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SYMMETRY OF MODELS VERSUS MODELS OF SYMMETRY

GERT DE COOMAN AND ENRIQUE MIRANDA

ABSTRACT. A model for a subject’s beliefs about a phenomenon may édymmetry,
in the sense that it is invariant under certain transforomati On the other hand, such a
belief model may be intended to represent that the subjdiet/be or knows that the phe-
nomenon under study exhibits symmetry. We defend the viettittese are fundamentally
different things, even though the difference cannot beuwragtby Bayesian belief mod-
els. In fact, the failure to distinguish between both sitrat leads to Laplace’s so-called
Principle of Insufficient Reason, which has been criticisgtensively in the literature.

We show that there are belief models (imprecise probahilibdels, coherent lower
previsions) that generalise and include the Bayesian fomlaels, but where this fun-
damental difference can be captured. This leads to two metad symmetry for such
belief models: weak invariance (representing symmetryetiefs) and strong invariance
(modelling beliefs of symmetry). We discuss various matageal as well as more philo-
sophical aspects of these notions. We also discuss a fewptesio show the relevance of
our findings both to probabilistic modelling and to statiatiinference, and to the notion
of exchangeability in particular.

1. INTRODUCTION

This paper deals with symmetry in relation to models of igli€onsider a model for
a subject’s beliefs about a certain phenomenon. SuiHiaf modemay besymmetrical
in the sense that it is invariant under certain transforomgti On the other hand, a belief
model may try to capture that the subject believes that teepmenon under study exhibits
symmetry, and we then say that the belief madeldels symmetryWe defend the view
that there is an important conceptual difference betweetwh cases: symmetry of beliefs
should not be confused with beliefs of symm@try.

Does this view need defending at all? That there is a difi@enay strike you as
obvious, and yet we shall argue that Bayesian belief modéigh are certainly the most
popular belief models in the literature, are unable to cagttois difference.

To make this clearer, consider a simple example. Supposk fos$ a coin, and you
are ignorant about its relevant properties: it might be lf@ir on the other hand it might
be heavily loaded, or it might even have two heads, or twa t@ituationA). To you
the outcomes of the toss that are practically possiblengffer heads) and (for tails).
Since you are ignorant about the properties of the coin, angetfor your beliefs should
not change if heads and tails are permuted, so the modelfttthifully’ captures your
beliefs about the outcome of the toss should be symmetocali ., invariant under this
permutation of heads and tails.
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1This echoes Walléy's [1991, Section 9.5.6, p. 466] view thanmetry of evidence’ is not the same thing as
‘evidence of symmetry’.
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Suppose on the other hand that you know that the coin (and#ség mechanism) |
shall use is completely symmetrical (situatiBh Your belief model about the outcome
of the toss should capture this knowledge, i.e., it shouldl@hgour beliefs about the
symmetry of the coin.

Our point is that belief models should be able to catch theoitamt difference between
your beliefs in the two situations. Bayesian belief modelsrmot do this. Indeed—the
argument is well-known—the only symmetrical probabilitpdel, which is in other words
invariant under permutations of heads and tails, assignal @gobability 1/2 to heads and
tails. But this is automatically also the model that capgureur beliefs that the coin is
actually symmetrical, so heads and tails should be equkéiy!

The real reason why Bayesian belief models cannot capteralifference between
symmetry of models and modelling symmetry, is that they dbatiow for indecision
Suppose that | ask you to express your preferences betweegambles, whose reward
depends on the outcome of the toss. For first angou will win one euro if the outcome
is heads, and lose one if it is tails. The second dnjves the same rewards, but with
heads and tails swapped.

In situationB, because you believe the coin to be symmetrical, it does attento you
which gamble you get, and you araifferentin your choice between the two.

But in situationA, on the other hand, because you are completely ignorant abeu
coin, the available information gives yow reason to (strictly) prefer averb or b overa.
You are thereforeindecidedabout which of the two gambles to choose.

Because decision based on Bayesian belief models leavemyaiternative but to either
strictly prefer one action over the other, or to be indifférbetween them, the symmetry
of the model leaves yono choice but to act as if you were indifferdsetweena andb.
We strongly believe that it is wrong to confuse indecisiothvimdifference in this example
(and elsewhere of course), but Bayesian belief models Igaueno choice but to do so,
unless you want to let go of the principle that if your evideme your beliefs are sym-
metrical, your belief model should be symmetrical as weleproblem with Laplace’s
Principle of Insufficient Reason is precisely this: if yolewsBayesian probability model
then the symmetry present in ignorance forces you to trelcision (or insufficient rea-
son to decide) betweemnandb as if it were indifferencl.Or in other words, it forces you
to treat symmetry of beliefs as if there were beliefs of syrnmme

If on the other hand, we consider belief models that allowiridecision, we can sever
the unholy link between indecision and indifference, beesin a state of complete igno-
rance, we are then allowed to remain undecided about whitiedfvo actions to choose:
in the language of preference relations, they simply becoie@mparableand you need
not be indifferent between them. As we shall see further iomijar arguments show that
such belief models also allow us to distinguish between regtny of models’ and ‘mod-
els of symmetry’ in those more general situations where yfmnsetry involved is not
necessarily that which goes along with complete ignorance.

So, it appears that in order to better understand the imtgtptween modelling beliefs
and issues of symmetry, which is the main aim of this papershatl need to work with
a language, or indeed, with a type of belief models thatkenhe Bayesian ones, take

2This may seem a good explanation why Keynes [1921, p. 83hmedahe ‘Principle of Insufficient Reason’
the ‘Principle of Indifference’. He (and others, see Zafiei89h]) also suggested that the principle should not
be applied in a state of complete ignorance, but only if thegood reason to justify the indifference (such as
when there is evidence of symmetry). By the way, Keynes wsasahong the first to consider what we shall call
imprecise probability models, as his comparative proligibitlations were not required to be complete.
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indecision seriously. For this purpose, we shall use thguage of the so-callddhprecise
probability modelgWalley,|1991], and in particular coherent lower previsipwhich have
the same behavioural pedigree as the more common Bayesiahrbedels (n casuco-
herent previsions, see de Finetti [1974-1975]), and whicttain these models as a special
case. We give a somewhat unusual introduction to such modskctio 2] In Sectior 3,
we provide the necessary mathematical background for sk&og symmetry: we discuss
monoids of transformations, and invariance under such mgnéfter these introductory
sections, we start addressing the issue of symmetry ingeltt belief models in Sectidd 4.
We introduce two notions of invariance for the impreciselyataility models introduced in
Sectiorf2:.weak invariancewhich captures symmetry of belief models, atbng invari-
ance which captures that a model represents the belief that tkesymmetry. We study
relevant mathematical properties of these invarianc@nstiand argue that the distinction
between them is very relevant when dealing with symmetryeinegal, and in particular
(Sectiorb) for modelling complete ignorance. Furtherriegéing properties of weak and
strong invariance, related to inference, are the subjeseofion§ b and| 7, respectively. We
show among other things that a weakly invariant coherengfquwevision can always be
extended to a larger domain, in a way that is as conservagipessible. This implies that,
for any given monoid of transformations, there always arakleinvariant coherent lower
previsions. This is not generally the case for strong irarare, however, and we give and
discuss sufficient conditions such that for a given monoittarisformations, there would
be strongly invariant coherent (lower) previsions. We @s@ various expression for the
smallest strongly invariant coherent lower prevision thahinates a given weakly invari-
ant one (if it exists). In Sectidd 8, we turn to the importaxample of coherent (lower)
previsions on the set of natural numbers, that are shiftriant, and we use them to charac-
terise the strongly invariant coherent (lower) previsions general space provided with a
single transformation. Further examples are discusseddtid®(9, where we characterise
weak and strong invariance with respect to finite groups ofmpéations. In particular,
we discuss Walley’s [1991] generalisation to lower previsiof de Finelti’s [1937] notion
of exchangeability, and we use our characterisation ohgtqgermutation invariance to
prove a generalisation to lower previsions of de Finet&presentation results for finite
sequences of exchangeable random variables. Conclus®gathered in Sectidn110.

We want to make it clear at this point that this paper owes aifsignt intellectual
debt to Peter Walley. First of all, we use his behaviouralriegse probability models
[Walley, [1991] to try and clarify the distinction betweemsyetry of beliefs and beliefs
of symmetry. Moreover, although we like to believe that mottwhat we do here is new,
we are also aware that in many cases we take to their logicalusion a number of ideas
about symmetry that are clearly present in his work (melinbllgy [1991, Sections 3.5,
9.4 and 9.5] and Pericchi and Walley [1991]), sometimes itbrgionic form, and often
more fully worked out.

2. IMPRECISE PROBABILITY MODELS

Consider a very general situation in which uncertainty ogc@a subject is uncertain
about the value that a variab¥ assumes in a set of possible valugs Because the
subject is uncertain, we shall cdlanuncertain or random variable.

SFor other brief and perhaps more conventional introdustitm the topic, we refer to_Walley [1996a],
De Cooman and Zaffalon [2004], De Cooman and Troffaes [20D4]Cooman and Miranda [2006]. A much
more detailed account of the behavioural theory of impeepi®babilities can be found lin Walley [1991].
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The central concept we shall use in order to model our subjeetertainty abouk, is
that of agamble(on X, or on Z"), which is a bounded real-valued functiéron 2. In
other words, a gambléis a map from%" to the set of real numbel& such that

supf :=sup{f(x): xe 2} and inff :==inf{f(x): xe 27}

are (finite) real numbers. It is interpreted as the rewardtion for a transaction which
may yield a different (and possibly negative) rewé(d), measured in units (calladiles
of a pre-determined linear utiliﬂ/for each of the different valueghat the random variable
X may assume if?".

We denote the set of all gambles Brby £ (27). For any two gamble$ andg, we
denote their point-wise sum bfy+ g, and we denote the point-wise (scalar) multiplica-
tion of f with a real numbeA by A f. Z(2") is a real linear space under these opera-
tions. We shall always endow this space with fupremum normi.e., || f|| = sugf| =
sup{|f(x)|: xe £}, or equivalently, with the topology of uniform convergenegich
turns.Z(2") into a Banach space.

An event Ais a subset of2". If X € Athen we say that the eveatcurs and if X € A
then we say thaf doesn'’t occuror equivalently, that theomplement(ary event)*A=
{xe Z": x¢ A} occurs. We shall identify an event with a spedi@)1}-valued gambléy,
called itsindicator, and defined bya(x) = 1 if x € A andla(x) = 0 elsewhere. We shall
often writeA for 14, whenever there is no possibility of confusion.

2.1. Coherent sets of really desirable gamblesGiven the information that the subject
has abouk, she will be disposed to accept certain gambles, and totrejeers. The idea

is that we model a subject’s beliefs abduby looking at which gambles she accepts, and
to collect these into aet of really desirable gamblez.

The dice exampleAssume that our subject is uncertain about the outo§rmemy tossing
a die. In this case?” = 25 := {1,2,3,4,5,6} is the set of possible values fi. If the
subject is rational, she will accept the gamble which yiglgmsitive reward whatever the
value ofX, because she is certain to improve her ‘fortune’ by doing3othe other hand,
she will not accept a non-positive gamble that is negativeesehere, because by accepting
such a gamble she can only lose utility (we then sayisbers a partial los3. She will
not accept the gamble which makes her win one utile if theamu&X is 1, and makes her
lose five utiles otherwise, unless she knows for instandethieadie is loaded very heavily
in such a way that the outcome 1 is almost certain to come up.

Real desirability can also be interpreted in terms of thérmebehaviour of our subject.
Suppose she wants to bet on the occurrence of some evengsuththrowing 1 (so that
she receives 1 utile if the event happens and 0 utiles otBejwif she thinks that the die
is fair, she should be disposed to bet on this event at any sdtietly smaller thar%. This
means that the gambley, —r representing this transaction (winning-¥ if the outcome

of X is 1 and losing otherwise) will be really desirable to her fok %. ¢

Now, accepting certain gambles has certain consequenmukhaa certain implications
for accepting other gambles, and if our subject is ratiowhich we shall assume her to
be, she should take these consequences and implicatianadodunt. To give but one
example, if our subject accepts a certain ganfldbe should also accept any other gamble

4This utility can be regarded as amounts of money, as is the foasnstance in de Finetti [1974-1975]. It
is perhaps more realistic, in the sense that the linearith@fscale is better justified, to interpret it in terms of
probability currency: we win or lose lottery tickets depirgdon the outcome of the gamble; see Walley [1991,
Section 2.2].
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g such thag > f, i.e., such thay point-wise dominates, because acceptirgis certain
to bring her a reward that is at least as high as acceftohges.

Actually, this requirement is a consequence [combine (Digh @WD3)] of the follow-
ing four basic rationality axioms for real desirability, ish we shall assume any rational
subject’s set of really desirable gambl#go satisfy:

(D1) if f <O0thenf ¢ # [avoiding partial loss];

(D2) if f > 0thenf € # [accepting sure gains];

(D3) if f € # andg € Z thenf 4+ g€ # [accepting combined gambles]
(D4) if f € # andA > 0thenA f € Z [scale invariance].

where f < g is shorthand forf < g and f # gf We call any subse# of Z(Z) that
satisfies these axiomscaherentset of really desirable gambles.

Itis easy to see that these axioms reflect the behaviouiahedity of our subject: (D1)
means that she should not be disposed to accept a gamble mvhlats her lose utiles, no
matter the outcome; (D2) means that she should accept a gavhixth never makes her
lose utiles; on the other hand, if she is disposed to accapgdmblest andg, she should
also accept the combination of the two gambles, which leadsrewardf + g; this is an
immediate consequence of the linearity of the utility sca@lais justifies (D3). And finally,
if she is disposed to accept a gambleshe should be disposed to accept the scaled gamble
A f foranyA > 0, because this just reflects a change in the linear utiléyescThis is the
idea behind condition (D4).

Walley [1991/| 2000] has a further coherence axiom that datsatly desirable gambles
should satisfy, which turns out to be quite important forditioning, namely

(D5) if £ is a partition of.Z" and iflgf € # for all Bin £, thenf € # [full conglom-
erability].

Since this axiom is automatically satisfied whenegris finite [it is then an immediate
consequence of (D3)], and since we shall not be concernédeitditioning unless when
Z is finite (see Sectidn 9), we shall ignore this additionabaxin the present discussion.

A coherent set of really desirable gambles is a convex caxierfes (D3)—(D4)] that
includes the ‘non-negative ortharf, := {f € £(2"): f > 0} [axiom (D2)] and has no
gamble in common with the ‘negative orthawt’ := {f € £ (Z"): f < 0} [axiom (o1))
If we have two coherent sets of really desirable gami#eand%,, such thatz, C %,
then we say tha#; is less committal, or more conservative, th@p, because a subject
whose set of really desirable gambles/#s accepts at least all the gamblesdf;. The
least-committal (most conservative, smallest) coherenbtreally desirable gambles is
%.-. Within this theory, it seems to be the appropriate modetéonplete ignorancef our
subject has no information at all about the valuXp$he should be disposed to accept only
those gambles which cannot lead to a loss of utiles (seelastiscussion in Sectidn 5).

Now suppose that our subject has specified @sef gambles that she accepts. In an
elicitation procedure, for instance, this would typicallg a finite set of gambles, so we
cannot expect this set to be coherent. We are then facedheithroblem of enlarging this
Z 1o a coherent set of really desirable gambles that is as smalbssible: we want to
find out what are the (behavioural) consequences of the ctithccepting the gambles
in Z, taking into accountnly the requirements of coherence. This inference problem is

550, here and in what follows, we shall writé < 0’ to mean < 0 and notf = 0", and ‘f > 0’ to mean
‘f >0and notf =0'.

6This means that the zero gamble 0 belongs to the set of rezgdiyatble gambles. This is more a mathematical
convention than a behavioural requirement, since this ¢@imds no effect whatsoever in the amount of utiles of
our subject. See more details in Walley [1991].
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(also formally) similar to the problem of inference (lodicéosure) in classical proposi-
tional logic, where we want to find out what are the conseqegmé accepting certain
propositionﬁ

The smallest convex cone includifig. and#, or in other words, the smallest subset
of Z(2") that includesZ and satisfies (D2)—(D4), is given by

n
Ep = {geiﬂ(%): g> Z/\kfkforsomenzO,)\keR+ andfke%’},

whereR* denotes the set of non-negative real numbers. If this cocorg&), intersects
% then itis easy to see that actualfy, = . (2"), and then it is impossible to exterd
to a coherent set of really desirable gambles [because @t)at be satisfied]. Observe
that&), N¢” = 0 if and only if

n
there are nm > 0, A, € R* and f, € Z such thatz AT <O,
=1

and we then say that the sét avoids partial loss Let us interpret this condition. As-
sume that it doesn’t hold (so we say th@tincurs partial 1os3. Then there are really
desirable gamblesy, ..., fy and positively, ..., A, such thatyp_; Axfi < 0. But if our
subject is disposed to accept the gamfléhen by coherence [axioms(D2) and (D4)] she
should also be disposed to accept the gampfg for all A, > 0. Similarly, by coherence
[axiom (D3)] she should also be disposed to accept the SfimA«fx. Since this sum is
non-positive, and strictly negative in at least some eldmehZ’, we see that the subject
can be made subject to a partial loss, by suitably combinargldes which she accepts.
This is unreasonable.

When the classZ avoids partial loss, and only then, we are able to extghtb a
coherent set of really desirable gambles, and the smallebtset is precisely,, which is
called thenatural extensionf Z to a set of really desirable gambles. This set reflects only
the behavioural consequences of the assessments pres&ntia acceptance of a gamble
f notin &}, (or, equivalently, a set of really desirable gambles sriccluding &7,) is not
implied by the information present i%, and therefore represents stronger implications
that those of coherence alone.

2.2. Coherent sets of almost-desirable gamblesCoherent sets of really desirable gam-
bles constitute a very general and powerful class of models fsubject’s beliefs (see
Walley [1991, Appendix F] and Walley [2000] for more detailsd discussion). We could
already discuss symmetry aspects for such coherent se¢slbf desirable gambles, but
we shall instead concentrate on a slightly less general engiful type of belief models,
namely coherent lower and upper previsions. Our main refsatoing so is that this will
allow us to make a more direct comparison to the more fantd@resian belief models,
and in particular to de Finetti’'s [1974—-1975] coherent giews, or fair prices.

Consider a gambld. Then our subject'dower prevision or supremum acceptable
buying price,P(f) for f is defined as the largest real numkesuch that she accepts the
gamblef —t for any pricet < s, or in other words accepts to bdyfor any such pricé.
Similarly, herupper previsionor infimum acceptable selling price( f) for the gamblef
is the smallest real numbsisuch that she accepts the gamblef for any pricet > s, or
in other words accepts to sdllfor any such price.

7see Moral and Wilsor [1995] and De Coornan [2000, 2005] foremetails on this connection between
natural extension and inference in classical proposititmgc.
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For an evenA, the lower previsioP(l4) of its indicator is also called thiewer prob-
ability of A, and denoted bfP(A). It can be interpreted as the supremum rate for betting
on the evenA. Similarly, P(la) is called theupper probabilityof A, and also denoted by
P(A).

Since selling a gamblé for price s is the same thing as buyingf for price —s, we
have the followingconjugacyrelationship between an upper and a lower prevision:

P(f) =—P(-f).

This implies that from a given lower previsid® we can always construct the conjugate
upper previsiorP, so they are mathematically equivalent belief models. lafbllows,
we shall mainly concentrate on lower previsions.

Now assume that our subject has a coherent set of reallyatdsgambles?, then it is
clear from the definition of lower and upper prevision thateae useZ to define a lower
prevision

Py(f) =sup{seR: f —se Z} (D-LPR)
and an upper prevision

Py (f) =inf{seR:s—f € Z}
for every gamblef on 2°. So, givenZ we can construct two real-valued functionals,
P, andP, whose interpretation is that of a supremum acceptablenbyyiice, and an
infimum acceptable selling price, respectively, and whasealn is.# (%£"). We shall call
these functionalbwer andupper previsions

We call acoherent lower previsioon (%) any real-valued functional o’ (2")
satisfying the following three axioms:

(P1) P(f) > inf f [accepting sure gains];

(P2) P(f +g) > P(f)+P(g) [super-additivity];

(P3) P(A f) = AP(f) [non-negative homogeneity].

for all gamblesf andg on 27, and all non-negative real.

It follows from the coherence axioms (D1)—(D4) fatthat the lower previsioR,, that
corresponds to a coherent set of really desirable gan%lmcohererﬁ

So we see that with a coherent set of really desirable garmgblese can define a coher-
ent lower prevision onZ(%Z"), using [D-LPR). We shall see further on that, conversely,
given a coherent lower previsidghon £ (.2"), we can always find a coherent set of really
desirable gamble% such thaP andZ are related throughh (D-LPR). But unfortunately,
the relationship between the two types of belief models iay¥ta-one: there are usually
many coherent sets of really desirable gambles that leddeteame coherent lower previ-
sion. This is why we said before that coherent sets of re@frdble gambles are a more
general and powerful belief model than coherent lower giews. The ultimate reason for
this is the following: suppose that a subject specifies hpresaum buying pric@( f) for
a gamblef. This implies that she accepts all the gamHlesP(f) + J, whered > 0. But
the specification oP(f) says nothing about the gamHtle- P(f) (whered = 0) itself: she
might accept it, but then again she might not. And precisebgoise specifying a coherent
lower prevision says nothing about this border behavidlgaids to a belief model that is
less powerful than coherent sets of really desirable gasnhilbere this border behaviour
would be determined.

The dice example (cont.).et us go back to the die example. Consider, for any 25 =
{1,...,6}, the event{x} that the outcomeX of rolling the die isx. If, for some real

870 prove (P1), use (D2); for (P2) use (D3); and for (P3) use) @#A > 0 and (D1) and (D2) foA = 0.
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numberr, our subject accepts the gamijg, —r, she is willing to payr utiles in return
for the uncertain rewartyy,, or in other words to bedn the event{1} atrate r. So her
lower probabilityP({x}) for {x}, or equivalently, her lower previsioR(l ;) for 1, is
the supremum rate at which she is willing to bet 4. This means that she accepts
the gambld ,, —sfor anys < P({x}). But it doesn’timply that she actually accepts the
gamblel,, — P({x}): this gamble is only claimed to be almost-desirable, as ved she
further on.

If she is completely ignorant about the properties of the Her evidence about the
die is symmetrical, i.e., doesn’t change when the possibtecmnes are permuted. A
belief model that ‘faithfully’ captures the available egitte should therefore be symmet-
rical with respect to such permutations as well, so we irffat in particulaP({1}), ...,
P({6}) are all equal to some numbpr Coherence [use (P1) and (P2)] then requires that
0<p< %. Any suchp leads to a symmetrical lower probability defined on the sitagis,
and therefore reflects ‘symmetry of beliefs’. As we havedatid above, the model corre-
sponding top = 0 is the one that reflects complete ignorance. We shall séeefuon (see
Section$ 42 and 9) that the choipe- % leads to the only model that captures the belief
that the die is fair, i.e., that reflects ‘beliefs of symmeétry

In order to better understand the relationship betweenreolhéower previsions and
coherent sets of really desirable gambles, we need to intemdbesideseal desirability, an
new and weaker notion, calledimost-desirabilitywhich will also play animportant partin
our discussion of symmetry further on. This notion is inediby the ideas in the discussion
above: we say that a gambilas almost-desirabléo a subject, or that sreEdmost-accepts
f, whenever she acceptst+ d, or in other wordsf + J is really desirable to her, for any
strictly positive amount of utilityd > 0. By stating thaf is almost-desirable to her, nothing
is specified about whether the subject accdptself: she might, but then again she also
might not. If we generically denote loy a set of gambles that are almost-desirable to our
subject, we see that the 81, of almost-desirable gambles that corresponds to a coherent
setZ of really desirable gambles, is given by

Da={feL(X): (V6>0)f+5e#}= ()%~ (D-M)
3>0

S0 24 is the closure (in the topology of uniform convergence®.2")) of the convex
coneZ.

We call any set of gamble® that satisfies the following five axiomscaherent set of
almost-desirable gambles

(M1) if supf < Othenf ¢ 2 [avoiding sure loss];

(M2) ifiinf f > Othenf € 2 [accepting sure gains];

(M3) if f € 2 andg € 2 thenf + g€ 2 [accepting combined gambles];
(M4) if f € 2 andA > 0thenA f € 2 [scale invariance];

(M5) if f+0 € 2 forall d > 0thenf € 2 [closure].

It is a closed and convex cone i#f(2") that includes the non-negative orth&fit and
does not intersect with the set’. = {f € £ (2"): supf <0} C ¢_. ltis easy to see
that the set of almost-desirable gambigg that corresponds to a coherent set of really
desirable gamble® is actually also coherefft.

%To prove (M1), use (D1) witld = —%pf; to prove (M2), use (D2); to prove (M3), use (D3); to prove (M4
use (D4); and to prove (M5), uge= g and the definition o7 to prove thatf + 6 € # for all 5 > 0.
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It should at this point come as no surprise that coherentrigneyvisions and coherent
sets of almost-desirable gambles are actually equivakdigfimodels. Indeed, consider a
coherent set of almost-desirable gamhbiesi.e., 7 satisfies (M1)—(M5). Then the real-
valued functionaP,, defined onZ(2") by

Py(f):=max{seR: f —sec 9} (M-LPR)

satisfies (P1)—(P3) and therefore is a coherent lower pomimﬁ(%)ﬂ
Conversely, if we consider a coherent lower previsibon .Z(%2"), i.e., P satisfies
(P1)—(P3), then the set of gambles

I ={fe2(Z): P(f) >0} (LPR-M)
satisfies (M1)—(M5) and is therefore a coherent set of alrdestrable gambl@: More-
over, the relationship R) arld(LPRFM) are bijectivag-to-one and onto), and they

are each other’s inverses.
Finally, consider a coherent lower previsiBron (%), and define the following set
of gambles
Dg ={feL2(2):P(f)>00rf>0}.

ThenZg U {0} is a coherent set of really desirable gambles, i.e., itf’mssi$D1)—(D4E‘}
Moreover, any coherent set of really desirable gamidabat satisfies

P U{0} C 2 C Dp,

i.e., the union of whose (relative) topological interiorthvic™* is Z4 U {0} and whose
topological closure i¥p, hasP as its associated lower prevision, through{D-LPR). This
confirms what we claimed before: coherent lower previsionsguivalently, coherent sets
of almost-desirable gambles, are less powerful belief isod@n coherent sets of really
desirable gambles. If a subject specifies a coherent loveigion P, then she actually
states that all gambles in the uniéay U {0} of ¢, with the relative topological interior
of Zp are really desirable, but she doesn’t specify whether thebges in the topological
boundaryZp \ Z4 of Zp are: we only know that they are almost-desirable to her.

2.3. Natural extension for coherent lower previsions.There is one important problem
that we skipped over in the discussion above, namely thatfefénce. Suppose a subject
specifies a se® of gambles that are almost-desirable to her. In an eliomtagirocedure,
for instance, this would typically be a finite set of gambles we cannot expect this set
to be coherent. We are then, as before for really desiralieltgs, faced with the prob-
lem of enlarging thisZ into a coherent set of almost-desirable gambles that is af sm
as possible: we want to find out what are the (behaviouralyegmences of the subject’s
almost-accepting the gambles , taking into accounonly the requirements of coher-
ence.

107he supremum in Eq{D-LRR) now becomes a maximum, simplaimeethe se? is closed.

11(Pl) follows from (M2), (P2) from (M3) and (P3) is a conseqcenf (M4).

12First, conditions (P1) and (P2) imply th&is monotone. Now, (P2) and (P3) imply that=0P(0) >
P(f)+P(—f) > P(f) +inf(—f), whenceP(f) < supf. From these two facts we deduce (M1). (M2) is a
consequence of (P1), (M3) of (P2) and (M4) of (P3). Finalty tmonotonicity of® implies thatP(u) = p for
any constant valug, and from this we deduce thBt f + ) = P(f) + o for anyd > 0. This implies (M5).

1310 see that they are each other inverses, it suffices to usa tivherent lower prevision satisfiegf — s) =
P(f) —sfor any gamblef and any real numbes, and, conversely, that € Zp if and only if P(f) > 0O; this
implies also that both transformations are bijective.

Yror (D1), use that a coherent lower previsnatisfiesP(f) < supf for any gamblef; for (D2), thatf > 0
satisfies eithef > 0 or f = O; for (D3), use (P2) and the monotonicity of the coheigraind for (D4) use (P3).
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The smallest closed convex cone includitig and Z, or in other words, the smallest
subset of#(2") that includes? and satisfies (M2)—(M5), is given by

n
&y = {g e L(X): (V6>0)(In>0, AR fr e 2)g> z Ak — 5} . (M-NE)
K=1
This is the topological closure of the s€f,. If this convex cones?) intersectsg” =
{f € Z(Z): supf <0} then it is easy to see that actualf{fl = £ (.2"), and then it is
impossible to extend to a coherent set of almost-desirable gambles [becauseddnihpt

be satisfied]. Observe th&f]N ¢’ = 0 if and only it

sup

n
Z /\kfkl > 0 for somen > 0, Ay € RT andfy € 2, (M-ASL)
=1

and we then say that the s@tof almost-desirable gamblesoids sure lossIn that case,
and only then, we are able to extefydto a coherent set of almost-desirable gambles, and
the smallest such set is precisélff, which is called theatural extensionf Z to a set of
almost-desirable gambles.

What does natural extension mean for the equivalent modebloérent lower previ-
sions? Suppose our subject specifies a supremum acceptgivg price, or lower previ-
sion,P( ) for each gamblé in some set of gambleg” C .#(2") [ We can then interpret
P as a real-valued map o#", and we callP alower prevision on’#’, and say that?” is
thedomainof P.

To study the problem of natural extension for this lower @ien, we shall use what
we already know about natural extension in the context obatrdesirable gambles. Re-
call that specifying® on % is tantamount to stating that the gambles in the Bet=
{f —P(f): f € '} are almost-desirable. We now look at the natural extenditm® 2.
Using [M=ASI), we know that such a natural extension existsid only if{

n
sup[ z Ak [Tk —P( fk)]] >0foralln>0,A € R" andf, € 7, (LPR-ASL)
K=1

and we then say that the lower previsiBion 7" avoids sure lossin this case, the natural
extensiorg?) is the smallest coherent set of almost-desirable gambdesitiudes?, and
consequently the coherent lower previs@g;n associated witlt7}' through

P.n(g) i= max(s: g se &)

is the point-wise smallest coherent lower prevision®802") that dominate® on.#". We
call this coherent lower prevision tmatural extensiorof P and we denote it bp. We
deduce from[{M-NE) that for all gamblegon 2":

Ep(g)= sup inf lg zAkgk] sup inf lg zAk [fi - <fk>]].
A>0, gk69 A>0, fyet”
k=1...,n,n> k=1...,n,n>0
(LPR-NE)
If Pincurs sure lossi.e., [[PR-ASI) is not satisfied, theff]' = . (2") and consequently

Ep assumes the valug in every gamble.

15Actually, this condition is equivalent to the one where weals choosdy = 1.

167 his set of gambles?” need not have any predefined structure; in particular, is do¢ have to be a linear
space.

There too, this condition is equivalent to the one where weagdixchoosay = 1.
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We shall call the lower previsioR on .# coherent whenever it can be extended to
a coherent lower prevision a&’(:2"), or in other words, whenever it coincides with its
natural extensiolEp on every gamble in its domair¢”. Taking into accoun{{LPR-NE),
we see that this happens exactly when

n
sup Z M[fk —P(f)] — Ado[fo— P(fo)]| > Oforalln>0,Ac € R" andfy € .7,
=]

(LPR-COH)
This coherence condition implies tHRafvoids sure loss.

Let us see if, for lower previsions, we can give a more immtedighavioural interpre-
tation for avoiding sure loss, coherence, and natural siden This should allow us to
develop more intuition, as the approach we have followedasowhich motivates these
notions through the coherence axioms for real and almastatde gambles, is admit-
tedly quite abstract. We begin with avoiding sure loss. $spghat conditiod (LPR-ASL)
is not satisfied. Then there ane> 0, A1, ..., Ay in R and fq, ...f, in ¢ such that
sup[Yr_1 Ak [fk — P(f)]] < 0, which implies that there is sonde> 0 for which

Z)\k [fk —P(fx)+ 9] < -2.

Now, by the definition ofP(fy), our subject accepts each of the gamties P(fy) + 9,
so she should also accept the combined garplg A[fx — P(fk) + 0] [use axioms (D3)
and (D4) for real desirability]. But this gamble leads to aesloss of at leasd. In other
words, if condition[[CPR-ASL) doesn’t hold, there are gaashhich the subject accepts
and which, if properly combined, make her subject to a swss.lo

Next, assume that condition (LPR-COH) fails to hold. Thegr¢haren > 0, Ag, ..., An
inR* andfo, ... fnin ¢ such that sufy_; Ak[fk — P(fk)] — Ao[fo — P(fo)]] < 0. Assume
thatAg > 0, as we have already considered the dase 0 in our discussion of avoiding
sure loss. Then there is son§e> 0 such that

z [fk—P(fi) + 0] < fo— (P(fo) + 9).

As before, the gamble on the left-hand side is a gamble thraguhject accepts. But then
she should also accept the gambje- (P(fp) + ) since it point-wise dominates a gamble
she accepts [use (D2) and (D3)]. This implies that she sheldilling to pay a price
P(fo) + o for fo, which is strictly higher than the supremum prRgfy) she has specified
for it. Coherence avoids this kind of inconsistency.

Finally, we turn to natural extension. Consider a gangbta .2°, then [CPR-NE) tells
us thatEp(g) is the supremurs such that there ane> 0, Aq, ..., Apin RT andfy, ... f,
in 7 for which

g-s> 3 Alfc—P(f)]
k=1

Now the expression on the right-hand side is almost-ddsirhbcause it is a non-negative
linear combination of almost-desirable gambles [applyakioms (M3) and (M4)]. So
g — sshould be almost-desirable as well [apply the axioms (M2) @3)], and therefore
our subject should be willing to bug for any pricet < s. So we deduce thdp(Q)

is the supremum price fay that the subject can be forced to pay for the ganthley
suitably combining transactions that she is committed ¢eptby her specifying the lower
previsionP on.#". In other wordsEp(g) is the lower prevision fog that is implied by the
assessments and coherencalone
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2.4. Coherent previsions: the Bayesian belief modelsWhen a lower previsioR on 2
is self-conjugatethat is, wherP(f) = P(f) for any gamblef in .7, it is called gprevision
The common valu®(f) is then called therevisionof f; it is afair price for the gamble
f in the sense of de Finetli [1974-1975]. Formally, a realsgdlfunctionP on a class of
gambles’ is called dinear, or coherent, previsiomwhenever
n m
sup z [fc — P(fi)] — Z [0j — P(gj)]| > 0foralln,m> 0 andfy,g; € ¢, (PR-COH)
k=1 =1
A linear prevision is coherent, both as a lower and as an upeision. Moreover, if its
domain is the class of all gamble%;(.2"), then condition[(PR-COH) simplifies to
(PR1) P(f +g) = P(f)+P(g) forany f andgin £ (") [linearity].
(PR2) P(f) >inff foranyf in £ (2") [accepting sure gains].
Linear previsions are the familiar Bayesian belief modafs; linear prevision on all gam-
bles is indeed a coherent prevision in the sense of de Fj8#i4—1975]; and a prevision
defined on an arbitrary set of gambles is coherent exactiyithgthe restriction of some
coherent prevision on all gambles. The restriction to @atbrs of) events of a coherent
prevision on all gambles is a finitely additive probabilitye shall denote b(.2") the set
of all coherent previsions a&’(.2").
There is an interesting relationship between coherentigioms and coherent lower

previsions. LeP be a lower prevision with domairt’, and let us denote by

AH(P) ={PeP(Z): (Vf e )P(f)>P(f)}
the set of all coherent previsions ¢£i(.2") thatdominate Pon its domain. Then it can be
checkeli} thatP avoids sure loss if and only i#Z (P) is non-empty, that is, if and only if

there is some coherent prevision 6f(.2") that dominate® on .J¢", andP is coherent if
and only if it is thelower envelopef .# (P), meaning that for alP in ¢/,

P(f)=min{P(f): Pe .Z(P)}.

Also, any lower envelope of a set of coherent previsions islerent lower prevision.
Moreover, the natural extensidgy of P to all gambles can be calculated using the set
# (P) of coherent previsions: for any gamhiieon 2", we have

Ep(f) =min{P(f): Pc.#(P)}.

This means that from mathematicapoint of view, a coherent lower previsidghand its
set of dominating coherent lower previsiong(P), are equivalent belief models. It can
be checked that this set is convex and closed in the weak’idgpﬁ? Moreover, there

is a bijective relationship between weak*-closed conves s coherent previsions and
coherent lower previsions (their lower envelopes). Thi$ &an (but need not) be used to
give coherent lower previsionsBayesian sensitivity analysis interpretatjdresides the
direct behavioural interpretation given in Section 2.2: might assume the existence of a
precise but unknown coherent previsidexpressing a subject’s behavioural dispositions,
and we might model the information abd@toy means of a weak*-closed convex set of
coherent previsions# (the set of possible candidates). Then, this setashematically
equivalent to its lower envelod® which is a coherent lower prevision. We shall come
back to the difference between the direct behavioural aa@#yesian sensitivity analysis

183ee [Walleyl 1991, Sections 3.3-3.4] for proofs for theatestents.

197 he weak* topology on the set of all continuous linear fumatils onZ’(:2") is the topology of point-wise
convergence. For more details, see Walley [1991, Appendlix D
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interpretation of a lower prevision in Sectibnl4.2, when visedss the interplay between
these interpretations and the notion of symmetry.

Taking into account the bijective relationship that existéween coherent lower previ-
sions and sets of almost-desirable gambles, we may aldoliskta bijective relationship
between sets of coherent previsions and sets of almostbésgambles: given a weak*-
closed convex set” of coherent previsions a&’(2"), the class

Dy = {f € L(X): (YPe.M)P(f) >0}

is a coherent set of almost-desirable gambles, that is tigfiss the coherence condi-
tions (M1)—(M5). Conversely, given a coherent set of alrtegtirable gamble®, the
corresponding set of coherent previsions

M(D) ={PeP(Z): (Vfe2)P(f)>0}
is a weak*-closed convex set of coherent previsions.
Hence, there are at least three mathematically equivaggmesentations for the be-
havioural dispositions of our subject: coherent sets obalrdesirable gambles, coherent

lower previsions, and weak*-closed convex sets of cohgresvisions. The bijective rela-
tionships between them are summarised in Table 1.

7 9 P() M
9 {f:P(f) >0} {f: (VP e .Z)P(f) >0}
P(") max{s: -—se 9} min{P(-): Pe .Z}

M [P (VEe 2)P(f) >0} {P: (VH)P(f) > P(f)}

TABLE 1. Bijective relationships between the equivalent belietlels:
coherent sets of almost-desirable gambsfecoherent lower previsions
Pon.Z(£), and weak*-closed convex setg of coherent previsions
onZ (%)

We now briefly discuss a number of belief models that cortstpparticular instances of
coherent lower previsions. First, we considemonotone lower previsions, whene> 1.
A lower previsionP is calledn-monotor® when the following inequality holds for all
peN,p<nandallf, fy, ..., fpin Z(Z):

S (P (f A/\fi> >0,
1C{1,...,p} iel

where, here and further ofi| denotes the number of elements in a finitelseA similar
definition can be given if the domain Bfis only alattice of gamblegi.e., a set of gambles
closed under point-wise minimumand point-wise maximuny. Suchn-monotone lower
previsions are particular instances of exact functioridiad’) 2003], i.e., they are scalar
multiples of some coherentlower prevision. In particudam-monotone lower probability
defined on a lattice of event® that contains @ and?” is coherent if and only iP(0) =0
andP(2") =1.

205ed De Cooman etldl. [2006, 2005b,a] for a detailed disqussio- and complete monotonicity for lower
previsions.
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A completely monotorewer prevision is simply one thatismonotone for any natural
numbem > 1. When itis defined on indicators of events, it is called a pl@tely monotone
lower probability. WhenZ" is finite, this leads tdelief functionsn the terminology of
Shafer|[1976].

Two particular cases of belief functions and their conjeggtper probabilities argrob-
ability chargesor finitely additive probabilities defined on a field of evg[Bhaskara Rao and Bhaskara Rao,
1983] andpossibility measuresThe latter [De Cooman, 2001, Zadeh, 1978] are set func-
tions M satisfyingl (U, Ai) = supg, M(A) for any family (Aj)ici of subsets of2". M is
a coherentipperprobability if and only if[1(27) = 1.

Finally, we can consider a particular instance of a complet®notone coherent lower
prevision that allows us to model complete ignorance, theadledvacuous lower previ-
sion It is given by

P(f)= inf 1(x),

for all gamblesf on 2". It corresponds to the set of almost-desirable gamfles ¢, =
{f: f >0}, and to the set# = P(.¥) of all coherent previsions o1¥. If we have no
information at all about the values th&ttakes in.2", we have no reason to reject any
coherent previsiorP, and this leads to the vacuous lower prevision as a beliefetnod
More generally, we can consider a vacuous lower previsitative to some subseX of
Z", which is given by

PA(f) = Inf f(x).

A vacuous lower prevision relative to a gets the adequate belief model when we know
that the random variabl¢ assumes values iy and nothing else. The restriction to events
of a vacuous upper prevision is a (zero-one-valued) pdigibvieasure.

2.5. Incomparability and indifference. We claimed in the Introduction that Bayesian
belief models do not take indecision seriously, and thatheedfore need to look at a larger
class of belief models that do not have this defect. Here,nesgmt a better motivation for
this claim.

Consider two gambles andg on 2". We say that a subjealmost-prefers to g, and
denote this ag = g, whenever she accepts to exchagder f in return for any (strictly)
positive amount of utility. Given this definition, it is stghtforward to check that we can
express this in terms of the three equivalent belief modgl® and.# of the previous
sections by

frgef-ge2
<P(f-g)>0
< (VP e . #)P(f) > P(g).

The binary relatiorr- is a partial pre-order ot (%£"), i.e., it is reflexive and transitie:
Observe also that = g« f —g> 0 and thatf > 0< f € 2, sof is almost-preferred to
gif and only if f — gis almost-preferred to the zero gamble, which in turn is emjent to
the fact that our subjeetimost-accepts f g, i.e., thatf — gis almost-desirable to her.

Unless our subject’s lower previsidhis actually a (precise) previsidh(meaning that
2 is the semi-spacgf : P(f) > 0}, and that# = {P}), this ordering is not linear, or total:
it does not hold for all gambletandg that f > g or g = f. When, therefore, both 2 g

2l7he binary relatior- is actually avector orderingon the linear space?(2"), because it is compatible
with the addition of gambles, and the scalar multiplicatidrgambles with non-negative real numbers.
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andg # f, we say that both gambles arecomparable or that the subject is undecided
about choosing betweehnandg, and we write this a$ || g.

It is instructive to see why the relatighis non-empty unlesP is a precise prevision
P. If P is not precise (but coherent), there is some garhibdechP(h) < P(h). Letx
be any real number such thath) < x < P(h). In this case, the subject does not express
a willingness to buyh for the pricex, becausex is strictly greater than her supremum
acceptable pric@(h) for buyingh. Nor does she express a willingness to bethr a price
X, because is strictly smaller than her infimum acceptable priRfg) for sellingh. But
there is more. Consider the gambles= h — x (buyingh for a pricex) andg := x—h
(sellingh for a pricex). Then it follows from the coherence Bfthat

P(f —g) = 2P(h—x) = 2[P(h) =X < 0 andP(g— ) = 2P(x— h) = 2[x—P(h)] < O,

sof || g: our subject is also undecided in the choice between buyfogx or sellingh for
that price.

We say that our subject indifferentbetweenf andg, and denote this ak~ g when-
ever bothf = g andg > f. This means thaP(f —g) = P(g— f) = 0, or equivalently,
P(f) = P(g) for all P in .#. Clearly,~ is an equivalence relation (a reflexive, sym-
metrical and transitive binary relation) o (2"). It is important to distinguish between
incomparability and indifference. Indifference betweamiplesf andg represents strong
behavioural dispositions: it means that our subject alraosepts to exchandefor g and
vice versaon the other hand, incomparability has no behaviouralicagibns, it merely
records the absence of a(n expressed) behavioural digmasitchoose betweehandg.

3. MONOIDS OF TRANSFORMATIONS

Symmetry is generally characterised mathematically agriamce under certain trans-
formations. In this section, we provide the necessary nmadhieal apparatus that will
allow us to describe and characterise symmetry for the fhalielels we are interested in.

3.1. Transformations and lifting. We are interested in models for beliefs that concern
a random variabl&. So let us begin by concentrating on transformations of &gies
possible values?” for X. A transformationof 2" is defined mathematically as a map
T: 2 — 2 : x— Tx At this point, we do not require that such a mBghould beonto
(or surjective), i.e., thal (27) := {Tx: xe 2} should be equal t&2". Neither do we
require thafl should beone-to-ondor injective), meaning thak x= Tyimpliesx =y for
all xandy in 2". A transformation of2" that is both onto and one-to-one will be called a
permutationof 2", but we shall in the sequel also need to consider transfasnsabf 2"
that are not permutations.

Suppose we have two transformatiofisandS, of 2" that are of interest. Then there
is no real reason why we shouldn’t also consider the combaéetidn of T andSon 27,
leading to new transformatio® := So T andT S:=T oS, defined by(ST)x:= §(Tx) and
similarly TSx:= T(SX for all xin Z". And of course, we could also consider in a similar
way T STandST S or for that matte T T SSTwhich we shall also write a63S°T. So it
is natural in this context to consider a s&tof transformations of2” that is closed under
composition, i.e.,

(VT,8€ 7)(TSe 7) (SG)
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Such a set is called semigroup of transformatioff$ If moreover the semigrouyy” con-
tains the identity map igh, defined by id,- x := x for all xin .2, it is called amonoid As
the identity map leaves all elements@f unchanged, it has no implications as far as sym-
metry and invariance are concerned, and we can thereforbanfallows assume without
loss of generality that any” we consider actually containsgd (is a monoid).

A monoid 7 is Abelianif ST= TSfor all T andSin 7. An important example of
an Abelian monoid is the following. Consider a single tramsfationT of 2", and the
Abelian monoidZ7 generated by, given by

FJr={T":n>0},
whereT? := id 4 is the identity map o2, T := T and forn > 2,
T":=ToTo---oT.
H,—/
ntimes

A monoid.7 of transformations is calleléft- (respectivelyight-)cancellablevhen for
every transformatiof in .7 there is som&in 7 such thaST = id 4 (respectivelyl S=
id4). This transformatiors is then called deft- (respectivelyright-)inverseof T. If
7 is both left- and right-cancellable, then the left-and tigiverses ofT are unique and
coincide for anyT in .7, and.7 is called agroup. Any element of7 is then a permutation
of Z.

For our purposes here, we generally only need to assumeZthata monoid, because
there interesting (and relevant) situations whétas not a group; this is for instance the
case for the Abelian monoid of ttehift transformations of the set of natural numbiErs

Tg:=1{6": n>0}, (1)

where8(m) = m+ 1, and8"(m) = m+n for all natural numbersn andn. Another im-
portant example is the monoid,- of all transformations of2", which is generally not
Abelian, nor a group.

Since we are also concerned with gamblesn 2, we need a way to turn a transfor-
mation of 2" into a transformation o2 (2"). This is done by the procedure lifting:
given any gamblé on 2", we shall denote byt f the gamblef o T, i.e.,

TH(x) == f(TX),

for all xin 2". For an evenf, T!p = lT-1(a), whereT ~1(A) := {xe 2: Txc A} is the
so-calledinverse imageof A underT. On the other hand, given a constantwe have
Ttu = u for any transformatiof .

The following observation is quite important. Consider tnansformation§ andSon
Z . Then for any gamblé on .Z" we see that

(ST =fo(SoT)=(foS)oT=(Sf)oT =THST),

so(ST)' = T3, and lifting reverses the order of application of the transfations: forx
in 27, STxmeans thaTl is applied first tax, and therSto Tx. For f in £ (%), (ST)'f
means tha® is applied first tof and thenT® to S'f.

Any transformationT of 2" can therefore be lifted to a transformatidhof £ (2),
and we denote the corresponding set of liftings®Y. .7t is then a monoid of transfor-
mations of.Z(%£"). Lifting preserves the most common properties of semigsptgking
into account the above-mentioned order-inversion: beimgoaoid, being Abelian, and
being a group are preserved under lifting. But being leftesdlable is turned into being

22 semigroup is defined as a set with a binary operation thattésrial and associative. Composition of
maps is always an associative binary operation, @ndl (SGagtees that it is internal ir7.
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right-cancellable, andice versa Lifting also has the interesting property that it turns a
transformatiorT on 2" into alinear transformatiorT! of the linear space”(.2"): for any
pair of gambled andg on 2™ and any real numbeps andyu, we have

TYAf+pg) =ATH +uT'g.

3.2. Invariant (sets of) gambles. We now turn to the important notions of invariance
under transformations. We start with the invariance of asgambles, because that is the
most general notion, from which all other notions of invada can be derived. If# is a
set of gambles or?”, andT any transformation of7, then we denote by

T = {T'f: fex}
the direct image of the se¥” underT!, and we say that#” is .7 -invariantif
(vTte YT C ),

i.e., if all transformations in7t areinternalin .z %

A gamblef on 2 is called 7 -invariantif the singleton{f} is, i.e., if T'f = f for all
transformationg in the monoid7. We call an evenf .7 -invariant if its indicaton 4 is,
i.e,ifT"1(A)=Aforal Tin.7.

Let us denote by#» the set of all.7 -invariant events. It is easy to check th4t,
is anample field i.e., it contains 0 and?’, and it is closed under arbitrary unions and
complementation, and therefore also under arbitrary $etgions. For anx in .27, we
shall call

X7 :=({A: A€ .#5 andx € A}
the .7 -invariant atom containing x It is the smallest7 -invariant event that contains
Any 7 -invariant evenA is a union of.7 -invariant atomsA = [ J,ca [X . We shall denote
by <77 the set of all invariant atomsw/s := {[x| , : x€ 2Z'}. Itis a partition of Z". A
gamblef on 2" is 7 -invariantif and only if it is constant on th& -invariant atoms ofZ".

Of course, the bigger the set of transformatioris the smaller the number of/ -
invariant events (or, equivalently, the bigger the atdris). The following proposition
relates the7 -invariant atomgx| - to the images ok under the transformations iff .

Proposition 1. Let.7 be a monoid of transformations ¢, and let x be any element of
2. In general we have thgfTx: T € 7} C [X],. If 7 is left-cancellable, thefx] ,, =
{Tx: Te T}

Proof. Fixxin 2. Let 7 (x) :={Tx: T € .7} for brevity of notation. Consider arly in
7. Since[x] , is T-invariant, we have tha ~1([x] ;) = [X] . Sincex € [X ,, becauseZ
is a monoid, we infer from this equality th@itx € [x] ;.. Hence indeed” (x) C [X] 5.

To prove the converse inequality, assume thais left-cancellable. Consider ar§y
in 7. If we can prove that7 (x) is S-invariant, meaning tha® (.7 (x)) = .7 (x), then
the proof is complete, since the#i (x) will be .7-invariant, and since this set contains
x [because ig- € .7], it must include the smalles? -invariant setx| ,, that contains.
So we set out to prove th& (.7 (x)) = 7 (x). Consider any in 2". First assume that
y € 7(x). Then there is som€ in .7 such thay = T x, whenceSy= STxe .7(x), since
ST 7. Conversely, assume thatt S1(.7(x)), or equivalently, thaByec .7 (x), then
there is somé& in . such thatSy= Tx, and since7 is assumed to be left-cancellable,
there is som& in .7 such thaSS=id 4, whenceZ (x) > STx= SSy=y, sinceST ¢
. O

2350 7t is a monoid of transformations o¥ .
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An important special case is the following. Consider a tramsationT of 2", and
the Abelian monoidZr = {T": n > 0} generated bif. Then a set of gamble®” is Z7-
invariant if and only ifTt.#” C ¢, and we simply say tha¥” is T -invariant Similarly, a
gamblef is Zr-invariant if and only ifTtf = f, and we say that is T -invariant In what
follows, we shall always use the phrageinvariant’ for ‘.71 -invariant’. Also 47 is the
set of T-invariant events, and it is an ample field whose atoms aretddrby[x];. With
this notation, we have for an arbitrary monaithat ¥ = Nrco #7.

For instance, the particular case of the shift transforomatbfN given by Eq.[(1L) con-
cerns the Abelian monoid generated 8y Here, the onlyg- (or shift-)invariant events
are 0 andN, and consequently a gambfeon N is B-invariant if and only if it is con-
stant. This also shows that the equality in the first part afpBsition[1 need not hold
when the monoid of transformatior® is not left-cancellable: in the present case, we
have thatZp(m) = {8"(m): n> 0} = {n € N: n> m} is strictly included in the invariant
atom[m)y = Nforall m> 1.

Another interesting case is that 61y, the class of all transformations ¢f. This a
monoid, but it is not generally a group, nor Abelian. Moremveis not generally left-
cancellable. We have, for any elemeamf 2" that{Tx: T € J» } = 2", and from Propo-
sition[] we deduce in a trivial manner tHat,, = 2": the only invariant events under all
transformations of2” are 0 andZ". This shows that the left-cancellability condition in the
second part of Propositién 1 is not generally necessary.

4. SYMMETRY AND INVARIANCE FOR BELIEF MODELS

We now have the necessary mathematical tools for studymistue of symmetry in
relation to the belief models discussed in Secfibn 2. Wel skal that for these coherent
sets of almost-desirable gambles, there is an importatibcli®n between the concepts
‘symmetry of models’ (which we shall call weak invariance)damodels of symmetry’
(which we shall call strong invariance). Let us first turnte discussion of symmetrical
belief models.

4.1. Weak invariance: symmetry of models. Consider a monoid” of transformations
of Z". We want to express that a belief model about the value tleatahdom variable
X assumes inZ", exhibits a symmetry that is characterised by the transditions in.7".
Thus, the notion of (weak) invariance of belief models thatase about to introduce is in
a sense a purely mathematical one: it expresses that thisenbedels are left invariant
under the transformations ifr .

Definition 1 (Weak invariance) A coherent set of almost-desirable gamhiess called
weakly.7 -invariantif it is .7 -invariant as a set of gambles, i.e.TifZ C 2 for all T in
7.

Why don't we require equality rather than the weaker reqoéet of set inclusion in this
definition? In linear algebra, invariance of a subset of edirspace with respect to a linear
transformation of that space is generally defined using trdynclusion. If we recall from
Sectior[ B that lifting turns any transformatidnof 2" into a linear transformatiom' of
the linear space? ("), we see that our definition of invariance is just a speciat cdst
notion that is quite common in the mathematical literature.

A few additional comments are in order. First of all, any caimé set of almost-desirable
gambles is weakly ig--invariant, so we may indeed always assume without lossméige
ality that.7 is at least a monoid (contains4e).
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Secondly, we have given an invariance definition for alnuestirability, but the def-
inition for coherent sets of really desirable gambtéss completely analogous: for all
Tin 7, T'% C #. Observe that itZ is weakly .7 -invariant then the associated set of
almost-desirable gamblea,, given by [D-M), is weakly.7 -invariant as well.

Thirdly, if 7 is a group (or at least left-cancellable), then the weakriam&e condition
is actually equivalenttd'2 = & for all T in .7 given a transformatiof in .7 and its
(left-)inverseS € .7, considerf € 2; thenT!(Sf) = (ST)!f = f, so there is a gamble
g = Sf, which belongs toZ by weak invariance, such thdt= T'g; this means that
feT'9,502 CT'2 as well.

In summary, weak invariance is a mathematical notion ttetestthat a subject’s be-
havioural dispositions, as represented by a belief ma&debre invariant under certain
transformations. If we posit that a subject’s dispositians in some way a reflection of
the evidence available to her, we see that weak invariangaenay to model ‘symmetry
of evidence’'. The following examples try to argue that ifréhés ‘symmetry of evidence’,
then corresponding belief models should at least be weakgriant.

The example of shift transformationSuppose our subject is completely ignorant about the
value of a random variablé that assumes only non-negative integer valueszse: N. If

her belief model is to be a reflection of the available evigefmone), we should like it to
be weakly invariant with respect to the shift transformasiin .7 ( which is an Abelian
monoid, but not a group). Indeed, if she is ignorant aboushe is also ignorant about
6(X) = X+ 1, apart from the fact that she knows tt4fX) cannot assume the value 0,
whereasX can. Therefore, if our subject almost-accepts a gampkhe should almost-
accept' f: 6'f(X) = f(X + 1) may assume the same values &%), apart from the value
f(0), and because of her ignorance, our subject has no reasaatdhe shifted gamble
differently. ¢

The dice examplel_et us go back to the die example. Suppose that whateverregdsir
subject has about the outcorKeof rolling the die, is left invariant by permutatiomsof
Zs ={1,...,6}. Assume that our subject almost-accepts a garhpfeeaning that she is
willing to accept the uncertain rewafdX) + ¢ for anye > 0. But since the evidence gives
our subject no reason to distinguish between the randorahlasX andr(X), she should
also be willing to accept the uncertain rewdidt(X)) + € for anye > 0, or in other words,
she should almost-accept the gamilé.

We now investigate the corresponding notions for weak iavae for the equivalent
belief models: coherent lower previsions and weak*-closmi/ex sets of coherent previ-
sions. In order to do this, it is convenient to define the timmsation of a (lower) prevision
under a transformation on .2, by lifting T to yet a higher level.

Definition 2 (Transformation of a functionalﬂ Let T be a transformation of2” and let
A be areal-valued functional defined of @nvariant set of gamblest” C .#(.27). Then
the transformatio A of A is the real-valued functional defined off by TA := Ao Tt,
or equivalently, byTA(f) := A(T'f) = A(f o T) for all gamblesf in 7.

Theorem 2. Let Pbe a coherent lower prevision off (£7), 2 a coherent set of almost-
desirable gambles, an@Z a weak*-closed convex set of coherent previsionsA(#").
Assume that these belief models are equivalent, in the $hatthey correspond to one

2%We use the same notatidh for the transformation of2” and for the corresponding transformation of
a functional, first of all because we do not want to overloas ritathematical notation, and also because, in
contrast with lifting only once, lifting twice preservestbrder of application of transformations.
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another using the bijective relations in Table 1. Then tHiefang statements are equiva-
lent.

1. 9 is weakly.7 -invariant, in the sense that'® C 2 forall T in .7.

2. Pis weakly Z-invariant in the sense that TB P for all T in .77, or equivalently
P(T'f) > P(f) forall T in 7 and f in.Z(2);

3. . is weakly 7 -invariant in the sense that 7 C .# for all T in .7, or equivalently,
TPe .# forallPin.# andall T in7 &

Proof. We give a circular proof. Assume thétis weakly.7 -invariant. Consider any in
Z andf in J¢, and observe that for the corresponding lower previgion

P(T'f) =max{p: T'f —pe 2} >max{u: f—puez}=P(f),

where the inequality follows from the invariance assumpitim . This shows that the
first statement implies the second.

Next, assume tha® is weakly .7 -invariant, and consider any in .7 andP in the
correspondingZ = .# (P) = {P: (Vf)P(f) > P(f)}. Then for any gamblé on 2" we
have thaff P(f) = P(T'f) > P(T'f) > P(f), where the second inequality follows for the
invariance assumption dd This tells us that indeetiP € .# (P), so the second statement
implies the third.

Finally, assume that7 is weakly .7 -invariant. Consider any in .7 and any gamble
f in the corresponding = 2, = {f: (VP € .#)P(f) > 0}. Then we have for anp in
M thatP(Ttf) = TP(f) > 0, sinceT P belongs ta (P) by the invariance assumption on
. Consequentlf'tf € 2, which proves that the third statement implies the first. O

A coherent previsior? on £ (%Z") is weakly 7 -invariant if and only if TP = P for
all T in 7. This is easiest to prove by observing that(P) = {P}[% So for coherent
previsions, we have an equality in the weak invariance ¢amdiAs we argued before, we
generally won't have such an equality for arbitrary mona#dsbut the following corollary
gives another sufficient condition afi.

Corollary 3. If the monoid is left-cancellable, then the first weak invariance corudiiti
in Theoreni 2 becomes @ = 7 forall T in .7. If .7 is right-cancellable, then the second
and third weak invariance conditions become ¥ and T.# = .# forall T in g8

Proof. We have already proven the first statement near the begimfiSectiof4.]l. To
prove the second statement, it suffices to show that whers right-cancellable,7 -
invariance impliesthd > TPand.#Z C T.# forall T in . Consider any transformation
T in the monoid7, and letR be a right-inverse fof , i.e., TR=id . Consider a gamble
on 2", thenP(h) = P((TR)'h) = P(R(T'h)) > P(Tth), where the inequality follows from
the weak invariance d. So indeedP > TP. Similarly, consideP in .#. ThenRPe .#
by weak invariance, and for any gamtflen 27, T(RP)(f) = RP(T'f) = P(R(T!f)) =

25This shows that our notion of a weakly invariant belief modt®miresponds to Pericchi and Walley's [1991]
notion of a ‘reasonable (or invariant) class of priors’ hetthan a ‘class of reasonable (or invariant) priors’,
the latter being what our notion of strong invariance wilfrespond to. On the other harnd, Walley [1991,
Definition 3.5.1] defines & -invariant lower previsiorP as one for whictP(Ttf) = P(f) forall T € 7 and all
gamblesf, so he requires equality rather than inequality, as we de. her

2650¢ Propositiol] 7 for a more direct proof.

21The reason for the difference in terms of left- versus ricgmcellability lies of course in the fact that in the
first condition, we work with transformatiorl& of gambles, and in the second and third condition we work with
transformationd” of functionals, which are liftings of the former; simply edcthat lifting reverses the order of
application of transformations.
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P(f) sinceR(T!f) = (TR'f = f. So there is & = RPin .# such thaP = T Q, meaning
thatPe T.#. Soindeed# C T.Z. [l

We see from the definition that if a coherent set of almosirdele gambles? (or a
coherent lower prevision, or a weak*-closed convex set bicent previsions) is weakly
T -invariant, it is also weaklyZ”’-invariant for any sub-monoid of transformatiof® C
7. Hence, as we add transformations, the collection of wekgdgriant belief models
will not increase. The limit case is when we consider thesckdg: of all transformations
on .Z". The following theorem shows that the vacuous belief modedshe only ones that
arecompletely weakly invariante., weaklyZ, -invariant.

Theorem 4. Let .7, be the monoid of all transformations gf'. Then the vacuous coher-
ent set of almost-desirable gambi&s (or equivalently, the vacuous lower prevision-P
or equivalently, the weak*-closed convex set of all cohigpeevisionsP(.2")) is the only
coherent set of almost-desirable gambles (coherent loweigion, weak*-closed convex
set of coherent previsions) that is wealdy--invariant.

Proof. We give the proof for coherent sets of almost-desirable dasnblt is obvious
that%, is T4 -invariant. So, consider any, -invariant coherent set of almost-desirable
gamblesZ. It follows from coherence [axiom (M2)] th&t, C 2. Assumeex absurdo
that4, C 2 and letf be any gamble iz \ .. This means that there is sorgin

2" such thatf (xo) < 0. Consider the transformatidi, of 2" that maps all elements of
2 10 Xo, thenT)}Of = f(Xo) and it follows from theTy,-invariance of% that the constant
gamblef(xg) € 2, which violates coherence axiom (M1), $o cannot be coherent, a
contradictiorf} O

This result also tells us in particular that the vacuousdbatiodel is always” -invariant
for any monoid of transformation’. This implies that for any monoid of transformations
7, there always are7 -invariant belief models.

What are the behavioural consequences of weak invariarthaegipect to a monoid of
transformations7 ? It seems easiest to study this in terms of coherent loweigioes.
First of all, we have that for any gambfeon 2™ and anyT in .7, our subject’s supremum
buying priceP(T! f) for the transformed gamblE f should not be strictly smaller that her
supremum pric®(f) for buying f itself.

But there is also a more interesting consequence. Indeetlpivs from the coherence
of P that

P(f—T'f) <B(f)-P(T'f) <0.
Walley [1991, Section 3.8.1] suggests that a sulg#attly prefersa gamblef to a gamble
g, which we denote a$ - g, if f > g, or also if she accepts to pay some (strictly) positive

price for exchanging with f, so if P(f —g) > 0. This means that weak -invariance
implies that

f £ T'f forall f in 2 (2°) and allT in 7 such thatf % T'f

which models that our subjebfis no reasoffor disposition)o strictly prefer any gamble
f to any of its transformations'F that it doesn't strictly dominate

28p similar argument tells us that the same result holds formete weak invariance of coherent sets of
really desirable gambles, where now the axiom (D1) will ksfated.
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4.2. Strong invariance: models of symmetry. Next, suppose that our subject believes
that the (phenomenon underlying the) random variabile subject to symmetry with re-
spect to the transformatiosin .7, so that she hasason not to distinguisbetween

a gamblef and its transformatio!f. Let us give an example to get a more intuitive
understanding of what this means.

The dice example (cont.Again, let us go back to the die example. Consider the gambles
lix, forxe Z5:={1,...,6}. Since our subject believes the die (and the rolling meamani
behind it) to be symmetrical, she will be willing to excharegg gambld ,, for any other
gamblely, in return for any strictly positive amount of utility;,, — Iyy should therefore

be almost-desirable to her, or in other words, in terms ofdwer previsionP:

E(I{X} — I{y}) > 0 for allxandy in 2.

This is equivalent to stating thag,, — ntl{x} should be almost-desirable, or th (,, —
ntl{x}) > 0 for all x € 2 and all permutationsr of 2. Now the only coherent lower
prevision that satisfies these requirements is the unifprat{se) prevision, which assigns
precise probability}3 to each even{x} [simply observe that for any coherent previsi®n
in .7 (P) it follows from these requirements thtl ,) = P(l;y1)]- ¢

Let us now try and formalise the intuitive requirements iis tbxample into a more
formal definition. We stated above that if our subject balgethat the (phenomenon un-
derlying the) random variabl€ is subject to symmetry with respect to the transformations
T in 7, then she hageason not to distinguishetween a gamblé and its transforma-
tion T'f. Suppose she has the gamblen her possession, then she should be willing to
exchange this for the gamble f in return for any strictly positive price, andce versa
This means that she should almost-accept BothTt f andT'f — f, or in the language of
Sectiori 2.5, that she indifferent between f and'T: f ~ T'f. If & is her coherent set of
almost-desirable gambles, this means that

f-T'fecgandT'f—fecgforall finZ(2)andallTin 7.
If we define
Dy ={I-TH: feZ(2)TeT}={TH-f:fcL(2)TeT},
this leads to the following definition.

Definition 3. A coherent set of almost-desirable gambleis calledstrongly.7 -invariant
if f—T'f e 2forall fin_¥(2)andallT in 7, orequivalently, {7, C 2.

The following theorem gives equivalent characterisatioinstrong invariance in terms of
the alternative types of belief models.

Theorem 5. Let Pbe a coherent lower prevision of (2), & a coherent set of almost-

desirable gambles, an@” a weak*-closed convex set of coherent previsionsA2").

Assume that these belief models are equivalent, in the $hatéhey correspond to one

another using the bijective relations in Table 1. Then tHiefang statements are equiva-

lent:

1. 2 is strongly.7 -invariant, in the sense tha?» C Z;

2. Pis strongly 7 -invariant in the sense that® — T'f) > 0and AT'f — f) > 0, and
therefore Bf — T'f) = P(T'f — f) =0forall fin (2 )and T in.7;

3. A is strongly.7 -invariant in the sense that TR PforallPin.#Z and all T in 7B

2930 strongly invariant belief models correspond tolthe Rhiiand Walley's|{[1991] notion of a ‘class of
reasonable (or invariant) priors’.
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Proof. We give a circular proof. Assume thatis strongly.7 -invariant, and consider any
gamblef on 2" and anyT in 7. Then we find for the associated coherent lower prevision
PthatP(f —T'f) =max{s: f —T'f —se 2} >0, and similarly thaP(T'f — f) > 0. But
sinceP is coherent, we find that alg®(f — T'f) = —P(T'f — f) < —P(T'f — f) <0 and
similarly P(T'f — f) = —P(f — T'f) < —P(f — T'f) <0, whence indee®(f — T!f) =
P(T'f — f) =0, so the first statement implies the second.

Next, assume tha is strongly.7 -invariant and consider arfy in the associated set
of dominating coherent previsiong = {P: (Vf)(P(f) > P(f))} and anyT in . Then
for any gamblef on 2" we see thaP(f — T'f) > 0 andP(T!f — f) > 0, and sincéP is a
coherent prevision, this implies tha(T' f) = P(f), so indeed P= P. Hence, the second
statement implies the third.

Finally, assume that# is strongly .7 -invariant, and consider any gambfeon 2
and anyT in 7. Then for allP in .# we have thaP(f — T'f) = P(T'f — f) = 0, so
both f — Ttf andT'f — f belong to the associated set of almost-desirable gansbles
{g: (VP € .#)P(g) > 0}. This tells us that the third statement implies the first. O

Let us now study in more detail the relationship between waak strong invariance.
First of all, strong invariance implies weak invariancet generally not the other way
around. It is easiest to see this using weak*-closed coretsxaf coherent previsiong .

If . is strongly.7-invariant, we have that P = P and consequentl§f P € . for all

Pin .#, so.# is also weakly.7 -invariant. To see that the converse doesn’t generally
hold, consider the set of all coherent previsi®is?”) (the vacuous belief model), which

is weakly invariant with respect to any monoid of transfotios, but not necessarily
strongly so, as, unlesg” contains only one element, we can easily find transformafion
and coherent previsiossuch thafl P is different fromP (also see Theorel 6 below).

But the theorem above, when interpreted well, also tellsusmaber of very interesting
things on this issue. First of all, we see that a coherentigicevP on . (.2") is strongly
Z -invariant if and only if it is weaklyZ -invariant, so both notions of invariance coincide
for coherent previsionsSo anyone who insists on modelling beliefs with Bayesiaefbel
models (coherent previsions) only, cannot distinguisiwben the two types of invariance.
This confirms in general what we claimed in the Introductibowt Bayesian belief models.
From now on, we shall therefore no longer distinguish betwstong and weak invariance
for coherent previsions, and simply call themaariant.

Furthermore, we see that a coherent lower previg§ias strongly .7 -invariant if and
only if all its dominating coherent lower previsions areequivalently, if all its dominating
coherent previsions, i.e., all the coherent previsionsiP), are .7 -invariant. Or even
stronger, it is easy to see that a coherent lower previsistmaagly invariant if and only if
it is a lower envelope of some (not necessarily weak*-closmdconvex) set of invariant
coherent previsions.

The notions of weak and strong invariance, and the motimefto introducing them,
are tailored to the direct behavioural interpretation a@fdo previsions, or the equivalent
belief models. But what happens if we give a lower previda Bayesian sensitivity
analysis interpretation? We then hold that there is someahptecise coherent prevision
P, modelling the subject’s uncertainty about the random téeiA, that we have only im-
perfect information about in the sense that we only knowByat P, or equivalently, that
Py € .#(P). Assume that we want the imperfect modketo capture that there is ‘sym-
metry of evidence’ with respect to a monoid of transformagio”. The actual modeP,
then should be weakly -invariant, but since this is a (precise) coherent prewnisice can
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not distinguish between weak and strong invariance, arfubitlsl therefore simply be7 -
invariant: TRy, =P, forall T € 7. SinceZ (P) is interpreted as the set of candidate models
for P,, all of the coherent previsiorigin .# (P) must be.7 -invariant too, or equivalently

P must bestrongly .7 -invariant. A completely analogous course of reasoningvstthat

if we wantP to capture ‘evidence of symmetry®, must be stronglyZ -invariant as well.

So in contradistinction with the direct behavioural intefation,on a Bayesian sensitivity
analysis interpretation of Pwe cannot distinguish between ‘symmetry of evidence’ and
‘evidence of symmetry’, and strong invariance is the propenmetry property to use in
both caseB}

As is the case for weak invariance, a belief model that isgfifo.7 -invariant, is also
strongly.Z”’-invariant for any sub-monoi¢’ C 7. But in contrast with weak invariance,
given any monoid7, there do not always exist coherent belief models that aoagly
invariant with respect ta7. This is an immediate consequence of the following theorem,
which makes an even stronger claim: it is totaligational to requirecompletestrong
invariance, i.e., strong invariance with respect to the ombtv’,- of all transformations of
Z .

Theorem 6. Assume thatZ” contains more than one element. Then any belief model that
is strongly. 7, -invariant incurs a sure loss.

Proof. We shall give a proof for lower previsions. AssumeabsurddhatP avoids sure
loss, sa (P) is non-empty. Consider ariyin .# (P) and any non-constant gambieon

Z [there is at least one such gamble beca#Seontains more than one element]. This
implies that there are (different) andx, in 2" such thatf (x;) # f(x2). For anyy in
A, consider the transformatioly that maps all elements 02" to y. Then we find that
Ty f = f(y), whenceP(f(y) — f) > P(f(y) - f) > 0 andP(f — f(y)) > P(f — f(y)) > 0,
sinceP is by assumption in particular strongly-invariant. Consequentlp(f) = f(y).
But this holds in particular foy = x; and fory = x, so we infer thaf (x;) = P(f) = f(xp),

a contradiction. O

In fact, we easily see in this proof that given the transfdiomely, that maps all elements
of 2 toy, the only stronglyTy-invariant belief model that avoids sure loss is the cortstan
prevision ony. Consequently, if we consider a monoid that includes two different
constant transformations, any belief model that is stprgtinvariant incurs a sure loss.

As a result, we see that there are monafdgor which there are no strongly invariant
coherent (lower) previsions. Under which conditions, ttere there strongly -invariant
coherent (lower) previsions? It seems easiest, and yieta msight, if we look at this
problem in terms of sets of almost-desirable gambles: iddfeee consider a coherent
lower previsiorP on Z (%), then it is stronglyZ -invariant if and only if for its associated
set of almost-desirable gamblés = {f € Z(2Z"): P(f) > 0} we have thaZs C Zp.
We can consideZ » itself as a set of almost-desirable gambles, but at thistpaia do
not know whethe” » is coherent, or whether it even avoids sure loss. Intergstithe
set of coherent previsions that is associated With is given by

M (D7) ={PeP(Z): (Vge Z7)(P(9) = 0)}
={PeP(Z): (Vi € L(2))(VT € 7)(P(f) =P(T'f))}.
So.# (%) is precisely the convex and weak*-closed set of Zltinvariant coherent
previsions, and® is strongly .7 -invariant if and only if.#Z (P) C .# (%), or in other

30gee [Walley, 1991, Section 9.5] for related comments abmuttfference between permutability and ex-
changeability. These notions will be briefly discussed iotia[9.2.
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words, if and only if all coherent previsions that dominBtare .7 -invariant. So there are
strongly .7 -invariant coherent lower previsions if and only.i# (2~) # 0, i.e., if there
are.7 -invariant coherent previsions, and in this case the loweelepe of.# (2 5) is the
point-wise smallest strongly -invariant coherent lower prevision.

In summary, we see that there aveinvariant coherent previsions if and only if the set
of almost-desirable gambleg, avoids sure log3} which, taking into accounE{M=ASL),
is equivalerﬁ?to the conditioft

n
supz [fi—Tefi] >0 foralln>0,fy, ..., frin L(2)andTy, ..., Thin 7. (2)
K=

In that case, the natural extensi§p .= 5’5‘7 of 24 to a coherent set of almost-desirable
gambles is given I

n
&7 =) {f e L(X): f—ezkzl[fk—Tgfk] forsomen>0, fyc (%), ke T

>0
3)
This is the smallest coherent and strongfinvariant set of almost-desirable gambles,
or in other words, the belief model that represents evidericgymmetry involving the
monoid.7 . The corresponding lower prevision, define@)y

Es(f)=min{P(f): Pe . #(27)} (4)
=max{peR: f—pueés} (5)

is then, by virtue of Eq[{4) [see also Theoren 10 further thrg point-wise smallest (most
conservative) strongly’ -invariant coherent lower prevision af(.2"), and if we combine

Egs. [3) and(5), we find tHZt

n
E,(f)= sup{inf [f -5 [fi—T¢ fk]] :n>0fre Z2(2),Tke 9} . (6)
K=1
Remember that this lower prevision is only well-defined (asss finite real values) when-
ever the condition[{2) is satisfied. Taking into account Teed10 further on, we de-
duce that a coherent (lower) prevision is (strongl}invariant if and only if it dom-
inatesg ». Also, E» is the belief model we should use if nothing else but the evi-
dence of symmetry is given. Finally, this formula for tloever prevision is constructive,
but usually the existence of invariant previsions (on indirspaces) is proven in a non-
constructive (Hahn—Banach) way; see Seckibn 8, and als@wand Morse|[1938] and
Bhaskara Rao and Bhaskara Rao [1983, Section 2.1.3(8)]. éScawnot usually get to
the coherent invariant previsions by construction, but ame @lways construct their lower
envelope explicitly!

31als0 seé Walley’s|[1991, Lemma 3.3.2] Separation Lemma.

320bserve that the sét» is acone i.e., closed under scalar multiplication with non-negatieal numbers.

33The same condition was derived [by Wdlley [1991, TheorenR3aBd Corollary 3.5.4] using an argument
that works directly with coherent lower previsions. Altlygbuour argument strongly plays on the connection
between the three equivalent types of belief models of Tblee believe that it produces more insight, once this
connection is fully understood.

34Again, observe tha? » is a cone.

Bt is easy to seethav/ (95) = M4 (87).

36Again, Walley [1991, Theorem 3.5.2 and Corollary 3.5.4y@®the same result in a different manner, see
also footnoté& 38.
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We shall have much more to say about the existence of stramglyiant belief models
in Sectior[ ¥, where we show that this existence is guarantepdrticular if the monoid
7 is Abelian, or if it is a finite group. The following counter@xple tells us that there is
no such guarantee for infinite groups.

Examplel (Permutation invariance on the natural numhet®nsider the sef?y of all
permutations of the set of natural numb&ksWe show that there are no (strongly-
invariant coherent (lower) previsions of(N) by showing that the conditioh](2) doesn’t
hold. Indeed, consider the partition Nfmade up of the sets

RE={3n+r:neN}, r=0,1,2,

and any permutations for r = 0,1,2 such that for alh € N, 17(n) € R} if and only if
n¢ R; [for instance, lett be involutive and such that it assigns the first elemefab the
first of (R;)®, the second element & to the second ofR;)¢, etc.] Consider the gamble
G= LZZO[IRr3 - nﬁIRrg] on N, then we are done if we can show that &g 0. Indeed, if
ne R;thenG(n) =1+0+0—-(1+1+0)=—-1forr=0,1,2, sosufis=—1. ¢

These results expose another fundamental difference betweak and strong invari-
ance: while strong invariance with respect to a greater rmurobtransformations means
that we must refine our beliefs (i.e, it make them more précthés is not the case with
weak invariance.

On the other hand, strong invariance is preserved by domgitwer previsions: iP;
is a coherent lower prevision that is strongirinvariant and®, is a coherent lower pre-
vision that dominateB,, thenP, is also strongly7 -invariant. It indeed seems reasonable
that, if a subject has evidence of symmetry, and she has sddigoaal information that
allows her to make her judgements more precise, she can adssasents while still pre-
serving strong invariance. But a similar result does nod iot weak invariance: since the
vacuous lower prevision is weakly,--invariant, this would mean that any lower prevision
should be weaklyZ,--invariant,quod non

In summary, there is an important conceptual differencevben weak and strong in-
variance. Weakly invariant belief models capture in paiticthat a subjedtas no reason
to strictly prefer a gamblé to its transformatiom! f wheneverf % Tt'f. Strong invari-
ance captures that a subjéets reason not talistinguish between, i.e., to be indifferent
between, the gambleSand Ttf. And it is only if you insist on using Bayesian belief
models always that you must infer indifference from havieg@ason to (strictly) prefer.
This is of particular relevance for belief models that tryépresent a subject’s complete
ignorance, as we now proceed to show.

5. MODELLING COMPLETE IGNORANCE

Suppose our subject is completely ignorant about the valiXtassumes ir#2". Then
she has no relevant information that would allow her to fawme possible value of
over another. This implies that the corresponding beliefieishould be symmetric in the
possible values oX, or in other words it should be weakly invariant with respecthe
groupZ 4 of all permutations of2". This leads to a form of Walley’s [1991, Section 5.5.1]
Symmetry Principle.

Symmetry Principle (SP). If a subjectis completely ignorant about the value of a rando
variable X in 2", then her corresponding belief model should be weakly ianamwith
respect to the group” 4~ of all permutations of2".
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We have mentioned before that the appropriate belief madedmplete ignorance about
X seems to be the vacuous lower previdion. But SP by itself is not sufficient to single
out this lower prevision: if, for instance?” is finite, then the uniform precise prevision
PY, given by
1

|‘%| xeZ
for each gambld on 2", which assigns equal probability mass 2’| to each element
of %, is also weakly permutation invariant. We shall also seearfpled’b andl6 of
Sectior 9 that there may be many more coherent lower prexgsiat share the same weak
permutation invariance property. If, however, we streegtthe Symmetry Principle to
require weak invariance with respectath transformationsand not just all permutations,
then Theorerhl4 tells us that the vacuous lower previBignis indeed the only coherent
lower prevision that is compatible with the following

PY(f) ity

Strong Symmetry Principle (SSP). If a subject is completely ignorant about the value
of a random variable X inZ", then her corresponding belief model should be weakly
invariant with respect to the monoidy- of all transformations of2".

Walley [1991, Section 5.5.1 and note 7 on p. 526] has showtrfehaandom variables
X taking values in a finite se2”, the vacuous lower previsidR,- is the only coherent
lower prevision that is compatible with SP and the so-cBlled

Embedding Principle (EP). Consider a random variable X, and consider a set of pos-
sible values A for X. Then the (lower) probability assignedhie event A, i.e., the lower
probability that X< A, should not depend on the sgf of all possible values for X in
which A is embedded.

So under coherence, SSP is equivalent to SP and EP takeheadéhder coherence, it is
also equivalent to the following rationality principle,&s shall shortly see.

Revised Principle of Insufficient Reason (RPIR).If you have twalifferentgambles f
and g on a random variable X that you are completely ignordrdw, then if f# g you
have no reason to prefer f to g.

Indeed, the only coherent belief model that is compatibta ttiis principle, is the vacuous
one. We shall argue in terms of real desirability mddbig (see Section 211). Say that a
subject (reallyprefers fto g wheneverf £ gandf —g e Z, i.e., she accepts to exchange
g for f. Then RPIR implies that for alf #0, f # 0 implies thatf ¢ %, or equivalently,
by contraposition, that € % implies f > 0. HenceZ = % is the vacuous belief model.

In summary, we have the following equivalences, under catea, and the only be-
lief model that is compatible with these three equivaletibraality requirements, is the
vacuous one:

SSP& SP+EPs RPIR

RPIR is a revised version of the Principle of Insufficient &&a(PIR), which states that
if you are completely ignorant about the value of a randonalde X, then you have no
reason to distinguish between the different possible &laed therefore should consider
all these values to have equal probability. Indeed, fronstohical point of view, the PIR

37For additional discussion of this principle, see also WH996b], Walley and Bernard [1999].

384 similar argument can be given for almost-desirability relsdZ and lower prevision®, using for pref-
erence Walley's [1991, Sections 3.7.7-3.7.9] correspandbtion ofstrict preferencewhich corresponds to the
present argument by usirigs U {0} as a coherent set of really desirable gambles.
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was used extensively by Laplace (see for instance HowieZR@®justify using a uniform
probability for modelling complete ignorance.

We are of course aware that our reformulation RPIR of LapgaeER is quite unusual
and has little or no historical grounds, which is why we reaeit as arevised or perhaps
better, improved principle. It might have been preferabledll RPIR the ‘Principle of
Insufficient Reason to Prefer’, but we decided against thradésthetical reasons.

We think that RPIR is reasonable, but that PIR isn’t. Indes, of the reasons for the
critical attitudes of many researchers towards ‘Bayesiathods’ and inverse probability
in the nineteenth and early twentieth century seem to libérirtdiscriminate use by many
of Laplace’s PIR in order to obtain uniform prior probalidi that can be plugged into
Bayes'’s formul&) And by ‘indiscriminate use’ we mean precisely the confusiat
exists between symmetry of evidence and evidence of symgmet have argued that it
is only evidence of symmetry that justifies using stronglaiiant belief models (and in
many cases, such as permutation invariance for finite spsiteag invariance singles out
the uniform probability as the only compatible belief mqdsle also Sectidd 9). If there
is only symmetry of evidence, we should use weakly invarisitef models, and in the
special case of complete ignorance, vacuous ones. Of casrae said in the Introduction
and proved in the previous section, for precise previsi@ayésian belief models) there
is no difference between weak and strong invariance, soufigsist on using a Bayesian
belief model, symmetry of evidence leads you to a (stronighygriant one! The problem
with the PIR, therefore, is that the belief model is only aial to be precise: there would
be fewer or no difficulties if in its formulation we just repled ‘probability’ with ‘lower
and upper probability’, for instance.

6. WEAKLY INVARIANT LOWER PREVISIONS

Let us now turn to a more involved mathematical study of thaiiance of coherent
lower previsions. So far, we have only looked at cohereneloprevisions that were
defined on all gambles. But of course, it will usually happeeat tour subject specifies a
supremum acceptable buying priegf) for only a limited number of gamblefs say those
in a subset’?” of Z(Z"). And then we can ask ourselves whether such an assessment
can be coherently extended to a weakly, or to a stronglyinvariant lower prevision
on all gambles. We shall address these, and related, prebtethis and the following
section. Let us begin here with weak invariance. The foltmilefinition generalises
the already established notion of weak invariance to lowevipions defined on any”-
invariant domain, that are not necessarily coherent (they even incur a sure Ios@.

Definition 4 (Weak invariance) A lower previsionP defined on a set of gambleg” C
Z(Z) is called weakly.7 -invariantif

(W1) Ttf € ¢ forall f in.# andT in .7, i.e.,.# is .7 -invariant;
(W2) P(T'f) > P(f) forall f in 2# andT in .7, i.e., allT P point-wise dominat®.

As before, if.7 is right-cancellable (and in particular if it is a group)etimequality in
the invariance definition is actually an equality: considgramblef in %", a transforma-
tion T in .7 and its right-invers®, we haveP(f) = P((TR'f) = P(R(T!f)) > P(T'f)
in addition toP(T'f) > P(f).

3%n interesting historical discussion of such attitudes lsarfiound in_Howie|[2002] and Zabell [1989b].

400ur notion of weak invariance for a lower prevision is weattem Walley’s [1991, Section 3.5.1] corre-
sponding notion of invariance, which requires equalityd &as the drawback that it is not preserved by natural
extension.
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Next, because taking convex combinations, lower enve|dipgiss inferior and superior
preserves inequalities, it is easy to see that convex caatibirs, lower envelopes and
point-wise limits of weakly invariant lower previsions afso weakly invariant. Observe
by the way that the same operations also preserve coherence.

The following proposition looks at weak invariance for (gise) previsions.

Proposition 7. Let P be a prevision, i.e., a self-conjugate lower previsidefined on a
negation-invariant domaiw?” = —% . Assume that?” is also 7 -invariant. Then P is
weakly.7 -invariant if and only if RT'f) = P(f) forall T in .7 and all f in_#".

Proof. It is clear that the condition is sufficient. To show that ialso necessary, assume
that P is .7 -invariant, and consider any in .7 and any gambld in 2#". Then it fol-
lows from the.7 -invariance ofP that on the one hanB(T!f) > P(f), and on the other
hand, since-f € # andT'(—f) = —T'f € ., thatP(—T'f) = P(T'(—f)) > P(—f), or
equivalently, using the self-conjugacy®fthatP(f) > P(T'f). O

We study next whether a weakly invariant lower previs®with domain.#z" can be
extended to a coherent weakly invariant lower previsionhansiet of all gambles, or more
generally, whether there is a coherent weakly invariantloprevision on all gambles
that dominate®. We already know from the material in Section]2.3 that a neamgs
condition for this is thaP should avoid sure loss. IndeedHfincurs sure loss then it has
no dominating coherent lower prevision, let alone a weaklaiiant one. The perhaps
surprising result we prove next is that avoiding sure losalse sufficient, and that all
we have to do is consider the natural extendipnof P, as it preserves weak invariance.
This natural extension is automatically guaranteed to kepthint-wise smallest weakly
Z -invariant coherent lower prevision that dominai&

Theorem 8(Natural extension preserves weak invariancé)e natural extension gof a
weakly.7 -invariant lower prevision Pon a set of gamblest” that avoids sure loss is still
weakly.7 -invariant, i.e., for all gambles f or?" and all T in.7,

TEp(f) =Ep(T'f) > Ep(f).

Consequently, Eis the point-wise smallest weakiy-invariant coherent lower prevision
on.Z that dominates Pn its domain’#’.

Proof. Consider any gamblé on 2" and anyT in 7. From the definition[(CPR-NE) of
natural extension, and the fact tHdtz” C 7", we get

n
Ep(T'f)= sup a:th—GZZAk[fk—E(fk)]}
k=1

A>0, fye
k=1...,n,n>0
n
> sup qa:TH—a> % AT'g—P(T')] } 7
M>0,0k€X K=1
k=1...,n,n>0,

Now it follows from theT-invariance ofP thatP(T'gyx) > P(gk), whence

n

S A[Tg—P(T'g0] <T''S Adlge—P(gu)],
k=1 k=1

4This result is mentioned, with only a hint at the proof| by 1&l]1991, Theorem 3.5.2].
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and consequentlj — o > S_; Ak[gk — P(gk)] implies that
n n
TH—a>T' Y Mlo—P(a)] = Y M[T'ok—P(T'gy)] -
k=1 k=1

So we may infer from the inequalitl](7) that

n
Ep(T'f)>  sup {a: f—a> Z/\k[gk—E(gk)]} =Ep(f),
A>0,0kex” k=1
k=1...,n,n>0,

which completes the proof. O

Hence, if we start out with a lower previsidhon ¢ that is weakly.7 -invariant and
already coherent, then its natural extengighis the smallest coherent and weakdy-
invariant lower prevision on all gambles that agrees vlfton .#". As we shall show
further on, this result does not carry over to strong invaréa

7. STRONGLY INVARIANT LOWER PREVISIONS
We now turn to the study of strong invariance for lower prioris on general domains.

7.1. Definition and immediate properties. The following definition generalises the no-
tion of strong invariance introduced in Sectionl4.2 to loweevisions that needn’t be
coherent, nor defined on all o¥ (2").

Definition 5 (Strong invariance)A lower previsionP defined on a set of gambleg” C
Z (%) is calledstrongly 7 -invariantif

(S1) T'f — f € # andf —T'f € # forall f in # and allT € .7;

(S2) P(T'f — f) > 0andP(f —T'f) > 0forall f in # and allT € 7.

As is the case for weak invariance, it is easy to see thatgtfoiinvariance is preserved
under convex combinations, lower envelopes, and poing-\sits, simply because all
these operations preserve inequalities.

Proposition 9. A strongly.Z -invariant coherent lower prevision on& -invariant domain
is also weaklyZ -invariant.

Proof. First of all, the coherence and strong invarianc@ afply that 0< P(T'f — f) <
P(T'f) — P(f), whenceP(T'f) > P(f) and similarly, we derive fror®(f — T'f) > 0 that
P(f) > P(T'f). So we see tha is also weakly7 -invariant (with equality). O

To see that a converse result does not generally hold, soiwesiance is actually weaker
than strong invariance, consider the vacuous lower p@avRi,- on.Z(2") and the trans-
formation Ty, that maps all elements of 2" to Xp. Then, for any gambld such that
inf f < f(xo) we haveP, (f —Tg f) < 0. HenceP, is not stronglyTy,-invariant but
Theoreni #4 implies that it is weakll,-invariant. If we consider a finite spac&” and the
vacuous lower previsioR ,- on £ (Z") and the class” 4 of all permutations of2", we
can see that weak invariance (with equality) does not imjpbng invariance.

So weak invariance is indeed a weaker notion than strongianee. The following the-
orem expresses the main difference between these two dsnedple the former means
that the set of coherent previsiong (P) is invariant, the latter means that every element
of this set is invariant.

Theorem 10. Let # be a negation invariant and’ -invariant set of gambles such that
THf —fisin.# forall fin .7 and T in.7.
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1. A coherent prevision P ot¥” is weakly 7 -invariant if and only if it is strongly.7 -
invariant. In either case we simply call i -invariant

2. A coherent lower prevision &n 7" is strongly.7 -invariant if and only if all its domi-
nating coherent previsions are (strongly)-invariant on._z".

Proof. We start with the first statement. We only need to prove thectlimplication, so
assume tha® is weakly.7 -invariant, and consider arfyin 2#". Then from the assumption
and Propositionl7 we g&(T'f) = P(f), and it follows from the linearity oP that indeed
P(THf — f) =P(f - T'f) =0.

We now turn to the second statement. Since any coherent loneision is the lower
envelope of its dominating coherent previsions, the caganplications follow at once,
since taking a lower envelope preserves strong invaridarecprove the direct implication,
assume thal is strongly.7 -invariant, and consider any coherent previsibm .7 (P).
For anyT in .7 and anyf in ¢ we then find that

O<P(f—T') <P(f-T'f) = —P(T'f — f) < —P(T'f — f) <0,
whence indee®(f) = P(T'f). O

7.2. Strongly invariant natural extension. We have shown when studying weak invari-
ance that for any weakly -invariant lower previsior® on some domaiw#” that avoids
sure loss, there is a point-wise smallest weakly invariahecent lower prevision defined
on all gambles that dominates it: its natural extengignLet us now investigate whether
something similar can be done for the notion of strong irmrmze. The question then is:
Consider a monoid” of transformations of2” and a lower previsioR on %" that avoids
sure loss, are there stronglj-invariant coherent lower previsions on &(.2") that dom-
inateP, and if so, what is the point-wise smallest such lower piew® Let us denote, as
before, by

Ip={feL(2): Ep(f) > 0}
the set of almost-desirable gambles associatedByind by
M (P)={PeP(2): (vf e A )(P(f) > P(f))}

its set of dominating coherent previsions, then clearly laecent lower previsioQ on
(%) is strongly.7 -invariant and dominateBif and only if .7 (Q) C .4 (P)N.# (2 7 ),

or equivalently,Zp U 24 C Yq. So there are strongly’ -invariant coherent (lower) pre-
visions that dominat® if and only if .7 (P) N.#(27) # 0, or equivalently, if the set of
almost-desirable gambl&g U 25 avoids sure loss, and in this case the lower envelope of
M (P)N.#(27), or equivalently, the lower prevision associated with theural exten-
sion of the set of almost-desirable gamilgsU &7, is the smallest such lower prevision.

In the language of coherent lower previsions, this leadseddllowing theorerlf3

Theorem 11(Strongly invariant natural extensianfonsider a lower prevision Bn ¢
that avoids sure loss, and a monaf#d of transformations of2". Then there are strongly
Z -invariant coherent (lower) previsions off (£") that dominate Pon ¢ if and only if

n
Ep(Z [fk—Tﬁfk}> >0 foralln>0, fy,..., HinZ(Z)and T, ..., hin.7, (8)
K=

42Walley [1991, Theorems 3.5.2 and 3.5.3] proves similarlteswvolving Egs.[(8) and (10) for what we calll
weakly 7 -invariantP that avoid sure loss, in a different manner. See also foeth®3 and36.



32 GERT DE COOMAN AND ENRIQUE MIRANDA

or equivalently, if
n
Es (Z /\k[fk—E(fk)]> >0 foralln>0,and f,..., fin.7. (9)
K=1

In that case the smallest coherent and strongly T -invadiawer prevision on? (%2") that
dominates Pon its domain’  is given by

n

Ep #(f) _sup{EE (f — z [fk—Tﬁfk}> :n>0fre L(2),Tke 9} (10)
K=1

= SUD{Ey <f - i )\k[fk—E(fk)]> :n>0,fue A > 0} (11)
&

for all gambles f on2"; and.# (Ep ) is the set of all7 -invariant coherent previsions
that dominate Pon 7.

Proof. We already know that there is a dominating coherent (loweyipion if and only
if 4 (P)N.#(27) is non-empty. Let us show that this is equivalent to the cioms (8)
and [9). To see the equivalence between these two conditiosigffices to notice [use
Eq. ((PR-NE) and the fact th&p(h) = —Ep(—h)] that condition[(8) is equivalent to

=}

m

sup| 5 [f—Tcf] + Y [9 —P(g)]| 20
k=1 =1

forallnm>0, fye (%), ke 7,0j€ %, (12)

and that this is in turn [use Ed.(6) and the fact tBat(h) = —E »-(—h)] equivalent to
condition [9). But, considering condition (M-AS8L), we séat condition[(IP) holds if and
only if the set of almost-desirable gambl&ps U 2+ avoids sure loss, or equivalently, if
the corresponding set of coherent previsiof$P) N.# (%) is non-empty.

We now prove the validity of the expressign|(11) for the loemvelopeEp . of the set
of coherent previsions# (P) N.# (2). The proof for the expressiof {10) is analogous.
We know from the material in Sectidh 2 that this lower envelipalso the coherent lower
prevision associated with the natural extension of thefsahwost-desirable gambleg, U
P, s0 we get by applying EJ_{LPR-NE) with = ZpU 25 that

n m
Eps(f)= sup sup inf i f—% )\kgk—/z Hehy
M>0.0keZp  H=0hET 5 k=1 =1
k=1,...nn>0 {=1...mm>0

n m
= sup sup inf [(f - z Akgk> —/Z ughg]
M>0,gkeZp  H>0h €D 5 k=1 (=1

k=1,..,n,n>0 (=1,...mm>0

=}

n
= sup Ey (f - )\kgk> = sup Es (f - )\k[fk—E(fk)]> :
= :

A>0,0v€ Zp A>0, fyet”
k=1,...,n,n>0 k=1,...,n,n>0

1

for every gamblef on 27, also taking into account the definitidd (6) Bf;. O

In conclusion, whenever the equivalent conditidds (8) &)cafe satisfied for a lower
previsionP that avoids sure loss, then (and only then) the functi&qjal,, defined by
Egs. (10) and[{11), is the point-wise smallest coherent amohgly .7 -invariant lower
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prevision that dominate® We shall calEp 5 thestrongly 7 -invariant natural extension
of P, as it is the belief model that the assessments capturBdeéad to if in addition a
(so-called structurﬁ assessment of symmetry involving the mongids made.

7.3. The existence of strongly invariant coherent (lower) prewsions. There is a beau-
tiful and surprisingly simple argument to show that for saymes of monoids”, there
always are strongly” -invariant lower previsions that dominate a given lowenjsien
that is weakly.7 -invariant and avoids sure loss. Itis based on the comloinafia number
of ideas in the literature: (i) Agnew and Morse [1938, Setfpconstructed some specific
type of Minkowski functional and used this together with ehHaBanach extension result
to prove the existence of linear functionals that are irararwith respect to certain groups
of permutations; (ii) Dayl [1942, Theorem 3] showed, in a d&sion of ergodic theorems,
that a similar construction always works for Abelian seroigys of transformations; (iii)
with crucially important insight, Walley [1991, Theorem&2 and 3.5.3] recognised that
the Minkowski functional in the existence proofs of Agnewdaviorse, and Day, is actu-
ally what we have called a strongly invariant lower previsiand he used the ideas behind
this construction to introduce what we shall aalixture lower previsionin Section 7.4;
(iv) in another seminal discussion of mean ergodic theor@da®glu and Birkhoif[1940]
show that (Moore—Smith-like) convergence of convex miesuf linear transformations is
instrumental in characterising ergodicity; and|(v) Bhaskaao and Bhaskara Rao [1983,
Section 2.1.3] use so-called Banach limits to generaté-siviiriant probability charges.
In this and the next section, we combine and extend these tdgaove more general ex-
istence results for (strongly) invariant coherent (low@gvisions, and to investigate their
relation to (generalised) Banach limits (Secfibn 8). As halissee in Section 7.4, Walley's
[1991, Section 3.5] results can then be derived from our rgereral treatment.

Consider a monoidZ of transformations of2". We can, as before, consider the set of
lifted transformations7* as a monoid of linear transformations of the linear spte?”).
A convex combination Tof elements of7* is a linear transformation of/(2") of the
form

n
T =5 AT,

wheren > 1, A4, ..., Ay are non-negative real numbers that sum to one, and of course
T*f = Y1 ATE f. We denote byZ* the set of all convex combinations of elements of
Z*. We have of course for any two elemeiffis= S ; AU} andT; = S¢_; i\ of 7%

that their composition

n m n m n m
LT = Vil S AU ) = AMU; = Ackc(UgVio)!
2 1 kle-lk K (;1 ¢ g) kzlgluk VY kZléZl eMk(UeVi)

again belongs t@Z*. This implies that7* is a monoid of linear transformations &f(.2")
as well. We can now introduce invariance definitions invafytransformations i * in
precisely the same way as we defined themJofor actually.7!). We can also define,
for any real functional\ andT* € 7%, the transformed functiond@l*A\ asAoT*. We then
have the following result.

Proposition 12. The following statements hold, where f is a gamblen#” is a convex
set of gambles o, and_Pis a coherent lower prevision ast:

1. fisZ-invariantif and only if f is.7*-invariant;

43gtructural assessments are discussed in general in W86yt [ Chapter 9].
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2. x is J-invariantif and only if.¢" is .7 *-invariant;
3. Pis weakly.7 -invariant if and only if Pis weakly.7*-invariant;
4. Pis strongly.Z -invariant if and only if Pis strongly.7 *-invariant.

Proof. It suffices of course to prove the direct implications. Cdesian arbitraryT* =
SkAkTk € 7*. For the first statement, let be 7 -invariant, thenT*f = zk)\katf =
SkAkf = f, where the second equality follows from tiiE-invariance off. So f is
J*-invariant. For the second statement, Jgt be . -invariant and letf € 7', then
THf = S AT f € ¢, becausdl} f € ¢ for all k by the 7-invariance of.#" and be-
causesr” is convex. Sax is 7 *-invariant. For the third statement, assume tRhas
weakly .7 -invariant. For anyf € 7/,

P(T*f) :E(Z/\kﬂﬁf) > Z/\kE(Tktf) > ZAKE(]() =P(f),

where the first inequality follows from the coherenceéPpfand the second from the weak
Z -invariance ofP. HenceP is weakly.7 *-invariant. For the last statement, assume Ehat
is strongly.7 -invariant. For anyf € ¢,

E(;wf - f) —E(ZAK(TU - f)) > ;A@(Tk‘f -f)>0,

where the first inequality follows from the coherencéPpfind the second from the strong
T -invariance oP. Similarly P(f — Ek/\kat f) > 0. HenceP is strongly.7 *-invariant. [

We now define the following binary relatiom on.7*: for T; andT, in . we say that
TS is a successoof T}, and we writeT; > T/, if and only if there is som&* in 7* such
that T, = T*T;. Clearly> is a reflexive and transitive relation, becaué is a monoid.
We say that7* has theMoore—Smith propertyor isdirected by, if any two elements of
7* have a common successor, i.e., for diyandT; in 7~ there is somd * in .7 such
thatT* > T, andT* > T;'. Itis not difficult to see that i7" is Abelian, or a finite group,
then.7* is directed by the successor relation. This need not hotd i§ an infinite group
or a finite monoid, however.

Now, given aneta on .7*, i.e., a mappingr: 7* — R, we can take thioore—Smith
limit of a with respect to the directed séZ*, >) [Moore and Smith, 1922, Section I,
p. 103], which, if it exists, is uniquely defined as the reafninera such that, for every
€ >0, there is d," in %, such thata (T*) —a| < € forall T* > T;. The Moore—Smith
limit a of a is denoted by lim«c o+ a(T*). This limit always exists ifx is non-decreasing
and bounded from above, ordf is non-increasing and bounded from below.

Theorem 13. Let Pbe a coherent and weakly¥ -invariant lower prevision o7 (2"), and
assume that7* has the Moore—Smith property. Then for any gamble £26nhe Moore—
Smith limitlimr-c 7+ P(T*f) converges to a real number,Q, (f). Moreover, Q _ is the

point-wise smallest strongly’-invariant coherent lower prevision af’(.2") that domi-
nates Pon.Z(2"), and

Sl

n
Qp ,(f) =sup{P(T*f): T* € 9*}_sup{E< ZT§f> n>1Ty,...,The 9}
- k=1

(13)
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Proof. First, fix f in £ (2"). ConsiderT;* andT, in .7*, and assume that > T;*. This
means that there is sorfi€¢ in 7 * such thafl; = T*T;*, and consequently we find that

P(Ty ) =B(T"(T{'f)) = P(T7'f),

where the inequality follows from the fact thRtis in particular weaklyT *-invariant [ob-
serve thatZ(2") is convex and tha® is weakly .7 -invariant, and apply Propositiéni12].
This means that the n&(T*f), T* € .7* is non-decreasing. Since this net is moreover
bounded from above [by suUp sinceP is coherent], it converges to a real numt_@z;ry(f),

and clearly
QEﬂ(f):Tlim P(T*f) =sup{P(T*f): T" € T"}. (14)

*E'y*
This tells us that the net of coherent lower previsidn®, T* € 7* converges point-
wise to the lower previsiogpﬂ, s0Qp is a coherent lower prevision as well [taking
a point-wise limit preserves_coheren?:e]. Sinctgfid *, it follows from Eq. [14) that
Qp ,(f) > P(id', f) =P(f), soQ, ,, dominated on.Z(2"). We now show tha@,

is stronglyﬂ-invarian@ Consider anyf in £(2") andT in 7. Then for anyn > 1,
Ty =150 (T belongs taZ*, and it follows from the coherence Bfthat

P(TH(f—TH)) = %E(th — (Tt > %inf [THf — (T

= —%sup[(T”*l)tf ~TH] > —%suﬁﬂ,

and consequently
Q, ., (f—Tf)>sup —gsum|:n>1 =0.
—E,<7 - n -

A similar argument can be given fo_zm(th —f)>0, sogp,y is indeed strongly7 -
invariant. B N

Next, consider any strongly -invariant and coherent lower previsighon £ (2"),
and assume that it dominatesThen we get for any gambleon 2~ and anyT* in .7*:

Q) =Q(f =T f+TF)>Q(f —T*f) +Q(T"f) > Q(T*f) > P(T"f),

where the first inequality follows from the coherence®fthe second inequality from its
strong.7 -invariance [use Proposition!12], and the last inequatityrfthe fact tha dom-
inatesP. We then deduce from Ed. (14) th@tdominatesQ;, .. S0Q,, , is indeed the
point-wise smallest strongly”-invariant coherent lower prevision Qﬁ'_’(%‘) that domi-
natesP on.Z(Z").

Finally, let us prove the second equality in Elg.](13). Coaesid gamblef and any
€ > 0. Then, by Eq.[{T4), there is sorié in Z* such thagpﬂ(f) <P(T*f)+%. For
thisT*, therear > 1, Ty, ..., Thin .7 andA4, ..., A, > 0 that sum to one, such that =

Sk_1 AT, Letpy, ..., pn be non-negative rational numbers satisfyjpg— Ai| < ﬁunf\

44The idea for this part of the proof is due to Walley [1991, P¢iv) of the proof of Theorem 3.5.3].



36 GERT DE COOMAN AND ENRIQUE MIRANDA

such that moreovey] ; pi = 1% Now it follows from the coherence & that

_p (imﬁ f) <p (ipmt f) P (i(pi T f) ,

and also

E(ii(p ) i AT >me

€
>Y ——— =——
_i; 2nsuﬁf|suqf| 2’

<P (ZplT f)

whence

Qp (1) <P(T* )+

I\)IM

and consequently

n n
Qp () =sup{E<21piTi‘f> :n>1T,....,The 7,p1,...,Pn e@ﬂzlpi = 1},
=, = i=

whereQ* denotes the set of non-negative rational numbers. Now,dasy to see [just
consider the least common multiple of the denominatogs of. ., py] that this supremum
coincides with the right-hand side of EQ.{13). O

This result allows us to establish the following corollaty.gives a sufficient condi-
tion for the existence of strongly -invariant lower previsions dominating a given coher-
ent lower previsiorP. The smallest such lower prevision reflects how initial heétaral
dispositions, reflected iR, are modified (strengthened) E» > when we add the extra
assessment of strong invariance with respect to a mofioad transformations.

Corollary 14 (Strongly invariant natural extensianl.et 7 be a monoid of transforma-
tions of 2" and let Pbe a weakly.7 -invariant lower prevision on some set of gambles
¢, that avoids sure loss. Assume that has the Moore—Smith property. Then there are
strongly .7 -invariant coherent lower previsions o’ (.2") that dominate Pon £ (2"),
and the smallest such lower prevision, which is called strengly .7 -invariant natural
extensiorof P, is given by B » = QEP.?' Moreover, for every? -invariant gamble f we

have thatk »(f) = Ep(f).

Proof. The first part of the proof follows at once from the observatttat a coherent lower
previsionQ on £ (") dominated on .7 if and only if it dominate<€p on all gambles.
For the second part of the proof, simply observe thdt i a .7 -invariant gamble, then
T*f = f and therefor&p(T*f) = Ep(f) forall T* in .J7*. O

Let us show in particular how this result applies when we mersthe monoidZ
generated by a single transformatibn

4570 see that such rational numbers exist, it suffices to censidn-negative rational numbeps, ..., pn_1
suchthat &< oy < Aj <1and|gi — A| < RSSTM fori=1,...,n-1,andtolepn:=1-3"1p >1-3M1A =
An > 0. Thenp, € [0,1], and forn big enough, and unless we are in the trivial case wheee 1 for somei, we
get|pn — An| < gigr-
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Corollary 15. Let T be a transformation of” and consider the Abelian monoiéh =
{T": n>0}. Then for any weakly T -invariant lower previsionoA some set of gambles
2 that avoids sure loss, there are strongly T -invariant c&mér(lower) previsions on
Z(Z") that dominate Pand the point-wise smallest such lower previsignis given by

1n 1 Kt 1[‘171 Kt
Epr(f)=limEp nk;)(T ) f :ﬁgfgg ﬁk;)(T Yf .

Proof. The existence of strongly-invariant coherent (lower) previsions aff(2") that
dominateP follows from Corollary(1#4, and the fact that for any Abelianoid .7, .*
has the Moore—Smith property. It also follows from this diany that for any gambld on
%,

n>1 k=0

Epr(f) =sup{Ep(T"f): T" € 7'} > supEp (énzl(Tk)tJ .

To prove the converse inequality, fix aly in 77" and any gamblé on Z". Then there is
someN > 1 and non-negativy, ..., An_1 that sum to one, such thait = 3N L A (TK).
Consider the eleme; = & SV (T of 7%, whereM is any natural number such that
M > N. Observe that

1M1 t ( ) M-1N-1 ) k+£ M+N—2
T (") M(T ; (T Hm(T™)",
S PAEED > ame= s
where we let, for &K m< M+ N — 2,

N IM-1 ) Erkn:o% ifO<m<N-2
; M5mk+f ﬁ fN—1<m<M-1
<=0 sNL A% fM<m<M4+N-2

This tells us thapm = & for N—1<m<M—1, and 0< py < & for all otherm. If we
let & := um—m, it follows at once that
N—-1
— fN-1<m<M-1
6 < | MMAN=T)
MIN_1 fO<m<N-2orM<m<M+N-2

Consequently, it follows from the weak -invariance and the coherenceif that

Ep(T"f)
<Ep(SyT™f)
M+N-2 M+N-2
=Ep (S*M+N1f+ zo 5m(Tm)tf> <Ep(Suin-1f)+ zo || sup f|
< Ep(Siyn 1f) +sufif] [m(mwﬂnﬁm_l(zmz)

(N—1)(3M—N+1)

:EE(ST/IJerlf)_"Suq” M(M+N_1)
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Recall thatf andT*, and therefore alsN are fixed. Consider arg/> 0, then there is some

Mg > N such that su|p‘|% < g forallM > Mg, whence

Ep(T™f) <Ep(Su,+n-1f) +& <SUpEp(Sif) + €.
P P Sap=e

Since this holds for alt > 0, we getEp(T*f) < sup,.1Ep(S;f). Taking the supremum
over allT* in * leads to the desired inequality. O

7.4. Mixture lower previsions. The condition established in Theoreni 13 is fairly general,
and guarantees for instance the existenc& efivariant coherent previsions whenever the
monoid.7 is Abelian, or afinite group. In cas&* is not directed, however, as may happen
for instance for groups” that are not finite nor Abelian, there may still B&-invariant
coherent previsions, as we shall see in Examble 2 below. Szea¢hat the directedness
of Z* is not a necessary condition for the existenceZofnvariant coherent previsions.

But consider a weakly -invariant lower previsiof® defined on some domai#”, that
avoids sure loss. Even i7* is not directed? we may still associate witl® a lower
previsionQ,, . on Z(Z") through Eq.[(AB):

1 n
QE,?(f) = ngg*EE(T*f) = sup{gp <ﬁkle|}f> n>1T,....,The 9},
where we have replaced the Moore—Smith limit by a supremuith (shich it would coin-
cide in case7* were directed), and wheks is the natural extension &fto all gambles.
We shall call this lower prevision thmixture lower previsiorassociated with the weakly
invariantP. The supremum in this expression is finite, since it is doteiddy supf. This
mixture lower prevision is not necessarily coherent, big till stronglyﬁ*-invarian@
Moreover, this mixture lower prevision dominatégs, and therefore alsB [observe that
Ep is weakly invariant because is]; and if there areZ -invariant coherent previsions,

it is dominated by the strongly -invariant natural extensioBp 5 of PP} This shows
that.# (Qp ) = .#(Ep, ), since all coherent previsions that dominate the strorigty
invariantgF', - are necessarily’ -invariant. And clearly then, if this mixture lower previ-

sion is coherent, it coincides with the strongly invariaatural extension. So we see that
the mixture lower prevision, even if it is not coherent,lstllows us to characterise all
Z -invariant coherent previsions. In particular, there arehsnvariant coherent previsions
if and only if it avoids sure loss.

Example2 (Directedness is not necessarypt us consider the spacks := {1,2,3}, and
let T1 and T, be the transformations o™ given byTi(1) = 1, T1(2) = 2, T1(3) = 2 and
To(1) =1, T2(2) = 3, To(3) = 3, respectively. Sinc& Ty =T, To,To =Ty, T,T1 = T> and
TiT, = Ta, we deduce that the set of transformatichs= {id 4, T1,T>} is a monoid. Let
Py1y be the coherent prevision off (27) given byP1,(f) = f(1) for any gamblef, i.e.,
all of whose probability mass lies in 1. Then we h&g (f) = P13 (T; f) = Py (T; ) for

46This is the general situation that Walley [1991, Sectior] 8dhsiders, and he doesn't discuss the direct-
edness of7*. He does consider the special case thafs Abelian for which he proves that the existence of
invariant coherent previsions is guaranteed. The resultss section were first proven by him.

47Simply observe that the relevant part (near the end) of thefmf Theoreni_1IB is not based on the direct-
edness of7*.

4879 prove that the mixture lower prevision dominasconsiderT* = id »- in its definition. To prove that
it is dominated by the strongly invariant natural extensiwke fx = f/n in the expressior{(10) for this natural
extension.
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any gamblef, soP;y, is 7 -invariant. Let us show tha¥* does not have the Moore—Smith
property.

ConsidefT;" andT; in .7* given by T = AT{ + (1—A)T} andT; = uT{ + (1— u) T4,
with A # u. LetT* be another element o *, so there are non-negatiee, a, andas
such thainy + a2+ a3 = 1 andT* = ayid', +a,T! + a3T;. Now,

T Ty = oA idy T+ ar(1—A)id, T3
+ AT T+ 02(1—=A)Ti T+ asA To T + ag(1— A)T5T;
=0 AT+ a1 (- )T+ oA T+ a2(1 - AT+ asA T +a3(1—-A)TS
=ATI+(1-N)T; =Ty
Similarly, T*T;" = T for anyT* € .7*. This means thal; is the only possible successor
of T, andT; is the only possible successorBf. Hence,7* cannot have the Moore—
Smith property. Nevertheless, there igZainvariant coherent previsioR ;.

Let us consider the vacuous, and therefore weakinvariant and coherent, lower
previsionP 5., on £ (23), and the mixture lower previsidf;)PI 7 that corresponds with
=Py

it. Itis easy to show that for any gamuIeQP]_ 7(F) =min{f(1),max{f(2),f(3)}} and
__.”,31

this lower prevision avoids sure loss, and is thereforengfifo.7 -invariant, but it is not
coherent [it is not super-additive]. It is easy to see ®at is the only coherent prevision
that dominateQ), o7 and is therefore the only -invariant coherent previsio
7.5. Invariance and Choquet integration. Until now, we have explored the relation be-
tween coherence and (weak or strong) invariance. To com{iiet section, we intend to
explore this relation for the particular case of thenonotone lower previsions and proba-
bilities introduced near the end of Section]|2.4.

Consider am-monotone lower probabiliti? defined on a lattice of events” containing
0 and.Z". Then its natural extension to all events coincides witlniter set functiorP,,
which is given byP, (A) = sup{P(B): B € .#',B C A}. Furthermore, the natural extension
to all gambles is given by the Choquet integral with respeét. t

supf
EE(f):(C)/%_de* ::inff+(Fa)/i P.({xe 2°: f(x) > a})da

nf f

for all gamblesf on 27, where the integral on the right-hand side is a Riemann inte-
gral. This natural extension (and therefore also the ineefusiction) is stilln-monotone
[De Cooman et all, 2005b,a]. Since we have proven in Thebt#mat8natural extension
preserves weak invariance, we can deduce that the inneusetidn of an-monotone
weakly invariant coherent lower probability, and the agsteel Choquet functional, are
still weakly invariantn-monotone and coherent. We now show that weak invariandeof t
inner set function and the associated Choquet integralligsaranteed if the lower proba-
bility P is not coherent or 2-monotone, but only monotone. In whadwd, it is important

to remember that for a transformati®rof 2~ and a subse of 27, TtIa = lr-1a)-

Proposition 16. Let P be a weakly7 -invariant monotone lower probability, defined on
a J-invariant lattice of events#” that containsd and 2", and such that f) = 0 and
P(Z)=1. Then

1. the inner set function Pof P is weakly.7 -invariant; and

2. the Choquet integral with respect tQ B weakly.7 -invariant.

Proof. To prove the first statement, consider ahy 2", and letB € J#” be a any subset
of A. Then for anyT in .7, T"1(B) € # andT1(B) = {x: Txe B} C {x: TXc A} =
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T-1(A), whenceP(B) < P(T1(B)) <P,(T~%(A)), where the first inequality follows from
the weak invariance d?, and the second from the fact tHat is monotone and coincides
with P on its domain, because is assumed to be monotone. ConsequeRtl{A) =
SURsc.» caP(B) < P, (T71(A)). HenceP, is also weaklyZ -invariant.

To prove the second statement, febe any gamble o®”. Define, for anyrr in R, the
level setfy := {x: f(x) > a}. Then by the first statement,

P, (fa) <P.(T Y (fa)) =P.({x: Txe fa}) =P.({x: f(TX) > a}) =P.((T'f)a).
Hence,

supf

(C)/fdP*zinfer(R)/ P.(fq)da

inf f
supf
ginff+(R)/ E*((th)a)da:(C)/thdE*,
inf f
also taking into account for the last equality tRat (T f )4 ) = 1 forall a in [inf f,inf Tt f),
and thatP, (f4) = 0 for all a in (supT' f, supf]. O

As we said before, natural extension does not preservegstrmariance in general,
and a simple example shows that this continues to hold ifcpdat for n-monotone lower
previsions: the unique coherent lower prevision defined®i2"} is trivially completely
monotone and strongly invariant with respect to any mondidamsformations7’, but its
natural extension, the vacuous lower previdton (which is completely monotone), is not
strongly.Z -invariant unless in the trivial case th&t = {id» }.

It is nonetheless interesting that if we restrict oursebteesoherent previsions (which
constitute a particular instance of completely monotomeetoprevisions), natural exten-
sion from events to gambles does preserve strong invaridinigis a consequence of the
following theorem.

Theorem 17. Let Pbe a coherent lower prevision off (.:2") and let.7 be a monoid of
transformations onZ". Then_Pis strongly.7 -invariant if and only if any P in# (P), its
restriction to events is (weaklyy -invariant, in the sense that(fF ~1(A)) = P(A) for all
ACZ andallTe 7.

Proof. We start with the direct implication. IP is strongly.7 -invariant, then any in
M (P) is Z-invariant by Theorerh 10. Hence, givénC 2" andT € .7, we getP(A) =
P(T~1(A)).

Conversely, consideP in .#(P). Recall that a coherent prevision on all events has
only one coherent extension from all events to all gamblamaily its natural extension,
or Choquet functional; see [De Cooman €tial., 2005a]. Sorigrgamblef on 2" and
any T in .7, taking into account thaP is assumed to be invariant on events, and that
T 1(fq) = (T'f)4 [see the proof of Propositidn116], we get

P(f) = (C)/%_ fdP:inff+(R)/ir:Ufpf P(fq)da
supf P(Tfl(fa))da =inff+(R) /Sfufpf P((T'f)q)da

=inff+(R)/

Jinf f
_ (C)/ T dP — P(TUf).
.,

Hence P is strongly.7 -invariant and, applying Theordml10, so is the lower envepf
A (P). O
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We see that, although the condition of strong invariancenctibe considered for lower

probabilities, in the sense thiat— T!1 will not be in general the indicator of an event, it
is still to some extent characterised by behaviour on evéhtseover, we may deduce the
following result.

Corollary 18. Let P be a strongly.7 -invariant lower prevision on & -invariant set of
gambles’?” that includes all indicators of events. Assume thawBids sure loss. Then its
natural extension to all gambles is strongly-invariant, and coincides therefore with the
strongly invariant natural extension of P

Proof. SinceP avoids sure loss,Z (P) is non-empty. Sinc® is strongly invariant on
a domain that includes all events, any elem@rdf .# (P) is (strongly) invariant on all
events. Hence, by the previous theordpnis also (strongly) invariant on all gambles,
since a coherent prevision on all events has only one cobexemnsion from all events to
all gambles (namely its natural extension, or Choquet fonet). Therefore, the natural
extension oP is a lower envelope of invariant coherent previsions, atlodeefore strongly
invariant. O

This result provides further insight into the existencelgea for strongly invariant co-
herent lower previsions. The existence of strongly invar@herent lower previsions on
all gambles is equivalent to the existence of invariant cefigprevisions on all gambles,
which in turn is equivalent to the existence of invariantea@mnt previsions on all events
(or in other words, invariant finitely additive probabiifi). And it is the impossibility of
satisfying invariance with finitely additive probabilitién some cases (for instance for the
class.7, of all transformations) that prevents the existence of oattestrongly invariant
belief models.

We also infer that if the restrictio@ of a coherent lower previsioR on . (2") to
gambles of the type, — Tl andT!Ia — I, involving only indicators of events, is strongly
invariant, therP is strongly invariant on all ofZ(2"): it will dominate the natural exten-
siongg of Q, which is strongly invariant by Corollafy 18, and consedtyeihwill also be
strongly invariant.

We can also deduce the following result. Recall that a likatice of gambles?” is
a set of gambles that is at once a lattice of gambles and a lsubspace of/(2). If
in addition.#" contains all constant gambles, then for any coherent poevi? defined
on .7, its natural extension to all gambles [Walley, 1991, TheoB1.4] is given by the
inner extension Rf) := sup{P(g): g€ .#,g< f}. Let us denote by* the conjugate
upper prevision oP..

Corollary 19. Let.7 be a monoid of transformations of", and let Pbe a strongly.7 -
invariant lower prevision on a linear lattice of gambleg” that contains all constant
gambles. The natural extensiorp Bf P to all gambles is strongly7 -invariant if and
only if for any coherent prevision P os” that dominates Pwe have RA\ T~1(A)) =
P*(A\T1(A) =P.(TY(A)\A) =P (T 1(A)\A forall AC 2 andall Te 7.

Proof. It follows from|Walley [1991, Theorem 3.4.2] thBs is the lower envelope of the
coherent lower previsiorR., whereP is any coherent prevision o that dominate®
on JZ . But then, clearlyEp will be strongly .7 -invariant if and only if all theP, are.
Consider any sucR.. By Theorenf 1I7P, is strongly invariant if and only if for alA C .2
andT € 7

QA) =Q(TY(A)) forallQin.#(P.)
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which is obviously equivalent tB, (In — Ttla) = P.(T!Ia—Ia) = 0. Now observe thdj —
TtlA =la— IT’l(A) = IA\T’l(A) — IT’l(A)\A' and that the fUnCtiorﬁ\T—l(po and—lT—l(A>\A
are comonotone. Sindeis a coherent prevision o#, it is completely monotone. Hence,
its inner extensio®, is coherent and completely monotone on all gambles, andfibrer
comonotone additive [De Cooman et al., 2005a]. This meaats th

P.(la—=T'a) = Pullat-1() = Ir-1ana) = Pellavt-1() + Pe(=I1-1(a0 )
=PullaT-1(a) = P (Ir-1(ana) = PLANTHA) = PH(TH(A)\ A)

and similarlyP,(T'a —Ia) = P.(T71(A)\ A) — P*(A\ T~%(A)). The rest of the proof is
now immediate. O

8. SHIFT-INVARIANCE AND ITS GENERALISATIONS

8.1. Strongly shift-invariant coherent lower previsions on #(N). Let us consider, as

an example, the case of the shift-invariant, i&;invariant, coherent previsions df(N).

These are usually call&anach limitsn the literature, see for instance, Bhaskara Rao and Bha&iab
[1983, Section 2.1.3] or Walley [1991, Sections 2.9.5 arid73. We know from Corol-

lary[14 that there are always Banach limits that dominatevargiveakly shift-invariant

lower prevision—so we know that there actually are Banagtitdi. Let us denote by

Pg(N) the set of all Banach limits. We also know that a coherent iqgwevision onZ' (N)

is strongly shift-invariant if and only if it is a lower enwge of such Banach limits. The

smallest strongly shift-invariant coherent lower premisEg on Z(N) is the lower enve-

lope of all Banach limits, and it is given l@:

n 1 k+n—1

1 o
Ee(f)—mlftﬁzoggﬁglf(kere)—rl]m) g‘;ﬁ /Zk f(0), (15)

n>0

for any gamblef onN (or in other words, for any bounded sequefi¢e),c of real num-
bers). The first equality follows from Corollafy 114, and tlecend from Corollary 5.
Eg(f) is obtained by taking the infimum sample meanfobéver ‘moving windows’ of
lengthn, and then letting the window lengthgo to infinity. Since this is the lower pre-
vision on.Z(N) that can be derivesolelyusing considerations of coherence and the evi-
dence of shift-invariance, we believe that tBig is a natural candidate for aniform dis-
tribution’ on N. It is the belief model to use if we only have evidence of shiftariance,
as all other strongly shift-invariant coherent lower pséans will point-wise dominatgg,
and will therefore represent stronger behavioural digwos than warranted by the mere
evidence of shift-invariand.

We could also samplé over the sef1,...,n} leading to a coherent ‘sampling’ previ-
sion

1 n—1

S =5 3 10

495ee alsh Walley [1991, Section 3.5.7]. The expression orighehand side is not a limit inferior!

508yt this belief model has the important defect that, likeltveer previsionS, defined further on, it is not
fully conglomerable; see Walley [1991, Section 6.6.7] abdesve that the counterexample that Walley gives
for Sy, also applies teeg. Walley’s remark there that his example shows that therenar@vhat we call) fully
conglomerable (strongly) shift-invariant (lower) prewiss that dominat&g, can be extended in a straightforward
manner tcEg to show thathere are no fully conglomerable (strongly) shift-invariglower) previsions



SYMMETRY OF MODELS VERSUS MODELS OF SYMMETRY 43

but the problem here is that for any givérthe sequence of sampling avera@gs ) is not
guaranteed to converge. Taking the limits inferior of susfpences (one for each gamble
f), however, yields a coherent lower previﬂ)ﬁe given by

§6(f)—|lnmJor2fS1 —I'nmJQf_ z f(e
for any gamblef on N. For any evenA C N, or equivalently, any zero-one-valued se-
quence, we have th&(A) = (AN {0,...,n—1}| is the ‘relative frequency’ of ones in
the sequenck(n) and

Sp(A) = liminf Sy(A) = limin %|Am {0,...,n—1}].

Let Sy denote the conjugate &, given bySs(f) = limsup, Si(f). Those event# for
which S5(A) = Sy(A) have a ‘limiting relative frequency’ equal to this commoriue It

is not difficult to show that the coherent ‘limiting relatifeequency’ lower previsiorgy

is actually also strongly shift-invarialif. This implies that all the coherent previsions that
dominateS, are strongly shift-invariant. But it is easy to see (see Exlefff below) that
Eg is strictly dominated bys,, so there are Banach limits that do not domirtgfe

Proposition 20. Let L be any Banach limit o1 (N), let f be any gamble oN. Then the
following statements hold.

1. liminfn_e f(N) <Eg(f) < Sy(f) < Sy(f) <Ep(f) <limsup,_ ., f(n).
2. If limp_e f(Nn) exists, then

Eg(f) =Sp(f) =Eo(f) =Sp(f) =L(f) = lim f(n).

Nn—oo
3. If f is 8M-invariant (has period n»> 1), then
o _ 1 m-1
Eo(f) =So(f) =Ea(1) =Se(f) =L() = 5 ().

4. If f is zero except in a finite number of element®othen B (f) = Sy(f) =Eg(f) =
Sy(f) =L(f)=0. In particular, this holds for the indicator of any finite sset A ofN.

Proof. We begin with the first statement. By conjugacy, we can comatnon the lower
previsions. We have already argued tBats a strongly shift-invariant conerent lower pre-
vision, soSy will dominate the smallest strongly shift-invariant coéxer lower prevision
Eg. So it remains to prove th&ty dominates the limit inferior. Consider the first equality
in Eq. (I58). Fix the natural numbers> 1, my, ...m,. We can assume without loss of
generality that then is the smallest of all then,. Observe that

n

B § . n no.
— > =
inf nglf(k+ my) > .'SE rfg?f(m— my) min klzru‘vf(k) kgfhf(k)

and therefore

Eg(f) > sup inf f(k) =Iliminf f(n).
1>0 k>m1 n—oo

51 limit inferior of a sequence of coherent lower previsiorsalways coherent, see Walley [1991, Corol-
lary 2.6.7].

52The following simple proof is due to Walley [1991, Sectiors.3]. Observe tha&,(8'f — f) = [f(n) —
£(0)]/n— 0 asn — o, S0Sy(6'f — f) =Sp(O'f — f) =
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The second statement is an immediate consequence of thafidgsthe third follows
easily from the definition oE, andEg. Finally, the fourth statement follows at once from
the second. O

Example3 (Not all Banach limits dominat§y). Consider the event
A={n*+k:n>1k=0,...,n—1}.

ThenA has ‘limiting relative frequencySy(A) = Sp(A) = 1/2, wherea€4(A) = 0 and
Eg(A) = 1. This shows tha, strictly dominate€,, so not all Banach limits dominate

Indeed, for the limiting relative frequency, consider thesequencs,._;(A), m> 2
of $,(A). Then

1
Sre-1(A) = 57 IAN{0, m—1 T T me-1  2m+1

so this subsequence converge%to Now the ‘integer intervals[m? — 1, (m+ 1)? — 1],
m > 1 cover the set of all natural numbers, andnasaries over such an interve,(A)

— lmm_l
mz_2}|:1+2+ +m—1 sm( ) 1 m

starts atSp_1(A) = 377 < 3, increases B2, m(A) = %gm =1, and then again
decreases tS(mH)z,l(A) = %mﬁ < 2 Both the lower and upper bounds converg%to

asm— oo, and therefore the sequenggA) converges tc% as well.
To calculateE4(A), we consider the second equality in Eg.](15). Rix 1 and let
k=n?+4n,thenk+n—1=(n+1)>—2,so

1 ktn-1 (n+1)2-2

1
2 a0 == Ia(f) = 0,
ngk A(f) . a(f)

whence ing-o ; 2“” L1a(¢) = 0 for all n > 1, and therefor&,(A) = 0. To calculate
Eg(A), fix n> 1'and letk — 2 then

1 ktn-1 1 n?+n—1
- a(f) == Ia(¢) =1,
n 2 02,

whence sug.o 2 K0 11A(¢) = 1 foralln > 1, and therefor&q(A) = 1. 4

In an interesting paper, Kadane and O’Hagan [1995] studgidates for the ‘uniform
distribution’ onN. They consider, among others, all the finitely additive tulities
(or equivalently, all coherent previsions) that coincidéwthe limiting relative frequency
on all events for which this limit exists. One could also ddes as such candidates the
coherent previsions that dominate the sampling lower pi@wB,, which have the benefit
of being strongly shift-invariant. But, we actually belethatall Banach limits (or actually,
their lower envelope) are good candidates for being calladorm distributions olN’ and
not just the ones that dominagg. [Kadane and O’Hagan also propose to consider other
coherent previsions, and their idea is to consider thedtessets’, which are the subsets

R,={km+r:k>0} ={¢eN:/=r modm}
of N, wherem> 1 andr = 1,...,m— 1. These sets a®@™-invariant, so we already know

from Propositioi 20 thaﬁg(Rm) S (R = S(R,) = Eg(R,) = l for allm>1 and
r=1,...,m—1. Now what Kadane and O’'Hagan do, is conS|der the set of ikt
previsions (finitely additive probabilities in their papbut that is equivalent) that extend
the probability assessmer®$R,) = 1/mfor all eventsR',.. In other words, they consider
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the natural extensiof, Of all such assessments, i.e., the lower envelope of all such
coherent previsions. It is not difficult to prove that thigural extension is given
I s

Eres(f) = lim — 2 inf f(km+r).
This coherent lower prevision is completely monotone [asiatpwise limit of completely
monotone lower previsions, even (natural extensions tdofgsrof so-called) belief func-
tions [Shafern, 1976]], and weakly shift-invariant [sinbe hatural extension of any weakly
shift-invariant lower prevision is]. Since the assessmB(R,) = % coincide with the val-
ues given b4, we see thak 4 will point-wise dominate the natural extensigpof these
assessments to all gambles. But as we shall shortly provesimplé 4 E . is not strongly
shift-invariant, meaning that among the coherent premisibat extend these assessments,
there also are coherent previsions that are not Banacls|{mat shift-invariant).

Exampled4. Here we show by means of a counterexample Byatis not strongly shift-
invariant. LetBy := {0,...,m— 1} andA := Uy>1{m} x Bm, and consider the map

m(m— 1)
2
Itis easy to see that is a bijection (one-to-one and onto). Also define the map

@: A—=N: (mr)— @(mr):= +r+1

K:A—N: (mr)— k(mr):=Nmp(mr)+r.
for some fixedN > 2. We consider the strict order on A induced by the bijectiow, i.e.,
(m,r) < (m,r’) if and only if @(m,r) < e(m',r’) [if and only if m< m, or m=m" and
r <r’, so< is the lexicographic order]. Thenis an increasing map with respect to this
order. To see this, assume thiat r) < (m',r’). If m< m, then

K(m,r)=Nmp(mr)+r < Nmp(m',0) +r
<Nnmfo(m,0)+0< N, r')+r' = k(mr’).
If on the other handh=n7 andr < r’, thenk (m,r) = Nmp(m,r) +r < Nmp(m,r')+r' =
K(mr’).

Moreover, giver(m,r) < (m',r’), we see thak (n,r’) — k(m,r) > N. Indeed, since is
increasing, it suffices to prove this for consecutive paithe order we have defined on
A. There are only two possible expressions of consecutivs frair) and(n,r’): either
we have(n,r’) = (m,r + 1), and then we get

K(mr+1)—k(mr)=Nmemr+1)—@mr)|+1=Nm+1>N;
or we have = m—1,(m,r’) = (m+1,0), and then we get
=Nm+N@(m+1,0)— (m—1) > Nm> N,
taking into account thap(m+ 1,0) > m— 1 by definition ofg.

Consider the se€ = k(A)°. ThenE;eg(C) = liMm e = 3™ infyen Ic(km+r). Since
for everym e N andr € By, the valuek(m,r) = Nmg(m,r) +r does not belong t€, we
deduce thaﬁl 2{“;01 infyen lc(km+-r) = O for all m, and consequentlg,.(C) = 0.

On the other handgg(C) = limp_.» infy=o % z‘gi{("llc(é). Since by construction any
two elements irk (A) differ in at leastN elements, we deduce thating % z‘gi{("l Ic(¢) >

1- %, and this for alln € N. This implies thaE(C) > 1— % > 0. Hence E e is

535ed De Cooman etlal. [20086] for a proof.
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strictly smaller than the smallest strongly shift-invatiaatural extensioig, and there-
fore not strongly shift-invariant

8.2. Strong T-invariance. Now consider an arbitrary non-empty s&t. Also consider a
transformationT of 2" and the Abelian monoid%4 = {T": n> 0} generated by. We
shall characterise the stronglyinvariant coherent lower previsions dfi(.2") using the
Banach limits onZ(N).

First of all, consider any coherent lower previsi®ron £ (.2"), and any gamblé on
Z . Define the gamblép onN as

fo(n) ;== P((TH"f) =P(foTM). (16)

[This is indeed a gamble, as for allwe deduce from the coherence Pfthat fp(n) =
P(foT") <sugfoT"| <supf and similarlyfp(n) > inf f.] On the one handT!f)p(n) =
P(T'foT") =P(TY(f o T")) = frp(n) and on the other han@! f)p(n) = P(f o T™1) =
fp(n+1) = fp(6n), so

(T'f)p = frp=6'fp, (17)

and this observation allows us to establish a link betweerrémsformatiod on 2" and
the shift transformatiol® on N. This makes us think of the following trick, inspired by
what Bhaskara Rao and BhaskaralRao [1983, Section 2.1d2(%)} probability charges,
rather than coherent lower previsions. lLebe any shift-invariant coherent prevision on
Z(N), or in other words, a Banach limit o (N). Define the real-valued functiong|
on.Z(Z") by P (f) :=L(fp). We show that this functional has very special properties.

Proposition 21. Let L be a shift-invariant coherent prevision o(N), let Pbe a coherent
lower prevision onZ (%), and let T be a transformation o?". Then the following
statements hold.

1. B is a weakly T -invariant coherent lower prevision 6 Z") (with equality).

2. If P dominates a weakly T -invariant coherent lower previsioniQZ (.2"), then R
dominates Q B

3. If P= P is a coherent prevision, then B a (strongly) T -invariant coherent prevision
onZ(Z).

4. If Qis a weakly T-invariant coherent lower prevision ¢fi(2"), then the (strongly)
T -invariant coherent prevision [Rlominates Qor any P in.Z (Q).

5. If P=Pis a T -invariant coherent prevision, thep 2 P. o

Proof. We first prove the first statement. Consider gambflasidg on 2". Since inff <
fp, it follows from the coherence df that inff < L(fp) = P, (f). Moreover, we have for
anynin N that

(f+9)p(n) =P((f+g)oT") =P(foT"+goT") > P(foT") +-P(goT") = fp(n)+gp(n),

where the inequality follows from the coherence [superiadty] of P. SincelL is coher-
ent, we see tha® (f +g) > L(fp) + L(gp) = P_(f) + P (g). Finally, for anyA >0, we
have that(A f)p(n) = P((Af)oT") =P(A(foT")) = AP(f o T") = A fp(n), sinceP is
coherent. ConsequentB (A f) = L(A fp) = AL(fp) = AP_(f), sincelL is coherent. This
proves thaP, is a coherent lower prevision off (2") [because (P1)—(P3) are satisfied)].
To show that it is weakIy -invariant, recall thafT' f )p = 6' fp, whence

PU(T') = L((T'f)p) = L(6'fp) = L(fp) = P (f),

sincelL is shift-invariant.
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To prove the second statement, assumeRtddminates the weakly-invariant coher-
ent lower previsiorQ on . (.2"). Then for any gamblé on 2", we see that

fp(n)=P(foT") > Q(foT") > Q(f),
where the last inequality follows from the we@kinvariance ofQ. Consequently, sinde
is coherent, we ge, () = L(fp) > Q(f).

The third statement follows immediately from the first and fhct thatR_ is a self-
conjugate coherent lower prevision (and therefore a colgrevision) becausi andL
are.

The fourth statement follows at once from the second andhind.t The fifth is an
immediate consequence of the definitiorPpf O

We can use the results in this proposition to characteristrahgly T -invariant coher-
ent lower previsions using Banach limits ¢fi(N).

Theorem 22. Let P be a weakly T-invariant coherent lower prevision defined ome
T-invariant domain’#’, that avoids sure loss. Then the set of all T-invariant ceher
previsions onZ (%) that dominate Pon J#" is given by

{R.: Pe.#(P)and Le Py(N)},

so the smallest strongly T -invariant coherent lower priewisEp + on £ (2") that domi-
nates R i.e., the strongly T -invariant natural extension_gfi® the lower envelope of this
set, and also given by

k+n—-1
Epr(f)= inf Eg(fp)= inf inf | = P((TH)'f
Epr(f)=_inf , Ee(fe) pe!,%p)ﬁgf&!oln Zk ((T) )]

for any gamble f onZ". As a consequence, the $at(2") of all T-invariant coherent
previsions onZ(%") is given by

Pr(Z)={R:PePandLePy(N)}.

This tells us that all T-invariant coherent previsions cam ¢onstructed using Banach
limits on.Z(N). The smallest strongly T -invariant coherent lower preMiger on. 2 (2")
is the lower envelope of this set, and also given by

Eq(fp) = inf supinf Fktﬁklp((ﬂ)tf)l

E{+(f)= inf
Er(H) PEP(2) PcP(2) n>1k>0 [ N

for any gamble f on2".

Proof. First of all, a coherent previsioR on .#(Z") belongs to.Z (P), i.e., dominates
P on its domainsZ, if and only if P dominates the natural extensigp on all gambles.
Moreover,Ep is weakly T-invariant by Theorerill8. Now consider aRyc .# (P). Use
the above observations together with Propos(iidn 21 [stetes 3 and 4] to show that for
any Banach limitL on .#(N), R_is a T-invariant coherent prevision that dominats
Conversely, ifP is a T-invariant coherent prevision o’ (.2") that dominate® on .7/,
then by Proposition 21 [statement §]= R_for any Banach limit. on Z(N). This shows
that{R.: Pe .#Z(P),L € Po(N)} is indeed the set of -invariant coherent previsions on
Z(Z°) that dominateP on .#. ConsequentlyEp 1 is the lower envelope of this set,
whence for any gamblé on 2" B

Epr(f)= inf inf R(f)= inf inf L(f
Epr(f) Pe!QZ(E)LellPr:;(MH—( ) PGIAQZ(BLG]IPT)(N) (fe)
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and sinceEy is the lower envelope dfy(N),

= inf Eg(f
Pe!,%/(E)_e( P)

and using Eqgs[{15) and (16),

Pe//(P)n>1k>0 | N 4

[1k+il it
= inf supinf | = P(T) )| .
The rest of the proof is now immediate. O

8.3. Generalised Banach limits. The above results on monoid4 generated by a single
transformatio can be generalised towards more general mongids transformations
of 27, such that the se?* of convex mixtures of the lifted linear transformationst

is directed by the successor relatipnon 7 *. The following discussion establishes an
interesting connection between strong invariance and etiemof a generalised Banach
limit.

We can considelZ* as a monoid of transformations of itself, as follows: withyan
elemenfl * we associate a transformation.gf*, also denoted by *, such thafl *(S") :=
S'T* e 7%, for anyS* in 7*P% We can, in the usual fashion, Iift* to a transformation
(T*) on.Z(T*) by letting (T*)'g=go T*, or in other words

(T*)'9(S) =g(T*(S)) =9(ST"), (18)

foranyS*in .7* and any gamblgon .7*, i.e.,g € £ (7).

Now ageneralised Banach limjSchechter, 1997, Sections 12.33-12.381607 ") is
defined as any linear functional aff (.7 *) that dominates the limit inferior operator with
respect to the directed sét*. Let us take a closer look at this limit inferior operatorisit
defined by

liminfg=Iliminfg(T") := inf g(T*

minfo ={minfa(T) = sup inf, o(T")
for any gambleg on .7*. Now recall thafT* > S* if and only if there is som&* in 7
such thaflT* = R*S*, so we get, using Ed.(118), that

liminfg(T*) = sup _inf g(R'S")= sup _inf (S)'g(R*)= lim P,.((S)

iminfg(T") = sup inf gR'S)= sup Inf (SY9R)=im P7((S)9),
whereP 5 is the vacuous lower prevision off (Z*). If we look at CorollaryCI¥ for
the special case&?2” = .7* and the monoid of transformationg™*, recall that we need
to lift transformations ing* before we can apply them to gambles, and that the lifted
transformations of7* already constitute a convex Bbtwe easily get to the following
conclusion.

Proposition 23. The limit inferior operator onZ (.7 *) is actually the point-wise smallest
strongly & *-invariant coherent lower prevision o’ (.7*), and the generalised Banach
limits on.Z(.77*) are the.7*-invariant coherent previsions o’ (.7*).

54Usually,T*(S‘) is defined a§ *S*, see for instance Walley [1991, Note 1 of Section 3.5.1].\Beihave to
take a different route here because the elementg ofire convex mixtures dffted transformations, and as we
have seen, lifting reverses the order of application ofsimmations.

59y general, even i7t is directed by the successor relatipnthe limit inferior operator ot (7) will not
be strongly invariant. But convexification, or going frofft to .7*, makes the limit inferior strongly invariant.
Observe in this respect that the limit inferior operator8iN) is not strongly shift-invariant, but its ‘convexified’
counterpargg is.
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We can now apply arguments similar to the ones in the prewseation, for general
monoids.Z of transformations of2” such that7* is directed. Consider any coherent
lower previsionP on .Z(Z") and any gambld, and define the following gamblg on
T*

fp(S) :=P(S'T)
for any St in .7*, which generalises Ed. (IL6). Observe that, using[Eq. (18),
(T*)p(S) =B(ST"f) = fp(ST") = (T")' fp(S),
S0
(T*f)p = (T)'fe,

which generalises EqL_(IL7). If we consider affif-invariant coherent previsioh on
Z(7*), or in other words a generalised Banach limit 6f(.7*), we can now define
a new lower previsio?, on.Z(2") by P, (f) := L(fp), and Proposition 21, as well as
Theoreni 2R, can now easily be generalised from monoidséfivanations with a single
generator to arbitrary directed monoids. In particularfive that

E f)= inf IliminfP(T*f)andE,(f)= inf IliminfP(T"f

Ee (1) Pe.#(P) T+ e T (T7f) andE(f) PeP(2) T eT* (T"1)
for any gamblef on 27, whereP is any weakly.7 -invariant lower prevision that avoids
sure loss.

9. PERMUTATION INVARIANCE ON FINITE SPACES

Assume now that” is a finite group4? of permutations of2". Then we have the
following characterisation result for the wealdy-invariant coherent lower previsions.

Theorem 24. Let & be a finite group of permutations ot’. All weakly Z-invariant
coherent lower previsions Qn.Z(2") have the form

1
= — T[P’ 19
= |=@|n;}_ (o)

where| #| is the number of permutations i#¢, and Pis any coherent lower prevision on
ZL(X).

Proof. Consider a coherent lower previsi®ron . (.2"), and letQ be the corresponding
lower prevision, given by EqL(19). TheDis coherent, as a convex mixture of coherent
lower previsionsiP. Moreover, letto be any element of”, then

P

nc?

1

ncw?

wherew? = {wm: me ¥} = &, because? is a group of permutations. Consequently
wQ = Q, soQ is weakly Z-invariant.

“Conversely, leQ be any weaklyZ-invariant coherent lower prevision, then we recover
Q on the left-hand side if we inse@ in the right-hand side of EqL(19). So any weakly
Z-invariant coherent lower prevision is indeed of the for)(1 O
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Next, we give an interesting representation result for trengly &7-invariant coherent
lower previsions, when in additior?” is a finite seP% As we shall see further on, this es-
sentially simple result has many interesting consequeaoesngst which a generalisation
to coherent lower previsionslof de Finettl's [1937] repraation result for finite sequences
of exchangeable random variables (see Se€fidn 9.2). Rbeall7» is the set of all?-
invariant atoms of2". For eachA in <75, definePY(-|A) as the coherent prevision on
Z (%) all of whose probability mass is uniformly distributed ovei.e., for all gambles

fon2"
1
PUEIA) = —§ f(X).
A&
Finally, letPY(f|«%) denote the gamble o&» that assumes the val®¥(f|.o/»)(A) :=
PY(f|A) in any elemenA of «7.

Theorem 25. Let &7 be a group of permutations of the finite sét. A coherent lower
prevision onZ(Z") is strongly Z-invariant if and only if R f) = Py(PY(f|</%)) for all
fin £ (Z), where R is an arbitrary coherent lower prevision o («7»).

Proof. We begin with the ‘if’ part. LetP, be an arbitrary coherent lower prevision on
Z (4 »), and suppose th&® = Py(PY(-|«7»)). Then it is easy to see thRtis coherent.
We show thaP is strongly #Z-invariant. Consider any gambleon 2" and anyrmr e 4.
Then for anyA in <7 and any gamblé on 27,

PY(F — 1 f|A) = % > (709~ f(m] =0,

because € A is equivalent torx € A. So we see tha®(f — 1 f) = Py(0) = 0, sinceP,
is coherent. In a similar way, we can prove tRétt f — f) = 0, soP is indeed strongly
P-invariant.

To prove the ‘only if’ part, we first concentrate on the casa aP-invariant coherent
previsionP on ¥ (Z"). Fix any gamblef on 2. SinceP is a coherent prevision, we find
that

f= Z fla and P(f)= Z P(fla) = Z P(fIAP(A),
Acd Ac Ay Acd
where we have used Bayes's rule to defii€|A) := P(fla)/P(A) if P(A) > 0 andP(f|A)
is arbitrary otherwise.

Now assume thaP is Z-invariant. Fix anyZ-invariant atomA in <75 such that
P(A) > 0 and letre . For any gambld on 27, we see thatt'(fla) = (1 f)la, SinceA
is in particularr-invariant. Consequently

P(1' f|A) = P((i f)Ia)/P(A) = P(1t (1a))/P(A) = P(fla)/P(A) = P(f|A),

so P(-|A) is Z-invariant as well] Now let for anyy in the finite setA, p(y|A) :=
P({y}|A) > 0, then on the one hangl,.a p(X/A) = P(AJA) = 1. On the other hand, it
follows from therrinvariance ofP(:|A) that p(x|A) = p(rx|A) for anyx in A. Since we
know from Propositior 1 thah = {rnx: me &}, we see thap(-|A) is constant orA,

56\e find the ‘permutation symmetry’ between Theorémls 24[ahdui® surprising: the former states that
a weakly Z-invariant coherent lower prevision is a uniform previs{on mixture) of coherent lower previsions,
and the latter that a stronglg?-invariant coherent lower prevision is a coherent loweisien of uniform
previsions.

5™This is an instance of a more general result, namely thatreaheonditioning of a coherent lower prevision
on an invariant event preserves both weak and strong ima&iaA proof of this statement is not difficult, but
outside the scope of this paper.
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so p(x|A) = 1/|A| for all x in A, and consequentl?(f|A) = PY(f|A), whenceP(f) =
Yaca, PU(FIA)P(A). So indeed there is a coherent previsiron (<), defined by
Po({A}) = P(A) for all A € @75, such thaP = Ry(PY(:|7»)).

Finally, letP be any strongly?-invariant coherent lower prevision, so aRy .# (P)
is Z-invariant and can therefore be written Bs= Py(P!(-|#/»)). If we let Py be the
(coherent) lower envelope of the §g%: P € .# (P)}, then sinceP is the lower envelope
of . (P), we getimmediately thd& = Py(PY(-|%7%)). O

As an immediate corollary, we see that that the uniform cefieprevisionPY on
Z(X) is the only stronglyZ-invariant coherent lower prevision off (2") if and only
if 2" is the onlyZ-invariant atom, i.e., il = { 2"}. This is for instance the case#
is the group of all permutations ot”, or more generally it includes the cyclic group
of permutations of2". It should therefore come as no surprise that, since syryroétr
beliefs is so often confused with beliefs of symmetry, théarm distribution is so often
(but wrongly so) considered to be a good model for complaterignce.

Another immediate corollary of this result is that the smsillstronglyZ-invariant
coherent lower prevision of’(2") is given byP(f) = infac, ﬁ Y xea F(X), which of
course agrees with the uniform distribution when wedétbe the group of all permuta-
tions.

These results do not extend to the case where we have traratfons of 2 that are
not permutations; as we have said before, as soon as we havifterent constant trans-
formations in the monoid”, there are no strongly invariant belief models.

9.1. Afew simple examples.We now apply the theorems above in a number of interesting
and simple examples.

Exampleb. Let 2" = 23 := {1,2}, then all coherent lower previsions ¢i(:2>) are so-

calledlinear-vacuous mixtures.e., convex combinations of a coherent (linear) previsio
and the vacuous lower prevision, and therefore given by

P(1) = e[af(1)+ (1-a)f(2)]+ (1— e)min{f(1), f(2)},

where 0< a <1 and 0< € < 1. Let ¥, be the set of all permutations ¢f>. Then the
only strongly%7,-invariant coherent lower prevision is the uniform cohéevision

Py(1) = 21D +1(2)]

corresponding t@ = % ande = 1. The weakly%,-invariant coherent lower previsions
are given by
P(f) = &Py () + (1 — &) min{f(1), f(2)},

where 0< £ < 1, so they are all the convex mixtures of the uniform cohepeatision and
the vacuous lower previsio.
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Example6. Let 2" = 23 := {1,2,3}, then all 2-monotone coherent lower previsions on
Z(23) are given byt

P(f) =m (1) + mxf(2) + msf(3)
+mymin{f (1), f(2)} + msmin{ f(2), f(3)} + memin{ f(3), f(1)}
f(1)+f(2) f(2)+f(3) f(3)+f(1)}
2 ’ 2 ’ 2
+mgmin{f(1), f(2), f(3)}.

where0<my <1 andzﬁzlmk =1. Let %3 be the set of all permutations &f3. Then the
only strongly#7s-invariant coherent lower prevision is the uniform cohéevision

1
P(f) = 5[f(1) + f(2)+ 1(3)]
corresponding tary = mp = mg = % andmy = ms = mg = my = mg = 0 [Observe that
a coherent prevision is always 2-monotone.]. Wedl invariance, on the other hand,
requires only thaty = mp = mg andmy = ms = mg, so all the weakly#z-invariant and
2-monotone coherent lower previsions are given by

+m7min{

p(f) =

P(f) = 2 [F(1)+ D)+ 1(3)

+ % [min{f(1), f(2)} + min{f(2), f(3)} + min{f(3), f(1)}]
f()+f(2) f(2)+1(3) f(3)+f(1)}
2 ’ 2 ’ 2
+Mgmin{f(1), f(2), f(3)}.
where 0< My < 1 andM; + My + M3+ My = 1. The weaklyZz-invariant and completely

monotone coherent lower previsions (natural extensiomeléf functions) correspond to
the choiceMiz = 0. ¢

+ Mgmin{

Example7. Consider rolling a die for which there is evidence of symmdtetween
all even numbers, on the one hand, and between all odd nurobetise other. Let
2 = Zs:={1,...,6} and let P, be the set of all permutations ot that map even
numbers to even numbers and odd numbers to odd numbersZihmvariant atoms are
{1,3,5} and{2,4,6}. By Theoreni 2b, the strongly?.q-invariant coherent previsions on
Z(%s), which are the precise belief models that are compatible thi¢ subject’s beliefs
of symmetry, are given by

P(f) = S[H(1)+ £(3)+ 18]+ T2 (1) + F(4) + 1(6)],

58an explicit proof of this statement is beyond the scope dof fhaper, but it runs along the following lines:
(i) any coherent lower probability on the set of all eventadliree-element space is 2-monotane [Walley. 1981,
p. 58]; (ii) all 2-monotone coherent lower probabilities keaup a convex set, and are convex mixtures of the
extreme points of this set [MdalR. 2003, Chapter 2] (By the, wayargument similar to that In_Maaf3 [2003,
Chapter 2] shows that all strongly -invariant coherent lower previsions are (infinite) convextures of the
extreme stronglyZ -invariant coherent lower previsions.); (iii) the 2-momo¢ coherent lower previsions on
all gambles are natural extensions of the 2-monotone cohéwer previsions on all events [Walley. 1981,
De Cooman et all, 20056, 2005b,a]; and (iv) natural extensiazambles of 2-monotone lower probabilities pre-
serves convex mixtures.
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where 0< a < 1, and more generally, the strongWeo-invariant coherent lower previsions
on.Z (%) are [apply Theorem 25 and use the results in Exafple 5]

P() = & | 11+ 1(3)+ 1(5)] + T2 [1(2) + 1(4)+ £(6)
+(1_£)min{ W@+ f(2)+f(34)+f(6)}

for0<e<landO<a<1l. ¢

Example8. Let us show that the point-wise smallest strongly invarizotierent lower
prevision extension is not necessarily 2-monotone. Censi, := {1,2, 3,4}, and letrt

be the permutation of7 defined byr(1) = 2, m(2) = 1, 1(3) = 4 andm(4) = 3. Observe
thatrris its own inverse, s&; = {id »;, 1T} is a group. From Theoreim R5 we infer that the
point-wise smallest stronglg-invariant coherent lower prevision on all gambles is given

by
En(f) =min{ f(l)Jer(z)’ f(3)42— f(4)}.

Let us now consider the gamblésandf, on 274, given byf;(1) =0, f1(2) = —1, f1(3) =
1, f1(4) = —1 andfy(1) = —1, f2(2) = —0.25, f5(3) = —1.5, f5(4) = 0. Check that

ET(( fiA fz) —I—En( fiv fz) =-1.25-0.125=-1.375< -05-0.75= En( fl) —I—En( fz)
HenceE,; is not 2-monotone¢

The following example shows that possibility measures artevery useful for mod-
elling permutation invariance.

Example9. Consider a possibility measufFé defined on all events of a finite spack.
Then there is a map : 2° — R™, called thepossibility distributionof M, such that
A(X) := N({x}) and moreovefl(A) = maxcaA (x) for all non-empty eventé&s C 2.
We have mentioned before thatis a coherent upper probability if and onlylif(2") =
maxc 2~ A (X) = 1. We shall assume this is the case. Now consider any g¢dwgs per-
mutations ofZ". Then clearly1 is weakly &Z-invariant if and only ifA is constant on the
Z-invariant atoms of2". In particular,1 is weakly invariant with respect to all permuta-
tions if and only isA is everywhere equal to one, Bbis the vacuous upper probability.

For strongZ-invariance, lefP be any stronglyZ-invariant coherent lower prevision
whose domain contains at least all events. x e any element of2", and let[x] ,, be
the Z-invariant atom that contains Then it follows from Theorern 25 th®({x}) <
1/|[X »|. So forP to extend a possibility measure, it is necessary (but ndicgit) that
there is at least one elemenof 2 such thalP({z}) = 1, implying thatz should be left
invariant by all the permutations i, or equivalently[z] , = {z}. ¢

9.2. Exchangeable lower previsions.As another example, we now discuss the case of
so-called exchangeable coherent lower previsions. Cenaidon-empty finite se®y :=
{1,...,k} of categories, antl random variable¥;, ..., Xy taking values in the same set
Z«, wherek andN are natural numbers with > 2 andN > 1. The joint random variable

X 1= (Xg,...,Xn) assumes values in the sef := %KN@ We want to model a subject’s
beliefs about the value that assumes inZ;N, and generally, we use a coherent lower
previsionP on.Z(2;N) to represent such beliefs.

59This means that we assume théseandom variables to begically independent
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Now assume that our subject believes that all random vasdlare generated by the
same process at different timksand that the properties of this process do not depend
on the timek. So, the subject assesses that there is permutation syymbetiveen the
different timesk. How can suctbeliefs of symmetrge modelled?

With a permutationrof {1,...,N}, we can associate (by the usual procedure of lifting)
a permutation of2” = 2N, also denoted byr, that maps any = (xg,...,xy) in 2N to
X := (Xm(1) -, Xmn) ). The belief models that are compatible with the subjectliete
of symmetry, are therefore the coherent lower previsionahbsets of)Z(.2;N) that are
strongly ZN-invariant, whereZ} is the group of liftings ta2; of all permutations of
{1,...,N}. [Walley [1991, Chapter 9] calls such lower previsian&hangeableas they
generalise de Finetti's [1937] notion of exchangeable oatteprevisions. We intend to
characterise the exchangeable lower previsions usingréhg@b. This will lead us to a
generalisation (EqL(20)) of de Finettils [1937] repres¢ion result for finite numbers of
exchangeable random variables.

It should be mentioned here that we should, as always, glestinguish between
‘beliefs of symmetry’ and ‘symmetry of beliefs’. The latienposes much weaker require-
ments on coherent lower previsions, namely those of w&ikinvariance, which is called
permutabilityby|Walley [1991, Chapter @ In particular, the permutation symmetry that
goes along with ignorance can only be invoked to justify pgahility, but not, of course,
exchangeability. Observe in this respect that the vacumwerl prevision onZ(.Z;N) is
permutable, but not exchangeable. Itis well-known (sea&iance Zabell [1989a, 1992]),
that Laplace’s Rule of Succession can be obtained by upgatparticular exchangeable
coherent prevision, but it should be clear from the dis@ussi this paper that ignorance
alone (the Principle of Insufficient Reason) cannot be ieebto justify using such an ex-
changeable prevision, as (with considerable hindsighpldee implicitly seems to have
done (see for instance Howie [2002], Zabell [1989a, 1992]).

Foranyx = (xq,...,%n) in 2,, the ZR-invariant atonx] ;,n is the set of all permuta-
tions of (the components of) If we define the set of possibt®unt vectors

K
NN = {(ml,...,mK): m € N* and > mk_N}
k=1
and thecounting maprl: 2N — #N such thafT (xq,...,xn) is thek-tuple, whosek-th
componentis given by

Te(xe, - xn) = {€ € Zi: x =Kk},

i.e., the number of componentsxfvhose value i%, then the number of elements of the
invariant atonx] ,, is precisely

_ N B N!
V(T (X)) = <T1(x)...TK(x)> T TN Te()!

andT is a bijection (one-to-one and onto) betwee’gay and.#N. An invariant atom is
therefore completely identified by the count vecid@k) of any of its elementsg, and we
shall henceforth denote the invariant atoms¥ by [m], wherem = (my,...,my) € 4N,
andx € [m] if and only if T(x) = m.

60ged Walleyl[1991, Chapter 9] for a much more detailed disocnss the difference between permutability
and exchangeability.
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The coherent previsioR!(-jm) on .Z(2,N) whose probability mass is uniformly dis-
tributed over the invariant atofm] is given by

1
PU(f|m) = — f(x).

(11m) = Sy 2, 19
Interestingly, this is the precise prevision that is assed with taking\ a-select drawings
without replacement from an urn with balls, m; of which are of type 1, ..., andy
of which are of typex. Theoreni2b now tells us that any exchangeable coherent lowe
previsionP on.Z(Z;N) can be written as

P(f) = PR(PU(FLAY)), (20)
wherePY is some coherent lower prevision gff(.#N). This means that suchn ex-
changeable lower prevision can be associated with N a-sdl@svings from an urn with
N balls of typed, ..., kK, whose compositiom is unknown, but for which the available
information about the unknown composition is modelled byteecent lower prevision P

That exchangeable coherent previsions can be interpmetedns of sampling without
replacement from an urn with unknown composition, is atyuakll-known, and essen-
tially goes back to de Finetti [1937]. Heath and Suddertty6]Qive a simple proof for
random variables that may assume two values. But we beliewemoﬂ for the more
general case of exchangeable cohefewer previsions and random variables that may
assumemore than two valugds conceptually even simpler than Heath and Sudderth’s
proof, even though it is a special case of a much more gerepedsentation result (The-
orem[25). The essence of the present proof in the specialofasgherent previsionP
is captured wonderfully well by Zabell's [1992, Section]&liccinct statement: “ThuB
is exchangeable if and only if two sequences having the saaggiéncy vector have the
same probability.”

Our subject’s beliefs could, in addition, be symmetricalthe categories inZyx =
{1,...,k}, for instance as a result of her ignorance about the probesgenerates the
outcomesX, at each timek. As we have seen, this will be typically represented by using
a type ofweaklyinvariant belief models, in this case with respect to peations of the
categories, rather than the times. Any permutatioof .2 induces a permutation o&,N,
also denoted by, through

WX = W(X1,...,XN) = (@O(X1),...,T(XN)).

What happens if we require th& in addition to being exchangeable, should also be
weaklyinvariant under all such permutations? It is not difficulprove that

PU(w 1f|m) = PY(f|@m),
where we letom = @w(my, ..., Mk) := (Mg), -, My(x)) in the usual fashion. This im-
plies that there is such weak invariance if and only if theereht lower previsio®} on
Z(#N) is weaklyinvariant with respect to all category permutations! Intjgatar, this
weak invariance is satisfied for the vacuous lower previsiot? (.4 N). Another type
of lower coherent prevision that exhibits such a combimatibstrong invariance for time
permutations and weak invariance for category permutstiand which also has other
very special and interesting properties, is constructedking lower envelopes of specific
sets of Dirichlet-Multinomial distributions, leading tbe so-called Imprecise Dirichlet-
Multinomial Model (IDMM, see Walley and Bernard [1999]).

6]Walley [1991, Chapter 9] also mentions this result for exglemble coherent lower previsions. The essence
of his argument is similar to what we do in the last paragraitheproof of Theoreri 25.
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In the literature, however, it is sometimes required thabletent precise prevision
should be invariant with respect to the combined action efgérmutations of times and
categories. These are the so-caltedtition exchangeablerevisions (see Zabell [1992]
for an interesting discussion and historical overview). ddfirse, the generalisation of
this notion to coherent lower previsions should be stromghariant with respect to such
combined permutations, and therefore be a lower envelopartition exchangeable pre-
visions. For suclpartition exchangeabl®wer previsions, Theorem 25 can be invoked to
prove a representation result that is similar to that forezeht lower previsions that are
only exchangeable. It should be clear that they correspomstthangeable lower previ-
sions for which the corresponding coherent lower previgiron 2 (.#N) is strongly
rather than just weakly invariant with respect to all catggeermutations. Of course, any
justification for such models should be based on beliefstiggie is permutation symmetry
in the categories behind the process that generates thenoeX|, at different timek, and
cannot be justified by mere ignorance about this process.

9.3. Updating exchangeable lower previsions: predictive infegnce. Finally, let us dis-
cuss possible applications of the discussion in this papgmedictive inference. As-
sume that we have* random variable%y, ...Xy, that may assume values in the set
Zx ={1,...,K}. We assume that these random variables are assessed toham@gsc
able, in the sense that any coherent lower prevision thatitbes the available information
about the values that the joint random varia¥te= (Xy,...,Xn+) assumes inZ;" should
be exchangeable, i.e., strongly? -invariant. This requirement could be callpte-data
exchangeability So we know from the previous section that such a cohererdripnevi-
sion must be of the for® = P (PY(:|.#")), whereP? is some coherent lower prevision
on.Z(A"). We shall assume th&f is a lower envelope of a set of coherent previsions
MY on L.

Suppose we now observe the values: (xi,...,X,) of the firstn random variables
X = (Xg,...,%n), where 1< n < n*. We ask ourselves how we should coherently update
the belief modeP to a new modeP(-|x) which describes our beliefs about the values
of the remaining random variable€ = (Xn.1,..., Xy ). This is, generally speaking, the
problem ofpredictive inference In order to make things as easy as possible, we shall
assume thalR({x}) > 0, so our subject has some reason, prior to obsemtg believe
that this observation will actually occur, because she isngito bet on its occurrence at
non-trivial odds.

Let us denote by’ = n* — nthe number of remaining random variables, then we know
thatX’ assumes values ift;", andP(-|x) will be a lower prevision onZ (Z;").

We shall first look at the problem of updating the coherentigien P = Q(PY(:|.#))
for any coherent previsio in .} . So consider any gambggon %K”’. It follows from
coherence requirements (Bayes’s rule) that the updategtenhprevisiorP(-|x) is given
by

u n*
Pl) — QPU(ILH™))

wherely (x*) = 1 if the firstn components of the vectat € 2" are given by the vecto,
and zero otherwise. Observe, by the way, that by assumiian,> P(Ix) = P({x}) > 0.

Now for anym* in 4" we find that, with obvious notations,

v(m* —m)
v(m*)

PH(ghim) = - o(x) = Pigm’ —m)  (22)

( *) T/ (X')+m=m*
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where we lem = T(x),and wherdl’ maps samples’ in 3{;{" to their corresponding count
vectorsT’(X) in 4. Of coursev(m* —m) is non-zero only ifn* > m, or equivalently if
m*—me e/l/K”/, orin other words if it is possible to selatballs of compositiorm without
replacement from an urn with compositiort. In this expressior?!(-|m’) stands for the
coherent prevision OM(%K"/) whose probability mass is uniformly distributed over the
2" -invariant atorr{m’], for anym’ in .#". Now forg = 1 we find that
v(m* —m)
v(m*)
is the probability of observing a sample of sizaith compositiorm by sampling without
replacement from an urn with compositiori. Ly, is the corresponding likelihood function
on.#". We may as well considér, as a likelihood function on#,”, and for anym’ in
A7 we let

PA(lxm") = = p(m|m”) =: Lm(m") (23)

v(m’)
v(im+m')
be the probability that there remaim balls of compositiorm’ after drawing (without
replacementh balls of compositiorm from an urn withn* balls. We may then rewrite
Eq. (21), using Eqs[(22) and (23), as

QLmP (gl 4"))
P(g|x) =
(glx) QL)
whereQ(Lm) = P(lx) > 0 by assumption, an@(-|m) is the coherent prevision off (.#,")
defined by
Q(Lmh)

Qi) = S

forany gamblén one/VK”/, i.e.,Q(:|m) is the coherent prevision obtained after using Bayes'’s
rule to updateQ with the likelihood functiorL,. This means thaf Q is a belief model
for the unknown composition of an urn with balls, then @-|m) is the corresponding
model for the unknown composition of the remainifhbails in the urn, after n balls with
compositiorm have been taken from it.

Now if we have a coherent lower previsi®] on.Z(.#") that is a lower envelope
of a set.#" of coherent previsiong, then coherenf8 tells us that the updated lower
previsionP(:|x) is precisely the lower envelope of the corresponding upgbatherent
previsionsP(-|x), and consequently, using Eds.24) and (25), we find that

P(gx) = Py (PU(gl.4)|m), (26)

whereP? (-|m) is the coherent lower prevision off (4" ) given by

P (hjm) := inf { %(LL:S) Qe Ml } —inf {Q(h|m): Qe .4 } . @)
for any gambleh on 4. In other wordsP? (-|m) is the coherent lower prevision ob-
tained after using coherence (the so-called GeneralisggsBRule) to updat®y with
the likelihood functiorLy,. This means again tthEQ* is a belief model for the unknown
composition of an urn with’rballs, then B (-|m) is the corresponding belief model for the
unknown composition of the remainingbralls in the urn, after n balls with composition
m have been taken from it.

Lm(m') :=Lm(m+m’) =

= Q(PY(glA™)|m), (24)

(25)

627his follows from Walley’s|[1991, Section 6.5] Generalisgdyes Rule.
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If we compare Eq.[(26) with Eq_(20), we see that the updatdidfbmodel P(-|x) is
still strongly .92,’(‘/—invarian@ so there still ipost-data exchangeabilifpr the remaining
random variableX’ = (X;,1,...,%x). Moreover, by looking at Eq[(21) and Eqs.](26)
and [27), we see that the updated (lower) previsiBa$x) and P(-|x) only depend on
the observed samplethrough thelikelihood function k). This tells us that this type
of predictive inference satisfies the so-callég@lihood principle and moreover that the
count vectom = T(x), or more generally the mapis asufficient statistic

10. CONCLUSIONS

We have tried to argue that there is a clear distinction betwbe symmetry of belief
models, and models of beliefs of symmetry, and that bothonetican be distinguished
between when indecision is taken seriously, as is the cag@liey’s [1991] behavioural
theory of imprecise probabilities. Our present attemptittituish between these no-
tions, and capture the distinction in a formal way, is insgiby Walley’s[1991, Chapter 9]
discussion of the difference between permutable and exelzdote lower previsions, and
Pericchi and Walley’s [1991] discussion of ‘classes of oaable priors’ versus ‘reason-
able classes of priors’.

Indeed, there seems to be a difference of type between thedtions. The former
(symmetry of models) is a property that belief models mayehand we may require, as
a principle of rationality, or as a principle of ‘faithful ndelling’, that if the available evi-
dence is symmetrical, then our corresponding belief mosgledsild be symmetrical too. A
case in point is that of complete ignorance, where the ‘exddeis completely symmetri-
cal, and we may therefore require that corresponding bel@del should be completely
symmetrical too. This leads to the various principles dised in Sectiohl5, all of which
seem to single out the vacuous belief model for represemtimgplete ignorance, and
which extend Walley’s [1991, Section 5.5] treatment of thistter.

The latter notion (models of symmetry) is more properlytedao a type of structural
assessment: if a subject believes there is symmetry, houldkbe model that, and how
should assessments of symmetry be combined with othersassats? We have tried
to answer such questions in Sectidms 7, where we discusdrimgly invariant natural
extension.

It is well-known that if we only use Bayesian, or precise,iability models, requiring
invariance of the probability measures with respect toygdes of symmetry in the evi-
dence may be impossible; examples were given by Boole,8wttand Fisher (see Zabell
[1989a] for discussion and references). This has led cer&siearchers to abandon re-
quiring the above-mentioned ‘faithfulness’ of belief mtgj@r to single out certain types
of symmetry which are deemed to be better than others. Wethadeto argue that this
is unnecessary: the vacuous belief model has no such prepéerd is symmetrical with
respect to any transformation you care to name. And of coorgecriticism of the Prin-
ciple of Insufficient Reason is not new. Our ideas were hgamfluenced by Walley's
[1991] book on imprecise probabilities, whose Chapter Saios a wonderful overview
of arguments against restricting ourselves to precisegiitity models.| Zabell [1989b]
also gives an excellent discussion of much older criticidating back to the middle of
the 19th century. In particular, Ellis’s [1844dk nihilo nihil— you cannot make decisions
or inferences based on complete ignorance — finds a nice owtfon in the fact that
the vacuous belief model captures complete indecisiontlaatdipdating a vacuous belief
model leads to a vacuous belief model [Welley, 1991, Sediénl]. But what we have

635ee also footnofe 7.
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tried to do here is provide a framework and mathematical egipathat allows us to better
understand and discuss the problems underlying the Pkinafinsufficient Reason, and
more general problems of dealing with any type of symmetiyaief models.

This study of symmetry in relation to belief models is farrfrdbeing complete how-
ever, and our notions of weak and strong invariance may habe refined, and perhaps
even modified, as well as complemented by other notions ofrsstny. It might for in-
stance be of interest to study the notion of symmetry thatueap theinsufficient reason
to strictly preferthat is briefly touched upon near the end of Sedfioh 4.1. Aleomay
seem more certain than we actually are about the appropeisag(in terms of having a
sound behavioural justification and interpretation) of notions of weak and (especially)
strong invariance for random variables that may assumefaiténnumber of values. This
is the point where our intuition deserts us, and where a numbmteresting questions
and problems leave us speechless. To name but one suchmrdiyieught to the fore
by the discussion in Sectidd 7: for certain types of monoidis, completely irrational
to impose strong invariance (because doing so makes usctstibja sure loss). We can
understand why this is the case for the monoid of all trams&tions, even on a finite set
(TheoreniB). But why, for instance, are there no (stronggrutation invariant coher-
ent (lower) previsions on the set of natural (adortiori real) numbers? Why are we
(consequently) reduced to using (strong) shift or trafmsiativariance of coherent (lower)
previsions when we want to try and capture the idea of a umifdistribution on the set
of natural (or real) numbers? And even then, why, as is hiatéd footnoteé 5D, are there
situations where updating a (strongly) shift-invarianbecent (lower) prevision produces
a sure loss? Are there appropriately weakened versionsraftiamng invariance condition
that avoid these problems?
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