if we now let S′i be equal to the set of455

variables’ indexes in clique i, for i = 1, . . . , q ≤ r, then S′1, . . . , S
′
q satisfy RIP. In other words, the join tree tells us456

how to optimally aggregate the original variables into clusters (i.e., cliques) so as to make RIP hold over them. Figure 2457

shows the join tree for the running example.458

The procedure of creating a join tree from a triangulated domain graph is easy, and there are well-known, efficient459

algorithms to do so (see, e.g., [53, Section 10.4.2]). In case the domain graph is not triangulated, it is always possible to460
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C2

C1

C3

C4

C6

C5

C7

C8

C10

C9

C11

Figure 2: Join tree for the running example. The cliques C1, . . . , C11 are defined in Table 1.

add edges to the domain graph so as to make it triangulated.7 Overall, this means that given a collection of templates,461

we can always assume that there is a triangulated graph associated with it and hence that there is a procedure that462

outputs the corresponding join tree.463

Once the join tree is obtained, and hence we have RIP, we can exploit it to solve the compatibility problem; in464

particular, we can do this directly on the graph provided that we enrich the join tree by some quantitative information:465

Definition 29 (Junction tree). A junction tree is obtained from a join tree by (i) assigning the uncertain information466

about template XOj
|XIj to a (single) node that contains the variables related to Sj , for all j = 1, . . . , r; (ii) labelling467

each edge with a so-called separator denoting the variables in the intersection of the two connected nodes; and (iii)468

choosing a ‘root’ node for the tree in an arbitrary way.8,9469

The junction tree for the running example is in Figure 3; Table 1 gives some summary information about it. Note that470

we have chosen clique {X5, X11} as the root of the tree. Moreover, we take Ai to be the set of indexes of those cliques471

that are at distance i from this root. Then trivially A0 consists simply of the index of the root, and if the maximum472

distance to the root is k, then {A0, A1, . . . , Ak} forms a partition of the set of indexes. Labels Ai are displayed in473

Figure 3 close to the cliques, with i = 0, . . . , 5. We display also the sets of desirable gambles assigned to each clique.474

Separators between cliques are shown close to the edges connecting them. Note that a node of the junction tree can475

contain more than one set of desirable gambles.476

{X1, X2}

{X2, X4} {X4, X5}

{X2, X3} {X5, X6}

{X5, X11} {X7, X8, X9, X10, X11} {X7, X8, X12} {X8, X12, X13}

{X8, X13, X15} {X13, X14, X15}
A3 : D2|X1

A2 : D2|X4

A3 : D3|X2

A1 : D5|X4 A0 : D11|X5

A1 : D5|X6

A1 : D9,11|X{7,8,11} A2 : D7|X12,D12|X8 A3 : D13|X8,D13|X12

A4 : D8|X15 A5 : D15|X{13,14}

X4 X5 X11 X{7,8} X{8,12}

X{8,13}

X{13,15}

X2 X2 X5

Figure 3: Junction tree for the running example. The cliques are now displayed explicitly through their corresponding sets of variables S′1, . . . , S
′
11.

Considered our discussion in Section 3.1, in order to have compatibility we need that our original assessments at477

least avoid partial loss. For this reason, we can assume that at each node j of the junction tree the associated assessments478

avoid partial loss: this implies no loss of generality because if they did not, then also the overall set of assessments479

DO1
|XI1 , . . . ,DOr

|XIr would not avoid partial loss either.480

7However, this will increase the size of the cliques of the resulting graph and thus may heavily impact the computational complexity of the
algorithms that exploit the tree decomposition.

8Technically once we choose a root, we should talk of a rooted junction tree.
9Theorem 10 later on makes sure that the choice of the root node is not relevant.
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Clique (Cj) Variables (S′j) Distance to root (Ai) Desirable gambles (Dj)
C1 {2, 4} 2 D4|X2

C2 {1, 2} 3 D2|X1

C3 {4, 5} 1 D5|X4

C4 {2, 3} 3 D3|X2

C5 {5, 11} 0 D11|X5

C6 {5, 6} 1 D5|X6

C7 {7, 8, 9, 10, 11} 1 D9,11|X7,8,11

C8 {7, 8, 12} 2 D7|X12 ∪ D12|X8

C9 {8, 13, 15} 4 D8|X15

C10 {8, 12, 13} 3 D13|X8 ∪ D13|X12

C11 {13, 14, 15} 5 D15|X13,14

Table 1: The clique names, the variables involved in a clique, the distance to the root, as well as the set of desirable gambles associated with
each clique. We see for instance that C10 is made by the union of two nodes, associated with the assessments X13|X8 and X13|X12; if these
are modelled by means of the separately coherent conditional sets of desirable gambles D13|X8 and D13|X12, then the set of desirable gambles
associated with C10 is given by D10 := D13|X8 ∪ D13|X12.

At this point we are ready to exploit the tree decomposition. The algorithms that rely on it are usually made of two481

passes: the first is called collect evidence and the second distribute evidence. Both require as input the junction tree.482

We start by focusing on the first pass of collection of evidence, where all nodes propagate uncertain information483

towards the root. To simplify the notation, we denote by Dj the overall set of desirable gambles at node j obtained by484

taking the union of the assessments in such a node.485

Our version of collect evidence is given in Algorithm 1.486

Algorithm 1 Collect evidence
1: procedure COLLECTEVIDENCE(a junction tree)
2: Let k be the maximum distance of a node from the root; . Distance 0 is for the root itself.
3: let Ai be the set of nodes at distance i from the root, for i = 0, . . . , k + 1; . Ak+1 is always empty.
4: for i← k, 0 do . Focus on distance i.
5: for all j ∈ Ai do . Consider the nodes in Ai.
6: let A be the set of nodes adjacent to j in Ai+1;
7: let D′j := posiS′j (L+

S′j
∪ Dj ∪

⋃
l∈A(D′l ∩ LS′j∩S′l )); . S′j ∩ S′l is the separator of j and l.

8: end for
9: end for

10: return the junction tree with the additional information D′j at each node j = 1, . . . , q.
11: end procedure

This is essentially the standard form of collect evidence [47, Section 4.4], where we combine uncertain information487

from a node and some of its neighbours and then marginalise it on the variables of a separator before transmitting it488

along the related edge. Observe that the combination operator in line 7 is just the natural extension as defined in Eq. (2).489

The marginalisation operator is denoted, in the same line, by D′l ∩ LS′j∩S′l , and is the restriction of D′l to the set of490

S′j ∩ S′l-measurable gambles. Note also that the subindex l in D′l refers to a node in the junction tree, and that what491

we obtain is a set of desirable gambles that is coherent relative to L(XS′j ), where S′j is the set of variables’ indexes in492

node j. Moreover, the order in which the nodes in the same Ai are used in lines 5–8 in the algorithm is not relevant for493

the subsequent results, as can be seen from the proofs.494

Let us illustrate the procedure with our running example, with the chosen root (clique {X5, X11}). Remember495

that labels Ai, i = 0, . . . , 5 induce a partition of the cliques determined by the distance of each clique from the root,496

given in the specific case by the following indexes: A0 = {5}, A1 = {3, 6, 7}, A2 = {1, 8}, A3 = {2, 4, 10}, A4 =497

{9}, A5 = {11}.498
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Then some instances of the procedure depicted in Algorithm 1 would be as follows:499

◦ In the leaves j = 2 and j = 4 from A3, associated with S′2 = {1, 2} and S′4 = {2, 3}, respectively, we make500

D′2 := D2 and D′4 := D4.501

◦ In their neighbour j = 1 ∈ A2, associated with S′1 = {2, 4} , we make D′1 := posi2,4(L+
2,4 ∪D1 ∪ (D′2 ∩L2) ∪502

(D′4 ∩ L2)).503

◦ Eventually, we get to the root node j = 5, associated with S′5 = {5, 11}, and with neighbours j = 3 (S′3 =504

{5, 4}), j = 6(S′6 = {5, 6}), j = 7(S′7 = {7, 8, 9, 10, 11}, and we make D′5 := posi5,11(L+
5,11 ∪ D5 ∪ (D′3 ∩505

L5) ∪ (D′6 ∩ L5) ∪ (D′7 ∩ L11)).506

The procedure in Algorithm 1 provides us with the restriction of the natural extension of D1, . . . ,Dq to the gambles507

that depend on the variables from the root node:508

Theorem 9. Let D′0 denote the set produced by Algorithm 1 in the root node. Then D′0 is the restriction of the natural509

extension E of D1, . . . ,Dq to LS′0 .510

We see from this result that
D′0 = E ∩ LS′0 = posi(∪lDl ∪ L+) ∩ LS′0 ,

and also that
D1, . . . ,Dq avoid partial loss ⇔ E coherent ⇔ D′0 coherent,

where the implication “D′0 coherent ⇒ E coherent” follows because if E were incoherent it would include the zero511

gamble and so should do D′0 then. This means in particular that if D′0 is not coherent, then the original assessments do512

not avoid partial loss, and as a consequence they are not compatible. In this case we can stop the procedure here.513

Conversely, if D′0 is coherent we proceed to the reverse procedure of distribute evidence, where the junction tree in514

input must be the output of collect evidence. Observe that in this case it is not necessary to add the positive gambles,515

since L+
S′j
⊆ D′j by construction, and also that, since our graph is a tree, any node has only one immediate neighbour516

that is closer to the root.517

Algorithm 2 Distribute evidence
1: procedure DISTRIBUTEEVIDENCE(a junction tree outputted by Algorithm 1)
2: Let k be the maximum distance of a node from the root; . Distance 0 is for the root itself.
3: let Ai be the set of nodes at distance i from the root, for i = −1, 0 . . . , k − 1; . A−1 is the empty set.
4: for i← 0, k do . Focus on distance i.
5: for all j ∈ Ai do . Consider the nodes in Ai.
6: let l be the node adjacent to j in Ai−1;
7: let D′′j := posiS′j (D′j ∪ (D′′l ∩ LS′j∩S′l )); . D′′0 equals D′0 as it is coherent already.
8: end for
9: end for

10: return the junction tree with the additional information D′′j at each node j = 1, . . . , q.
11: end procedure

In order to illustrate the procedure, consider again our running example, depicted in Figure 3. Some instances of518

the algorithm would be as follows:519

◦ We begin by considering D′′5 := D′5 in the root node.520

◦ For clique C3 associated with S′3 = {5, 4} ∈ A1, we make D′′3 := posi5,4(D′3 ∪ (D′′5 ∩ L5)).521

◦ Eventually we get to the leaf j = 4 associated with S′4 = {2, 3} ∈ A3, where we define D′′4 := posi2,3(D′4 ∪522

(D′′1 ∩ L2)).523
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Let us prove that, for all j = 1, . . . , q, the set D′′j we obtain with this procedure is the restriction of the natural524

extension of D1, . . . ,Dq to the class of XS′j -measurable gambles. This holds for the root node too, taking into account525

Theorem 9 and the first step in Algorithm 2.526

Theorem 10. Let E be the natural extension of D1, . . . ,Dq. If we follow Algorithm 2, then D′′j = E ∩ LS′j for every527

j = 1, . . . , q.10
528

After reaching the end of Algorithm 2, it is then a small step to prove whether compatibility holds. For each original529

assessment DOj
|XIj , we consider the clique that contains it, and the corresponding set produced by Algorithm 2, say530

D′′i . From this, using Definition 17, we induce the separately coherent conditional set of desirable gambles D′′Oj
|XIj531

and verify whether DOj
|XIj = D′′Oj

|XIj . Compatibility holds if and only if this is the case for all j = 1, . . . , r.532

With respect to the computational complexity of the procedures of collect and distribute evidence, we should533

distinguish two cases. In case our probabilistic assessments define a precise compatible joint, then the overall complexity534

is a linear function of the computation local to the cliques; this is analogous to the traditional procedures that work535

on junction trees. In the imprecise case, instead, the size of the messages exchanged between cliques may grow536

exponentially fast with the propagation (e.g., see [61]). This is unavoidable in general, as exact propagation of imprecise537

information is NP-hard [21].538

More generally speaking, the present paper is conceived to lay the foundations of a very general compatibility539

problem with sets of desirable gambles, and as such we do not go into details of algorithmic implementation. However,540

since the algorithms require some steps involving marginalisation or natural extension, we would like to briefly mention541

how these can be practically achieved. In particular, in the case of finite spaces of possibilities, one usually addresses542

these tasks using linear programming (possibly in a sequence of linear programs). This is detailed for instance in [91];543

alternative approaches are described in [17] and the references therein. In the case of infinite spaces, the task is obviously544

more complicated as one needs to solve non-linear optimisations, or semi-infinite linear programming problems, that545

are generally intractable. However, when we restrict the attention to the class of polynomial, or piece-wise polynomial,546

gambles, then approximate solutions to this problem can be obtained by means of Lasserre’s sum-of-squares hierarchy547

[57] that are conservative and theoretically sound [8]. Benavoli has released the public software library PyRational that548

implements some of these procedures [7] (see also [6]).549

5. Joining coherence graphs and RIP550

It is important to realise that RIP or, equivalently, tree decompositions, do not necessarily simplify the compatibility551

check to the most. Consider for instance a case where the involved assessments define only two templates: X1|X2 and552

X2|X3 (this actually happens in Example 5 in Appendix A); the form of these templates is enough to deduce that the553

associated numerical assessments, whatever they are (provided that they are separately coherent), are strongly coherent,554

that is, compatible. In this case, therefore, it would be useless, and inefficient, to construct the junction tree and make555

the two passes of collect and distribute evidence in order to verify compatibility.556

The reason why compatibility immediately holds for templates X1|X2 and X2|X3, is that those templates allow557

for an application of the marginal extension theorem (established in [89, Section 6.7] and [62] for coherent lower558

previsions, and in [69, Proposition 30] for desirable gambles), which, in turn, is the generalisation of the law of total559

probability to imprecision.11
560

Similar considerations led us in the past to work out the details of the extent to which we can exploit the marginal561

extension theorem to prove the coherence of some assessments on the sole basis of their templates. The result is562

the theory of ‘coherence graphs’, reported in [64]. The coherence graph for the templates in Eq. (10) is represented563

in Figure 4. It is a straightforward graphical representation where each template is represented by a black circle564

whose incoming arcs correspond to its conditioning variables and the outgoing arcs to the variables on the left of its565

conditioning bar.566

10That the overall procedure of collecting and distributing evidence described above cannot be simplified, is discussed in Appendix A.2.
11Referee 1 pointed us to a possible connection between coherence graphs and Kohlas’ notion of kernels [52, Section 4.5]. Indeed Kohlas’

Lemmas 4.17 and 4.18 seem to have a similar aim to the mentioned marginal extension theorem. This prospective relation appears to be worth
exploring in future work.
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Figure 4: Coherence graph for the running example.

In [64] we showed that in order to verify the coherence of a number of assessments it suffices to do it independently567

in each of the superblocks of their associated coherence graph. These superblocks are built in the following manner:568

◦ Within a coherence graph, we call source of contradiction each variable with more than one parent, or that569

belongs to a cycle. In Figure 4, variables X2, X5, X13 are sources of contradiction since they have more than570

one parent; X8, X12, X13, X15 are sources of contradiction as they are involved in cycles.571

◦ The block associated with a source of contradiction in made up with all its predecessor circles and related572

variables (templates) in the coherence graphs. Figure 5 displays the blocks for the running example graph as573

dashed boxes. On the leftmost part, we can see the two blocks originated by X2 and X5, respectively. The574

remaining box on the rightmost part represents the block that X13 originates and that coincides with the block575

that the variables involved in cycles originate (that is, X8, X12, X13, X15).576

◦ We put together all blocks that have variables in common, thus forming a superblock. In Figure 5 there are two577

superblocks: the first is given by the union of the two blocks on the left, since they share variable X4; the second578

is equal to the single block on the right (or, equivalently, to the union of the two coinciding blocks that share all579

variables).580

X1 X4X2

X3 X6

X5

X11

X7

X8

X10 X9

•

X12 X14X13

X15 •

• • •
•• •

•
• •

•

•

Figure 5: Blocks defining the two superblocks in the coherence graph of the running example.

The structure of the superblocks is equivalent to a partition of our sets of assessments: each superblock makes581

up for an element of the partition; the assessments not involved in any superblock make up the last element of the582

partition. It was proven in [64], in the context of coherent lower previsions, that our initial assessments are coherent583

(avoid partial loss) if those that belong to the same superblock are coherent (avoid partial loss). Similar results hold for584

sets of desirable gambles:585

Proposition 11. Let us consider a number of templates XO1 |XI1 , . . . , XOr |XIr and associated separately coher-586

ent conditional sets of desirable gambles DO1
|XI1 , . . . ,DOr

|XIr . Consider also the associated coherence graph,587

which induces a partition B of {1, . . . , r}. If for each B ∈ B it holds that ∪j∈BDOj
|XIj avoids partial loss, then588

∪rj=1DOj
|XIj avoids partial loss.589

In particular, we can also prove that it suffices to verify the compatibility in each superblock separately, since from590

this we can immediately derive the compatibility overall:591

Theorem 12. Let us consider a number of templates XO1 |XI1 , . . . , XOr |XIr and associated separately coherent592

conditional sets of desirable gambles DO1
|XI1 , . . . ,DOr

|XIr . Consider also the associated coherence graph, which593

induces a partition B of {1, . . . , r}. If for each B ∈ B it holds that ∪j∈BDOj
|XIj are compatible, then ∪rj=1DOj

|XIj594

are compatible. Their natural extension is the set Dl determined by Algorithm 3.595
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Algorithm 3 Natural extension
procedure NATURAL EXTENSION(a coherence graph; desirability assessments on each node)

2: Let B′ := {B ∈ B : |B| > 1}; . These are associated with the superblocks.
let D0 be the natural extension of ∪B∈B′ ∪j∈B DOj

|XIj ; . Superblocks have disjoint sets of variables.
4: let C := {1, . . . , r} \ (∪B∈B′B); . These are the remaining indices.

Consider an order {j1, . . . , jl} of C so that Ojm ∩(m′<m) (Oj′m ∪ Ij′m) = ∅ ∀m; . It exists by [97, Lemma 1].
6: for i← 1, l do . We proceed iteratively.

let Di be the natural extension of Di−1 ∪ DOji
|XIji

;
8: end for

return Dl.
10: end procedure

In other words, once we are given our conditional sets of desirable gambles on XO1 |XI1 , . . . , XOr |XIr , we should596

proceed as follows:597

◦ We build the coherence graph associated with these sets of variables.598

◦ On each superblock, we determine the associated junction tree.599

◦ We verify the compatibility of the subset of the assessments belonging to that junction tree.600

In particular, if we consider the assessments in our running example (Eq. (10)), this means that we should only601

verify the compatibility of:602

◦ D2|X1,D2|X4,D5|X4,D5|X6, on the one hand; and603

◦ D13|X12,D12|X8,D8|X15,D13|X8,D15|X{13,14}, on the other.604

In the first one, we obtain the following junction tree:

{X1, X2} {X2, X4} {X4, X5} {X5, X6}
D2|X1 D2|X4 D5|X4 D5|X6

X4X2 X5

Figure 6: Junction tree for the first superblock.

605

As a consequence, all we need to do in order to verify the compatibility of the assessments is to compute their606

natural extension D1,2,4,5,6 (or, more precisely, the intersections D1,2,4,5,6 ∩ L1,2,D1,2,4,5,6 ∩ L2,4,D1,2,4,5,6 ∩ L4,5607

and D1,2,4,5,6 ∩ L5,6) by means of Algorithms 1 and 2 and then check if it induces the original assessments by means608

of (7).609

In the second case, the junction tree is the following:

{X8, X12, X13} {X8, X13, X15} {X13, X14, X15}
D13|X12,D12|X8 D8|X15,D13|X8 D15|X{13,14}

X{8,13} X{13,15}

Figure 7: Junction tree for the second superblock.

610

Therefore, here we should first of all compute the natural extension of D13|X8,D12|X8,D13|X12, E12,13,8; that of611

D13|X8,D8|X15, E8,13,15 (note that these two sets are always compatible because of Proposition 13); and then verify612

the compatibility of E12,13,8, E8,13,15,D15|X14,13, by means of Algorithms 1, 2 and Eq. (7).613

Thus, the use of coherence graphs allows us to significantly simplify the study of the problem of compatibility.12
614

12For a different way to exploit the marginal extension theorem to the extent of checking compatibility, see Appendix A.3.
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6. Conclusions615

In this paper, we have initially generalised the classical result on the compatibility of a number of marginal616

probabilities into a global one to the case where our belief models are sets of desirable gambles. This includes as617

particular cases sets of probability measures and also most models of non-additive measures, such as belief functions618

or possibility measures. Our generalisation covers also the case of infinite possibility spaces and is not constrained619

by measurability issues. There are, however, other works on the marginal problem that do not fall into the framework620

of our Proposition 1: this is for instance the case of Studený’s work on ordinal conditional functions and relational621

databases [82, 83].622

We have then considered compatibility in the conditional case and shown that we can solve the problem through623

junction tree propagation. Apparently, this is the first time that the link between RIP and compatibility is established624

in the conditional case. We have then shown that the problem can be further simplified joining junction trees and625

coherence graphs. By these tools, the complexity of checking compatibility may greatly decrease in applications, as it626

is already known to happen in the unconditional case.627

As for future work, the following possibilities seem to be worth considering:628

◦ In this paper we have focused on computing the least-committal joint model compatible with given assessments629

(i.e., the natural extension). It may be useful to generalise our results so as to make them work with other types630

of extensions, which satisfy additional requirements. To this end, we think the most promising way would be to631

expand on our initial connection with information algebras [52] as sketched in Appendix A.4. More generally632

speaking, and thanks to the motivating comments by Referee 1, we have come to appreciate the power of633

information algebras, which appear to be very nicely suited to be joined with desirability. We believe there is634

much to be gained in deepening such a connection.635

◦ At the moment our Algorithm 3, for the computation of the compatible joint in the mixed environment made636

by junction trees and coherence graphs, does not exploit the form of the coherence graph to decrease the637

computational complexity. There is certainly room to improve on this, even though the task does not seem638

immediate to achieve.639

◦ There could be an interesting application of our results to probabilistic satisfiability. The reason is that our640

framework is general enough to model uniformly both the logical part of the problem (by means of degenerate641

probabilities) and the probabilistic information on top of it, possibly in an imprecise form. Moreover, it would642

also be possible to compute the probabilistic implications of the problem on any variables: it would be enough643

to add those variables to the problem and place a totally uninformative (i.e., vacuous) probability over them,644

and then let our procedures compute the natural extension (note that this would not be possible using precise645

probability).646

◦ Computing the natural extension exactly may be costly and it can be necessary to resort to approximate methods.647

In this light, it would be useful to verify whether our past results on the iterative approximation of the natural648

extension, in a compatibility context [65, Section 5], can be joined with the current work so as to make a649

workable algorithm. More generally speaking, the statistical literature has produced a number of algorithms for650

compatibility that would be useful to merge in some way with our results here.651

◦ Note, from Proposition 6, that if the initial assessments incur partial loss, then compatibility does not hold.652

One possibility then would be to consider first the approaches to correct incoherent assessments that have been653

discussed in the literature (e.g., [15, 16, 74] and [98, Section 4.1.1]) and then apply the results in this paper.654

◦ As mentioned in the Introduction, Lasserre has heavily exploited RIP to decrease the complexity of polynomial655

optimisation problems [56]. Let us recall that Lasserre’s work has deep implications on making logic and656

probability computationally efficient [8]. Since in this paper we relax Lasserre’s assumptions (for instance by not657

relying on σ-additivity and by allowing imprecision) and we enable the conditional case to be treated, in addition658

to the unconditional one, we expect that our results should be useful to extend his work to other applications.659

Finally, we would like to stress that the notion of compatibility we have considered in this paper corresponds660

to Williams (strong) coherence in imprecise probability. As such, it does not take into account the property of661
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conglomerability (which is relevant to conditioning probabilistic models in the case of infinite spaces, see, e.g., [69]). In662

fact, Theorem 2 does not extend towards conglomerability, in the following sense: if we consider pairwise compatible663

and fully conglomerable coherent marginal previsions defined on sets S1, . . . , Sr satisfying RIP, their natural extension,664

while being a coherent compatible joint by Theorem 2, need not be conglomerable. A detailed study of the compatibility665

problem under conglomerability is one of the main foundational open problems for the future.666
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Appendix A. Additional remarks671

Appendix A.1. Conditional compatibility cannot be reduced to the unconditional case672

The compatibility of DO1
|XI1 , . . . ,DOr

|XIr does not imply the pairwise compatibility of the sets E1, . . . , Er. Let673

us illustrate this question with the following example, where we have three variables X1, X2, X3 and conditional674

information in terms of X1|X2 and X2|X3:675

Example 5. Consider binary spaces X1,X2,X3, and let us make the following conditional assessments:

D1|(X2 = 0) := {f ∈ L12 : f = IX2=0f, f(1, 0) + f(0, 0) > 0},
D1|(X2 = 1) := {f ∈ L12 : f = IX2=1f, f(1, 1) + f(0, 1) > 0},
D2|(X3 = 0) := {f ∈ L23 : f = IX3=0f, f(1, 0) + f(0, 0) > 0},
D2|(X3 = 1) := {f ∈ L23 : f = IX3=1f, f(1, 1) + f(0, 1) > 0}.

These four sets of desirable gambles are compatible, in the sense that there is a coherent set of desirable gambles676

E ⊆ L that exactly induces each of them. It is given by:677

E := {f ∈ L :
∑
x∈X

f(x) > 0}. (A.1)

Indeed, given f ∈ L12, it holds that

IX2=0f ∈ E ⇔ f(0, 0) + f(1, 0) > 0⇔ f ∈ D1|(X2 = 0),

and similarly for the other cases.678

Now if we want to consider pairwise compatibility, we need to have coherent sets of desirable gambles on the
sets of variables S1 := {1, 2} and S2 := {2, 3}, respectively, which at present we have not. To this end, we need
to consider the natural extension of D1|X2 := D1|(X2 = 0) ∪ D1|(X2 = 1) to L12, and the natural extension of
D2|X3 := D2|(X3 = 0) ∪ D2|(X3 = 1) to L23. Using Eq. (6), these are respectively given by

ES1
:= posiS1

(L+
S1
∪ D1|X2) = {f ∈ L12 : f 6= 0, f(1, 0) + f(0, 0) ≥ 0 and f(1, 1) + f(0, 1) ≥ 0}

and

ES2
:= posiS2

(L+
S2
∪ D2|X3) = {f ∈ L23 : f 6= 0, f(1, 0) + f(0, 0) ≥ 0 and f(1, 1) + f(0, 1) ≥ 0}.

However, these two sets are not pairwise compatible, since

f ∈ L(X2) ∩ ES1
⇔ f 6= 0, f(0) ≥ 0, f(1) ≥ 0⇔ f ∈ L+(X2) while

f ∈ L(X1) ∩ ES2
⇔ f 6= 0, f(1) + f(0) ≥ 0⇔ f(1) + f(0) > 0.

This implies that the marginals of the joint model E do not coincide with ES1 and ES2 . This is the source of the failure679

of pairwise compatibility.680

And yet note that D1|X2 and D2|X3 jointly avoid partial loss, since they are both included in the coherent set E681

given by Eq. (A.1). ♦682
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Appendix A.2. The algorithms of collecting and distributing evidence cannot be simplified683

Note that the overall procedure of collecting and distributing evidence described above cannot be simplified, in the
sense that, for any set of variables A, it does not hold that

posi(∪qi=1Di ∪ L
+) ∩ LA = posi(∪Si∩A6=∅Di ∪ L

+) ∩ LA;

that is, even if a set of desirable gambles does not involve any variable in the set A, it could be that it has behavioural684

implications on A when we propagate information through the tree:685

Example 6. Let X1, X2, X3 be binary variables, and consider the conditional assessments X2|X1 and X3|X2 given
by

X1 = 0⇒ X2 = 1;X1 = 1⇒ X2 = 1;X2 = 0⇒ X3 = 0;X2 = 1⇒ X3 = 1.

These can be modelled by means of the following conditional sets of desirable gambles:

D12 := D2|X1 = {f ∈ L12 : f(0, 1) ≥ 0, f(1, 1) ≥ 0,max{f(0, 1), f(1, 1)} > 0};
D23 := D3|X2 = {f ∈ L23 : f(0, 0) ≥ 0, f(1, 1) ≥ 0,max{f(0, 0), f(1, 1)} > 0}.

The gamble g := IX3=1 − 2IX3=0 belongs to posi(D12 ∪ D23 ∪ L+) ∩ L3: to prove this, note that g ≥ f1 + f2, for

f1 :=
1

2
IX2=1 − 3IX2=0 ∈ D12 and f2 :=

1

2
IX2=X3 − 3 IX2 6=X3 ∈ D23.

However,
posi((D12 ∩ L3) ∪ (D23 ∩ L3) ∪ L+) ∩ L3 = posi((D23 ∩ L3) ∪ L+) ∩ L3 = L+

3

and therefore the two sets do not coincide. ♦686

This may be perhaps more easily be seen using a (precise) probabilistic approach: we consider the conditional687

probabilities P (X2|X1) and P (X3|X2) such that in the second X3 = X2 and in the first we effectively obtain that688

P (X2 = 1) = 1, irrespective of the marginal on X1, then we deduce that it must be P (X3 = 1) = 1, even if this689

cannot be obtained from P (X3|X2) alone. Note that the example works because we are introducing zero probabilities690

in the assessment; otherwise it would depend on the unknown marginal distribution of X1.691

Appendix A.3. Compatibility of nested assessments692

It is interesting to explicitly characterise the compatibility of the sets of desirable gambles D1, . . . ,Dr, understood693

in terms of avoiding partial loss, in one particular instance of RIP: when the natural order establishes a chain in694

the pairwise intersections, in the sense that, given j1 < j2 < j3, it holds that Sj3 ∩ Sj1 ⊆ Sj3 ∩ Sj2 . This may be695

useful when our assessments are established in an incremental manner, as is for instance the case with sequences of696

observations, which is a case that would not be treated as effectively with junction trees.697

Proposition 13. Consider sets of variables S1, . . . , Sr such that Si ∩ (∪j<iSj) ⊆ Si−1 for every i = 2, . . . , r, and
sets of desirable gambles D1, . . . ,Dr, where Dj is coherent relative to LSj

. Let us define recursively D′1, . . . ,D′r in
the following manner: {

D′1 := D1,

D′j := posiSj
(Dj ∪ (D′j−1 ∩ LSj−1∩Sj

)) if j > 1.

Then
D1, . . . ,Dr avoid partial loss ⇔ D′r coherent.

In that case, for every j = 1, . . . , r, D′j = D′r ∩ LSj
.698

The procedure in this proposition is a generalisation of the marginal extension theorem established in [89, Sec-699

tion 6.7] and [62] for coherent lower previsions, which in turn is an extension of the law of total probability from700

probability theory. This result also settles the problem of verifying compatibility in case the sets S1, . . . , Sr are nested:701

◦ When D1, . . . ,Dr correspond to unconditional assessments, we must check whether D′r is a coherent set of702

desirable gambles and D′j = Dj for every j = 1, . . . , r.703

◦ When D1, . . . ,Dr correspond to conditional assessments, we must check whether D′r is a coherent set of704

desirable gambles and whether D′j induces the conditional assessments in Dj by means of Eq. (7) for every705

j = 1, . . . , r. ♦706

23



Appendix A.4. Information and valuation algebras707

Valuation algebras are a very general representation of knowledge or information [52, 78]. They abstract away the708

most important features that appear in nearly every representation, and at such an abstract level, they provide basic709

operations to make inference. Among these basic operations, valuation algebras provide a very general formulation, as710

well as a justification, of the junction tree algorithm.711

In the original version of this paper, we noticed that there was a natural connection between the present work and712

valuation algebras, which we were proposing to investigate in future work. However Referee 1 motivated us to start713

deepening the connection already in this paper. This is what we set out to do in the next section.714

Appendix A.4.1. Coherent sets of desirable gambles as valuation algebras715

The key observation is that the theory of sets of desirable gambles can be embedded into that of valuation algebras.716

To prove this, let us start by considering a set of variables V . Each valuation φ refers to a finite subset d(φ) of V , called717

its domain, and it represents some information about these variables. We shall denote by ΦD the set of all valuations718

with domain D, and let Φ := ∪{φD : D ⊆ V } be the set of all valuations. The map d is usually called the labelling719

operator. In a valuation algebra, there are two other types of operations: a combination operator ⊗, which joins the720

information encoded by two different valuations, and a marginalisation operator ↓, which focuses the knowledge721

encoded by a valuation onto a smaller domain. Then:722

Definition 30 (Valuation algebra). A system (Φ, V, d,⊗, ↓) is a valuation algebra when it satisfies the following723

axioms:724

A1. Φ (resp., ΦD) is commutative and associative under combination;725

A2. (∀φ, φ1, φ2 ∈ Φ)(∀D ⊆ d(φ)) d(φ1 ⊗ φ2) = d(φ1) ∪ d(φ2) and d(φ↓D) = D;726

A3. (∀φ ∈ Φ) φ↓d(φ) = φ;727

A4. (∀D ⊆ D′ ⊆ d(φ))(∀φ ∈ Φ) φ↓D = (φ↓D
′
)↓D;728

A5. If φ1, φ2 ∈ Φ are valuations with D1 := d(φ1) and D2 := d(φ2), then (φ1 ⊗ φ2)↓D1 = φ1 ⊗ φ↓D1∩D2

2 ;729

A6. (∀D ⊆ V )(∃eD ∈ ΦD)(∀φ ∈ ΦD) φ⊗eD = eD⊗φ = φ, and moreover (∀D1, D2 ⊆ V ) eD1⊗eD2 = eD1∪D2 .730

Let us show that coherent sets of desirable gambles can be embedded into this theory. Using the notation we have731

employed throughout the paper, given a set of indices N := {1, . . . , n} and possibility spaces X1, . . . ,Xn, we let ΦS732

be the family of sets of desirable gambles D ⊆ LS(X ) that are coherent relative to LS(X ), in the manner specified in733

Definition 7. Let Φ := ∪S⊆NΦS . The labelling operator is then given by734

d(φ) := ∩{S : φ ∈ ΦS}. (A.2)

Next, the combination operator we shall consider is related to the natural extension: we let735

φ1 ⊗ φ2 := posi(φ1 ∪ φ2 ∪ L+
d(φ1)∪d(φ2)

); (A.3)

and finally, the marginalisation operator is given by736

φ↓S := φ ∩ LS(X ). (A.4)

It is not difficult to establish the following:737

Proposition 14. The set Φ equipped with the operators above is a valuation algebra.738

As a consequence, we can use all the machinery of valuation algebras for coherent sets of desirable gambles.739

In particular, this means that Theorem 9 follows immediately using [52, Theorem 4.8]; similarly, Theorem 10 is an740

immediate consequence of [52, Theorem 4.10].741
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Appendix A.4.2. Desirable gambles, logic, and information algebras742

We would like to conclude this detour on algebras by discussing in more general terms the relation between743

desirable gambles and information algebras. In fact, Kohlas devotes a chapter of his book to information algebras744

that are, loosely speaking, valuation algebras with an additional property of idempotency. It is particularly interesting745

to focus on Section 6.4 of Kohlas’ book, where he describes how a general logical system can be proven to be an746

information algebra.747

In such a context one needs a language and a consequence operator—as originally defined by Tarski [84, Chapter 5].
In our case the language is just the set of all gambles L and the consequence operator is the natural extension:

C(G) := posi(G ∪ L+),

which associates with any subset G ⊆ L its coherent closure.748

It is very easy to prove that C(·) complies with Kohlas’ requirements E1 and E2 in [52, Section 6.4], whence749

satisfying the definition of a consequence operator. Moreover, it is possible to prove that it also satisfies properties C4750

and C5 in that same section. From this we get, using Kohlas’ results, that desirable gambles are quite a general form of751

an information algebra. In fact, we could have actually used this path to prove, in the previous section, that desirable752

gambles make up a valuation algebra; but it was somewhat of an overkill for our aims, whence we dealt with it more753

directly by showing that desirability satisfies the axioms of valuation algebras.754

So why do we think that the question of information algebras is relevant to the discussion here?755

We believe it is relevant because traditionally there has been a disconnection between logic and probability, of756

which we can see many examples in the literature. For example, the original developments about belief revision (e.g.,757

see [37]) were essentially based on, and made for, logic, and only then probability entered the picture in a kind of758

ad-hoc way; on the philosophical side, we can for instance find Howson that wonders whether probability and logic759

can be combined [45]; we can see something similar also in Kohlas’ book when he devotes the entire Chapter 7 to760

embedding probability and belief functions in his theory (see also [40, Section 2.2]). For similar reasons, we believe,761

Kohlas introduces a number of variants of valuation algebras to account for ratios (needed by Bayes’ rule) and products762

(independence).763

In our view, these difficulties are originated by one unfortunate, and yet stubborn, choice: that of representing764

probability in its habitual form—which we regard as the ‘primal’ representation of probability. This should be contrasted765

to its ‘dual’ representation, which is nothing else than desirability. Let us stress that we are actually talking of the766

mathematical dual, which is obtained through linear programming in the finite case or by a separating hyperplane767

theorem in the infinte case (see [89, Appendix E], [9]). When we move to the dual form we obtain desirability; and768

desirability, as we have seen, is a pure logical theory. In this form, there is no need to find special ways to accommodate769

probability in a setting originally conceived for logic, everything becomes straightforward. For example, the embedding770

of belief functions into algebras on which Kohlas and collaborators have spent much energy, on the wake of Shenoy771

and Shafer’s seminal work [79], becomes a byproduct of the far easier embedding of desirability.13 Note, in addition,772

that desirability does not need ratios to define Bayes’ rule (Definition 16) and independence does not necessarily need773

products [24, Definitions 3 and 5]. As a consequence, a bare information algebra is all one needs to live in the most774

general case.775

Overall, we argue that it is the missing duality step that has markedly slowed down the unification of logic and776

probability, as well as a number of important developments; and we claim it is imprecise probability’s merit to have777

changed perspective, thus allowing for such an alternative avenue. It is a simple step, after all, but one that has not778

frequently been taken outside the imprecise probability community, not even nowadays, after more than 40 years that779

desirability has been introduced by Williams [94] and then repeatedly proposed (e.g., [8, 23, 66, 70, 75, 89, 90, 98]).780

We hope that this further discussion convinces more people to take up desirability as a very convenient way to work781

with probability in purely logical terms.782

Appendix B. Proofs783

Proof of Proposition 1. It suffices to prove the direct implication, the converse being trivial.784

13Yet, let us remark that those past works adopt a non-probabilistic interpretation of belief functions, unlike desirability.
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Let D be a coherent set of desirable gambles satisfying D∩LSj = Dj for every j. Then it holds that ∪rj=1Dj ⊆ D,785

and, since E is the smallest coherent superset of ∪rj=1Dj , we deduce that ∪rj=1Dj ⊆ E ⊆ D. As a consequence,786

E ∩ LSj
⊆ D ∩ LSj

= Dj , and since the inclusion E ∩ LSj
⊇ Dj always holds, we deduce that E ∩ LSj

= Dj for787

j = 1, . . . , r.788

Proof of Theorem 2. Taking Proposition 1 into account, we are going to prove that the natural extension of ∪rj=1Dj ,789

given by posi(L+ ∪
⋃r
i=1Di) is a coherent set of desirable gambles that is globally compatible with D1, . . . ,Dr. We790

apply induction on r. We begin with the case of r = 2.791

Let D := posi(L+ ∪ D1 ∪ D2). To prove that this is a coherent set of desirable gambles, it suffices to show that792

it avoids partial loss. Assume ex-absurdo that D incurs partial loss. Since D1,D2 are coherent relative to LS1
,LS2

,793

respectively, it follows that if D incurs partial loss there are f1 ∈ D1, f2 ∈ D2 such that f1 + f2 ≤ 0. Let us define794

g1, g2 ∈ LS1
∩ LS2

by795

g1(z) := sup{f1(z′) : πS1∩S2
(z) = πS1∩S2

(z′)} and g2(z) := sup{f2(z′) : πS1∩S2
(z) = πS1∩S2

(z′)} (B.1)

for all z ∈ X . Then by construction g1 ≥ f1 and g2 ≥ f2, whence g1 ∈ D1, g2 ∈ D2. Since moreover g1, g2 ∈
LS1
∩ LS2

, we deduce from pairwise compatibility that g1, g2 ∈ D1 ∩ D2. Since for instance D1 is coherent, we
deduce that there is some z ∈ X such that (g1 + g2)(z) > 0. By Eq. (B.1), there are z1, z2 such that πS1∩S2

(z) =
πS1∩S2(z1) = πS1∩S2(z2) and such that

g1(z)− f1(z1) <
g1(z) + g2(z)

2
and g2(z)− f2(z2) <

g1(z) + g2(z)

2
,

whence, by summing the two inequalities, we get that f1(z1) + f2(z2) > 0. Now, considering that f1 ∈ LS1 and that796

f2 ∈ LS2
, we deduce the existence of some z′ ∈ X such that πS1

(z′) = πS1
(z1) and πS2

(z′) = πS2
(z2), taking into797

account that the projections of z1, z2 on S1 ∩ S2 coincide. As a consequence, f1(z′) + f2(z′) > 0, a contradiction.798

Next, we show that D ∩ LS1
= D1; the proof of the equality D ∩ LS2

= D2 is analogous. Consider f ∈ D ∩ LS1
.

Then there are g ∈ D1 ∪ {0}, h ∈ D2 ∪ {0} such that f ≥ g + h. Define h′ ∈ LS1
∩ LS2

for all z ∈ X by
h′(z) := sup{h(z′) : πS1∩S2(z) = πS1∩S2(z′)}. Then h′ ≥ h, whence h′ ∈ D2∪{0}. Moreover, since h′ ∈ LS1∩LS2 ,
also h′ ∈ D1 ∪ {0}. Besides, since f ∈ LS1 and f ≥ g + h, we deduce that also f ≥ g + h′:

f(z) = sup
πS1

(z′)=πS1
(z)

f(z′) ≥ sup
πS1

(z′)=πS1
(z)

(g(z′) + h(z′)) = g(z) + sup
πS1

(z′)=πS1
(z)

h(z′) = g(z) + h′(z).

Since f is non-zero because it belongs to D, we conclude that it belongs to D1. The converse inclusion is trivial.799

Assume next that the result holds up to r − 1. Let us denote Sr−1 := ∪r−1j=1Sj . Then the natural extension Dr−1 of800

D1, . . . ,Dr−1, given by Dr−1 := posiSr−1(L+
Sr−1 ∪

⋃r−1
j=1 Dj) is coherent relative to LSr−1 and moreover it satisfies801

Dr−1 ∩ LSj
= Dj for j = 1, . . . , r − 1.802

Let D be the natural extension of Dr−1 ∪ Dr, given by D := posi(L+ ∪ Dr−1 ∪ Dr). It follows that D coincides803

with the natural extension of ∪rj=1Dj . To prove that it is a coherent set of desirable gambles, it suffices to show that it804

avoids partial loss. Assume ex-absurdo that D incurs partial loss. Since Dr−1,Dr are coherent relative to LSr−1 ,LSr
,805

respectively, this means that there are f1 ∈ Dr−1, f2 ∈ Dr such that f1 + f2 ≤ 0. Let us define g1, g2 ∈ LSr−1 ∩ LSr
806

for all z ∈ X by807

g1(z) := sup{f1(z′) : πSr−1∩Sr
(z) = πSr−1∩Sr

(z′)} and g2(z) := sup{f2(z′) : πSr−1∩Sr
(z) = πSr−1∩Sr

(z′)}.
(B.2)

Then by construction g1 ≥ f1 and g2 ≥ f2, whence g1 ∈ Dr−1, g2 ∈ Dr. Since moreover g1, g2 ∈ LSr−1 ∩ LSr , we
conclude that g1, g2 ∈ Dr−1 ∩ Dr. Since for instance Dr−1 is coherent with respect to LSr−1 , we deduce that there
is some z ∈ X such that (g1 + g2)(z) > 0. By Eq. (B.2), there are z1, z2 such that πSr−1∩Sr

(z) = πSr−1∩Sr
(z1) =

πSr−1∩Sr
(z2) and such that

g1(z)− f1(z1) <
g1(z) + g2(z)

2
and g2(z)− f2(z2) <

g1(z) + g2(z)

2
.
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Now, considering that f1 ∈ LSr−1 and that f2 ∈ LSr , we deduce the existence of some z′ ∈ X such that πSr−1(z′) =808

πSr−1(z1) and πSr (z′) = πSr (z2), taking into account that the projections of z1, z2 on Sr−1 ∩ Sr coincide. As a809

consequence, f1(z′) + f2(z′) > 0, a contradiction.810

To conclude, let us show that D ∩ LSr
= Dr and D ∩ LSr−1 = Dr−1:811

◦ Consider f ∈ D ∩LSr . Then there are g ∈ Dr−1 ∪ {0}, h ∈ Dr ∪ {0} such that f ≥ g+ h. Assume that g 6= 0;
otherwise it is immediate that f ∈ Dr (it must be f 6= 0 because it belongs to D). For any z ∈ X ,

f(z) = sup
πSr (z

′)=πSr (z)

f(z′) ≥ sup
πSr (z

′)=πSr (z)

(g(z′) + h(z′)) = h(z) + sup
πSr (z

′)=πSr (z)

g(z′).

Let g′ be given by g′(z) := supπSr (z
′)=πSr (z)

g(z′). Then g′ ≥ g, whence g′ ∈ Dr−1. Moreover, g′ ∈ LSr
.812

Applying the induction hypothesis, we conclude that g′ ∈ Dr, and since f ≥ g′ + h we conclude that also813

f ∈ Dr. Thus, D ∩ LSr ⊆ Dr. The converse inclusion Dr ⊆ D ∩ LSr is trivial.814

◦ Consider f ∈ D ∩ LSr−1 . Then there are g ∈ Dr−1 ∪ {0}, h ∈ Dr ∪ {0} such that f ≥ g + h. Assume that
h 6= 0; otherwise it is immediate that f ∈ Dr−1, given that it is f 6= 0 because it belongs to D. For any z ∈ X ,

f(z) = sup
πSr−1 (z′)=πSr−1 (z)

f(z′) ≥ sup
πSr−1 (z′)=πSr−1 (z)

(g(z′) + h(z′)) = g(z) + sup
πSr−1 (z′)=πSr−1 (z)

h(z′).

Let h′ be given by h′(z) := supπSr−1 (z′)=πSr−1 (z) h(z′). Then h′ ≥ h, whence h′ ∈ Dr. Moreover, by815

construction h′ ∈ LSr−1 , whence it belongs to LSr−1 ∩ LSr = LSj for some j ∈ {1, . . . , r − 1}, taking816

into account that the sets S1, . . . , Sr satisfy RIP. Thus, h′ ∈ Dr ∩ LSj
= Dj by pairwise compatibility, and817

as a consequence it also belongs to Dr−1. Since f ≥ g + h′, we conclude that f ∈ Dr−1. The inclusion818

Dr−1 ⊆ D ∩ LSr−1 is trivial.819

We deduce that for every j = 1, . . . , r− 1, D ∩LSj
= D ∩Dr−1 ∩LSj

= Dr−1 ∩LSj
= Dj . Since we have already820

proven that D ∩ LSr
= Dr, we conclude that D satisfies the desired properties.821

Proof of Corollary 4. We prove the direct implication as the converse is trivial. Assume that P 1, . . . , P r are pairwise822

compatible, and let D1, . . . ,Dr be their associated sets of strictly desirable gambles, given by Eq. (5). To prove that823

they are pairwise compatible, take i 6= j in {1, . . . , r} and a gamble f ∈ Di ∩ LSj
. Then either f  0, in which case824

also f ∈ Dj , or P i(f) = P j(f) > 0, whence f ∈ Dj . In any case, we conclude that f ∈ Dj ∩ LSi
, and since the825

converse inclusion is analogous we conclude that Di,Dj are pairwise compatible.826

Applying Theorem 2, we conclude that the natural extensionD of ∪ri=1Di is a coherent set of desirable gambles that
is compatible withD1, . . . ,Dr. Let P be the coherent lower prevision it induces by means of (3). Then for j = 1, . . . , r
and any gamble f ∈ LSj

, it holds that

P (f) = sup{µ : f − µ ∈ D} = sup{µ : f − µ ∈ D ∩ LSj} = sup{µ : f − µ ∈ Dj} = P j(f),

where the last equality holds because Dj induces P j by means of (3). Thus, P is compatible with P 1, . . . , P r.827

Proof of Proposition 6. 1. It follows from Eq. (7) that if D induces DOj
|XIj , then it must be DOj

|XIj ⊆ D for828

every j = 1, . . . , r. As a consequence, ∪rj=1DOj
|XIj has a coherent superset, or, in other words, it avoids partial829

loss.830

2. Assume that D is a coherent set of desirable gambles that induces DOj
|XIj by means of (7) for j = 1, . . . , r. It

follows from the first point that it must be ∪rj=1DOj
|XIj ⊆ E ⊆ D. Take xIj ∈ XIj . Then

DOj |xIj ⊆ {f ∈ (∪ri=1DOi |XIi) ∩ LOj∪Ij : f = IXIj
=xIj

f}

⊆ {f ∈ E ∩ LOj∪Ij : f = IXIj
=xIj

f}

⊆ {f ∈ D ∩ LOj∪Ij : f = IXIj
=xIj

f} = DOj |xIj ,

whence E also induces DOj
|XIj via Eq. (7).831
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Proof of Proposition 7. The direct implication is trivial, so let us prove the converse.832

Assume ex-absurdo that ∪ri=1Di incurs partial loss. Since for every i the set Di is a cone because of its relative833

coherence, it follows from Eq. (2) that there are fi ∈ Di∪{0}, i = 1, . . . , r, not all of them 0, such that 0 ≥ f1+· · ·+fr.834

Let us define A := ∪i 6=j(Si ∩ Sj). For every i, let f∗i ∈ LSi
be given by835

f∗i (x) := sup{fi(y) : πSi∩A(y) = πSi∩A(x)}. (B.3)

Then f∗i ∈ LSi∩A = LSi∩(∪j 6=iSj), and moreover f∗i ≥ fi. Thus, f∗i belongs to Di ∪ {0} and therefore to D∗i ∪ {0}.836

Now, for every z ∈ X ,837

(f1 + · · ·+ fr)(z) = f1(πS1∩A(z), πS1\A(z)) + · · ·+ fr(πSr∩A(z), πSr\A(z)) ≤ 0. (B.4)

Consider z′ ∈ X , and let ε > 0. Then for every i = 1, . . . , r there exists zi ∈ XSi
such that

f∗i (πSi∩A(z)) = f∗i (πSi∩A(zi)) ≤ fi(zi) + ε.

Since the sets S1 \ A, . . . , Sr \ A are pairwise disjoint, we can build z ∈ X such that πSi∩A(z) = πSi∩A(z′) and
πSi\A(z) = πSi\A(zi) for every i. This, together with Eqs. (B.3) and (B.4), implies that

(f∗1 + . . . , f∗r )(z′) ≤ f1(z1) + . . . fr(zr) + rε = (f1 + · · ·+ fr)(z) + rε ≤ rε.

Since this holds for any ε > 0, we deduce that f∗1 + · · · + f∗r ≤ 0. This means that ∪ri=1D∗i incurs partial loss, a838

contradiction.839

Proof of Proposition 8. 1. The direct implication has been established in [67, Theorem 7(1)], and the converse is a840

consequence of [67, Theorem 8].841

2. The direct and converse implications have been established in [67, Proposition 3(2)] and [67, Theorem 8(2)],842

respectively.843

Lemma 15. Under the notation of Section 4,844

(a) posi(D0 ∪
⋃
i∈Aj ,j≥1D

′
i ∪ L+) = posi(D0 ∪

⋃
i∈Aj ,j≥1Di ∪ L

+).845

(b) posi(D0∪
⋃
i∈Aj ,j≥1D

′
i∪L+)∩LS′0 = posi(D0∪

⋃
i∈A1

D′i∪L+)∩LS′0 = posi(D0∪
⋃
i∈A1

(D′i∩LS′i∩S′0)∪846

L+) ∩ LS′0 .847

Proof. (a) By construction, Di ⊆ D′i for every i. For the converse inclusion, note that, given i ∈ Aj for j 6= 0, any848

gamble in D′i can be expressed as a sum of gambles from ∪l∈Ak,k≥jDl.849

(b) From the monotonicity of the posi operator with respect to set inclusion, we deduce that

posi(D0∪
⋃

i∈Aj ,j≥1

D′i∪L+)∩LS′0 ⊇ posi(D0∪
⋃
i∈A1

D′i∪L+)∩LS′0 ⊇ posi(D0∪
⋃
i∈A1

(D′i∩LS′i∩S′0)∪L+)∩LS′0 .

Let us prove that the first inclusion is indeed an equality. For this, we shall prove that850

posi

D0 ∪
⋃

i∈Aj ,j=1,...,k

D′i ∪ L+

 ∩ LS′0 = posi

D0 ∪
⋃

i∈Aj ,j=1,...,k−1

D′i ∪ L+

 ∩ LS′0 (B.5)

for any k > 1. Consider a gamble f on the left-hand side. Then there are f0 ∈ D0, fi ∈ D′i ∪ {0} for every
i ∈ ∪kj=1Aj such that f ≥ f0 +

∑
i fi. If fl = 0 for every l ∈ Ak, then trivially f belongs to the right-hand side.

Assume next that fl 6= 0 for some l ∈ Ak. Then, there exists some adjacent node l′ ∈ Ak−1 in the path that
connects l with the root node. From the RIP condition, it holds that

S′l ∩ S′0 ⊆ S′l′ ∩ S′0 and for any other variable j ∈ S′l \ S′l′ , j /∈ ∪{S′l′′ : l′′ 6= l, fl′′ 6= 0};
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indeed, if j ∈ S′l ∩ S′l′′ , then RIP implies that j is in all the cliques in the path that connects l and l′′. But since851

j /∈ S′l′ , then l′ does not belong to this path. This implies that the unique path that communicates l′′ with the root852

node is the union of the path that joins l′′ with l and the path that joins l with the root note. This would mean that853

l′′ is at a greater distance than l from the root node, i.e., at a distance greater than k, a contradiction.854

Since fi is S′i-measurable for every i, we have that, for every x,

f(x) = f(πS′0(x)) ≥ [f0 +
∑
i

fi](x) = f0(πS′0(x)) +
∑
i

fi(πS′i(x))

= f0(πS′0(x)) +
∑
i 6=l

fi(πS′i(x)) + fl(πS′l (x))

= f0(πS′0(x)) +
∑
i 6=l

fi(πS′i(x)) + fl(πSl∩S′l′
(x), πS′l\S′l′

(x)).

As a consequence,

f(x) = sup{f(y) : π(S′l\S′l′ )
c(x) = π(S′l\S′l′ )

c(y)} ≥ sup{[f0 +
∑
i

fi](y) : π(S′l\S′l′ )
c(x) = π(S′l\S′l′ )

c(y)}

= f0(πS′0(x)) +
∑
i 6=l

fi(πS′i(x)) + sup{fl(y) : π(S′l\S′l′ )
c(x) = π(S′l\S′l′ )

c(y)}

= f0(πS′0(x) +
∑
i6=l

fi(πS′i(x)) + fl′(πS′l∩S′l′ (x)),

where fl′ is the S′l′ -measurable gamble given by855

fl′(x) := sup{fl(y) : πS′l∩S′l′ (y) = πS′l∩S′l′ (x)}. (B.6)

On the other hand, Eq. (B.6) implies that fl′ ≥ fl and it is S′l ∩ S′l′-measurable. Thus, fl′ ∈ D′l ∩ LS′l∩S′l′ , and856

therefore also to D′l′ by construction (line 7 in Algorithm 1).857

By repeating the process with all the cliques in Ak, we end up with a number of gambles f ′0 ∈ D0 ∪ {0}, f ′i ∈
Di∪{0}, for i ∈ ∪k−1j=1Aj , such that f ≥ f ′0+

∑
i f
′
i . Therefore, f ∈ posi(D0∪

⋃
i∈Aj ,j=1,...,k−1D′i∪L+)∩L′S0

and as a consequence Eq. (B.5) holds. Since we can do this for every k > 1, we conclude that

posi

D0 ∪
⋃

i∈Aj ,j≥1

D′i ∪ L+

 ∩ LS′0 = posi

(
D0 ∪

⋃
i∈A1

D′i ∪ L+

)
∩ LS′0 .

Let us establish now that the second inclusion is also an equality. Consider a gamble f ∈ posi(D0 ∪
⋃
i∈A1

D′i ∪
L+) ∩ LS′0 . Then there are fi ∈ D′i ∪ {0} for i ∈ A1 and f0 ∈ D0 such that f ≥ f0 +

∑
i∈A1

fi. Then, by
construction of the tree, the variables that belong to (∪i∈A1S

′
i) \ S′0 appear exactly in one S′i. As a consequence,

if we define f ′i ∈ (D′i ∪ {0}) ∩ LS′i∩S′0 by

f ′i(x) := sup{fi(y) : πS′i∩S′0(y) = πS′i∩S′0(x)}

it holds that f ′i ∈ LS′i∩S′0 , and moreover f ′i ≥ fi. Thus, f ′i ∈ D′i ∪ {0}. Moreover, we obtain that f ≥858

f0 +
∑
i∈A1

f ′i . Thus, f ∈ posi(
⋃
i∈A1

(D′i ∩ LS′i∩S′0) ∪ L+) ∩ LS′0 .859
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Proof of Theorem 9. It suffices to take into account the following chain of equalities:

E ∩ LS′0 = posi(∪qi=1Di ∪ L
+) ∩ LS′0

= posi(D0 ∪
⋃

i∈Aj ,j≥1

D′i ∪ L+) ∩ LS′0

= posi(D0 ∪
⋃
i∈A1

D′i ∪ L+) ∩ LS′0

= posi(D0 ∪
⋃
i∈A1

(D′i ∩ LS′i∩S′0) ∪ L+) ∩ LS′0

= D′0.

Here, the first and last equalities follow by definition; the second, from point (a) in Lemma 15; and the third and fourth,860

from point (b) in Lemma 15.861

Proof of Theorem 10. First of all, by construction we have that

D′′j ⊆ posiS′j (∪qi=1D
′
i ∩ LS′j ) ⊆ posi(∪qi=1Di ∪ L

+) ∩ LS′j = E ∩ LS′j .

In order to establish the converse we partition the nodes of the graph into four groups:862

E1 : Nodes l in the unique path that connects the root we had before with j (including these two). As an example,863

consider Figure 3 with the chosen root {X5, X11} and let j correspond to clique {X1, X2}. Then E1 =864

{{X1, X2}, {X2, X4}, {X4, X5}, {X5, X11}}.865

E2 : Nodes l in Ec1 such that the path that connects them with j includes some clique from E1 different from the866

root and j, and does not include the root. Using the example in the previous item, we get E2 = {{X2, X3}}.867

E3 : Nodes l inEc1 such that the path that connects them with j includes the root we had before. In the example:E3 =868

{{X5, X6}, {X7, X8, X9, X10, X11}, {X7, X8, X12}, {X8, X12, X13}, {X8, X13, X15}, {X13, X14, X15}}.869

E4 : Nodes l in Ec1 such that the path that connects them with j does not include any node from E1, except j. In the870

case of the example, E4 = ∅.871

Denote Ai := ∪l∈Ei
S′l , for i = 1, . . . , 4. If follows from RIP that the sets A2 \A1, A3 \A1 and A4 \A1 are pairwise872

disjoint. To see this, note that the nodes in E2 and E3 are connected via E1 (and similarly for E2 and E4 and for E3873

and E4). As a consequence, if a variable j belongs to a node in E2 and to a node in E3 it should also belong to all the874

nodes in the path that connects them, and in particular to some node in E1.875

Take f ∈ E ∩ LS′j . By Eq. (2), this means that there are fi ∈ Di for i = 1, . . . , q such that f ≥
∑q
i=1 fi. Since

{E1, . . . , E4} forms a partition of {1, . . . , q}, we can also write

f ≥

(∑
i∈E1

fi

)
+

(∑
i∈E2

fi

)
+

(∑
i∈E3

fi

)
+

(∑
i∈E4

fi

)
.

Thus, if we define gj :=
∑
i∈Ej

fi for j = 1, . . . , 4, we deduce that gi ∈ posi(∪l∈Ei
Dl) and that f ≥ g1+g2+g3+g4.

Define
g′i(x) := sup{gi(y) : πA1∩Ai(y) = πA1∩Ai(x)} for i = 2, 3, 4.

Then g′i ≥ gi, whence g′i ∈ posi(∪l∈Ei
Dl ∪ L+) for i = 2, 3, 4. Moreover, since A2 \ A1, A3 \ A1 and A4 \ A1 are

pairwise disjoint and f ∈ LS′j ⊆ LA1 , it follows that for all x,

f(x) = f(πA1
(x)) ≥ g1(πA1

(x)) + g2(πA1
(x), πA2\A1

(x)) + g3(πA1
(x), πA3\A1

(x)) + g4(πA1
(x), πA4\A1

(x)),
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whence

f(x) ≥ g1(πA1
(x)) + sup

πA1∩A2
(y)=πA1∩A2

(x)

g2(y) + sup
πA1∩A3

(y)=πA1∩A3
(x)

g3(y) + sup
πA1∩A4

(y)=πA1∩A4
(x)

g4(y)

= g1(x) + g′2(x) + g′3(x) + g′4(x).

Now, by construction:876

◦ g′2 ∈ LA2∩A1 ⊆ LA1 ; by Algorithm 1, we deduce that g′2 ∈ posi(∪l∈E1D′l ∪ L+).877

◦ g′3 ∈ LA3∩A1
= LS′0 ; by Algorithm 1, we deduce that g′3 ∈ D′0.878

◦ g′4 ∈ LA4∩A1
= LS′j ; by Algorithm 1, we deduce that g′4 ∈ D′j ,879

while g1 ∈ posi(∪l∈E1Dl) ⊆ posi(∪l∈E1D′l).880

As a consequence, f ∈ posi(∪l∈E1D′l ∪ L+) ∩ LS′j . Let us denote the indices in E1 as l0, l1, . . . , lk, where

l0 := j and li is the unique node in E1 at a distance i from j and lk is the root. Then we have f ≥
∑k
i=0 hi, where

hi ∈ D′li ∪ {0} for every i. Let us prove that

f ∈ posi(∪k−2i=0D
′
li ∪ D

′′
lk−1
∪ L+).

If hk = 0, this holds simply taking into account that D′lk−1
⊆ D′′lk−1

. Assume next that hk 6= 0, and let us define

h′k(x) := sup{hk(y) : πS′lk−1
∩S′lk

(y) = πS′lk−1
∩S′lk

(x)}.

Note that the nodes lk (the root) and lk−1 are adjacent, since the root lk is at distance k from j and node lk−1 is at881

distance k − 1. As a consequence, S′lk ∩ S
′
k−1 6= ∅.882

By definition, h′k ≥ hk, whence h′k ∈ D′lk . Since it also belongs to LS′lk−1
∩S′lk

, we deduce that h′k ∈ D′′lk−1
, by

line 7 in Algorithm 2. Now,

(∀x) f(x) = f(πS′l0
(x)) ≥

k−1∑
i=0

hi(πS′li
(x)) + hk(πS′lk

(x)) =

k−1∑
i=0

hi(πS′li
(x)) + hk(πS′lk∩S

′
lk−1

(x), πS′lk\S
′
lk−1

(x)).

If we denote B := (S′lk \ S
′
lk−1

)c = S′clk ∪ S
′
lk−1

, then S′lk ∩B = S′lk ∩ S
′
lk−1

; moreover, Bc = S′lk \ S
′
lk−1
⊆ S′cli for

every i = 0, . . . , k − 1 (by RIP), or, equivalently, S′li ⊆ B for every i = 0, . . . , k − 1. As a consequence,

f(x) ≥ sup
πB(y)=πB(x)

k−1∑
i=0

hi(πS′li
(y)) + hk(πS′lk∩S

′
lk−1

(y), πS′lk\S
′
lk−1

(y)) =

k−1∑
i=0

hi(x) + h′k(x).

Thus, f ∈ posi(∪k−1i=0D′li ∪ D
′′
lk−1
∪ L+) = posi(∪k−2i=0D′li ∪ D

′′
lk−1
∪ L+), taking into account that D′lk−1

⊆ D′′lk−1
.883

With a similar procedure, we can deduce that f ∈ posi(∪k−3i=0D′li∪D
′′
lk−2
∪L+), and eventually that f ∈ posi(D′l0∪884

D′′l1∩L
+). If we now use that f ∈ LS′l0 , then we are also able to deduce that f ∈ posi(D′l0∪(D′′l1∩LS′l0 )∩L+) = D′′l0 ,885

by line 7 in Algorithm 2.886

This proves the inclusion E ∩ LS′l0 ⊆ D
′′
l0

, or, equivalently, E ∩ LS′j ⊆ D
′′
j . As a consequence, we have the887

equality.888

Lemma 16. Consider variables X1, . . . , Xn and separately coherent conditional sets of desirable gambles DOj
|XIj ,889

j = 1, . . . , r, such that I1 = ∅ and Oj ∩ (∪k<jOk ∪ Ik) = ∅ for j = 2, . . . , r. Then DOj
|XIj , j = 1, . . . , r avoid890

partial loss.891
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Proof. Consider gambles fi ∪ {0} ∈ Di for i = 1, . . . , r, not all of them equal to zero, and let us prove that there892

exists some x ∈ X such that (
∑r
i=1 fi(x)) > 0.893

Assume for the moment that fi 6= 0 for every i = 1, . . . , r. Then since DO1
is an unconditional set of desirable894

gambles, being I1 = ∅, there exists some x1 ∈ XO1
such that f1(x1) > 0. Consider now y1 ∈ XO1∪I2 such that895

πO1
(y1) = x1. SinceDO2

|XI2 is separately coherent, there must be some x2 ∈ XO2∪I2∪O1
such that πO1∪I2(x2) = y1896

and f2(πO2(x2), πI2(x2)) > 0.897

Next we consider y2 ∈ XI3∪(∪2
i=1Oi∪Ii) such that π∪2

i=1Oi∪Ii(y2) = x2. Since DO3 |XI3 is separately coherent,898

there must be some x3 ∈ X∪3
i=1Oi∪Ii such that π∪2

i=1Oi∪Ii(x3) = y2 and f2(πO3
(x3), πI3(x3)) > 0.899

If we proceed in this manner, we obtain x1, . . . , xr such that π∪k<jOk∪Ik(xj) = xj−1 for j = 2, . . . , r, and such
that fj(πOj∪Ij (xj)) > 0. As a consequence,

r∑
j=1

fj(xr) =

r∑
j=1

fj(πOj∪Ij (xr)) =

r∑
j=1

fj(πOj∪Ij (xj)) > 0.

Finally, when there is some i ∈ {1, . . . , r} such that fi = 0, we consider an arbitrary xi ∈ X∪i
j=1Oj∪Ij satisfying900

π∪i−1
j=1Oj∪Ij (xi) = xi−1, and proceed as in the proof above.901

Proof of Proposition 11. Let B′ := {B ∈ B : |B| > 1} be the set of indices of the templates that belong to some
superblock and denote C := ∪B/∈B′B the remaining indices. For each B ∈ B′, denote CB := ∪j∈B(Oj ∪ Ij)
the indexes of variables in the templates associated with superblock B. Then it follows from the definitions of the
superblocks that the sets {CB : B ∈ B′} are pairwise disjoint. As a consequence, if ∪j∈BDOj |XIj avoids partial loss
for everyB ∈ B′, we trivially obtain that ∪B∈B′∪j∈BDOj |XIj avoids partial loss. If we denoteA := ∪j∈Cc(Oj ∪ Ij),
this means that the set

D∗ := posiA(∪B∈B′ ∪j∈B DOj
|XIj ∪ L+)

is a coherent set of gambles on LA.902

By [64, p. 115, lines 6–11], for each j ∈ C it holds that Oj ∩ A = ∅. Moreover, [97, Lemma 1] implies the903

existence of an order {j1, . . . , jl} of C so that Ojm ∩(m′<m) (Om′ ∪ Im′) = ∅.904

This means that the sets D∗,DOj1
|XIj1

, . . . ,DOjl
|XIjl

satisfy the hypotheses of Lemma 16, and as a consequence905

they avoid partial loss. SinceD∗ is a superset of ∪j∈CcDOj |XIj , we deduce that ∪rj=1DOj |XIj avoids partial loss.906

Lemma 17. Let D1 be a set of desirable gambles that is coherent with respect to LO1
, and DO2

|XI2 be a separately907

coherent conditional set of desirable gambles, where O2 ∩ (O1 ∪ I2) = ∅. Then DO1
,DO2

|XI2 are compatible.908

Proof. We may assume without loss of generality that O1 ∪O2 ∪ I2 = {1, . . . , n}.909

Consider first of all the case where O1 = I2. Then it follows from [69, Proposition 29] that the set

D := {f1 + f2 : f1 ∈ DO1
∪ {0}, (∀x1 ∈ XO1

) f2(x1, ·) ∈ DO2
|x1 ∪ {0}} \ {0}

is a coherent superset of DO1
,DO2

|XI2 . Let us prove that it induces DO1
,DO2

|XI1 by means of marginalization and910

conditioning:911

◦ Consider f ∈ D∩LO1 . Then there are f1 ∈ DO1 ∪ {0}, f2 ∈ DO2 |XO1 ∪ {0} such that f ≥ f1 + f2. If f2 = 0,
the result is trivial. Assume then that f2 6= 0. Define f ′2 on LO2∪O1 by

f ′2(x) := sup{f2(y) : πO1(y) = πO1(x)}.

Then for every x1 ∈ XO1
such that f2(x1, ·) 6= 0, it follows from the coherence of DO2

|x1 that 0 ≤
supx2∈XO2

f2(x1, x2) = f ′2(x1). Thus, f ′2 ∈ L+
O1
⊆ DO1 . Moreover,

(∀x) f(x) = f(πO1
(x)) ≥ (f1 + f2)(x) = f1(πO1

(x)) + f2(πO1
(x), πO2

(x)) ⇒ f ≥ f1 + f ′2.

As a consequence, f ∈ DO1 .912
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◦ Fix next x1 ∈ XO1 , and take f ∈ D such that f = Ix1f . Then there must be f1 ∈ DO1 ∪ {0}, f2 ∈ DO2 |XO1913

such that f ≥ f1 + f2. Assume that f1 6= 0; otherwise f ≥ Ix1f2 ∈ DO2 |XO1 . For any x′1 6= x1, it holds914

that Ix′1f = 0 ≥ f1(x′1) + f2(x′1, ·), and, taking into account that f2(x′1, ·) ∈ DO2
|x′1 ∪ {0}, this means that915

f1(x′1) ≤ 0 for every x′1 6= x1. SinceDO1
is coherent, this implies that f1(x1) > 0. But then f(x1, ·) ≥ f2(x1, ·)916

and as a consequence f ∈ DO2
|XO1

.917

We consider next the general case. Let us define the conditional set of desirable gambles D′O2
|XO1∪I2 by

D′O2
|XO1∪I2 := ∪x∈XO1∪I2

D′O2
|x, with D′O2

|x := DO2
|πI2(x).

Then by Definition 16 D′O2
|XO1∪I2 is a separately coherent conditional set of desirable gambles. Consider also

D′O1∪I2 := posiO1∪I2(DO1 ∪ L+),

the natural extension of DO1 to LO1∪I2 . This is a coherent set of desirable gambles that satisfies D′O1∪I2 ∩LO1 = DO1 .918

Applying the first part of the proof, D′O1∪I2 ,D
′
O2
|XO1∪I2 are compatible with some coherent set of desirable

gambles D. It follows that

D ∩ LO1
= D ∩ LO1∪I2 ∩ LO1

= D′O1∪I2 ∩ LO1
= DO1

.

Let us prove that D also induces DO2
|XI2 . Consider x ∈ XI2 , and take f ∈ D ∩ LO2∪I2 satisfying f = Ixf . Then919

f ≥ g + h for g ∈ D′O1∪I2 , h ∈ D
′
O2
|XO1∪I2 .920

For every y ∈ XO1∪I2 with πI2(y) 6= x, we have that

f(y, ·) = 0 ≥ g(y) + h(y, ·),

and since suph(y, ·) ≥ 0 because h(y, ·) ∈ D′O2
|y ∪ {0}, it must be g(y) ≤ 0. Therefore, g(y) ≤ 0 for every y such921

that πI2(y) 6= x, and since we are assuming that g ∈ D′O1∪I2 ∪ {0}, there must be some y with πI2(y) = x and922

g(y) ≥ 0.923

We obtain that f(y, ·) ≥ h(y, ·) ∈ D′O2
|y = DO2

|x. Since we are assuming that f ∈ LO2∪I2 , then it must be924

f(y, ·) = f(x, ·), and then f(x, ·) ≥ h(x, ·) ∈ DO2
|x.925

Proof of Theorem 12. Let B′ := {B ∈ B : |B| > 1} be the indices of the superblocks determined by some source of
contradiction. For any B ∈ B′, let CB := ∪j∈B(Oj ∪ Ij). Then it follows from the definitions of the superblocks that
the sets {CB : B ∈ B′} are pairwise disjoint. As a consequence, if ∪j∈BDOj |XIj are compatible for every B ∈ B′,
we trivially obtain that ∪B∈B′ ∪j∈B DOj |XIj are compatible: the coherent sets of desirable gambles {DB}B∈B′ that
induce them involve disjoint sets of variables, and as a consequence of Theorem 2, their natural extension, given by

D0 := {f 6= 0 : f ≥
∑
B∈B

fB for somefB ∈ DB ∪ {0}, B ∈ B},

has marginals {DB}B∈B and so induces DOj
|XIj for j ∈ B ∈ B′.926

Let C := {1, . . . , r} \ (∪B∈B′B) be the remaining indices. Then if we denote A := ∪j∈Cc(Oj ∪ Ij), it holds that927

D is a coherent set of desirable gambles on LA.928

By [64, p. 115, lines 6–11], for each j ∈ C it holds that Oj ∩ A = ∅. Moreover, [97, Lemma 1] implies the929

existence of an order {j1, . . . , jl} of C so that Ojm ∩(m′<m) (Oj′m ∪ Ij′m) = ∅.930

We now show that the algorithm produces the natural extension in an iterative manner:931

◦ By Lemma 17, the setsD andDOj1
|XIj1

are compatible. LetD1 denote their natural extension. SinceD1∩LA =932

D, it follows that D1 also induces the sets DOj
|XIj for every j ∈ B ∈ B′ by means of Eq. (7).933

◦ D1 is a coherent set of desirable gambles with respect to S1 := A∪ (Oj1 ∪ Ij1), while DOj2
|XIj2

is a separately934

coherent conditional set of desirable gambles such that Oj2 ∩ (S1 ∪ Ij2) = ∅. If we now apply Lemma 17 again,935

we conclude that D1,DOj2
|XIj2

are also compatible, whence their natural extension D2 also has marginal D1936

(whence it induces DOj
|XIj for every j ∈ B ∈ B′ and DOj1

|XIj1
) and it also induces the conditional set of937

desirable gambles DOj2
|XIj2

.938
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◦ By iterating the procedure, we obtain, for any k = 1, . . . ,m, a coherent set of desirable gambles Dj that is939

compatible with ∪j∈B∈B′DOj |XIj and with DOj1
|XIj1

, . . . ,DOjk
|XIjk

. By considering the case k = m we940

conclude that DO1
|XI1 , . . . ,DOm

|XIm are compatible.941

Moreover, note that on each step since Di is a compatible superset of D0 ∪ ∪i′<iDOj
i′
|XIj

i′
, it must include the942

natural extension of ∪j∈BDOj
|XIj ∪∪i′<iDOj

i′
|XIj

i′
; but conversely we have that this natural extension must always943

include the natural extension of Di−1 ∪ DOji
|XIji

. Thus, the two sets are equal.944

Proof of Proposition 13. Assume first of all thatD1, . . . ,Dr avoid partial loss, and let us prove thatD′j is the restriction945

of the natural extension of D1 ∪ . . .∪Dj to LSj . This will imply in particular that D′r is coherent, since it will be the946

restriction of a coherent set. We apply induction on j.947

We begin by establishing the result for j = 2, since it is trivial for j = 1. By definition, D′2 is the natural extension
of D2 ∪ (D1 ∩ LS1∩S2

). To prove that it coincides with the restriction to LS2
of E2 := posi(L+ ∪ D1 ∪ D2), take a

gamble f ∈ E2. Then there are g ∈ D1 ∪ {0}, h ∈ D2 ∪ {0} such that f ≥ g + h. If g = 0, we are done. If g 6= 0, we
define the S2-measurable gamble g′ by

g′(x) := sup{g(y) : πS2
(y) = πS2

(x)}.

Since f ∈ LS2
, we deduce that f ≥ g′ + h, and since g′ ≥ g, we get that g′ ∈ D1 ∩ LS2

. Thus, f ∈ posi((D1 ∩948

LS1∩S2
) ∪ D2 ∪ L+) = D′2. The inclusion D′2 ⊆ E2 is trivial.949

Assume next that the result holds up to j − 1, so that D′j−1 = posi(L+ ∪ D1 ∪ · · · ∪ Dj−1) ∩ LSj−1 . We must
prove that

posi(L+ ∪ D′j−1 ∪ Dj) ∩ LSj
= posi(L+ ∪ D1 ∪ · · · ∪ Dj) ∩ LSj

.

(⊆) It suffices to take into account that D′j−1 is included in posi(L+ ∪ D1 ∪ · · · ∪ Dj) by construction.950

(⊇) Consider a gamble f ∈ posi(L+ ∪ D1 ∪ · · · ∪ Dj) ∩ LSj
. Then, there are gi ∈ Di ∪ {0} for i = 1, . . . , j such951

that f ≥ g1 + · · ·+ gj .952

Let us define the Sj-measurable gamble g′ by

g′(x) := sup{(g1 + · · ·+ gj−1)(y) : πSj
(y) = πSj

(x)}

for every x ∈ X . Then by construction g′ ≥ g1 + · · ·+ gj−1, whence g′ ∈ posi(L+ ∪ D1 ∪ · · · ∪ Dj−1). On953

the other hand, g′ ∈ LSj
, and since gi ∈ LSi

for i = 1, . . . , j − 1, it follows that g1 + · · ·+ gj−1 ∈ L∪j−1
i=1Si

,954

whence g′ ∈ L(∪j−1
i=1Si)∩Sj

= LSj−1∩Sj
, where the equality follows by hypothesis. Thus, g′ belongs to LSj−1

,955

and therefore g′ ∈ D′j−1, by the induction hypothesis.956

Since moreover f ≥ g′ + gj , because f ∈ LSj
, we conclude that f ∈ posi(L+ ∪ D′j−1 ∪ Dj) ∩ LSj

.957

This concludes the first part of the proof. Assume now that D′r is coherent, and let us prove that D1, . . . ,Dr avoid958

partial loss. By construction, D′j is the restriction to LSj
of the natural extension of D′j−1 ∪Dj . Thus, if D′j is coherent,959

then so is D′j−1. Therefore, if D′r is coherent we deduce that so is D′j for every j = 1, . . . , r − 1.960

This means that 0 /∈ posi(L+∪D′r−1∪Dr). If 0 ∈ posi(L+∪D′r−2∪Dr−1∪Dr), then there are f ∈ D′r−2∪{0}, g ∈961

Dr−1 ∪ {0}, h ∈ Dr ∪ {0}, not all 0, such that 0 ≥ f + g + h. But f + g ∈ posi(L+ ∪ D′r−2 ∪ Dr−1), and we can962

define a gamble f ′ ∈ LSr−2∩Sr−1 so that 0 ≥ f ′+ g+ h. Since f ′+ g ∈ posi(L+ ∪Dr−2 ∪Dr−1)∩LSr−1 = D′r−1,963

we deduce that 0 ∈ posi(L+ ∪ D′r−1 ∪ Dr), a contradiction with the coherence of Dr.964

With a similar reasoning, we deduce that

0 /∈ posi(L+ ∪ D′r−3 ∪ Dr−2 ∪ Dr−1 ∪ Dr),

and, iterating, that

0 /∈ posi(L+ ∪ D′1 ∪ D2 ∪ · · · ∪ Dr) = posi(L+ ∪ D1 ∪ D2 ∪ · · · ∪ Dr),

whence D1, . . . ,Dr avoid partial loss.965
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Proof of Proposition 14. Let us show that the axioms A1–A6 are satisfied:966

A1. Commutativity follows trivially from Eq. (A.3). To prove associativity, consider three coherent sets of desirable
gambles D1,D2,D3. Then

f ∈ D1 ⊗D2 ⊗D3 ⇔ f ≥ g1 + g2 + g3 for some gi ∈ Di ∪ {0} (i = 1, 2, 3)

⇔ f ≥ g + g3 for some g ∈ posi(D1 ∪ D2) ∪ {0}, g3 ∈ D3 ∪ {0}
⇔ f ∈ posi(posi(D1 ∪ D2) ∪ D3 ∪ L+)

⇔ f ∈ posi(posi(D1 ∪ D2 ∪ L+) ∪ D3 ∪ L+)

⇔ f ∈ (D1 ⊗D2)⊗D3.

Thus, the combination operator is associative.967

A2. The first property follows immediately from Eq. (A.3), and the second from Eq. (A.2).968

A3. This is an immediate consequence of Eq. (A.2).969

A4. For any coherent set of desirable gambles D relative to LS(X ) and any D ⊆ D′ ⊆ S, it holds that D↓D =970

D ∩ LD(X ) = D ∩ LD(X ) ∩ LD′(X ) = (D↓D′)↓D.971

A5. Consider coherent sets of desirable gambles D1,D2 relative to LS1 ,LS2 , respectively. Then

f ∈ (D1 ⊗D2)↓S1 ⇔ f ≥ g1 + g2 for some g1 ∈ D1 ∪ {0}, g2 ∈ D2 ∪ {0}, f ∈ LS1

⇔ f(x) ≥ g1(x) + sup
y∈π−1

S2
(xS1∩S2

)

g2(y) for some g1 ∈ D1 ∪ {0}, g2 ∈ D2 ∪ {0}

⇔ f ≥ g1 + g′2 for some g1 ∈ D1 ∪ {0}, g′2 ∈ (D2 ∩ LS1∪S2
) ∪ {0}

⇔ f ∈ D1 ⊗ (D↓S1∩S2

2 ).

A6. Given a set of variables S ⊆ N , the vacuous set of desirable gambles eS := L+(XS) satisfies the properties of972

the neutral element.973
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[86] J. Vejnarová. A note on the interval-valued marginal problem and its maximum entropy solution. Kybernetika, 34(1):19–26, 1998.1103

[87] P. Vicig, M. Zaffalon, and F. Cozman. Notes on ‘Notes on conditional previsions’. International Journal of Approximate Reasoning,1104

44(3):358–365, 2007.1105

[88] N. N. Vorob‘ev. Consistent families of measures and their extensions. Theory of Probability and its Applications, VII(2):147–163, 1962.1106

[89] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.1107

[90] P. Walley. Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24:125–148, 2000.1108

[91] P. Walley, R. Pelessoni, and P. Vicig. Direct algorithms for checking consistency and making inferences from conditional probability1109

assessments. Journal of Statistical Planning and Inference, 126:119–151, 2004.1110

[92] Y. J. Wang and E. H. Ip. Conditionally specified continuous distributions. Biometrika, 95(3):735–746, 2008.1111

[93] Y. J. Wang and K.-L. Kuo. Compatibility of discrete conditional distributions with structural zeros. Journal of Multivariate Analysis,1112

101(1):191–199, 2010.1113

[94] P. M. Williams. Notes on conditional previsions. Technical report, School of Mathematical and Physical Science, University of Sussex, UK,1114

1975. Reprinted in [95].1115

[95] P. M. Williams. Notes on conditional previsions. International Journal of Approximate Reasoning, 44:366–383, 2007. Revised journal1116

version of [94].1117

[96] M. Zaffalon and E. Miranda. Desirability foundations of robust rational decision making. Synthese. Accepted for publication.1118

[97] M. Zaffalon and E. Miranda. Conservative inference rule for uncertain reasoning under incompleteness. Journal of Artificial Intelligence1119

Research, 34:757–821, 2009.1120

[98] M. Zaffalon and E. Miranda. Probability and time. Artificial Intelligence, 198(1):1–51, 2013.1121

[99] M. Zaffalon and E. Miranda. Axiomatising incomplete preferences through sets of desirable gambles. Journal of Artificial Intelligence1122

Research, 60:1057–1126, 2017.1123

[100] M. Zahn. Solving of constraint satisfaction problems using join trees. In Proceedings of International Conference on Expert Systems for1124

Development, pages 159–164, 1994.1125

37


	1 Introduction
	2 Compatibility of unconditional models
	2.1 Sets of desirable gambles
	2.2 Coherent lower previsions
	2.3 Discussion

	3 Compatibility of conditional models
	3.1 Conditional sets of desirable gambles
	3.2 Conditional lower previsions

	4 Exploiting the power of tree decomposition
	5 Joining coherence graphs and RIP
	6 Conclusions
	Appendix A Additional remarks
	Appendix A.1 Conditional compatibility cannot be reduced to the unconditional case
	Appendix A.2 The algorithms of collecting and distributing evidence cannot be simplified
	Appendix A.3 Compatibility of nested assessments
	Appendix A.4 Information and valuation algebras
	Appendix A.4.1 Coherent sets of desirable gambles as valuation algebras
	Appendix A.4.2 Desirable gambles, logic, and information algebras


	Appendix B Proofs

