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SYMMETRY OF MODELS VERSUS MODELS OF SYMMETRY

GERT DE COOMAN AND ENRIQUE MIRANDA

ABSTRACT. A model for a subject’s beliefs about a phenomenon may exhibit symmetry,
in the sense that it is invariant under certain transformations. On the other hand, such a
belief model may be intended to represent that the subject believes or knows that the phe-
nomenon under study exhibits symmetry. We defend the view that these are fundamentally
different things, even though the difference cannot be captured by Bayesian belief mod-
els. In fact, the failure to distinguish between both situations leads to Laplace’s so-called
Principle of Insufficient Reason, which has been criticisedextensively in the literature.

We show that there are belief models (imprecise probabilitymodels, coherent lower
previsions) that generalise and include the Bayesian belief models, but where this fun-
damental difference can be captured. This leads to two notions of symmetry for such
belief models: weak invariance (representing symmetry of beliefs) and strong invariance
(modelling beliefs of symmetry). We discuss various mathematical as well as more philo-
sophical aspects of these notions. We also discuss a few examples to show the relevance of
our findings both to probabilistic modelling and to statistical inference, and to the notion
of exchangeability in particular.

1. INTRODUCTION

This paper deals with symmetry in relation to models of beliefs. Consider a model for
a subject’s beliefs about a certain phenomenon. Such abelief modelmay besymmetrical,
in the sense that it is invariant under certain transformations. On the other hand, a belief
model may try to capture that the subject believes that the phenomenon under study exhibits
symmetry, and we then say that the belief modelmodels symmetry. We defend the view
that there is an important conceptual difference between the two cases: symmetry of beliefs
should not be confused with beliefs of symmetry.1

Does this view need defending at all? That there is a difference may strike you as
obvious, and yet we shall argue that Bayesian belief models,which are certainly the most
popular belief models in the literature, are unable to capture this difference.

To make this clearer, consider a simple example. Suppose I will toss a coin, and you
are ignorant about its relevant properties: it might be fairbut on the other hand it might
be heavily loaded, or it might even have two heads, or two tails (situationA). To you
the outcomes of the toss that are practically possible areh (for heads) andt (for tails).
Since you are ignorant about the properties of the coin, any model for your beliefs should
not change if heads and tails are permuted, so the model that ‘faithfully’ captures your
beliefs about the outcome of the toss should be symmetrical too, i.e., invariant under this
permutation of heads and tails.
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1This echoes Walley’s [1991, Section 9.5.6, p. 466] view that‘symmetry of evidence’ is not the same thing as
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2 GERT DE COOMAN AND ENRIQUE MIRANDA

Suppose on the other hand that you know that the coin (and the tossing mechanism) I
shall use is completely symmetrical (situationB). Your belief model about the outcome
of the toss should capture this knowledge, i.e., it should model your beliefs about the
symmetry of the coin.

Our point is that belief models should be able to catch the important difference between
your beliefs in the two situations. Bayesian belief models cannot do this. Indeed—the
argument is well-known—the only symmetrical probability model, which is in other words
invariant under permutations of heads and tails, assigns equal probability 1/2 to heads and
tails. But this is automatically also the model that captures your beliefs that the coin is
actually symmetrical, so heads and tails should be equally likely.

The real reason why Bayesian belief models cannot capture the difference between
symmetry of models and modelling symmetry, is that they do not allow for indecision.
Suppose that I ask you to express your preferences between two gambles, whose reward
depends on the outcome of the toss. For first one,a, you will win one euro if the outcome
is heads, and lose one if it is tails. The second one,b, gives the same rewards, but with
heads and tails swapped.

In situationB, because you believe the coin to be symmetrical, it does not matter to you
which gamble you get, and you areindifferentin your choice between the two.

But in situationA, on the other hand, because you are completely ignorant about the
coin, the available information gives youno reason to (strictly) prefer aoverb or b overa.
You are thereforeundecidedabout which of the two gambles to choose.

Because decision based on Bayesian belief models leaves youno alternative but to either
strictly prefer one action over the other, or to be indifferent between them, the symmetry
of the model leaves youno choice but to act as if you were indifferentbetweena andb.
We strongly believe that it is wrong to confuse indecision with indifference in this example
(and elsewhere of course), but Bayesian belief models leaveyou no choice but to do so,
unless you want to let go of the principle that if your evidence or your beliefs are sym-
metrical, your belief model should be symmetrical as well. The problem with Laplace’s
Principle of Insufficient Reason is precisely this: if you use a Bayesian probability model
then the symmetry present in ignorance forces you to treat indecision (or insufficient rea-
son to decide) betweena andb as if it were indifference.2 Or in other words, it forces you
to treat symmetry of beliefs as if there were beliefs of symmetry.

If on the other hand, we consider belief models that allow forindecision, we can sever
the unholy link between indecision and indifference, because in a state of complete igno-
rance, we are then allowed to remain undecided about which ofthe two actions to choose:
in the language of preference relations, they simply becomeincomparable, and you need
not be indifferent between them. As we shall see further on, similar arguments show that
such belief models also allow us to distinguish between ‘symmetry of models’ and ‘mod-
els of symmetry’ in those more general situations where the symmetry involved is not
necessarily that which goes along with complete ignorance.

So, it appears that in order to better understand the interplay between modelling beliefs
and issues of symmetry, which is the main aim of this paper, weshall need to work with
a language, or indeed, with a type of belief models that, unlike the Bayesian ones, take

2This may seem a good explanation why Keynes [1921, p. 83] renamed the ‘Principle of Insufficient Reason’
the ‘Principle of Indifference’. He (and others, see Zabell[1989b]) also suggested that the principle should not
be applied in a state of complete ignorance, but only if thereis good reason to justify the indifference (such as
when there is evidence of symmetry). By the way, Keynes was also among the first to consider what we shall call
imprecise probability models, as his comparative probability relations were not required to be complete.
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indecision seriously. For this purpose, we shall use the language of the so-calledimprecise
probability models[Walley, 1991], and in particular coherent lower previsions, which have
the same behavioural pedigree as the more common Bayesian belief models (in casuco-
herent previsions, see de Finetti [1974–1975]), and which contain these models as a special
case. We give a somewhat unusual introduction to such modelsin Section 2.3 In Section 3,
we provide the necessary mathematical background for discussing symmetry: we discuss
monoids of transformations, and invariance under such monoids. After these introductory
sections, we start addressing the issue of symmetry in relation to belief models in Section 4.
We introduce two notions of invariance for the imprecise probability models introduced in
Section 2:weak invariance, which captures symmetry of belief models, andstrong invari-
ance, which captures that a model represents the belief that there is symmetry. We study
relevant mathematical properties of these invariance notions, and argue that the distinction
between them is very relevant when dealing with symmetry in general, and in particular
(Section 5) for modelling complete ignorance. Further interesting properties of weak and
strong invariance, related to inference, are the subject ofSections 6 and 7, respectively. We
show among other things that a weakly invariant coherent lower prevision can always be
extended to a larger domain, in a way that is as conservative as possible. This implies that,
for any given monoid of transformations, there always are weakly invariant coherent lower
previsions. This is not generally the case for strong invariance, however, and we give and
discuss sufficient conditions such that for a given monoid oftransformations, there would
be strongly invariant coherent (lower) previsions. We alsogive various expression for the
smallest strongly invariant coherent lower prevision thatdominates a given weakly invari-
ant one (if it exists). In Section 8, we turn to the important example of coherent (lower)
previsions on the set of natural numbers, that are shift-invariant, and we use them to charac-
terise the strongly invariant coherent (lower) previsionson a general space provided with a
single transformation. Further examples are discussed in Section 9, where we characterise
weak and strong invariance with respect to finite groups of permutations. In particular,
we discuss Walley’s [1991] generalisation to lower previsions of de Finetti’s [1937] notion
of exchangeability, and we use our characterisation of strong permutation invariance to
prove a generalisation to lower previsions of de Finetti’s representation results for finite
sequences of exchangeable random variables. Conclusions are gathered in Section 10.

We want to make it clear at this point that this paper owes a significant intellectual
debt to Peter Walley. First of all, we use his behavioural imprecise probability models
[Walley, 1991] to try and clarify the distinction between symmetry of beliefs and beliefs
of symmetry. Moreover, although we like to believe that muchof what we do here is new,
we are also aware that in many cases we take to their logical conclusion a number of ideas
about symmetry that are clearly present in his work (mainly Walley [1991, Sections 3.5,
9.4 and 9.5] and Pericchi and Walley [1991]), sometimes in embryonic form, and often
more fully worked out.

2. IMPRECISE PROBABILITY MODELS

Consider a very general situation in which uncertainty occurs: a subject is uncertain
about the value that a variableX assumes in a set of possible valuesX . Because the
subject is uncertain, we shall callX anuncertain, or random, variable.

3For other brief and perhaps more conventional introductions to the topic, we refer to Walley [1996a],
De Cooman and Zaffalon [2004], De Cooman and Troffaes [2004], De Cooman and Miranda [2006]. A much
more detailed account of the behavioural theory of imprecise probabilities can be found in Walley [1991].
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The central concept we shall use in order to model our subject’s uncertainty aboutX, is
that of agamble(on X, or onX ), which is a bounded real-valued functionf on X . In
other words, a gamblef is a map fromX to the set of real numbersR such that

supf := sup{ f (x) : x∈ X } and inff := inf { f (x) : x∈ X }

are (finite) real numbers. It is interpreted as the reward function for a transaction which
may yield a different (and possibly negative) rewardf (x), measured in units (calledutiles)
of a pre-determined linear utility,4 for each of the different valuesx that the random variable
X may assume inX .

We denote the set of all gambles onX by L (X ). For any two gamblesf andg, we
denote their point-wise sum byf + g, and we denote the point-wise (scalar) multiplica-
tion of f with a real numberλ by λ f . L (X ) is a real linear space under these opera-
tions. We shall always endow this space with thesupremum norm, i.e., ‖ f‖ = sup| f | =
sup{| f (x)| : x∈ X }, or equivalently, with the topology of uniform convergence, which
turnsL (X ) into a Banach space.

An event Ais a subset ofX . If X ∈ A then we say that the eventoccurs, and if X 6∈ A
then we say thatA doesn’t occur, or equivalently, that thecomplement(ary event) Ac =
{x∈ X : x 6∈ A} occurs. We shall identify an event with a special{0,1}-valued gambleIA,
called itsindicator, and defined byIA(x) = 1 if x ∈ A andIA(x) = 0 elsewhere. We shall
often writeA for IA, whenever there is no possibility of confusion.

2.1. Coherent sets of really desirable gambles.Given the information that the subject
has aboutX, she will be disposed to accept certain gambles, and to reject others. The idea
is that we model a subject’s beliefs aboutX by looking at which gambles she accepts, and
to collect these into aset of really desirable gamblesR.

The dice example.Assume that our subject is uncertain about the outcomeX of my tossing
a die. In this caseX = X6 := {1,2,3,4,5,6} is the set of possible values forX. If the
subject is rational, she will accept the gamble which yieldsa positive reward whatever the
value ofX, because she is certain to improve her ‘fortune’ by doing so.On the other hand,
she will not accept a non-positive gamble that is negative somewhere, because by accepting
such a gamble she can only lose utility (we then say sheincurs a partial loss). She will
not accept the gamble which makes her win one utile if the outcomeX is 1, and makes her
lose five utiles otherwise, unless she knows for instance that the die is loaded very heavily
in such a way that the outcome 1 is almost certain to come up.

Real desirability can also be interpreted in terms of the betting behaviour of our subject.
Suppose she wants to bet on the occurrence of some event, suchas my throwing 1 (so that
she receives 1 utile if the event happens and 0 utiles otherwise). If she thinks that the die
is fair, she should be disposed to bet on this event at any rater strictly smaller than1

6. This
means that the gambleI{1}− r representing this transaction (winning 1− r if the outcome
of X is 1 and losingr otherwise) will be really desirable to her forr < 1

6. �

Now, accepting certain gambles has certain consequences, and has certain implications
for accepting other gambles, and if our subject is rational,which we shall assume her to
be, she should take these consequences and implications into account. To give but one
example, if our subject accepts a certain gamblef she should also accept any other gamble

4This utility can be regarded as amounts of money, as is the case for instance in de Finetti [1974–1975]. It
is perhaps more realistic, in the sense that the linearity ofthe scale is better justified, to interpret it in terms of
probability currency: we win or lose lottery tickets depending on the outcome of the gamble; see Walley [1991,
Section 2.2].
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g such thatg≥ f , i.e., such thatg point-wise dominates f, because acceptingg is certain
to bring her a reward that is at least as high as acceptingf does.

Actually, this requirement is a consequence [combine (D2) with (D3)] of the follow-
ing four basic rationality axioms for real desirability, which we shall assume any rational
subject’s set of really desirable gamblesR to satisfy:

(D1) if f < 0 then f 6∈ R [avoiding partial loss];
(D2) if f ≥ 0 then f ∈ R [accepting sure gains];
(D3) if f ∈ R andg∈ R then f +g∈ R [accepting combined gambles]
(D4) if f ∈ R andλ > 0 thenλ f ∈ R [scale invariance].

where f < g is shorthand forf ≤ g and f 6= g.5 We call any subsetR of L (X ) that
satisfies these axioms acoherentset of really desirable gambles.

It is easy to see that these axioms reflect the behavioural rationality of our subject: (D1)
means that she should not be disposed to accept a gamble whichmakes her lose utiles, no
matter the outcome; (D2) means that she should accept a gamble which never makes her
lose utiles; on the other hand, if she is disposed to accept two gamblesf andg, she should
also accept the combination of the two gambles, which leads to a rewardf + g; this is an
immediate consequence of the linearity of the utility scale. This justifies (D3). And finally,
if she is disposed to accept a gamblef , she should be disposed to accept the scaled gamble
λ f for anyλ > 0, because this just reflects a change in the linear utility scale. This is the
idea behind condition (D4).

Walley [1991, 2000] has a further coherence axiom that sets of really desirable gambles
should satisfy, which turns out to be quite important for conditioning, namely

(D5) if B is a partition ofX and if IB f ∈ R for all B in B, then f ∈ R [full conglom-
erability].

Since this axiom is automatically satisfied wheneverX is finite [it is then an immediate
consequence of (D3)], and since we shall not be concerned with conditioning unless when
X is finite (see Section 9), we shall ignore this additional axiom in the present discussion.

A coherent set of really desirable gambles is a convex cone [axioms (D3)–(D4)] that
includes the ‘non-negative orthant’C+ := { f ∈ L (X ) : f ≥ 0} [axiom (D2)] and has no
gamble in common with the ‘negative orthant’C− := { f ∈ L (X ) : f < 0} [axiom (D1)].6

If we have two coherent sets of really desirable gamblesR1 andR2, such thatR1 ⊆ R2,
then we say thatR1 is less committal, or more conservative, thanR2, because a subject
whose set of really desirable gambles isR2 accepts at least all the gambles inR1. The
least-committal (most conservative, smallest) coherent set of really desirable gambles is
C+. Within this theory, it seems to be the appropriate model forcomplete ignorance: if our
subject has no information at all about the value ofX, she should be disposed to accept only
those gambles which cannot lead to a loss of utiles (see also the discussion in Section 5).

Now suppose that our subject has specified a setR of gambles that she accepts. In an
elicitation procedure, for instance, this would typicallybe a finite set of gambles, so we
cannot expect this set to be coherent. We are then faced with the problem of enlarging this
R to a coherent set of really desirable gambles that is as smallas possible: we want to
find out what are the (behavioural) consequences of the subject’s accepting the gambles
in R, taking into accountonly the requirements of coherence. This inference problem is

5So, here and in what follows, we shall write ‘f < 0’ to mean ‘f ≤ 0 and notf = 0’, and ‘f > 0’ to mean
‘ f ≥ 0 and notf = 0’.

6This means that the zero gamble 0 belongs to the set of really desirable gambles. This is more a mathematical
convention than a behavioural requirement, since this gamble has no effect whatsoever in the amount of utiles of
our subject. See more details in Walley [1991].



6 GERT DE COOMAN AND ENRIQUE MIRANDA

(also formally) similar to the problem of inference (logical closure) in classical proposi-
tional logic, where we want to find out what are the consequences of accepting certain
propositions.7

The smallest convex cone includingC+ andR, or in other words, the smallest subset
of L (X ) that includesR and satisfies (D2)–(D4), is given by

E
r
R :=

{

g∈ L (X ) : g≥
n

∑
k=1

λk fk for somen≥ 0, λk ∈ R+ and fk ∈ R

}

,

whereR+ denotes the set of non-negative real numbers. If this convexconeE r
R

intersects
C− then it is easy to see that actuallyE r

R
= L (X ), and then it is impossible to extendR

to a coherent set of really desirable gambles [because (D1) cannot be satisfied]. Observe
thatE r

R
∩C ′

− = /0 if and only if

there are non≥ 0, λk ∈ R+ and fk ∈ R such that
n

∑
k=1

λk fk < 0,

and we then say that the setR avoids partial loss. Let us interpret this condition. As-
sume that it doesn’t hold (so we say thatR incurs partial loss). Then there are really
desirable gamblesf1, . . . , fn and positiveλ1, . . . , λn such that∑n

k=1 λk fk < 0. But if our
subject is disposed to accept the gamblefk then by coherence [axioms(D2) and (D4)] she
should also be disposed to accept the gambleλk fk for all λk ≥ 0. Similarly, by coherence
[axiom (D3)] she should also be disposed to accept the sum∑n

k=1 λk fk. Since this sum is
non-positive, and strictly negative in at least some elements ofX , we see that the subject
can be made subject to a partial loss, by suitably combining gambles which she accepts.
This is unreasonable.

When the classR avoids partial loss, and only then, we are able to extendR to a
coherent set of really desirable gambles, and the smallest such set is preciselyE r

R
, which is

called thenatural extensionof R to a set of really desirable gambles. This set reflects only
the behavioural consequences of the assessments present inR: the acceptance of a gamble
f not inE r

R
(or, equivalently, a set of really desirable gambles strictly includingE r

R
) is not

implied by the information present inR, and therefore represents stronger implications
that those of coherence alone.

2.2. Coherent sets of almost-desirable gambles.Coherent sets of really desirable gam-
bles constitute a very general and powerful class of models for a subject’s beliefs (see
Walley [1991, Appendix F] and Walley [2000] for more detailsand discussion). We could
already discuss symmetry aspects for such coherent sets of really desirable gambles, but
we shall instead concentrate on a slightly less general and powerful type of belief models,
namely coherent lower and upper previsions. Our main reasonfor doing so is that this will
allow us to make a more direct comparison to the more familiarBayesian belief models,
and in particular to de Finetti’s [1974–1975] coherent previsions, or fair prices.

Consider a gamblef . Then our subject’slower prevision, or supremum acceptable
buying price,P( f ) for f is defined as the largest real numbers such that she accepts the
gamblef − t for any pricet < s, or in other words accepts to buyf for any such pricet.
Similarly, herupper prevision, or infimum acceptable selling price,P( f ) for the gamblef
is the smallest real numbers such that she accepts the gamblet − f for any pricet > s, or
in other words accepts to sellf for any such pricet.

7See Moral and Wilson [1995] and De Cooman [2000, 2005] for more details on this connection between
natural extension and inference in classical propositional logic.
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For an eventA, the lower previsionP(IA) of its indicator is also called thelower prob-
ability of A, and denoted byP(A). It can be interpreted as the supremum rate for betting
on the eventA. Similarly, P(IA) is called theupper probabilityof A, and also denoted by
P(A).

Since selling a gamblef for prices is the same thing as buying− f for price−s, we
have the followingconjugacyrelationship between an upper and a lower prevision:

P( f ) = −P(− f ).

This implies that from a given lower previsionP, we can always construct the conjugate
upper previsionP, so they are mathematically equivalent belief models. In what follows,
we shall mainly concentrate on lower previsions.

Now assume that our subject has a coherent set of really desirable gamblesR, then it is
clear from the definition of lower and upper prevision that wecan useR to define a lower
prevision

PR( f ) = sup{s∈ R : f −s∈ R} (D-LPR)

and an upper prevision
PR( f ) = inf {s∈ R : s− f ∈ R}

for every gamblef on X . So, givenR we can construct two real-valued functionals,
PR andPR , whose interpretation is that of a supremum acceptable buying price, and an
infimum acceptable selling price, respectively, and whose domain isL (X ). We shall call
these functionalslower andupper previsions.

We call acoherent lower previsionon L (X ) any real-valued functional onL (X )
satisfying the following three axioms:

(P1) P( f ) ≥ inf f [accepting sure gains];
(P2) P( f +g)≥ P( f )+P(g) [super-additivity];
(P3) P(λ f ) = λP( f ) [non-negative homogeneity].

for all gamblesf andg onX , and all non-negative realλ .
It follows from the coherence axioms (D1)–(D4) forR that the lower previsionPR that

corresponds to a coherent set of really desirable gamblesR is coherent.8

So we see that with a coherent set of really desirable gamblesR, we can define a coher-
ent lower prevision onL (X ), using (D-LPR). We shall see further on that, conversely,
given a coherent lower previsionP onL (X ), we can always find a coherent set of really
desirable gamblesR such thatP andR are related through (D-LPR). But unfortunately,
the relationship between the two types of belief models is many-to-one: there are usually
many coherent sets of really desirable gambles that lead to the same coherent lower previ-
sion. This is why we said before that coherent sets of really desirable gambles are a more
general and powerful belief model than coherent lower previsions. The ultimate reason for
this is the following: suppose that a subject specifies her supremum buying priceP( f ) for
a gamblef . This implies that she accepts all the gamblesf −P( f )+ δ , whereδ > 0. But
the specification ofP( f ) says nothing about the gamblef −P( f ) (whereδ = 0) itself: she
might accept it, but then again she might not. And precisely because specifying a coherent
lower prevision says nothing about this border behaviour, it leads to a belief model that is
less powerful than coherent sets of really desirable gambles, where this border behaviour
would be determined.

The dice example (cont.).Let us go back to the die example. Consider, for anyx in X6 =
{1, . . . ,6}, the event{x} that the outcomeX of rolling the die isx. If, for some real

8To prove (P1), use (D2); for (P2) use (D3); and for (P3) use (D4) for λ > 0 and (D1) and (D2) forλ = 0.
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numberr, our subject accepts the gambleI{x}− r, she is willing to payr utiles in return
for the uncertain rewardI{1}, or in other words to beton the event{1} at rate r. So her
lower probabilityP({x}) for {x}, or equivalently, her lower previsionP(I{x}) for I{x}, is
the supremum rate at which she is willing to bet on{x}. This means that she accepts
the gambleI{x}− s for anys< P({x}). But it doesn’t imply that she actually accepts the
gambleI{x}−P({x}): this gamble is only claimed to be almost-desirable, as we shall see
further on.

If she is completely ignorant about the properties of the die, her evidence about the
die is symmetrical, i.e., doesn’t change when the possible outcomes are permuted. A
belief model that ‘faithfully’ captures the available evidence should therefore be symmet-
rical with respect to such permutations as well, so we infer that in particularP({1}), . . . ,
P({6}) are all equal to some numberp. Coherence [use (P1) and (P2)] then requires that
0≤ p≤ 1

6. Any suchp leads to a symmetrical lower probability defined on the singletons,
and therefore reflects ‘symmetry of beliefs’. As we have indicated above, the model corre-
sponding top = 0 is the one that reflects complete ignorance. We shall see further on (see
Sections 4.2 and 9) that the choicep = 1

6 leads to the only model that captures the belief
that the die is fair, i.e., that reflects ‘beliefs of symmetry’. �

In order to better understand the relationship between coherent lower previsions and
coherent sets of really desirable gambles, we need to introduce, besidesreal desirability, an
new and weaker notion, calledalmost-desirability, which will also play an important part in
our discussion of symmetry further on. This notion is inspired by the ideas in the discussion
above: we say that a gamblef is almost-desirableto a subject, or that shealmost-accepts
f , whenever she acceptsf + δ , or in other wordsf + δ is really desirable to her, for any
strictly positive amount of utilityδ > 0. By stating thatf is almost-desirable to her, nothing
is specified about whether the subject acceptsf itself: she might, but then again she also
might not. If we generically denote byD a set of gambles that are almost-desirable to our
subject, we see that the setDR of almost-desirable gambles that corresponds to a coherent
setR of really desirable gambles, is given by

DR = { f ∈ L (X ) : (∀δ > 0) f + δ ∈ R} =
⋂

δ>0

[R− δ ] (D-M)

soDR is the closure (in the topology of uniform convergence onL (X )) of the convex
coneR.

We call any set of gamblesD that satisfies the following five axioms acoherent set of
almost-desirable gambles:

(M1) if sup f < 0 then f 6∈ D [avoiding sure loss];
(M2) if inf f ≥ 0 then f ∈ D [accepting sure gains];
(M3) if f ∈ D andg∈ D then f +g∈ D [accepting combined gambles];
(M4) if f ∈ D andλ > 0 thenλ f ∈ D [scale invariance];
(M5) if f + δ ∈ D for all δ > 0 then f ∈ D [closure].

It is a closed and convex cone inL (X ) that includes the non-negative orthantC+ and
does not intersect with the setC ′

− = { f ∈ L (X ) : supf < 0} ⊂ C−. It is easy to see
that the set of almost-desirable gamblesDR that corresponds to a coherent set of really
desirable gamblesR is actually also coherent.9

9To prove (M1), use (D1) withδ = − supf
2 ; to prove (M2), use (D2); to prove (M3), use (D3); to prove (M4),

use (D4); and to prove (M5), useε = δ
2 and the definition ofDR to prove thatf +δ ∈ R for all δ > 0.
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It should at this point come as no surprise that coherent lower previsions and coherent
sets of almost-desirable gambles are actually equivalent belief models. Indeed, consider a
coherent set of almost-desirable gamblesD , i.e., D satisfies (M1)–(M5). Then the real-
valued functionalPD defined onL (X ) by10

PD ( f ) := max{s∈ R : f −s∈ D} (M-LPR)

satisfies (P1)–(P3) and therefore is a coherent lower prevision onL (X ).11

Conversely, if we consider a coherent lower previsionP on L (X ), i.e., P satisfies
(P1)–(P3), then the set of gambles

DP := { f ∈ L (X ) : P( f ) ≥ 0} (LPR-M)

satisfies (M1)–(M5) and is therefore a coherent set of almost-desirable gambles.12 More-
over, the relationships (M-LPR) and (LPR-M) are bijective (one-to-one and onto), and they
are each other’s inverses.13

Finally, consider a coherent lower previsionP on L (X ), and define the following set
of gambles

D
+
P := { f ∈ L (X ) : P( f ) > 0 or f > 0} .

ThenD
+
P ∪{0} is a coherent set of really desirable gambles, i.e., it satisfies (D1)–(D4).14

Moreover, any coherent set of really desirable gamblesR that satisfies

D
+
P ∪{0} ⊆ R ⊆ DP,

i.e., the union of whose (relative) topological interior with C + is D
+
P ∪ {0} and whose

topological closure isDP, hasP as its associated lower prevision, through (D-LPR). This
confirms what we claimed before: coherent lower previsions,or equivalently, coherent sets
of almost-desirable gambles, are less powerful belief models than coherent sets of really
desirable gambles. If a subject specifies a coherent lower previsionP, then she actually
states that all gambles in the unionD

+
P ∪{0} of C+ with the relative topological interior

of DP are really desirable, but she doesn’t specify whether the gambles in the topological
boundaryDP\D

+
P of DP are: we only know that they are almost-desirable to her.

2.3. Natural extension for coherent lower previsions.There is one important problem
that we skipped over in the discussion above, namely that of inference. Suppose a subject
specifies a setD of gambles that are almost-desirable to her. In an elicitation procedure,
for instance, this would typically be a finite set of gambles,so we cannot expect this set
to be coherent. We are then, as before for really desirable gambles, faced with the prob-
lem of enlarging thisD into a coherent set of almost-desirable gambles that is as small
as possible: we want to find out what are the (behavioural) consequences of the subject’s
almost-accepting the gambles inD , taking into accountonly the requirements of coher-
ence.

10The supremum in Eq. (D-LPR) now becomes a maximum, simply because the setD is closed.
11(P1) follows from (M2), (P2) from (M3) and (P3) is a consequence of (M4).
12First, conditions (P1) and (P2) imply thatP is monotone. Now, (P2) and (P3) imply that 0= P(0) ≥

P( f ) + P(− f ) ≥ P( f ) + inf(− f ), whenceP( f ) ≤ supf . From these two facts we deduce (M1). (M2) is a
consequence of (P1), (M3) of (P2) and (M4) of (P3). Finally, the monotonicity ofP implies thatP(µ) = µ for
any constant valueµ , and from this we deduce thatP( f +δ ) = P( f )+δ for anyδ > 0. This implies (M5).

13To see that they are each other inverses, it suffices to use that a coherent lower prevision satisfiesP( f −s) =

P( f )− s for any gamblef and any real numbers, and, conversely, thatf ∈ DP if and only if P( f ) ≥ 0; this
implies also that both transformations are bijective.

14For (D1), use that a coherent lower previsionP satisfiesP( f )≤ supf for any gamblef ; for (D2), that f ≥ 0
satisfies eitherf > 0 or f = 0; for (D3), use (P2) and the monotonicity of the coherentP, and for (D4) use (P3).
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The smallest closed convex cone includingC+ andD , or in other words, the smallest
subset ofL (X ) that includesD and satisfies (M2)–(M5), is given by

E
m
D :=

{

g∈ L (X ) : (∀δ > 0)(∃n≥ 0,λk ∈ R+, fk ∈ D)g≥
n

∑
k=1

λk fk− δ

}

. (M-NE)

This is the topological closure of the setE r
D

. If this convex coneE m
D

intersectsC ′
− =

{ f ∈ L (X ) : supf < 0} then it is easy to see that actuallyE m
D

= L (X ), and then it is
impossible to extendD to a coherent set of almost-desirable gambles [because (M1)cannot
be satisfied]. Observe thatE m

D
∩C ′

− = /0 if and only if15

sup

[
n

∑
k=1

λk fk

]

≥ 0 for somen≥ 0, λk ∈ R+ and fk ∈ D , (M-ASL)

and we then say that the setD of almost-desirable gamblesavoids sure loss. In that case,
and only then, we are able to extendD to a coherent set of almost-desirable gambles, and
the smallest such set is preciselyE m

D
, which is called thenatural extensionof D to a set of

almost-desirable gambles.
What does natural extension mean for the equivalent model ofcoherent lower previ-

sions? Suppose our subject specifies a supremum acceptable buying price, or lower previ-
sion,P( f ) for each gamblef in some set of gamblesK ⊆L (X ).16 We can then interpret
P as a real-valued map onK , and we callP a lower prevision onK , and say thatK is
thedomainof P.

To study the problem of natural extension for this lower prevision, we shall use what
we already know about natural extension in the context of almost-desirable gambles. Re-
call that specifyingP on K is tantamount to stating that the gambles in the setD :=
{ f −P( f ) : f ∈ K } are almost-desirable. We now look at the natural extension of this D .
Using (M-ASL), we know that such a natural extension exists if and only if17

sup

[
n

∑
k=1

λk [ fk−P( fk)]

]

≥ 0 for all n≥ 0, λk ∈ R+ and fk ∈ K , (LPR-ASL)

and we then say that the lower previsionP onK avoids sure loss. In this case, the natural
extensionE m

D
is the smallest coherent set of almost-desirable gambles that includesD , and

consequently the coherent lower previsionPE m
D

associated withE m
D

through

PE m
D
(g) := max{s: g−s∈ E

m
D }

is the point-wise smallest coherent lower prevision onL (X ) that dominatesP onK . We
call this coherent lower prevision thenatural extensionof P and we denote it byEP. We
deduce from (M-NE) that for all gamblesg onX :

EP(g) = sup
λk≥0,gk∈D

k=1...,n,n≥0

inf

[

g−
n

∑
k=1

λkgk

]

= sup
λk≥0, fk∈K

k=1...,n,n≥0

inf

[

g−
n

∑
k=1

λk [ fk−P( fk)]

]

.

(LPR-NE)
If P incurs sure loss, i.e., (LPR-ASL) is not satisfied, thenE m

D
= L (X ) and consequently

EP assumes the value+∞ in every gamble.

15Actually, this condition is equivalent to the one where we always chooseλk = 1.
16This set of gamblesK need not have any predefined structure; in particular, it does not have to be a linear

space.
17Here too, this condition is equivalent to the one where we always chooseλk = 1.
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We shall call the lower previsionP on K coherent, whenever it can be extended to
a coherent lower prevision onL (X ), or in other words, whenever it coincides with its
natural extensionEP on every gamble in its domainK . Taking into account (LPR-NE),
we see that this happens exactly when

sup

[
n

∑
k=1

λk [ fk−P( fk)]−λ0 [ f0−P( f0)]

]

≥ 0 for all n≥ 0, λk ∈ R+ and fk ∈ K ,

(LPR-COH)
This coherence condition implies thatP avoids sure loss.

Let us see if, for lower previsions, we can give a more immediate behavioural interpre-
tation for avoiding sure loss, coherence, and natural extension. This should allow us to
develop more intuition, as the approach we have followed so far, which motivates these
notions through the coherence axioms for real and almost-desirable gambles, is admit-
tedly quite abstract. We begin with avoiding sure loss. Suppose that condition (LPR-ASL)
is not satisfied. Then there aren ≥ 0, λ1, . . . , λn in R+ and f1, . . . fn in K such that
sup[∑n

k=1 λk [ fk−P( fk)]] < 0, which implies that there is someδ > 0 for which
n

∑
k=1

λk [ fk−P( fk)+ δ ] ≤−δ .

Now, by the definition ofP( fk), our subject accepts each of the gamblesfk −P( fk)+ δ ,
so she should also accept the combined gamble∑n

k=1 λk[ fk−P( fk)+ δ ] [use axioms (D3)
and (D4) for real desirability]. But this gamble leads to a sure loss of at leastδ . In other
words, if condition (LPR-ASL) doesn’t hold, there are gambles which the subject accepts
and which, if properly combined, make her subject to a sure loss.

Next, assume that condition (LPR-COH) fails to hold. Then there aren≥ 0, λ0, . . . ,λn

in R+ and f0, . . . fn in K such that sup[∑n
k=1 λk[ fk−P( fk)]−λ0[ f0−P( f0)]] < 0. Assume

thatλ0 > 0, as we have already considered the caseλ0 = 0 in our discussion of avoiding
sure loss. Then there is someδ > 0 such that

n

∑
k=1

λk

λ0
[ fk−P( fk)+ δ ]≤ f0− (P( f0)+ δ ).

As before, the gamble on the left-hand side is a gamble that our subject accepts. But then
she should also accept the gamblef0− (P( f0)+δ ) since it point-wise dominates a gamble
she accepts [use (D2) and (D3)]. This implies that she shouldbe willing to pay a price
P( f0)+ δ for f0, which is strictly higher than the supremum priceP( f0) she has specified
for it. Coherence avoids this kind of inconsistency.

Finally, we turn to natural extension. Consider a gambleg onX , then (LPR-NE) tells
us thatEP(g) is the supremums such that there aren≥ 0, λ1, . . . , λn in R+ and f1, . . . fn
in K for which

g−s≥
n

∑
k=1

λk [ fk−P( fk)]

Now the expression on the right-hand side is almost-desirable, because it is a non-negative
linear combination of almost-desirable gambles [apply theaxioms (M3) and (M4)]. So
g−sshould be almost-desirable as well [apply the axioms (M2) and (M3)], and therefore
our subject should be willing to buyg for any pricet < s. So we deduce thatEP(g)
is the supremum price forg that the subject can be forced to pay for the gambleg, by
suitably combining transactions that she is committed to accept by her specifying the lower
previsionP onK . In other words,EP(g) is the lower prevision forg that is implied by the
assessments inP and coherencealone.
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2.4. Coherent previsions: the Bayesian belief models.When a lower previsionP onK

is self-conjugate, that is, whenP( f ) = P( f ) for any gamblef in K , it is called aprevision.
The common valueP( f ) is then called theprevisionof f ; it is a fair price for the gamble
f in the sense of de Finetti [1974–1975]. Formally, a real-valued functionP on a class of
gamblesK is called alinear, or coherent, previsionwhenever

sup

[
n

∑
k=1

[ fk−P( fk)]−
m

∑
j=1

[g j −P(g j)]

]

≥ 0 for all n,m≥ 0 and fk,g j ∈ K , (PR-COH)

A linear prevision is coherent, both as a lower and as an upperprevision. Moreover, if its
domain is the class of all gambles,L (X ), then condition (PR-COH) simplifies to

(PR1) P( f +g) = P( f )+P(g) for any f andg in L (X ) [linearity].
(PR2) P( f ) ≥ inf f for any f in L (X ) [accepting sure gains].

Linear previsions are the familiar Bayesian belief models:any linear prevision on all gam-
bles is indeed a coherent prevision in the sense of de Finetti[1974–1975]; and a prevision
defined on an arbitrary set of gambles is coherent exactly when it is the restriction of some
coherent prevision on all gambles. The restriction to (indicators of) events of a coherent
prevision on all gambles is a finitely additive probability.We shall denote byP(X ) the set
of all coherent previsions onL (X ).

There is an interesting relationship between coherent previsions and coherent lower
previsions. LetP be a lower prevision with domainK , and let us denote by

M (P) := {P∈ P(X ) : (∀ f ∈ K )P( f ) ≥ P( f )}

the set of all coherent previsions onL (X ) thatdominate Pon its domain. Then it can be
checked18 thatP avoids sure loss if and only ifM (P) is non-empty, that is, if and only if
there is some coherent prevision onL (X ) that dominatesP on K , andP is coherent if
and only if it is thelower envelopeof M (P), meaning that for allP in K ,

P( f ) = min{P( f ) : P∈ M (P)} .

Also, any lower envelope of a set of coherent previsions is a coherent lower prevision.
Moreover, the natural extensionEP of P to all gambles can be calculated using the set
M (P) of coherent previsions: for any gamblef onX , we have

EP( f ) = min{P( f ) : P∈ M (P)} .

This means that from amathematicalpoint of view, a coherent lower previsionP and its
set of dominating coherent lower previsionsM (P), are equivalent belief models. It can
be checked that this set is convex and closed in the weak* topology.19 Moreover, there
is a bijective relationship between weak*-closed convex sets of coherent previsions and
coherent lower previsions (their lower envelopes). This fact can (but need not) be used to
give coherent lower previsions aBayesian sensitivity analysis interpretation, besides the
direct behavioural interpretation given in Section 2.2: wemight assume the existence of a
precise but unknown coherent previsionP expressing a subject’s behavioural dispositions,
and we might model the information aboutP by means of a weak*-closed convex set of
coherent previsionsM (the set of possible candidates). Then, this set ismathematically
equivalent to its lower envelopeP, which is a coherent lower prevision. We shall come
back to the difference between the direct behavioural and the Bayesian sensitivity analysis

18See [Walley, 1991, Sections 3.3–3.4] for proofs for these statements.
19The weak* topology on the set of all continuous linear functionals onL (X ) is the topology of point-wise

convergence. For more details, see Walley [1991, Appendix D].
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interpretation of a lower prevision in Section 4.2, when we discuss the interplay between
these interpretations and the notion of symmetry.

Taking into account the bijective relationship that existsbetween coherent lower previ-
sions and sets of almost-desirable gambles, we may also establish a bijective relationship
between sets of coherent previsions and sets of almost-desirable gambles: given a weak*-
closed convex setM of coherent previsions onL (X ), the class

DM := { f ∈ L (X ) : (∀P∈ M )P( f ) ≥ 0}

is a coherent set of almost-desirable gambles, that is, it satisfies the coherence condi-
tions (M1)–(M5). Conversely, given a coherent set of almost-desirable gamblesD , the
corresponding set of coherent previsions

M (D) := {P∈ P(L ) : (∀ f ∈ D)P( f ) ≥ 0}

is a weak*-closed convex set of coherent previsions.
Hence, there are at least three mathematically equivalent representations for the be-

havioural dispositions of our subject: coherent sets of almost-desirable gambles, coherent
lower previsions, and weak*-closed convex sets of coherentprevisions. The bijective rela-
tionships between them are summarised in Table 1.

ւ D P(·) M

D { f : P( f ) ≥ 0} { f : (∀P∈ M )P( f ) ≥ 0}

P(·) max{s: ·−s∈ D} min{P(·) : P∈ M }

M {P: (∀ f ∈ D)P( f ) ≥ 0} {P: (∀ f )P( f ) ≥ P( f )}

TABLE 1. Bijective relationships between the equivalent belief models:
coherent sets of almost-desirable gamblesD , coherent lower previsions
P on L (X ), and weak*-closed convex setsM of coherent previsions
onL (X )

We now briefly discuss a number of belief models that constitute particular instances of
coherent lower previsions. First, we considern-monotone lower previsions, wheren≥ 1.
A lower previsionP is calledn-monotone20 when the following inequality holds for all
p∈ N, p≤ n, and all f , f1, . . . , fp in L (X ):

∑
I⊆{1,...,p}

(−1)|I |P

(

f ∧
∧

i∈I

fi

)

≥ 0,

where, here and further on,|I | denotes the number of elements in a finite setI . A similar
definition can be given if the domain ofP is only alattice of gambles, i.e., a set of gambles
closed under point-wise minimum∧ and point-wise maximum∨. Suchn-monotone lower
previsions are particular instances of exact functionals [Maaß, 2003], i.e., they are scalar
multiples of some coherent lower prevision. In particular,ann-monotone lower probability
defined on a lattice of eventsS that contains /0 andX is coherent if and only ifP( /0) = 0
andP(X ) = 1.

20See De Cooman et al. [2006, 2005b,a] for a detailed discussion of n- and complete monotonicity for lower
previsions.
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A completely monotonelower prevision is simply one that isn-monotone for any natural
numbern≥1. When it is defined on indicators of events, it is called a completely monotone
lower probability. WhenX is finite, this leads tobelief functionsin the terminology of
Shafer [1976].

Two particular cases of belief functions and their conjugate upper probabilities areprob-
ability charges, or finitely additive probabilities defined on a field of events [Bhaskara Rao and Bhaskara Rao,
1983] andpossibility measures. The latter [De Cooman, 2001, Zadeh, 1978] are set func-
tionsΠ satisfyingΠ(

⋃

i∈I Ai) = supi∈I Π(Ai) for any family(Ai)i∈I of subsets ofX . Π is
a coherentupperprobability if and only ifΠ(X ) = 1.

Finally, we can consider a particular instance of a completely monotone coherent lower
prevision that allows us to model complete ignorance, the so-calledvacuous lower previ-
sion. It is given by

PX ( f ) = inf
x∈X

f (x),

for all gamblesf onX . It corresponds to the set of almost-desirable gamblesD = C+ =
{ f : f ≥ 0}, and to the setM = P(L ) of all coherent previsions onL . If we have no
information at all about the values thatX takes inX , we have no reason to reject any
coherent previsionP, and this leads to the vacuous lower prevision as a belief model.
More generally, we can consider a vacuous lower prevision relative to some subsetA of
X , which is given by

PA( f ) = inf
x∈A

f (x).

A vacuous lower prevision relative to a setA is the adequate belief model when we know
that the random variableX assumes values inA, and nothing else. The restriction to events
of a vacuous upper prevision is a (zero-one-valued) possibility measure.

2.5. Incomparability and indifference. We claimed in the Introduction that Bayesian
belief models do not take indecision seriously, and that we therefore need to look at a larger
class of belief models that do not have this defect. Here, we present a better motivation for
this claim.

Consider two gamblesf andg on X . We say that a subjectalmost-prefers fto g, and
denote this asf � g, whenever she accepts to exchangeg for f in return for any (strictly)
positive amount of utility. Given this definition, it is straightforward to check that we can
express this in terms of the three equivalent belief modelsD , P andM of the previous
sections by

f � g⇔ f −g∈ D

⇔ P( f −g) ≥ 0

⇔ (∀P∈ M )P( f ) ≥ P(g).

The binary relation� is a partial pre-order onL (X ), i.e., it is reflexive and transitive.21

Observe also thatf � g⇔ f −g� 0 and thatf � 0⇔ f ∈ D , so f is almost-preferred to
g if and only if f −g is almost-preferred to the zero gamble, which in turn is equivalent to
the fact that our subjectalmost-accepts f−g, i.e., thatf −g is almost-desirable to her.

Unless our subject’s lower previsionP is actually a (precise) previsionP (meaning that
D is the semi-space{ f : P( f ) ≥ 0}, and thatM = {P}), this ordering is not linear, or total:
it does not hold for all gamblesf andg that f � g or g� f . When, therefore, bothf 6� g

21The binary relation� is actually avector orderingon the linear spaceL (X ), because it is compatible
with the addition of gambles, and the scalar multiplicationof gambles with non-negative real numbers.
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andg 6� f , we say that both gambles areincomparable, or that the subject is undecided
about choosing betweenf andg, and we write this asf ‖ g.

It is instructive to see why the relation‖ is non-empty unlessP is a precise prevision
P. If P is not precise (but coherent), there is some gambleh suchP(h) < P(h). Let x
be any real number such thatP(h) < x < P(h). In this case, the subject does not express
a willingness to buyh for the pricex, becausex is strictly greater than her supremum
acceptable priceP(h) for buyingh. Nor does she express a willingness to sellh for a price
x, becausex is strictly smaller than her infimum acceptable priceP(h) for sellingh. But
there is more. Consider the gamblesf := h− x (buying h for a pricex) andg := x− h
(sellingh for a pricex). Then it follows from the coherence ofP that

P( f −g) = 2P(h−x) = 2[P(h)−x] < 0 andP(g− f ) = 2P(x−h) = 2[x−P(h)] < 0,

so f ‖ g: our subject is also undecided in the choice between buyingh for x or sellingh for
that price.

We say that our subject isindifferentbetweenf andg, and denote this asf ≈ g when-
ever bothf � g andg � f . This means thatP( f − g) = P(g− f ) = 0, or equivalently,
P( f ) = P(g) for all P in M . Clearly,≈ is an equivalence relation (a reflexive, sym-
metrical and transitive binary relation) onL (X ). It is important to distinguish between
incomparability and indifference. Indifference between gamblesf andg represents strong
behavioural dispositions: it means that our subject almost-accepts to exchangef for g and
vice versa; on the other hand, incomparability has no behavioural implications, it merely
records the absence of a(n expressed) behavioural disposition to choose betweenf andg.

3. MONOIDS OF TRANSFORMATIONS

Symmetry is generally characterised mathematically as invariance under certain trans-
formations. In this section, we provide the necessary mathematical apparatus that will
allow us to describe and characterise symmetry for the belief models we are interested in.

3.1. Transformations and lifting. We are interested in models for beliefs that concern
a random variableX. So let us begin by concentrating on transformations of the set of
possible valuesX for X. A transformationof X is defined mathematically as a map
T : X → X : x 7→ Tx. At this point, we do not require that such a mapT should beonto
(or surjective), i.e., thatT(X ) := {Tx: x∈ X } should be equal toX . Neither do we
require thatT should beone-to-one(or injective), meaning thatTx= Ty impliesx = y for
all x andy in X . A transformation ofX that is both onto and one-to-one will be called a
permutationof X , but we shall in the sequel also need to consider transformations ofX
that are not permutations.

Suppose we have two transformations,T andS, of X that are of interest. Then there
is no real reason why we shouldn’t also consider the combinedaction ofT andS on X ,
leading to new transformationsST:= S◦T andTS:= T ◦S, defined by(ST)x := S(Tx) and
similarly TSx:= T(Sx) for all x in X . And of course, we could also consider in a similar
wayTSTandSTS, or for that matterTTTSST, which we shall also write asT3S2T. So it
is natural in this context to consider a setT of transformations ofX that is closed under
composition, i.e.,

(∀T,S∈ T )(TS∈ T ) (SG)
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Such a set is called asemigroup of transformations.22 If moreover the semigroupT con-
tains the identity map idX , defined by idX x := x for all x in X , it is called amonoid. As
the identity map leaves all elements ofX unchanged, it has no implications as far as sym-
metry and invariance are concerned, and we can therefore in what follows assume without
loss of generality that anyT we consider actually contains idX (is a monoid).

A monoidT is Abelian if ST = TS for all T andS in T . An important example of
an Abelian monoid is the following. Consider a single transformationT of X , and the
Abelian monoidTT generated byT, given by

TT := {Tn : n≥ 0} ,

whereT0 := idX is the identity map onX , T1 := T and forn≥ 2,

Tn := T ◦T ◦ · · · ◦T
︸ ︷︷ ︸

n times

.

A monoidT of transformations is calledleft- (respectivelyright-)cancellablewhen for
every transformationT in T there is someS in T such thatST= idX (respectivelyTS=
idX ). This transformationS is then called aleft- (respectivelyright-)inverseof T. If
T is both left- and right-cancellable, then the left-and right-inverses ofT are unique and
coincide for anyT in T , andT is called agroup. Any element ofT is then a permutation
of X .

For our purposes here, we generally only need to assume thatT is a monoid, because
there interesting (and relevant) situations whereT is not a group; this is for instance the
case for the Abelian monoid of theshift transformations of the set of natural numbersN:

Tθ := {θ n : n≥ 0} , (1)

whereθ (m) = m+ 1, andθ n(m) = m+ n for all natural numbersm andn. Another im-
portant example is the monoidTX of all transformations ofX , which is generally not
Abelian, nor a group.

Since we are also concerned with gamblesf on X , we need a way to turn a transfor-
mation ofX into a transformation ofL (X ). This is done by the procedure oflifting:
given any gamblef onX , we shall denote byTt f the gamblef ◦T, i.e.,

Tt f (x) := f (Tx),

for all x in X . For an eventA, Tt IA = IT−1(A), whereT−1(A) := {x∈ X : Tx∈ A} is the
so-calledinverse imageof A underT. On the other hand, given a constantµ , we have
Tt µ = µ for any transformationT.

The following observation is quite important. Consider twotransformationsT andSon
X . Then for any gamblef onX we see that

(ST)t f = f ◦ (S◦T) = ( f ◦S)◦T = (St f )◦T = Tt(St f ),

so(ST)t = TtSt , and lifting reverses the order of application of the transformations: forx
in X , STxmeans thatT is applied first tox, and thenS to Tx. For f in L (X ), (ST)t f
means thatSt is applied first tof and thenTt to St f .

Any transformationT of X can therefore be lifted to a transformationTt of L (X ),
and we denote the corresponding set of liftings byT t . T t is then a monoid of transfor-
mations ofL (X ). Lifting preserves the most common properties of semigroups, taking
into account the above-mentioned order-inversion: being amonoid, being Abelian, and
being a group are preserved under lifting. But being left-cancellable is turned into being

22A semigroup is defined as a set with a binary operation that is internal and associative. Composition of
maps is always an associative binary operation, and (SG) guarantees that it is internal inT .
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right-cancellable, andvice versa. Lifting also has the interesting property that it turns a
transformationT onX into alinear transformationTt of the linear spaceL (X ): for any
pair of gamblesf andg onX and any real numbersλ andµ , we have

Tt(λ f + µg) = λTt f + µTtg.

3.2. Invariant (sets of) gambles.We now turn to the important notions of invariance
under transformations. We start with the invariance of a setof gambles, because that is the
most general notion, from which all other notions of invariance can be derived. IfK is a
set of gambles onX , andT any transformation ofT , then we denote by

Tt
K :=

{
Tt f : f ∈ K

}

the direct image of the setK underTt , and we say thatK is T -invariant if

(∀Tt ∈ T
t)(Tt

K ⊆ K ),

i.e., if all transformations inT t areinternal in K .23

A gamble f on X is calledT -invariant if the singleton{ f} is, i.e., if Tt f = f for all
transformationsT in the monoidT . We call an eventA T -invariant if its indicatorIA is,
i.e., if T−1(A) = A for all T in T .

Let us denote byIT the set of allT -invariant events. It is easy to check thatIT

is anample field, i.e., it contains /0 andX , and it is closed under arbitrary unions and
complementation, and therefore also under arbitrary intersections. For anyx in X , we
shall call

[x]
T

:=
⋂

{A: A∈ IT andx∈ A}

theT -invariant atom containing x. It is the smallestT -invariant event that containsx.
Any T -invariant eventA is a union ofT -invariant atoms:A=

⋃

x∈A [x]
T

. We shall denote
by AT the set of all invariant atoms:AT := {[x]

T
: x∈ X }. It is a partition ofX . A

gamblef onX is T -invariant if and only if it is constant on theT -invariant atoms ofX .
Of course, the bigger the set of transformationsT , the smaller the number ofT -

invariant events (or, equivalently, the bigger the atoms[x]
T

). The following proposition
relates theT -invariant atoms[x]

T
to the images ofx under the transformations inT .

Proposition 1. Let T be a monoid of transformations ofX , and let x be any element of
X . In general we have that{Tx: T ∈ T } ⊆ [x]

T
. If T is left-cancellable, then[x]

T
=

{Tx: T ∈ T }.

Proof. Fix x in X . Let T (x) := {Tx: T ∈ T } for brevity of notation. Consider anyT in
T . Since[x]

T
is T-invariant, we have thatT−1([x]

T
) = [x]

T
. Sincex∈ [x]

T
becauseT

is a monoid, we infer from this equality thatTx∈ [x]T . Hence indeedT (x) ⊆ [x]T .
To prove the converse inequality, assume thatT is left-cancellable. Consider anyS

in T . If we can prove thatT (x) is S-invariant, meaning thatS−1(T (x)) = T (x), then
the proof is complete, since thenT (x) will be T -invariant, and since this set contains
x [because idX ∈ T ], it must include the smallestT -invariant set[x]

T
that containsx.

So we set out to prove thatS−1(T (x)) = T (x). Consider anyy in X . First assume that
y∈ T (x). Then there is someT in T such thaty = Tx, whenceSy= STx∈ T (x), since
ST∈ T . Conversely, assume thaty ∈ S−1(T (x)), or equivalently, thatSy∈ T (x), then
there is someT in T such thatSy= Tx, and sinceT is assumed to be left-cancellable,
there is someS′ in T such thatS′S= idX , whenceT (x) ∋ S′Tx= S′Sy= y, sinceS′T ∈
T . �

23SoT t is a monoid of transformations ofK .



18 GERT DE COOMAN AND ENRIQUE MIRANDA

An important special case is the following. Consider a transformationT of X , and
the Abelian monoidTT = {Tn : n≥ 0} generated byT. Then a set of gamblesK is TT -
invariant if and only ifTtK ⊆ K , and we simply say thatK is T-invariant. Similarly, a
gamblef is TT -invariant if and only ifTt f = f , and we say thatf is T-invariant. In what
follows, we shall always use the phrase ‘T-invariant’ for ‘TT -invariant’. AlsoIT is the
set ofT-invariant events, and it is an ample field whose atoms are denoted by[x]T . With
this notation, we have for an arbitrary monoidT thatIT =

⋂

T∈T IT .
For instance, the particular case of the shift transformations ofN given by Eq. (1) con-

cerns the Abelian monoid generated byθ . Here, the onlyθ - (or shift-)invariant events
are /0 andN, and consequently a gamblef on N is θ -invariant if and only if it is con-
stant. This also shows that the equality in the first part of Proposition 1 need not hold
when the monoid of transformationsT is not left-cancellable: in the present case, we
have thatTθ (m) = {θ n(m) : n≥ 0} = {n∈ N : n≥ m} is strictly included in the invariant
atom[m]θ = N for all m≥ 1.

Another interesting case is that ofTX , the class of all transformations ofX . This a
monoid, but it is not generally a group, nor Abelian. Moreover, it is not generally left-
cancellable. We have, for any elementx of X that{Tx: T ∈ TX }= X , and from Propo-
sition 1 we deduce in a trivial manner that[x]

TX
= X : the only invariant events under all

transformations ofX are /0 andX . This shows that the left-cancellability condition in the
second part of Proposition 1 is not generally necessary.

4. SYMMETRY AND INVARIANCE FOR BELIEF MODELS

We now have the necessary mathematical tools for studying the issue of symmetry in
relation to the belief models discussed in Section 2. We shall see that for these coherent
sets of almost-desirable gambles, there is an important distinction between the concepts
‘symmetry of models’ (which we shall call weak invariance) and ‘models of symmetry’
(which we shall call strong invariance). Let us first turn to the discussion of symmetrical
belief models.

4.1. Weak invariance: symmetry of models.Consider a monoidT of transformations
of X . We want to express that a belief model about the value that the random variable
X assumes inX , exhibits a symmetry that is characterised by the transformations inT .
Thus, the notion of (weak) invariance of belief models that we are about to introduce is in
a sense a purely mathematical one: it expresses that these belief models are left invariant
under the transformations inT .

Definition 1 (Weak invariance). A coherent set of almost-desirable gamblesD is called
weaklyT -invariant if it is T -invariant as a set of gambles, i.e., ifTtD ⊆ D for all T in
T .

Why don’t we require equality rather than the weaker requirement of set inclusion in this
definition? In linear algebra, invariance of a subset of a linear space with respect to a linear
transformation of that space is generally defined using onlythe inclusion. If we recall from
Section 3 that lifting turns any transformationT of X into a linear transformationTt of
the linear spaceL (X ), we see that our definition of invariance is just a special case of a
notion that is quite common in the mathematical literature.

A few additional comments are in order. First of all, any coherent set of almost-desirable
gambles is weakly idX -invariant, so we may indeed always assume without loss of gener-
ality thatT is at least a monoid (contains idX ).
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Secondly, we have given an invariance definition for almost-desirability, but the def-
inition for coherent sets of really desirable gamblesR is completely analogous: for all
T in T , TtR ⊆ R. Observe that ifR is weaklyT -invariant then the associated set of
almost-desirable gamblesDR , given by (D-M), is weaklyT -invariant as well.

Thirdly, if T is a group (or at least left-cancellable), then the weak invariance condition
is actually equivalent toTtD = D for all T in T : given a transformationT in T and its
(left-)inverseS∈ T , considerf ∈ D ; thenTt(St f ) = (ST)t f = f , so there is a gamble
g = St f , which belongs toD by weak invariance, such thatf = Ttg; this means that
f ∈ TtD , soD ⊆ TtD as well.

In summary, weak invariance is a mathematical notion that states that a subject’s be-
havioural dispositions, as represented by a belief modelD , are invariant under certain
transformations. If we posit that a subject’s dispositionsare in some way a reflection of
the evidence available to her, we see that weak invariance isa way to model ‘symmetry
of evidence’. The following examples try to argue that if there is ‘symmetry of evidence’,
then corresponding belief models should at least be weakly invariant.

The example of shift transformations.Suppose our subject is completely ignorant about the
value of a random variableX that assumes only non-negative integer values, soX = N. If
her belief model is to be a reflection of the available evidence (none), we should like it to
be weakly invariant with respect to the shift transformations inTθ ( which is an Abelian
monoid, but not a group). Indeed, if she is ignorant aboutX, she is also ignorant about
θ (X) = X + 1, apart from the fact that she knows thatθ (X) cannot assume the value 0,
whereasX can. Therefore, if our subject almost-accepts a gamblef , she should almost-
acceptθ t f : θ t f (X) = f (X +1) may assume the same values asf (X), apart from the value
f (0), and because of her ignorance, our subject has no reason to treat the shifted gamble
differently.�

The dice example.Let us go back to the die example. Suppose that whatever evidence our
subject has about the outcomeX of rolling the die, is left invariant by permutationsπ of
X6 = {1, . . . ,6}. Assume that our subject almost-accepts a gamblef , meaning that she is
willing to accept the uncertain rewardf (X)+ε for anyε > 0. But since the evidence gives
our subject no reason to distinguish between the random variablesX andπ(X), she should
also be willing to accept the uncertain rewardf (π(X))+ε for anyε > 0, or in other words,
she should almost-accept the gambleπ t f .

We now investigate the corresponding notions for weak invariance for the equivalent
belief models: coherent lower previsions and weak*-closedconvex sets of coherent previ-
sions. In order to do this, it is convenient to define the transformation of a (lower) prevision
under a transformationT onX , by lifting T to yet a higher level.

Definition 2 (Transformation of a functional). 24 Let T be a transformation ofX and let
Λ be a real-valued functional defined on aT-invariant set of gamblesK ⊆ L (X ). Then
the transformationTΛ of Λ is the real-valued functional defined onK by TΛ := Λ ◦Tt ,
or equivalently, byTΛ( f ) := Λ(Tt f ) = Λ( f ◦T) for all gamblesf in K .

Theorem 2. Let Pbe a coherent lower prevision onL (X ), D a coherent set of almost-
desirable gambles, andM a weak*-closed convex set of coherent previsions onL (X ).
Assume that these belief models are equivalent, in the sensethat they correspond to one

24We use the same notationT for the transformation ofX and for the corresponding transformation of
a functional, first of all because we do not want to overload the mathematical notation, and also because, in
contrast with lifting only once, lifting twice preserves the order of application of transformations.
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another using the bijective relations in Table 1. Then the following statements are equiva-
lent.

1. D is weaklyT -invariant, in the sense that TtD ⊆ D for all T in T .
2. P is weakly T -invariant, in the sense that TP≥ P for all T in T , or equivalently

P(Tt f ) ≥ P( f ) for all T in T and f inL (X );
3. M is weaklyT -invariant, in the sense that TM ⊆ M for all T in T , or equivalently,

TP∈ M for all P in M and all T inT .25

Proof. We give a circular proof. Assume thatD is weaklyT -invariant. Consider anyT in
T and f in K , and observe that for the corresponding lower previsionP

P(Tt f ) = max
{

µ : Tt f − µ ∈ D
}
≥ max{µ : f − µ ∈ D} = P( f ),

where the inequality follows from the invariance assumption onD . This shows that the
first statement implies the second.

Next, assume thatP is weaklyT -invariant, and consider anyT in T and P in the
correspondingM = M (P) = {P: (∀ f )P( f ) ≥ P( f )}. Then for any gamblef on X we
have thatTP( f ) = P(Tt f ) ≥ P(Tt f ) ≥ P( f ), where the second inequality follows for the
invariance assumption onP. This tells us that indeedTP∈M (P), so the second statement
implies the third.

Finally, assume thatM is weaklyT -invariant. Consider anyT in T and any gamble
f in the correspondingD = DM = { f : (∀P∈ M )P( f ) ≥ 0}. Then we have for anyP in
M thatP(Tt f ) = TP( f ) ≥ 0, sinceTPbelongs toM (P) by the invariance assumption on
M . ConsequentlyTt f ∈ D , which proves that the third statement implies the first. �

A coherent previsionP on L (X ) is weaklyT -invariant if and only ifTP = P for
all T in T . This is easiest to prove by observing thatM (P) = {P}.26 So for coherent
previsions, we have an equality in the weak invariance condition. As we argued before, we
generally won’t have such an equality for arbitrary monoidsT , but the following corollary
gives another sufficient condition onT .

Corollary 3. If the monoidT is left-cancellable, then the first weak invariance condition
in Theorem 2 becomes TtD = D for all T in T . If T is right-cancellable, then the second
and third weak invariance conditions become TP= P and TM = M for all T in T .27

Proof. We have already proven the first statement near the beginningof Section 4.1. To
prove the second statement, it suffices to show that whenT is right-cancellable,T -
invariance implies thatP≥ TPandM ⊆ TM for all T in T . Consider any transformation
T in the monoidT , and letRbe a right-inverse forT, i.e.,TR= idX . Consider a gambleh
onX , thenP(h) = P((TR)th) = P(Rt(Tth))≥ P(Tth), where the inequality follows from
the weak invariance ofP. So indeed,P≥ TP. Similarly, considerP in M . ThenRP∈ M

by weak invariance, and for any gamblef on X , T(RP)( f ) = RP(Tt f ) = P(Rt(Tt f )) =

25This shows that our notion of a weakly invariant belief modelcorresponds to Pericchi and Walley’s [1991]
notion of a ‘reasonable (or invariant) class of priors’, rather than a ‘class of reasonable (or invariant) priors’,
the latter being what our notion of strong invariance will correspond to. On the other hand, Walley [1991,
Definition 3.5.1] defines aT -invariant lower previsionP as one for whichP(Tt f ) = P( f ) for all T ∈ T and all
gamblesf , so he requires equality rather than inequality, as we do here.

26See Proposition 7 for a more direct proof.
27The reason for the difference in terms of left- versus right-cancellability lies of course in the fact that in the

first condition, we work with transformationsTt of gambles, and in the second and third condition we work with
transformationsT of functionals, which are liftings of the former; simply recall that lifting reverses the order of
application of transformations.
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P( f ) sinceRt(Tt f ) = (TR)t f = f . So there is aQ= RPin M such thatP= TQ, meaning
thatP∈ TM . So indeedM ⊆ TM . �

We see from the definition that if a coherent set of almost-desirable gamblesD (or a
coherent lower prevision, or a weak*-closed convex set of coherent previsions) is weakly
T -invariant, it is also weaklyT ′-invariant for any sub-monoid of transformationsT ′ ⊆
T . Hence, as we add transformations, the collection of weaklyinvariant belief models
will not increase. The limit case is when we consider the class TX of all transformations
onX . The following theorem shows that the vacuous belief modelsare the only ones that
arecompletely weakly invariant, i.e., weaklyTX -invariant.

Theorem 4. LetTX be the monoid of all transformations ofX . Then the vacuous coher-
ent set of almost-desirable gamblesC+ (or equivalently, the vacuous lower prevision PX ,
or equivalently, the weak*-closed convex set of all coherent previsionsP(X )) is the only
coherent set of almost-desirable gambles (coherent lower prevision, weak*-closed convex
set of coherent previsions) that is weaklyTX -invariant.

Proof. We give the proof for coherent sets of almost-desirable gambles. It is obvious
thatC+ is TX -invariant. So, consider anyTX -invariant coherent set of almost-desirable
gamblesD . It follows from coherence [axiom (M2)] thatC+ ⊆ D . Assumeex absurdo
that C+ ⊂ D and let f be any gamble inD \C+. This means that there is somex0 in
X such thatf (x0) < 0. Consider the transformationTx0 of X that maps all elements of
X to x0, thenTt

x0
f = f (x0) and it follows from theTx0-invariance ofD that the constant

gamble f (x0) ∈ D , which violates coherence axiom (M1), soD cannot be coherent, a
contradiction.28 �

This result also tells us in particular that the vacuous belief model is alwaysT -invariant
for any monoid of transformationsT . This implies that for any monoid of transformations
T , there always areT -invariant belief models.

What are the behavioural consequences of weak invariance with respect to a monoid of
transformationsT ? It seems easiest to study this in terms of coherent lower previsions.
First of all, we have that for any gamblef onX and anyT in T , our subject’s supremum
buying priceP(Tt f ) for the transformed gambleTt f should not be strictly smaller that her
supremum priceP( f ) for buying f itself.

But there is also a more interesting consequence. Indeed, itfollows from the coherence
of P that

P( f −Tt f ) ≤ P( f )−P(Tt f ) ≤ 0.

Walley [1991, Section 3.8.1] suggests that a subjectstrictly prefersa gamblef to a gamble
g, which we denote asf ≻ g, if f > g, or also if she accepts to pay some (strictly) positive
price for exchangingg with f , so if P( f −g) > 0. This means that weakT -invariance
implies that

f 6≻ Tt f for all f in L (X ) and allT in T such thatf 6> Tt f

which models that our subjecthas no reason(or disposition)to strictly prefer any gamble
f to any of its transformations Tt f that it doesn’t strictly dominate.

28A similar argument tells us that the same result holds for complete weak invariance of coherent sets of
really desirable gambles, where now the axiom (D1) will be violated.
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4.2. Strong invariance: models of symmetry.Next, suppose that our subject believes
that the (phenomenon underlying the) random variableX is subject to symmetry with re-
spect to the transformationsT in T , so that she hasreason not to distinguishbetween
a gamblef and its transformationTt f . Let us give an example to get a more intuitive
understanding of what this means.

The dice example (cont.).Again, let us go back to the die example. Consider the gambles
I{x}, for x∈X6 := {1, . . . ,6}. Since our subject believes the die (and the rolling mechanism
behind it) to be symmetrical, she will be willing to exchangeany gambleI{x} for any other
gambleI{y} in return for any strictly positive amount of utility:I{x}− I{y} should therefore
be almost-desirable to her, or in other words, in terms of herlower previsionP:

P(I{x}− I{y}) ≥ 0 for all x andy in X6.

This is equivalent to stating thatI{x}−π t I{x} should be almost-desirable, or thatP(I{x}−

π t I{x}) ≥ 0 for all x ∈ X6 and all permutationsπ of X6. Now the only coherent lower
prevision that satisfies these requirements is the uniform (precise) prevision, which assigns
precise probability16 to each event{x} [simply observe that for any coherent previsionP
in M (P) it follows from these requirements thatP(I{x}) = P(I{y})]. �

Let us now try and formalise the intuitive requirements in this example into a more
formal definition. We stated above that if our subject believes that the (phenomenon un-
derlying the) random variableX is subject to symmetry with respect to the transformations
T in T , then she hasreason not to distinguishbetween a gamblef and its transforma-
tion Tt f . Suppose she has the gamblef in her possession, then she should be willing to
exchange this for the gambleTt f in return for any strictly positive price, andvice versa.
This means that she should almost-accept bothf −Tt f andTt f − f , or in the language of
Section 2.5, that she isindifferent between f and Tt f : f ≈ Tt f . If D is her coherent set of
almost-desirable gambles, this means that

f −Tt f ∈ D andTt f − f ∈ D for all f in L (X ) and allT in T .

If we define

DT :=
{

f −Tt f : f ∈ L (X ),T ∈ T
}

=
{

Tt f − f : f ∈ L (X ),T ∈ T
}

,

this leads to the following definition.

Definition 3. A coherent set of almost-desirable gamblesD is calledstronglyT -invariant
if f −Tt f ∈ D for all f in L (X ) and allT in T , or equivalently, ifDT ⊆ D .

The following theorem gives equivalent characterisationsof strong invariance in terms of
the alternative types of belief models.

Theorem 5. Let Pbe a coherent lower prevision onL (X ), D a coherent set of almost-
desirable gambles, andM a weak*-closed convex set of coherent previsions onL (X ).
Assume that these belief models are equivalent, in the sensethat they correspond to one
another using the bijective relations in Table 1. Then the following statements are equiva-
lent:

1. D is stronglyT -invariant, in the sense thatDT ⊆ D ;
2. P is stronglyT -invariant, in the sense that P( f −Tt f ) ≥ 0 and P(Tt f − f ) ≥ 0, and

therefore P( f −Tt f ) = P(Tt f − f ) = 0 for all f in L (X ) and T inT ;
3. M is stronglyT -invariant, in the sense that TP= P for all P in M and all T inT .29

29So strongly invariant belief models correspond to the Pericchi and Walley’s [1991] notion of a ‘class of
reasonable (or invariant) priors’.
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Proof. We give a circular proof. Assume thatD is stronglyT -invariant, and consider any
gamblef onX and anyT in T . Then we find for the associated coherent lower prevision
P thatP( f −Tt f ) = max{s: f −Tt f −s∈ D}≥ 0, and similarly thatP(Tt f − f )≥ 0. But
sinceP is coherent, we find that alsoP( f −Tt f ) = −P(Tt f − f ) ≤−P(Tt f − f ) ≤ 0 and
similarly P(Tt f − f ) = −P( f −Tt f ) ≤ −P( f −Tt f ) ≤ 0, whence indeedP( f −Tt f ) =
P(Tt f − f ) = 0, so the first statement implies the second.

Next, assume thatP is stronglyT -invariant and consider anyP in the associated set
of dominating coherent previsionsM = {P: (∀ f )(P( f ) ≥ P( f ))} and anyT in T . Then
for any gamblef onX we see thatP( f −Tt f ) ≥ 0 andP(Tt f − f ) ≥ 0, and sinceP is a
coherent prevision, this implies thatP(Tt f ) = P( f ), so indeedTP= P. Hence, the second
statement implies the third.

Finally, assume thatM is stronglyT -invariant, and consider any gamblef on X

and anyT in T . Then for allP in M we have thatP( f −Tt f ) = P(Tt f − f ) = 0, so
both f −Tt f andTt f − f belong to the associated set of almost-desirable gamblesD =
{g: (∀P∈ M )P(g) ≥ 0}. This tells us that the third statement implies the first. �

Let us now study in more detail the relationship between weakand strong invariance.
First of all, strong invariance implies weak invariance, but generally not the other way
around. It is easiest to see this using weak*-closed convex sets of coherent previsionsM .
If M is stronglyT -invariant, we have thatTP = P and consequentlyTP∈ M for all
P in M , so M is also weaklyT -invariant. To see that the converse doesn’t generally
hold, consider the set of all coherent previsionsP(X ) (the vacuous belief model), which
is weakly invariant with respect to any monoid of transformations, but not necessarily
strongly so, as, unlessX contains only one element, we can easily find transformationsT
and coherent previsionsP such thatTP is different fromP (also see Theorem 6 below).

But the theorem above, when interpreted well, also tells us anumber of very interesting
things on this issue. First of all, we see that a coherent prevision P on L (X ) is strongly
T -invariant if and only if it is weaklyT -invariant, so both notions of invariance coincide
for coherent previsions.So anyone who insists on modelling beliefs with Bayesian belief
models (coherent previsions) only, cannot distinguish between the two types of invariance.
This confirms in general what we claimed in the Introduction about Bayesian belief models.
From now on, we shall therefore no longer distinguish between strong and weak invariance
for coherent previsions, and simply call theminvariant.

Furthermore, we see that a coherent lower previsionP is stronglyT -invariant if and
only if all its dominating coherent lower previsions are, orequivalently, if all its dominating
coherent previsions, i.e., all the coherent previsions inM (P), areT -invariant. Or even
stronger, it is easy to see that a coherent lower prevision isstrongly invariant if and only if
it is a lower envelope of some (not necessarily weak*-closednor convex) set of invariant
coherent previsions.

The notions of weak and strong invariance, and the motivation for introducing them,
are tailored to the direct behavioural interpretation of lower previsions, or the equivalent
belief models. But what happens if we give a lower previsionP a Bayesian sensitivity
analysis interpretation? We then hold that there is some actual precise coherent prevision
Pa modelling the subject’s uncertainty about the random variableX, that we have only im-
perfect information about in the sense that we only know thatPa ≥ P, or equivalently, that
Pa ∈ M (P). Assume that we want the imperfect modelP to capture that there is ‘sym-
metry of evidence’ with respect to a monoid of transformationsT . The actual modelPa

then should be weaklyT -invariant, but since this is a (precise) coherent prevision, we can
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not distinguish between weak and strong invariance, and it should therefore simply beT -
invariant:TPa = Pa for all T ∈T . SinceM (P) is interpreted as the set of candidate models
for Pa, all of the coherent previsionsP in M (P) must beT -invariant too, or equivalently
P must bestronglyT -invariant. A completely analogous course of reasoning shows that
if we wantP to capture ‘evidence of symmetry’,P must be stronglyT -invariant as well.
So in contradistinction with the direct behavioural interpretation,on a Bayesian sensitivity
analysis interpretation of P, we cannot distinguish between ‘symmetry of evidence’ and
‘evidence of symmetry’, and strong invariance is the propersymmetry property to use in
both cases.30

As is the case for weak invariance, a belief model that is strongly T -invariant, is also
stronglyT ′-invariant for any sub-monoidT ′ ⊆ T . But in contrast with weak invariance,
given any monoidT , there do not always exist coherent belief models that are strongly
invariant with respect toT . This is an immediate consequence of the following theorem,
which makes an even stronger claim: it is totallyirrational to requirecompletestrong
invariance, i.e., strong invariance with respect to the monoid TX of all transformations of
X .

Theorem 6. Assume thatX contains more than one element. Then any belief model that
is stronglyTX -invariant incurs a sure loss.

Proof. We shall give a proof for lower previsions. Assumeex absurdothatP avoids sure
loss, soM (P) is non-empty. Consider anyP in M (P) and any non-constant gamblef on
X [there is at least one such gamble becauseX contains more than one element]. This
implies that there are (different)x1 andx2 in X such thatf (x1) 6= f (x2). For anyy in
X , consider the transformationTy that maps all elements ofX to y. Then we find that
Tt

y f = f (y), whenceP( f (y)− f ) ≥ P( f (y)− f ) ≥ 0 andP( f − f (y)) ≥ P( f − f (y)) ≥ 0,
sinceP is by assumption in particular stronglyTy-invariant. ConsequentlyP( f ) = f (y).
But this holds in particular fory= x1 and fory= x2, so we infer thatf (x1) = P( f ) = f (x2),
a contradiction. �

In fact, we easily see in this proof that given the transformationTy that maps all elements
of X to y, the only stronglyTy-invariant belief model that avoids sure loss is the constant
prevision ony. Consequently, if we consider a monoidT that includes two different
constant transformations, any belief model that is strongly T -invariant incurs a sure loss.

As a result, we see that there are monoidsT for which there are no strongly invariant
coherent (lower) previsions. Under which conditions, then, are there stronglyT -invariant
coherent (lower) previsions? It seems easiest, and yields most insight, if we look at this
problem in terms of sets of almost-desirable gambles: indeed if we consider a coherent
lower previsionP onL (X ), then it is stronglyT -invariant if and only if for its associated
set of almost-desirable gamblesDP = { f ∈ L (X ) : P( f ) ≥ 0} we have thatDT ⊆ DP.
We can considerDT itself as a set of almost-desirable gambles, but at this point, we do
not know whetherDT is coherent, or whether it even avoids sure loss. Interestingly, the
set of coherent previsions that is associated withDT is given by

M (DT ) = {P∈ P(X ) : (∀g∈ DT )(P(g) ≥ 0)}

=
{

P∈ P(X ) : (∀ f ∈ L (X ))(∀T ∈ T )(P( f ) = P(Tt f ))
}

.

So M (DT ) is precisely the convex and weak*-closed set of allT -invariant coherent
previsions, andP is stronglyT -invariant if and only ifM (P) ⊆ M (DT ), or in other

30See [Walley, 1991, Section 9.5] for related comments about the difference between permutability and ex-
changeability. These notions will be briefly discussed in Section 9.2.
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words, if and only if all coherent previsions that dominateP areT -invariant. So there are
stronglyT -invariant coherent lower previsions if and only ifM (DT ) 6= /0, i.e., if there
areT -invariant coherent previsions, and in this case the lower envelope ofM (DT ) is the
point-wise smallest stronglyT -invariant coherent lower prevision.

In summary, we see that there areT -invariant coherent previsions if and only if the set
of almost-desirable gamblesDT avoids sure loss,31 which, taking into account (M-ASL),
is equivalent32 to the condition33

sup
n

∑
k=1

[
fk−Tt

k fk
]
≥ 0 for all n≥ 0, f1, . . . , fn in L (X ) andT1, . . . ,Tn in T . (2)

In that case, the natural extensionET := E m
DT

of DT to a coherent set of almost-desirable

gambles is given by34

ET =
⋂

ε>0

{

f ∈ L (X ) : f − ε ≥
n

∑
k=1

[
fk−Tt

k fk
]

for somen≥ 0, fk ∈ L (X ), Tk ∈ T

}

(3)
This is the smallest coherent and stronglyT -invariant set of almost-desirable gambles,
or in other words, the belief model that represents evidenceof symmetry involving the
monoidT . The corresponding lower prevision, defined by35

ET ( f ) = min{P( f ) : P∈ M (DT )} (4)

= max{µ ∈ R : f − µ ∈ ET } (5)

is then, by virtue of Eq. (4) [see also Theorem 10 further on],the point-wise smallest (most
conservative) stronglyT -invariant coherent lower prevision onL (X ), and if we combine
Eqs. (3) and (5), we find that36

ET ( f ) = sup

{

inf

[

f −
n

∑
k=1

[
fk−Tt

k fk
]

]

: n≥ 0, fk ∈ L (X ),Tk ∈ T

}

. (6)

Remember that this lower prevision is only well-defined (assumes finite real values) when-
ever the condition (2) is satisfied. Taking into account Theorem 10 further on, we de-
duce that a coherent (lower) prevision is (strongly)T -invariant if and only if it dom-
inatesET . Also, ET is the belief model we should use if nothing else but the evi-
dence of symmetry is given. Finally, this formula for thelower prevision is constructive,
but usually the existence of invariant previsions (on infinite spaces) is proven in a non-
constructive (Hahn–Banach) way; see Section 8, and also Agnew and Morse [1938] and
Bhaskara Rao and Bhaskara Rao [1983, Section 2.1.3(8)]. So we cannot usually get to
the coherent invariant previsions by construction, but we can always construct their lower
envelope explicitly!

31Also see Walley’s [1991, Lemma 3.3.2] Separation Lemma.
32Observe that the setDT is acone, i.e., closed under scalar multiplication with non-negative real numbers.
33The same condition was derived by Walley [1991, Theorem 3.5.2 and Corollary 3.5.4] using an argument

that works directly with coherent lower previsions. Although our argument strongly plays on the connection
between the three equivalent types of belief models of Table1, we believe that it produces more insight, once this
connection is fully understood.

34Again, observe thatDT is a cone.
35It is easy to see thatM (DT ) = M (ET ).
36Again, Walley [1991, Theorem 3.5.2 and Corollary 3.5.4] proves the same result in a different manner, see

also footnote 33.
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We shall have much more to say about the existence of stronglyinvariant belief models
in Section 7, where we show that this existence is guaranteedin particular if the monoid
T is Abelian, or if it is a finite group. The following counterexample tells us that there is
no such guarantee for infinite groups.

Example1 (Permutation invariance on the natural numbers). Consider the setPN of all
permutations of the set of natural numbersN. We show that there are no (strongly)PN-
invariant coherent (lower) previsions onL (N) by showing that the condition (2) doesn’t
hold. Indeed, consider the partition ofN made up of the sets

Rr
3 = {3n+ r : n∈ N} , r = 0,1,2,

and any permutationsπr for r = 0,1,2 such that for alln ∈ N, πr(n) ∈ Rr
3 if and only if

n /∈Rr
3 [for instance, letπr be involutive and such that it assigns the first element ofRr

3 to the
first of (Rr

3)
c, the second element ofRr

3 to the second of(Rr
3)

c, etc.] Consider the gamble
G = ∑2

r=0[IRr
3
−π t

r IRr
3
] on N, then we are done if we can show that supG < 0. Indeed, if

n∈ Rr
3 thenG(n) = 1+0+0− (1+1+0)= −1 for r = 0,1,2, so supG = −1. �

These results expose another fundamental difference between weak and strong invari-
ance: while strong invariance with respect to a greater number of transformations means
that we must refine our beliefs (i.e, it make them more precise), this is not the case with
weak invariance.

On the other hand, strong invariance is preserved by dominating lower previsions: ifP1
is a coherent lower prevision that is stronglyT -invariant andP2 is a coherent lower pre-
vision that dominatesP1, thenP2 is also stronglyT -invariant. It indeed seems reasonable
that, if a subject has evidence of symmetry, and she has some additional information that
allows her to make her judgements more precise, she can add assessments while still pre-
serving strong invariance. But a similar result does not hold for weak invariance: since the
vacuous lower prevision is weaklyTX -invariant, this would mean that any lower prevision
should be weaklyTX -invariant,quod non.

In summary, there is an important conceptual difference between weak and strong in-
variance. Weakly invariant belief models capture in particular that a subjecthas no reason
to strictly prefer a gamblef to its transformationTt f wheneverf 6> Tt f . Strong invari-
ance captures that a subjecthas reason not todistinguish between, i.e., to be indifferent
between, the gamblesf andTt f . And it is only if you insist on using Bayesian belief
models always that you must infer indifference from having no reason to (strictly) prefer.
This is of particular relevance for belief models that try torepresent a subject’s complete
ignorance, as we now proceed to show.

5. MODELLING COMPLETE IGNORANCE

Suppose our subject is completely ignorant about the value thatX assumes inX . Then
she has no relevant information that would allow her to favour one possible value ofX
over another. This implies that the corresponding belief model should be symmetric in the
possible values ofX, or in other words it should be weakly invariant with respectto the
groupPX of all permutations ofX . This leads to a form of Walley’s [1991, Section 5.5.1]
Symmetry Principle.

Symmetry Principle (SP). If a subject is completely ignorant about the value of a random
variable X inX , then her corresponding belief model should be weakly invariant with
respect to the groupPX of all permutations ofX .
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We have mentioned before that the appropriate belief model for complete ignorance about
X seems to be the vacuous lower previsionPX . But SP by itself is not sufficient to single
out this lower prevision: if, for instance,X is finite, then the uniform precise prevision
Pu, given by

Pu( f ) =
1

|X | ∑
x∈X

f (x)

for each gamblef on X , which assigns equal probability mass 1/|X | to each element
of X , is also weakly permutation invariant. We shall also see in Examples 5 and 6 of
Section 9 that there may be many more coherent lower previsions that share the same weak
permutation invariance property. If, however, we strengthen the Symmetry Principle to
require weak invariance with respect toall transformations, and not just all permutations,
then Theorem 4 tells us that the vacuous lower previsionPX is indeed the only coherent
lower prevision that is compatible with the following

Strong Symmetry Principle (SSP). If a subject is completely ignorant about the value
of a random variable X inX , then her corresponding belief model should be weakly
invariant with respect to the monoidTX of all transformations ofX .

Walley [1991, Section 5.5.1 and note 7 on p. 526] has shown that for random variables
X taking values in a finite setX , the vacuous lower previsionPX is the only coherent
lower prevision that is compatible with SP and the so-called37

Embedding Principle (EP). Consider a random variable X, and consider a set of pos-
sible values A for X. Then the (lower) probability assigned to the event A, i.e., the lower
probability that X∈ A, should not depend on the setX of all possible values for X in
which A is embedded.

So under coherence, SSP is equivalent to SP and EP taken together. Under coherence, it is
also equivalent to the following rationality principle, aswe shall shortly see.

Revised Principle of Insufficient Reason (RPIR).If you have twodifferentgambles f
and g on a random variable X that you are completely ignorant about, then if f 6≥ g you
have no reason to prefer f to g.

Indeed, the only coherent belief model that is compatible with this principle, is the vacuous
one. We shall argue in terms of real desirability models38

R (see Section 2.1). Say that a
subject (really)prefers f to g wheneverf 6= g and f −g∈ R, i.e., she accepts to exchange
g for f . Then RPIR implies that for allf 6= 0, f 6≥ 0 implies thatf 6∈ R, or equivalently,
by contraposition, thatf ∈ R implies f ≥ 0. HenceR = C+ is the vacuous belief model.

In summary, we have the following equivalences, under coherence, and the only be-
lief model that is compatible with these three equivalent rationality requirements, is the
vacuous one:

SSP⇔ SP+EP⇔ RPIR.

RPIR is a revised version of the Principle of Insufficient Reason (PIR), which states that
if you are completely ignorant about the value of a random variableX, then you have no
reason to distinguish between the different possible values, and therefore should consider
all these values to have equal probability. Indeed, from a historical point of view, the PIR

37For additional discussion of this principle, see also Walley [1996b], Walley and Bernard [1999].
38A similar argument can be given for almost-desirability modelsD and lower previsionsP, using for pref-

erence Walley’s [1991, Sections 3.7.7–3.7.9] corresponding notion ofstrict preference, which corresponds to the
present argument by usingD+

P ∪{0} as a coherent set of really desirable gambles.
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was used extensively by Laplace (see for instance Howie [2002]) to justify using a uniform
probability for modelling complete ignorance.

We are of course aware that our reformulation RPIR of Laplace’s PIR is quite unusual
and has little or no historical grounds, which is why we referto it as arevised, or perhaps
better, improved principle. It might have been preferable to call RPIR the ‘Principle of
Insufficient Reason to Prefer’, but we decided against that for aesthetical reasons.

We think that RPIR is reasonable, but that PIR isn’t. Indeed,one of the reasons for the
critical attitudes of many researchers towards ‘Bayesian methods’ and inverse probability
in the nineteenth and early twentieth century seem to lie in the indiscriminate use by many
of Laplace’s PIR in order to obtain uniform prior probabilities that can be plugged into
Bayes’s formula.39 And by ‘indiscriminate use’ we mean precisely the confusionthat
exists between symmetry of evidence and evidence of symmetry: we have argued that it
is only evidence of symmetry that justifies using strongly invariant belief models (and in
many cases, such as permutation invariance for finite spaces, strong invariance singles out
the uniform probability as the only compatible belief model, see also Section 9). If there
is only symmetry of evidence, we should use weakly invariantbelief models, and in the
special case of complete ignorance, vacuous ones. Of course, as we said in the Introduction
and proved in the previous section, for precise previsions (Bayesian belief models) there
is no difference between weak and strong invariance, so if you insist on using a Bayesian
belief model, symmetry of evidence leads you to a (strongly)invariant one! The problem
with the PIR, therefore, is that the belief model is only allowed to be precise: there would
be fewer or no difficulties if in its formulation we just replaced ‘probability’ with ‘lower
and upper probability’, for instance.

6. WEAKLY INVARIANT LOWER PREVISIONS

Let us now turn to a more involved mathematical study of the invariance of coherent
lower previsions. So far, we have only looked at coherent lower previsions that were
defined on all gambles. But of course, it will usually happen that our subject specifies a
supremum acceptable buying priceP( f ) for only a limited number of gamblesf , say those
in a subsetK of L (X ). And then we can ask ourselves whether such an assessment
can be coherently extended to a weakly, or to a strongly,T -invariant lower prevision
on all gambles. We shall address these, and related, problems in this and the following
section. Let us begin here with weak invariance. The following definition generalises
the already established notion of weak invariance to lower previsions defined on anyT -
invariant domain, that are not necessarily coherent (they may even incur a sure loss).40

Definition 4 (Weak invariance). A lower previsionP defined on a set of gamblesK ⊆
L (X ) is called weaklyT -invariant if

(W1) Tt f ∈ K for all f in K andT in T , i.e.,K is T -invariant;
(W2) P(Tt f ) ≥ P( f ) for all f in K andT in T , i.e., allTPpoint-wise dominateP.

As before, ifT is right-cancellable (and in particular if it is a group), the inequality in
the invariance definition is actually an equality: considera gamblef in K , a transforma-
tion T in T and its right-inverseR, we haveP( f ) = P((TR)t f ) = P(Rt(Tt f )) ≥ P(Tt f )
in addition toP(Tt f ) ≥ P( f ).

39An interesting historical discussion of such attitudes canbe found in Howie [2002] and Zabell [1989b].
40Our notion of weak invariance for a lower prevision is weakerthan Walley’s [1991, Section 3.5.1] corre-

sponding notion of invariance, which requires equality, and has the drawback that it is not preserved by natural
extension.
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Next, because taking convex combinations, lower envelopes, limits inferior and superior
preserves inequalities, it is easy to see that convex combinations, lower envelopes and
point-wise limits of weakly invariant lower previsions arealso weakly invariant. Observe
by the way that the same operations also preserve coherence.

The following proposition looks at weak invariance for (precise) previsions.

Proposition 7. Let P be a prevision, i.e., a self-conjugate lower prevision, defined on a
negation-invariant domainK = −K . Assume thatK is alsoT -invariant. Then P is
weaklyT -invariant if and only if P(Tt f ) = P( f ) for all T in T and all f inK .

Proof. It is clear that the condition is sufficient. To show that it isalso necessary, assume
that P is T -invariant, and consider anyT in T and any gamblef in K . Then it fol-
lows from theT -invariance ofP that on the one handP(Tt f ) ≥ P( f ), and on the other
hand, since− f ∈K andTt(− f ) =−Tt f ∈K , thatP(−Tt f ) = P(Tt(− f ))≥ P(− f ), or
equivalently, using the self-conjugacy ofP, thatP( f ) ≥ P(Tt f ). �

We study next whether a weakly invariant lower previsionP with domainK can be
extended to a coherent weakly invariant lower prevision on the set of all gambles, or more
generally, whether there is a coherent weakly invariant lower prevision on all gambles
that dominatesP. We already know from the material in Section 2.3 that a necessary
condition for this is thatP should avoid sure loss. Indeed, ifP incurs sure loss then it has
no dominating coherent lower prevision, let alone a weakly invariant one. The perhaps
surprising result we prove next is that avoiding sure loss isalso sufficient, and that all
we have to do is consider the natural extensionEP of P, as it preserves weak invariance.
This natural extension is automatically guaranteed to be the point-wise smallest weakly
T -invariant coherent lower prevision that dominatesP.41

Theorem 8(Natural extension preserves weak invariance). The natural extension EP of a
weaklyT -invariant lower prevision Pon a set of gamblesK that avoids sure loss is still
weaklyT -invariant, i.e., for all gambles f onX and all T inT ,

TEP( f ) = EP(Tt f ) ≥ EP( f ).

Consequently, EP is the point-wise smallest weaklyT -invariant coherent lower prevision
onL that dominates Pon its domainK .

Proof. Consider any gamblef on X and anyT in T . From the definition (LPR-NE) of
natural extension, and the fact thatTtK ⊆ K , we get

EP(Tt f ) = sup
λk≥0, fk∈K

k=1...,n,n≥0

{

α : Tt f −α ≥
n

∑
k=1

λk [ fk−P( fk)]

}

≥ sup
λk≥0,gk∈K

k=1...,n,n≥0,

{

α : Tt f −α ≥
n

∑
k=1

λk
[
Ttgk−P(Ttgk)

]

}

. (7)

Now it follows from theT-invariance ofP thatP(Ttgk) ≥ P(gk), whence

n

∑
k=1

λk
[
Ttgk−P(Ttgk)

]
≤ Tt

n

∑
k=1

λk [gk−P(gk)] ,

41This result is mentioned, with only a hint at the proof, by Walley [1991, Theorem 3.5.2].
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and consequentlyf −α ≥ ∑n
k=1 λk[gk−P(gk)] implies that

Tt f −α ≥ Tt
n

∑
k=1

λk [gk−P(gk)] ≥
n

∑
k=1

λk
[
Ttgk−P(Ttgk)

]
.

So we may infer from the inequality (7) that

EP(Tt f ) ≥ sup
λk≥0,gk∈K

k=1...,n,n≥0,

{

α : f −α ≥
n

∑
k=1

λk [gk−P(gk)]

}

= EP( f ),

which completes the proof. �

Hence, if we start out with a lower previsionP on K that is weaklyT -invariant and
already coherent, then its natural extensionEP is the smallest coherent and weaklyT -
invariant lower prevision on all gambles that agrees withP on K . As we shall show
further on, this result does not carry over to strong invariance.

7. STRONGLY INVARIANT LOWER PREVISIONS

We now turn to the study of strong invariance for lower previsions on general domains.

7.1. Definition and immediate properties. The following definition generalises the no-
tion of strong invariance introduced in Section 4.2 to lowerprevisions that needn’t be
coherent, nor defined on all ofL (X ).

Definition 5 (Strong invariance). A lower previsionP defined on a set of gamblesK ⊆
L (X ) is calledstronglyT -invariant if

(S1) Tt f − f ∈ K and f −Tt f ∈ K for all f in K and allT ∈ T ;
(S2) P(Tt f − f ) ≥ 0 andP( f −Tt f ) ≥ 0 for all f in K and allT ∈ T .

As is the case for weak invariance, it is easy to see that strongT -invariance is preserved
under convex combinations, lower envelopes, and point-wise limits, simply because all
these operations preserve inequalities.

Proposition 9. A stronglyT -invariant coherent lower prevision on aT -invariant domain
is also weaklyT -invariant.

Proof. First of all, the coherence and strong invariance ofP imply that 0≤ P(Tt f − f ) ≤
P(Tt f )−P( f ), whenceP(Tt f ) ≥ P( f ) and similarly, we derive fromP( f −Tt f ) ≥ 0 that
P( f ) ≥ P(Tt f ). So we see thatP is also weaklyT -invariant (with equality). �

To see that a converse result does not generally hold, so weakinvariance is actually weaker
than strong invariance, consider the vacuous lower previsionPX onL (X ) and the trans-
formationTx0 that maps all elementsx of X to x0. Then, for any gamblef such that
inf f < f (x0) we havePX ( f − Tt

x0
f ) < 0. Hence,PX is not stronglyTx0-invariant but

Theorem 4 implies that it is weaklyTx0-invariant. If we consider a finite spaceX and the
vacuous lower previsionPX on L (X ) and the classPX of all permutations ofX , we
can see that weak invariance (with equality) does not imply strong invariance.

So weak invariance is indeed a weaker notion than strong invariance. The following the-
orem expresses the main difference between these two concepts: while the former means
that the set of coherent previsionsM (P) is invariant, the latter means that every element
of this set is invariant.

Theorem 10. Let K be a negation invariant andT -invariant set of gambles such that
Tt f − f is in K for all f in K and T inT .
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1. A coherent prevision P onK is weaklyT -invariant if and only if it is stronglyT -
invariant. In either case we simply call itT -invariant.

2. A coherent lower prevision Pon K is stronglyT -invariant if and only if all its domi-
nating coherent previsions are (strongly)T -invariant onK .

Proof. We start with the first statement. We only need to prove the direct implication, so
assume thatP is weaklyT -invariant, and consider anyf in K . Then from the assumption
and Proposition 7 we getP(Tt f ) = P( f ), and it follows from the linearity ofP that indeed
P(Tt f − f ) = P( f −Tt f ) = 0.

We now turn to the second statement. Since any coherent lowerprevision is the lower
envelope of its dominating coherent previsions, the converse implications follow at once,
since taking a lower envelope preserves strong invariance.To prove the direct implication,
assume thatP is stronglyT -invariant, and consider any coherent previsionP in M (P).
For anyT in T and anyf in K we then find that

0≤ P( f −Tt f ) ≤ P( f −Tt f ) = −P(Tt f − f ) ≤−P(Tt f − f ) ≤ 0,

whence indeedP( f ) = P(Tt f ). �

7.2. Strongly invariant natural extension. We have shown when studying weak invari-
ance that for any weaklyT -invariant lower previsionP on some domainK that avoids
sure loss, there is a point-wise smallest weakly invariant coherent lower prevision defined
on all gambles that dominates it: its natural extensionEP. Let us now investigate whether
something similar can be done for the notion of strong invariance. The question then is:
Consider a monoidT of transformations ofX and a lower previsionP onK that avoids
sure loss, are there stronglyT -invariant coherent lower previsions on allL (X ) that dom-
inateP, and if so, what is the point-wise smallest such lower prevision? Let us denote, as
before, by

DP =
{

f ∈ L (X ) : EP( f ) ≥ 0
}

the set of almost-desirable gambles associated withP, and by

M (P) = {P∈ P(X ) : (∀ f ∈ K )(P( f ) ≥ P( f ))}

its set of dominating coherent previsions, then clearly a coherent lower previsionQ on
L (X ) is stronglyT -invariant and dominatesP if and only ifM (Q)⊆M (P)∩M (DT ),
or equivalently,DP∪DT ⊆ DQ. So there are stronglyT -invariant coherent (lower) pre-
visions that dominateP if and only if M (P)∩M (DT ) 6= /0, or equivalently, if the set of
almost-desirable gamblesDP∪DT avoids sure loss, and in this case the lower envelope of
M (P)∩M (DT ), or equivalently, the lower prevision associated with the natural exten-
sion of the set of almost-desirable gamblesDP∪DT , is the smallest such lower prevision.
In the language of coherent lower previsions, this leads to the following theorem.42

Theorem 11(Strongly invariant natural extension). Consider a lower prevision Pon K

that avoids sure loss, and a monoidT of transformations ofX . Then there are strongly
T -invariant coherent (lower) previsions onL (X ) that dominate PonK if and only if

EP

(
n

∑
k=1

[
fk−Tt

k fk
]

)

≥ 0 for all n ≥ 0, f1, . . . , fn in L (X ) and T1, . . . , Tn in T , (8)

42Walley [1991, Theorems 3.5.2 and 3.5.3] proves similar results involving Eqs. (8) and (10) for what we call
weaklyT -invariantP that avoid sure loss, in a different manner. See also footnotes 33 and 36.
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or equivalently, if

ET

(
n

∑
k=1

λk [ fk−P( fk)]

)

≥ 0 for all n ≥ 0, and f1, . . . , fn in K . (9)

In that case the smallest coherent and strongly T -invariantlower prevision onL (X ) that
dominates Pon its domainK is given by

EP,T ( f ) = sup

{

EP

(

f −
n

∑
k=1

[
fk−Tt

k fk
]

)

: n≥ 0, fk ∈ L (X ),Tk ∈ T

}

(10)

= sup

{

ET

(

f −
n

∑
k=1

λk [ fk−P( fk)]

)

: n≥ 0, fk ∈ K ,λk ≥ 0

}

(11)

for all gambles f onX ; and M (EP,T ) is the set of allT -invariant coherent previsions
that dominate PonK .

Proof. We already know that there is a dominating coherent (lower) prevision if and only
if M (P)∩M (DT ) is non-empty. Let us show that this is equivalent to the conditions (8)
and (9). To see the equivalence between these two conditions, it suffices to notice [use
Eq. (LPR-NE) and the fact thatEP(h) = −EP(−h)] that condition (8) is equivalent to

sup

[
n

∑
k=1

[
fk−Tt

k fk
]
+

m

∑
j=1

[g j −P(g j)]

]

≥ 0

for all n,m≥ 0, fk ∈ L (X ), Tk ∈ T , g j ∈ K , (12)

and that this is in turn [use Eq. (6) and the fact thatET (h) = −ET (−h)] equivalent to
condition (9). But, considering condition (M-ASL), we see that condition (12) holds if and
only if the set of almost-desirable gamblesDP∪DT avoids sure loss, or equivalently, if
the corresponding set of coherent previsionsM (P)∩M (DT ) is non-empty.

We now prove the validity of the expression (11) for the lowerenvelopeEP,T of the set
of coherent previsionsM (P)∩M (DT ). The proof for the expression (10) is analogous.
We know from the material in Section 2 that this lower envelope is also the coherent lower
prevision associated with the natural extension of the set of almost-desirable gamblesDP∪
DT , so we get by applying Eq. (LPR-NE) withD = DP∪DT that

EP,T ( f ) = sup
λk≥0,gk∈DP
k=1,...,n,n≥0

sup
µℓ≥0,hℓ∈DT

ℓ=1,...,m,m≥0

inf

[

f −
n

∑
k=1

λkgk−
m

∑
ℓ=1

µℓhℓ

]

= sup
λk≥0,gk∈DP
k=1,...,n,n≥0

sup
µℓ≥0,hℓ∈DT

ℓ=1,...,m,m≥0

inf

[(

f −
n

∑
k=1

λkgk

)

−
m

∑
ℓ=1

µℓhℓ

]

= sup
λk≥0,gk∈DP
k=1,...,n,n≥0

ET

(

f −
n

∑
k=1

λkgk

)

= sup
λk≥0, fk∈K

k=1,...,n,n≥0

ET

(

f −
n

∑
k=1

λk[ fk−P( fk)]

)

,

for every gamblef onX , also taking into account the definition (6) ofET . �

In conclusion, whenever the equivalent conditions (8) and (9) are satisfied for a lower
previsionP that avoids sure loss, then (and only then) the functionalEP,T , defined by
Eqs. (10) and (11), is the point-wise smallest coherent and strongly T -invariant lower
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prevision that dominatesP. We shall callEP,T thestronglyT -invariant natural extension
of P, as it is the belief model that the assessments captured inP lead to if in addition a
(so-called structural)43 assessment of symmetry involving the monoidT is made.

7.3. The existence of strongly invariant coherent (lower) previsions. There is a beau-
tiful and surprisingly simple argument to show that for sometypes of monoidsT , there
always are stronglyT -invariant lower previsions that dominate a given lower prevision
that is weaklyT -invariant and avoids sure loss. It is based on the combination of a number
of ideas in the literature: (i) Agnew and Morse [1938, Section 2] constructed some specific
type of Minkowski functional and used this together with a Hahn–Banach extension result
to prove the existence of linear functionals that are invariant with respect to certain groups
of permutations; (ii) Day [1942, Theorem 3] showed, in a discussion of ergodic theorems,
that a similar construction always works for Abelian semigroups of transformations; (iii)
with crucially important insight, Walley [1991, Theorems 3.5.2 and 3.5.3] recognised that
the Minkowski functional in the existence proofs of Agnew and Morse, and Day, is actu-
ally what we have called a strongly invariant lower prevision, and he used the ideas behind
this construction to introduce what we shall callmixture lower previsionsin Section 7.4;
(iv) in another seminal discussion of mean ergodic theorems, Alaoglu and Birkhoff [1940]
show that (Moore–Smith-like) convergence of convex mixtures of linear transformations is
instrumental in characterising ergodicity; and (v) Bhaskara Rao and Bhaskara Rao [1983,
Section 2.1.3] use so-called Banach limits to generate shift-invariant probability charges.
In this and the next section, we combine and extend these ideas to prove more general ex-
istence results for (strongly) invariant coherent (lower)previsions, and to investigate their
relation to (generalised) Banach limits (Section 8). As we shall see in Section 7.4, Walley’s
[1991, Section 3.5] results can then be derived from our moregeneral treatment.

Consider a monoidT of transformations ofX . We can, as before, consider the set of
lifted transformationsT t as a monoid of linear transformations of the linear spaceL (X ).
A convex combination T∗ of elements ofT t is a linear transformation ofL (X ) of the
form

T∗ =
n

∑
k=1

λkT
t
k ,

wheren ≥ 1, λ1, . . . , λn are non-negative real numbers that sum to one, and of course
T∗ f = ∑n

k=1 λkTt
k f . We denote byT ∗ the set of all convex combinations of elements of

T t . We have of course for any two elementsT∗
1 = ∑m

k=1 λkU t
k andT∗

2 = ∑n
k=1 µkVt

k of T ∗

that their composition

T∗
2 T∗

1 =
n

∑
k=1

µkV
t
k

(
m

∑
ℓ=1

λℓU
t
ℓ

)

=
n

∑
k=1

m

∑
ℓ=1

µkλℓV
t
kU t

ℓ =
n

∑
k=1

m

∑
ℓ=1

λℓµk(UℓVk)
t

again belongs toT ∗. This implies thatT ∗ is a monoid of linear transformations ofL (X )
as well. We can now introduce invariance definitions involving transformations inT ∗ in
precisely the same way as we defined them forT (or actuallyT t ). We can also define,
for any real functionalΛ andT∗ ∈T ∗, the transformed functionalT∗Λ asΛ◦T∗. We then
have the following result.

Proposition 12. The following statements hold, where f is a gamble onX , K is a convex
set of gambles onX , and Pis a coherent lower prevision onK :

1. f isT -invariant if and only if f isT ∗-invariant;

43Structural assessments are discussed in general in Walley [1991, Chapter 9].
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2. K is T -invariant if and only ifK is T ∗-invariant;
3. P is weaklyT -invariant if and only if Pis weaklyT ∗-invariant;
4. P is stronglyT -invariant if and only if Pis stronglyT ∗-invariant.

Proof. It suffices of course to prove the direct implications. Consider an arbitraryT∗ =

∑k λkTk ∈ T ∗. For the first statement, letf be T -invariant, thenT∗ f = ∑k λkTt
k f =

∑k λk f = f , where the second equality follows from theT -invariance of f . So f is
T ∗-invariant. For the second statement, letK be T -invariant and letf ∈ K , then
T∗ f = ∑k λkTt

k f ∈ K , becauseTt
k f ∈ K for all k by theT -invariance ofK and be-

causeK is convex. SoK is T ∗-invariant. For the third statement, assume thatP is
weaklyT -invariant. For anyf ∈ K ,

P(T∗ f ) = P

(

∑
k

λkT
t
k f

)

≥ ∑
k

λkP(Tt
k f ) ≥ ∑

k

λkP( f ) = P( f ),

where the first inequality follows from the coherence ofP, and the second from the weak
T -invariance ofP. HenceP is weaklyT ∗-invariant. For the last statement, assume thatP
is stronglyT -invariant. For anyf ∈ K ,

P

(

∑
k

λkT
t
k f − f

)

= P

(

∑
k

λk(T
t
k f − f )

)

≥ ∑
k

λkP(Tt
k f − f ) ≥ 0,

where the first inequality follows from the coherence ofP, and the second from the strong
T -invariance ofP. Similarly P( f −∑k λkTt

k f )≥ 0. HenceP is stronglyT ∗-invariant. �

We now define the following binary relation> onT ∗: for T∗
1 andT∗

2 in T ∗ we say that
T∗

2 is a successorof T∗
1 , and we writeT∗

2 > T∗
1 , if and only if there is someT∗ in T ∗ such

thatT∗
2 = T∗T∗

1 . Clearly> is a reflexive and transitive relation, becauseT ∗ is a monoid.
We say thatT ∗ has theMoore–Smith property, or isdirected by>, if any two elements of
T ∗ have a common successor, i.e., for anyT∗

1 andT∗
2 in T ∗ there is someT∗ in T ∗ such

thatT∗ > T∗
1 andT∗ > T∗

2 . It is not difficult to see that ifT is Abelian, or a finite group,
thenT ∗ is directed by the successor relation. This need not hold ifT is an infinite group
or a finite monoid, however.

Now, given anetα onT ∗, i.e., a mappingα : T ∗ → R, we can take theMoore–Smith
limit of α with respect to the directed set(T ∗,>) [Moore and Smith, 1922, Section I,
p. 103], which, if it exists, is uniquely defined as the real numbera such that, for every
ε > 0, there is aT∗

ε in T ∗, such that|α(T∗)−a| < ε for all T∗ > T∗
ε . The Moore–Smith

limit a of α is denoted by limT∗∈T ∗ α(T∗). This limit always exists ifα is non-decreasing
and bounded from above, or ifα is non-increasing and bounded from below.

Theorem 13. Let Pbe a coherent and weaklyT -invariant lower prevision onL (X ), and
assume thatT ∗ has the Moore–Smith property. Then for any gamble f onX the Moore–
Smith limitlimT∗∈T ∗ P(T∗ f ) converges to a real number Q

P,T
( f ). Moreover, Q

P,T
is the

point-wise smallest stronglyT -invariant coherent lower prevision onL (X ) that domi-
nates PonL (X ), and

Q
P,T

( f ) = sup{P(T∗ f ) : T∗ ∈ T
∗} = sup

{

P

(

1
n

n

∑
k=1

Tt
k f

)

: n≥ 1,T1, . . . ,Tn ∈ T

}

.

(13)
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Proof. First, fix f in L (X ). ConsiderT∗
1 andT∗

2 in T ∗, and assume thatT∗
2 > T∗

1 . This
means that there is someT∗ in T ∗ such thatT∗

2 = T∗T∗
1 , and consequently we find that

P(T∗
2 f ) = P(T∗(T∗

1 f )) ≥ P(T∗
1 f ),

where the inequality follows from the fact thatP is in particular weaklyT∗-invariant [ob-
serve thatL (X ) is convex and thatP is weaklyT -invariant, and apply Proposition 12].
This means that the netP(T∗ f ), T∗ ∈ T ∗ is non-decreasing. Since this net is moreover
bounded from above [by supf , sinceP is coherent], it converges to a real numberQ

P,T
( f ),

and clearly

Q
P,T

( f ) = lim
T∗∈T ∗

P(T∗ f ) = sup{P(T∗ f ) : T∗ ∈ T
∗} . (14)

This tells us that the net of coherent lower previsionsT∗P, T∗ ∈ T ∗ converges point-
wise to the lower previsionQ

P,T
, soQ

P,T
is a coherent lower prevision as well [taking

a point-wise limit preserves coherence]. Since idt
X

∈ T ∗, it follows from Eq. (14) that
Q

P,T
( f ) ≥ P(idt

X
f ) = P( f ), soQ

P,T
dominatesP on L (X ). We now show thatQ

P,T

is stronglyT -invariant.44 Consider anyf in L (X ) andT in T . Then for anyn ≥ 1,
T∗

n := 1
n ∑n

k=1(T
k)t belongs toT ∗, and it follows from the coherence ofP that

P(T∗
n ( f −Tt f )) =

1
n

P(Tt f − (Tn+1)t f ) ≥
1
n

inf
[
Tt f − (Tn+1)t f

]

= −
1
n

sup
[
(Tn+1)t f −Tt f

]
≥−

2
n

sup| f |,

and consequently

Q
P,T

( f −Tt f ) ≥ sup

{

−
2
n

sup| f | : n≥ 1

}

= 0.

A similar argument can be given forQ
P,T

(Tt f − f ) ≥ 0, soQ
P,T

is indeed stronglyT -
invariant.

Next, consider any stronglyT -invariant and coherent lower previsionQ on L (X ),
and assume that it dominatesP. Then we get for any gamblef onX and anyT∗ in T ∗:

Q( f ) = Q( f −T∗ f +T∗ f ) ≥ Q( f −T∗ f )+Q(T∗ f ) ≥ Q(T∗ f ) ≥ P(T∗ f ),

where the first inequality follows from the coherence ofQ, the second inequality from its
strongT -invariance [use Proposition 12], and the last inequality from the fact thatQ dom-
inatesP. We then deduce from Eq. (14) thatQ dominatesQ

P,T
. SoQ

P,T
is indeed the

point-wise smallest stronglyT -invariant coherent lower prevision onL (X ) that domi-
natesP onL (X ).

Finally, let us prove the second equality in Eq. (13). Consider a gamblef and any
ε > 0. Then, by Eq. (14), there is someT∗ in T ∗ such thatQ

P,T
( f ) ≤ P(T∗ f )+ ε

2. For

thisT∗, there aren≥ 1, T1, . . . ,Tn in T andλ1, . . . ,λn ≥ 0 that sum to one, such thatT∗ =

∑n
k=1 λkTt

k . Let ρ1, . . . , ρn be non-negative rational numbers satisfying|ρi −λi| ≤
ε

2nsup| f |

44The idea for this part of the proof is due to Walley [1991, Point (iv) of the proof of Theorem 3.5.3].
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such that moreover∑n
i=1 ρi = 1.45 Now it follows from the coherence ofP that

P(T∗ f ) = P

(
n

∑
i=1

λiT
t
i f

)

≤ P

(
n

∑
i=1

ρiT
t
i f

)

−P

(
n

∑
i=1

(ρi −λi)T
t
i f

)

,

and also

P

(
n

∑
i=1

(ρi −λi)T
t
i f

)

≥
n

∑
i=1

P((ρi −λi)T
t
i f ) ≥

n

∑
i=1

inf(ρi −λi)T
t
i f

≥
n

∑
i=1

−
ε

2nsup| f |
sup| f | = −

ε
2
,

whence

Q
P,T

( f ) ≤ P(T∗ f )+
ε
2
≤ P

(
n

∑
i=1

ρiT
t
i f

)

+ ε,

and consequently

Q
P,T

( f ) = sup

{

P

(
n

∑
i=1

ρiT
t
i f

)

: n≥ 1,T1, . . . ,Tn ∈ T ,ρ1, . . . ,ρn ∈ Q+,
n

∑
i=1

ρi = 1

}

,

whereQ+ denotes the set of non-negative rational numbers. Now, it iseasy to see [just
consider the least common multiple of the denominators ofρ1, . . . ,ρn] that this supremum
coincides with the right-hand side of Eq. (13). �

This result allows us to establish the following corollary.It gives a sufficient condi-
tion for the existence of stronglyT -invariant lower previsions dominating a given coher-
ent lower previsionP. The smallest such lower prevision reflects how initial behavioural
dispositions, reflected inP, are modified (strengthened) toEP,T when we add the extra
assessment of strong invariance with respect to a monoidT of transformations.

Corollary 14 (Strongly invariant natural extension). Let T be a monoid of transforma-
tions of X and let Pbe a weaklyT -invariant lower prevision on some set of gambles
K , that avoids sure loss. Assume thatT ∗ has the Moore–Smith property. Then there are
stronglyT -invariant coherent lower previsions onL (X ) that dominate Pon L (X ),
and the smallest such lower prevision, which is called thestronglyT -invariant natural
extensionof P, is given by EP,T = Q

EP,T
. Moreover, for everyT -invariant gamble f we

have that EP,T ( f ) = EP( f ).

Proof. The first part of the proof follows at once from the observation that a coherent lower
previsionQ on L (X ) dominatesP on K if and only if it dominatesEP on all gambles.
For the second part of the proof, simply observe that iff is a T -invariant gamble, then
T∗ f = f and thereforeEP(T∗ f ) = EP( f ) for all T∗ in T ∗. �

Let us show in particular how this result applies when we consider the monoidTT

generated by a single transformationT:

45To see that such rational numbers exist, it suffices to consider non-negative rational numbersρ1, . . . ,ρn−1

such that 0≤ ρi ≤ λi ≤ 1 and|ρi −λi | ≤
ε

2n2 sup| f |
for i = 1, . . . ,n−1, and to letρn := 1−∑n−1

i=1 ρi ≥ 1−∑n−1
i=1 λi =

λn ≥ 0. Thenρn ∈ [0,1], and forn big enough, and unless we are in the trivial case whereλi = 1 for somei, we
get|ρn −λn| ≤

ε
2nsup| f | .
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Corollary 15. Let T be a transformation ofX and consider the Abelian monoidTT =
{Tn : n≥ 0}. Then for any weakly T -invariant lower prevision Pon some set of gambles
K that avoids sure loss, there are strongly T -invariant coherent (lower) previsions on
L (X ) that dominate P, and the point-wise smallest such lower prevision EP,T is given by

EP,T( f ) = lim
n→∞

EP

(

1
n

n−1

∑
k=0

(Tk)t f

)

= sup
n≥1

EP

(

1
n

n−1

∑
k=0

(Tk)t f

)

.

Proof. The existence of stronglyT-invariant coherent (lower) previsions onL (X ) that
dominateP follows from Corollary 14, and the fact that for any Abelian monoidT , T ∗

has the Moore–Smith property. It also follows from this corollary that for any gamblef on
X ,

EP,T( f ) = sup
{

EP(T∗ f ) : T∗ ∈ T
∗

T

}
≥ sup

n≥1
EP

(

1
n

n−1

∑
k=0

(Tk)t f

)

.

To prove the converse inequality, fix anyT∗ in T ∗
T and any gamblef onX . Then there is

someN ≥ 1 and non-negativeλ0, . . . ,λN−1 that sum to one, such thatT∗ = ∑N−1
k=0 λk(Tk)t .

Consider the elementS∗M = 1
M ∑M−1

ℓ=0 (Tℓ)t of T ∗, whereM is any natural number such that
M ≥ N. Observe that

S∗MT∗ =
1
M

M−1

∑
ℓ=0

(Tℓ)t

(
N−1

∑
k=0

λk(T
k)t

)

=
M−1

∑
ℓ=0

N−1

∑
k=0

λk

M
(Tk+ℓ)t =

M+N−2

∑
m=0

µm(Tm)t ,

where we let, for 0≤ m≤ M +N−2,

µm :=
N−1

∑
k=0

M−1

∑
ℓ=0

λk

M
δm,k+ℓ =







∑m
k=0

λk
M if 0 ≤ m≤ N−2

1
M if N−1≤ m≤ M−1

∑N−1
k=m−M+1

λk
M if M ≤ m≤ M +N−2.

This tells us thatµm = 1
M for N−1≤ m≤ M−1, and 0≤ µm ≤ 1

M for all otherm. If we
let δm := µm− 1

N+M−1 , it follows at once that

|δm| ≤







N−1
M(M +N−1)

if N−1≤ m≤ M−1

1
M +N−1

if 0 ≤ m≤ N−2 orM ≤ m≤ M +N−2

Consequently, it follows from the weakT -invariance and the coherence ofEP that

EP(T∗ f )

≤ EP(S∗MT∗ f )

= EP

(

S∗M+N−1 f +
M+N−2

∑
m=0

δm(Tm)t f

)

≤ EP(S∗M+N−1 f )+
M+N−2

∑
m=0

|δm|sup| f |

≤ EP(S∗M+N−1 f )+sup| f |

[
N−1

M(M +N−1)
(M−N+1)+

1
M +N−1

(2N−2)

]

= EP(S∗M+N−1 f )+sup| f |
(N−1)(3M−N+1)

M(M +N−1)
.
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Recall thatf andT∗, and therefore alsoN are fixed. Consider anyε > 0, then there is some
Mε ≥ N such that sup| f | (N−1)(3M−N+1)

M(M+N−1) < ε for all M ≥ Mε , whence

EP(T∗ f ) ≤ EP(S∗Mε+N−1 f )+ ε ≤ sup
n≥1

EP(S∗n f )+ ε.

Since this holds for allε > 0, we getEP(T∗ f ) ≤ supn≥1EP(S∗n f ). Taking the supremum
over allT∗ in T ∗ leads to the desired inequality. �

7.4. Mixture lower previsions. The condition established in Theorem 13 is fairly general,
and guarantees for instance the existence ofT -invariant coherent previsions whenever the
monoidT is Abelian, or a finite group. In caseT ∗ is not directed, however, as may happen
for instance for groupsT that are not finite nor Abelian, there may still beT -invariant
coherent previsions, as we shall see in Example 2 below. So wesee that the directedness
of T ∗ is not a necessary condition for the existence ofT -invariant coherent previsions.

But consider a weaklyT -invariant lower previsionP defined on some domainK , that
avoids sure loss. Even ifT ∗ is not directed,46 we may still associate withP a lower
previsionQ

P,T
onL (X ) through Eq. (13):

Q
P,T

( f ) = sup
T∗∈T ∗

EP(T∗ f ) = sup

{

EP

(

1
n

n

∑
k=1

Tt
k f

)

: n≥ 1,T1, . . . ,Tn ∈ T

}

,

where we have replaced the Moore–Smith limit by a supremum (with which it would coin-
cide in caseT ∗ were directed), and whereEP is the natural extension ofP to all gambles.
We shall call this lower prevision themixture lower previsionassociated with the weakly
invariantP. The supremum in this expression is finite, since it is dominated by supf . This
mixture lower prevision is not necessarily coherent, but itis still stronglyT ∗-invariant.47

Moreover, this mixture lower prevision dominatesEP, and therefore alsoP [observe that
EP is weakly invariant becauseP is]; and if there areT -invariant coherent previsions,

it is dominated by the stronglyT -invariant natural extensionEP,T of P.48 This shows
thatM (Q

P,T
) = M (EP,T ), since all coherent previsions that dominate the stronglyT -

invariantQ
P,T

are necessarilyT -invariant. And clearly then, if this mixture lower previ-
sion is coherent, it coincides with the strongly invariant natural extension. So we see that
the mixture lower prevision, even if it is not coherent, still allows us to characterise all
T -invariant coherent previsions. In particular, there are such invariant coherent previsions
if and only if it avoids sure loss.

Example2 (Directedness is not necessary). Let us consider the spaceX3 := {1,2,3}, and
let T1 andT2 be the transformations ofX given byT1(1) = 1, T1(2) = 2, T1(3) = 2 and
T2(1) = 1, T2(2) = 3, T2(3) = 3, respectively. SinceT1T1 = T1, T2T2 = T2, T2T1 = T2 and
T1T2 = T1, we deduce that the set of transformationsT = {idX ,T1,T2} is a monoid. Let
P{1} be the coherent prevision onL (X ) given byP{1}( f ) = f (1) for any gamblef , i.e.,
all of whose probability mass lies in 1. Then we haveP{1}( f ) = P{1}(T

t
1 f ) = P{1}(T

t
2 f ) for

46This is the general situation that Walley [1991, Section 3.5] considers, and he doesn’t discuss the direct-
edness ofT ∗. He does consider the special case thatT is Abelian for which he proves that the existence of
invariant coherent previsions is guaranteed. The results in this section were first proven by him.

47Simply observe that the relevant part (near the end) of the proof of Theorem 13 is not based on the direct-
edness ofT ∗.

48To prove that the mixture lower prevision dominatesP, considerT∗ = idX in its definition. To prove that
it is dominated by the strongly invariant natural extension, take fk = f/n in the expression (10) for this natural
extension.
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any gamblef , soP{1} is T -invariant. Let us show thatT ∗ does not have the Moore–Smith
property.

ConsiderT∗
1 andT∗

2 in T ∗ given byT∗
1 = λTt

1 +(1−λ )Tt
2 andT∗

2 = µTt
1 +(1−µ)Tt

2,
with λ 6= µ . Let T∗ be another element ofT ∗, so there are non-negativeα1, α2 andα3

such thatα1 + α2+ α3 = 1 andT∗ = α1 idt
X +α2Tt

1 + α3Tt
2. Now,

T∗T∗
1 = α1λ idt

X Tt
1 + α1(1−λ ) idt

X Tt
2

+ α2λTt
1Tt

1 + α2(1−λ )Tt
1Tt

2 + α3λTt
2Tt

1 + α3(1−λ )Tt
2Tt

2

= α1λTt
1 + α1(1−λ )Tt

2 + α2λTt
1 + α2(1−λ )Tt

2 + α3λTt
1 + α3(1−λ )Tt

2

= λTt
1 +(1−λ )Tt

2 = T∗
1 .

Similarly, T∗T∗
2 = T∗

2 for anyT∗ ∈ T ∗. This means thatT∗
1 is the only possible successor

of T∗
1 , andT∗

2 is the only possible successor ofT∗
2 . Hence,T ∗ cannot have the Moore–

Smith property. Nevertheless, there is aT -invariant coherent previsionP{1}.
Let us consider the vacuous, and therefore weaklyT -invariant and coherent, lower

previsionPX3
onL (X3), and the mixture lower previsionQ

PX3
,T

that corresponds with

it. It is easy to show that for any gamblef , Q
PX3

,T
( f ) = min{ f (1),max{ f (2), f (3)}} and

this lower prevision avoids sure loss, and is therefore strongly T -invariant, but it is not
coherent [it is not super-additive]. It is easy to see thatP{1} is the only coherent prevision
that dominatesQ

PX3
,T

, and is therefore the onlyT -invariant coherent prevision.�

7.5. Invariance and Choquet integration. Until now, we have explored the relation be-
tween coherence and (weak or strong) invariance. To complete this section, we intend to
explore this relation for the particular case of then-monotone lower previsions and proba-
bilities introduced near the end of Section 2.4.

Consider ann-monotone lower probabilityP defined on a lattice of eventsK containing
/0 andX . Then its natural extension to all events coincides with itsinner set functionP∗,
which is given byP∗(A) = sup{P(B) : B∈ K ,B⊆ A}. Furthermore, the natural extension
to all gambles is given by the Choquet integral with respect to P∗:

EP( f ) = (C)

∫

X

f dP∗ := inf f +(R)

∫ supf

inf f
P∗({x∈ X : f (x) ≥ α})dα

for all gamblesf on X , where the integral on the right-hand side is a Riemann inte-
gral. This natural extension (and therefore also the inner set function) is stilln-monotone
[De Cooman et al., 2005b,a]. Since we have proven in Theorem 8that natural extension
preserves weak invariance, we can deduce that the inner set function of an-monotone
weakly invariant coherent lower probability, and the associated Choquet functional, are
still weakly invariant,n-monotone and coherent. We now show that weak invariance of the
inner set function and the associated Choquet integral is still guaranteed if the lower proba-
bility P is not coherent or 2-monotone, but only monotone. In what follows, it is important
to remember that for a transformationT of X and a subsetA of X , Tt IA = IT−1(A).

Proposition 16. Let P be a weaklyT -invariant monotone lower probability, defined on
a T -invariant lattice of eventsK that contains/0 andX , and such that P( /0) = 0 and
P(X ) = 1. Then

1. the inner set function P∗ of P is weaklyT -invariant; and
2. the Choquet integral with respect to P∗ is weaklyT -invariant.

Proof. To prove the first statement, consider anyA⊆ X , and letB∈ K be a any subset
of A. Then for anyT in T , T−1(B) ∈ K andT−1(B) = {x: Tx∈ B} ⊆ {x: Tx∈ A} =
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T−1(A), whenceP(B)≤P(T−1(B))≤P∗(T
−1(A)), where the first inequality follows from

the weak invariance ofP, and the second from the fact thatP∗ is monotone and coincides
with P on its domain, becauseP is assumed to be monotone. ConsequentlyP∗(A) =
supB∈K ,B⊆AP(B) ≤ P∗(T

−1(A)). Hence,P∗ is also weaklyT -invariant.
To prove the second statement, letf be any gamble onX . Define, for anyα in R, the

level setfα := {x: f (x) ≥ α}. Then by the first statement,

P∗( fα ) ≤ P∗(T
−1( fα )) = P∗({x: Tx∈ fα}) = P∗({x: f (T x) ≥ α}) = P∗((T

t f )α ).

Hence,

(C)
∫

f dP∗ = inf f +(R)
∫ supf

inf f
P∗( fα )dα

≤ inf f +(R)

∫ supf

inf f
P∗((T

t f )α )dα = (C)

∫

Tt f dP∗,

also taking into account for the last equality thatP∗((T
t f )α ) = 1 for all α in [inf f , inf Tt f ),

and thatP∗( fα ) = 0 for all α in (supTt f ,supf ]. �

As we said before, natural extension does not preserve strong invariance in general,
and a simple example shows that this continues to hold in particular forn-monotone lower
previsions: the unique coherent lower prevision defined on{ /0,X } is trivially completely
monotone and strongly invariant with respect to any monoid of transformationsT , but its
natural extension, the vacuous lower previsionPX (which is completely monotone), is not
stronglyT -invariant unless in the trivial case thatT = {idX }.

It is nonetheless interesting that if we restrict ourselvesto coherent previsions (which
constitute a particular instance of completely monotone lower previsions), natural exten-
sion from events to gambles does preserve strong invariance. This is a consequence of the
following theorem.

Theorem 17. Let Pbe a coherent lower prevision onL (X ) and letT be a monoid of
transformations onX . Then Pis stronglyT -invariant if and only if any P inM (P), its
restriction to events is (weakly)T -invariant, in the sense that P(T−1(A)) = P(A) for all
A⊆ X and all T∈ T .

Proof. We start with the direct implication. IfP is stronglyT -invariant, then anyP in
M (P) is T -invariant by Theorem 10. Hence, givenA⊆ X andT ∈ T , we getP(A) =
P(T−1(A)).

Conversely, considerP in M (P). Recall that a coherent prevision on all events has
only one coherent extension from all events to all gambles, namely its natural extension,
or Choquet functional; see [De Cooman et al., 2005a]. So for any gamblef on X and
any T in T , taking into account thatP is assumed to be invariant on events, and that
T−1( fα ) = (Tt f )α [see the proof of Proposition 16], we get

P( f ) = (C)

∫

X

f dP = inf f +(R)

∫ supf

inf f
P( fα )dα

= inf f +(R)

∫ supf

inf f
P(T−1( fα ))dα = inf f +(R)

∫ supf

inf f
P((Tt f )α )dα

= (C)

∫

X

Tt f dP= P(Tt f ).

Hence,P is stronglyT -invariant and, applying Theorem 10, so is the lower envelopeP of
M (P). �
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We see that, although the condition of strong invariance cannot be considered for lower
probabilities, in the sense thatIA−Tt IA will not be in general the indicator of an event, it
is still to some extent characterised by behaviour on events. Moreover, we may deduce the
following result.

Corollary 18. Let P be a stronglyT -invariant lower prevision on aT -invariant set of
gamblesK that includes all indicators of events. Assume that Pavoids sure loss. Then its
natural extension to all gambles is stronglyT -invariant, and coincides therefore with the
strongly invariant natural extension of P.

Proof. SinceP avoids sure loss,M (P) is non-empty. SinceP is strongly invariant on
a domain that includes all events, any elementP of M (P) is (strongly) invariant on all
events. Hence, by the previous theorem,P is also (strongly) invariant on all gambles,
since a coherent prevision on all events has only one coherent extension from all events to
all gambles (namely its natural extension, or Choquet functional). Therefore, the natural
extension ofP is a lower envelope of invariant coherent previsions, and istherefore strongly
invariant. �

This result provides further insight into the existence problem for strongly invariant co-
herent lower previsions. The existence of strongly invariant coherent lower previsions on
all gambles is equivalent to the existence of invariant coherent previsions on all gambles,
which in turn is equivalent to the existence of invariant coherent previsions on all events
(or in other words, invariant finitely additive probabilities). And it is the impossibility of
satisfying invariance with finitely additive probabilities in some cases (for instance for the
classTX of all transformations) that prevents the existence of coherent strongly invariant
belief models.

We also infer that if the restrictionQ of a coherent lower previsionP on L (X ) to
gambles of the typeIA−Tt IA andTt IA− IA, involving only indicators of events, is strongly
invariant, thenP is strongly invariant on all ofL (X ): it will dominate the natural exten-
sionEQ of Q, which is strongly invariant by Corollary 18, and consequently it will also be
strongly invariant.

We can also deduce the following result. Recall that a linearlattice of gamblesK is
a set of gambles that is at once a lattice of gambles and a linear subspace ofL (X ). If
in additionK contains all constant gambles, then for any coherent prevision P defined
on K , its natural extension to all gambles [Walley, 1991, Theorem 3.1.4] is given by the
inner extension P∗( f ) := sup{P(g) : g∈ K ,g≤ f}. Let us denote byP∗ the conjugate
upper prevision ofP∗.

Corollary 19. Let T be a monoid of transformations ofX , and let Pbe a stronglyT -
invariant lower prevision on a linear lattice of gamblesK that contains all constant
gambles. The natural extension EP of P to all gambles is stronglyT -invariant if and
only if for any coherent prevision P onK that dominates P, we have P∗(A\T−1(A)) =
P∗(A\T−1(A)) = P∗(T−1(A)\A) = P∗(T−1(A)\A) for all A ⊆ X and all T∈ T .

Proof. It follows from Walley [1991, Theorem 3.4.2] thatEP is the lower envelope of the
coherent lower previsionsP∗, whereP is any coherent prevision onK that dominatesP
on K . But then, clearly,EP will be stronglyT -invariant if and only if all theP∗ are.
Consider any suchP∗. By Theorem 17,P∗ is strongly invariant if and only if for allA⊆X

andT ∈ T :

Q(A) = Q(T−1(A)) for all Q in M (P∗)
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which is obviously equivalent toP∗(IA−Tt IA) = P∗(Tt IA− IA) = 0. Now observe thatIA−
Tt IA = IA− IT−1(A) = IA\T−1(A)− IT−1(A)\A, and that the functionsIA\T−1(A) and−IT−1(A)\A
are comonotone. SinceP is a coherent prevision onK , it is completely monotone. Hence,
its inner extensionP∗ is coherent and completely monotone on all gambles, and therefore
comonotone additive [De Cooman et al., 2005a]. This means that

P∗(IA−Tt IA) = P∗(IA\T−1(A)− IT−1(A)\A) = P∗(IA\T−1(A))+P∗(−IT−1(A)\A)

= P∗(IA\T−1(A))−P∗(IT−1(A)\A) = P∗(A\T−1(A))−P∗(T−1(A)\A)

and similarlyP∗(Tt IA− IA) = P∗(T−1(A) \A)−P∗(A\T−1(A)). The rest of the proof is
now immediate. �

8. SHIFT-INVARIANCE AND ITS GENERALISATIONS

8.1. Strongly shift-invariant coherent lower previsions onL (N). Let us consider, as
an example, the case of the shift-invariant, i.e.,Tθ -invariant, coherent previsions onL (N).
These are usually calledBanach limitsin the literature, see for instance, Bhaskara Rao and Bhaskara Rao
[1983, Section 2.1.3] or Walley [1991, Sections 2.9.5 and 3.5.7]. We know from Corol-
lary 14 that there are always Banach limits that dominate a given weakly shift-invariant
lower prevision—so we know that there actually are Banach limits. Let us denote by
Pθ (N) the set of all Banach limits. We also know that a coherent lower prevision onL (N)
is strongly shift-invariant if and only if it is a lower envelope of such Banach limits. The
smallest strongly shift-invariant coherent lower prevision Eθ on L (N) is the lower enve-
lope of all Banach limits, and it is given by:49

Eθ ( f ) = sup
m1,...mn≥0

n≥0

inf
k≥0

1
n

n

∑
ℓ=1

f (k+mℓ) = lim
n→∞

inf
k≥0

1
n

k+n−1

∑
ℓ=k

f (ℓ), (15)

for any gamblef onN (or in other words, for any bounded sequencef (n)n∈N of real num-
bers). The first equality follows from Corollary 14, and the second from Corollary 15.
Eθ ( f ) is obtained by taking the infimum sample mean off over ‘moving windows’ of
lengthn, and then letting the window lengthn go to infinity. Since this is the lower pre-
vision onL (N) that can be derivedsolelyusing considerations of coherence and the evi-
dence of shift-invariance, we believe that thisEθ is a natural candidate for a ‘uniform dis-
tribution’ on N. It is the belief model to use if we only have evidence of shift-invariance,
as all other strongly shift-invariant coherent lower previsions will point-wise dominateEθ ,
and will therefore represent stronger behavioural dispositions than warranted by the mere
evidence of shift-invariance.50

We could also samplef over the set{1, . . . ,n} leading to a coherent ‘sampling’ previ-
sion

Sn( f ) =
1
n

n−1

∑
ℓ=0

f (ℓ),

49See also Walley [1991, Section 3.5.7]. The expression on theright hand side is not a limit inferior!
50But this belief model has the important defect that, like thelower previsionSθ defined further on, it is not

fully conglomerable; see Walley [1991, Section 6.6.7] and observe that the counterexample that Walley gives
for Sθ , also applies toEθ . Walley’s remark there that his example shows that there areno (what we call) fully
conglomerable (strongly) shift-invariant (lower) previsions that dominateSθ , can be extended in a straightforward
manner toEθ to show thatthere are no fully conglomerable (strongly) shift-invariant (lower) previsions.
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but the problem here is that for any givenf the sequence of sampling averagesSn( f ) is not
guaranteed to converge. Taking the limits inferior of such sequences (one for each gamble
f ), however, yields a coherent lower prevision51 Sθ given by

Sθ ( f ) = lim inf
n→∞

Sn( f ) = lim inf
n→∞

1
n

n−1

∑
ℓ=0

f (ℓ)

for any gamblef on N. For any eventA ⊆ N, or equivalently, any zero-one-valued se-
quence, we have thatSn(A) = 1

n|A∩{0, . . . ,n− 1}| is the ‘relative frequency’ of ones in
the sequenceIA(n) and

Sθ (A) = lim inf
n→∞

Sn(A) = lim inf
n→∞

1
n
|A∩{0, . . . ,n−1}|.

Let Sθ denote the conjugate ofSθ , given bySθ ( f ) = limsupnSn( f ). Those eventsA for
which Sθ (A) = Sθ (A) have a ‘limiting relative frequency’ equal to this common value. It
is not difficult to show that the coherent ‘limiting relativefrequency’ lower previsionSθ
is actually also strongly shift-invariant.52 This implies that all the coherent previsions that
dominateSθ are strongly shift-invariant. But it is easy to see (see Example 3 below) that
Eθ is strictly dominated bySθ , so there are Banach limits that do not dominateSθ .

Proposition 20. Let L be any Banach limit onL (N), let f be any gamble onN. Then the
following statements hold.

1. lim infn→∞ f (n) ≤ Eθ ( f ) ≤ Sθ ( f ) ≤ Sθ ( f ) ≤ Eθ ( f ) ≤ limsupn→∞ f (n).
2. If limn→∞ f (n) exists, then

Eθ ( f ) = Sθ ( f ) = Eθ ( f ) = Sθ ( f ) = L( f ) = lim
n→∞

f (n).

3. If f is θ m-invariant (has period m≥ 1), then

Eθ ( f ) = Sθ ( f ) = Eθ ( f ) = Sθ ( f ) = L( f ) =
1
m

m−1

∑
r=1

f (r).

4. If f is zero except in a finite number of elements ofN, then Eθ ( f ) = Sθ ( f ) = Eθ ( f ) =
Sθ ( f ) = L( f ) = 0. In particular, this holds for the indicator of any finite subset A ofN.

Proof. We begin with the first statement. By conjugacy, we can concentrate on the lower
previsions. We have already argued thatSθ is a strongly shift-invariant coherent lower pre-
vision, soSθ will dominate the smallest strongly shift-invariant coherent lower prevision
Eθ . So it remains to prove thatEθ dominates the limit inferior. Consider the first equality
in Eq. (15). Fix the natural numbersn ≥ 1, m1, . . .mn. We can assume without loss of
generality that them1 is the smallest of all themℓ. Observe that

inf
k≥0

1
n

n

∑
ℓ=1

f (k+mℓ) ≥ inf
k≥0

n
min
ℓ=1

f (k+mℓ) =
n

min
ℓ=1

inf
k≥mℓ

f (k) = inf
k≥m1

f (k),

and therefore
Eθ ( f ) ≥ sup

m1≥0
inf

k≥m1
f (k) = lim inf

n→∞
f (n).

51A limit inferior of a sequence of coherent lower previsions is always coherent, see Walley [1991, Corol-
lary 2.6.7].

52The following simple proof is due to Walley [1991, Section 3.5.7]. Observe thatSn(θ t f − f ) = [ f (n)−
f (0)]/n→ 0 asn→ ∞, soSθ (θ t f − f ) = Sθ (θ t f − f ) = 0.
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The second statement is an immediate consequence of the first, and the third follows
easily from the definition ofEθ andEθ . Finally, the fourth statement follows at once from
the second. �

Example3 (Not all Banach limits dominateSθ ). Consider the event

A =
{

n2 +k: n≥ 1,k = 0, . . . ,n−1
}
.

ThenA has ‘limiting relative frequency’Sθ (A) = Sθ (A) = 1/2, whereasEθ (A) = 0 and
Eθ (A) = 1. This shows thatSθ strictly dominatesEθ , so not all Banach limits dominate
Sθ .

Indeed, for the limiting relative frequency, consider the subsequenceSm2−1(A), m≥ 2
of Sn(A). Then

Sm2−1(A) =
1

m2−1
|A∩{0, . . . ,m2−2}|=

1+2+ · · ·+m−1
m2−1

=
1
2m(m−1)

m2−1
=

1
2

m
m+1

,

so this subsequence converges to1
2. Now the ‘integer intervals’[m2 − 1,(m+ 1)2 − 1],

m≥ 1 cover the set of all natural numbers, and asn varies over such an interval,Sn(A)

starts atSm2−1(A) = 1
2

m
m+1 < 1

2, increases toSm2+m(A) = 1
2

m2+m
m2+m

= 1
2, and then again

decreases toS(m+1)2−1(A) = 1
2

m+1
m+2 < 1

2. Both the lower and upper bounds converge to1
2

asm→ ∞, and therefore the sequenceSn(A) converges to12 as well.
To calculateEθ (A), we consider the second equality in Eq. (15). Fixn ≥ 1 and let

k = n2 +n, thenk+n−1= (n+1)2−2, so

1
n

k+n−1

∑
ℓ=k

IA(ℓ) =
1
n

(n+1)2−2

∑
ℓ=n2+n

IA(ℓ) = 0,

whence infk≥0
1
n ∑k+n−1

ℓ=k IA(ℓ) = 0 for all n ≥ 1, and thereforeEθ (A) = 0. To calculate
Eθ (A), fix n≥ 1 and letk = n2 then

1
n

k+n−1

∑
ℓ=k

IA(ℓ) =
1
n

n2+n−1

∑
ℓ=n2

IA(ℓ) = 1,

whence supk≥0
1
n ∑k+n−1

ℓ=k IA(ℓ) = 1 for all n≥ 1, and thereforeEθ (A) = 1. �

In an interesting paper, Kadane and O’Hagan [1995] study candidates for the ‘uniform
distribution’ on N. They consider, among others, all the finitely additive probabilities
(or equivalently, all coherent previsions) that coincide with the limiting relative frequency
on all events for which this limit exists. One could also consider as such candidates the
coherent previsions that dominate the sampling lower previsionSθ , which have the benefit
of being strongly shift-invariant. But, we actually believe thatall Banach limits (or actually,
their lower envelope) are good candidates for being called ‘uniform distributions onN’ and
not just the ones that dominateSθ . Kadane and O’Hagan also propose to consider other
coherent previsions, and their idea is to consider the ‘residue sets’, which are the subsets

Rr
m = {km+ r : k≥ 0} = {ℓ ∈ N : ℓ = r modm}

of N, wherem≥ 1 andr = 1, . . . ,m−1. These sets areθ m-invariant, so we already know
from Proposition 20 thatEθ (Rr

m) = Sθ (Rr
m) = Sθ (Rr

m) = Eθ (Rr
m) = 1

m for all m≥ 1 and
r = 1, . . . ,m−1. Now what Kadane and O’Hagan do, is consider the set of all coherent
previsions (finitely additive probabilities in their paper, but that is equivalent) that extend
the probability assessmentsP(Rr

m) = 1/m for all eventsRr
m. In other words, they consider
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the natural extensionEres of all such assessments, i.e., the lower envelope of all such
coherent previsions. It is not difficult to prove that this natural extension is given by53

Eres( f ) = lim
m→∞

1
m

m−1

∑
r=0

inf
k∈N

f (km+ r).

This coherent lower prevision is completely monotone [as a point-wise limit of completely
monotone lower previsions, even (natural extensions to gambles of so-called) belief func-
tions [Shafer, 1976]], and weakly shift-invariant [since the natural extension of any weakly
shift-invariant lower prevision is]. Since the assessmentsP(Rr

m) = 1
m coincide with the val-

ues given byEθ , we see thatEθ will point-wise dominate the natural extensionEresof these
assessments to all gambles. But as we shall shortly prove in Example 4,Eres is not strongly
shift-invariant, meaning that among the coherent previsions that extend these assessments,
there also are coherent previsions that are not Banach limits (not shift-invariant).

Example4. Here we show by means of a counterexample thatEres is not strongly shift-
invariant. LetBm := {0, . . . ,m−1} andA :=

⋃

m≥1{m}×Bm, and consider the map

φ : A→ N : (m, r) 7→ φ(m, r) :=
m(m−1)

2
+ r +1.

It is easy to see thatφ is a bijection (one-to-one and onto). Also define the map

κ : A→ N : (m, r) 7→ κ(m, r) := Nmφ(m, r)+ r.

for some fixedN ≥ 2. We consider the strict order< onA induced by the bijectionφ , i.e.,
(m, r) < (m′, r ′) if and only if φ(m, r) < φ(m′, r ′) [if and only if m < m, or m = m′ and
r < r ′, so< is the lexicographic order]. Thenκ is an increasing map with respect to this
order. To see this, assume that(m, r) < (m′, r ′). If m< m′, then

κ(m, r) = Nmφ(m, r)+ r < Nmφ(m′,0)+ r

< Nm′φ(m′,0)+0≤ Nm′φ(m′, r ′)+ r ′ = κ(m, r ′).

If on the other handm= m′ andr < r ′, thenκ(m, r) = Nmφ(m, r)+ r < Nmφ(m, r ′)+ r ′ =
κ(m, r ′).

Moreover, given(m, r) < (m′, r ′), we see thatκ(m′, r ′)−κ(m, r)≥N. Indeed, sinceκ is
increasing, it suffices to prove this for consecutive pairs in the order< we have defined on
A. There are only two possible expressions of consecutive pairs (m, r) and(m′, r ′): either
we have(m′, r ′) = (m, r +1), and then we get

κ(m, r +1)−κ(m, r) = Nm[φ(m, r +1)−φ(m, r)]+1 = Nm+1≥ N;

or we haver = m−1,(m′, r ′) = (m+1,0), and then we get

κ(m+1,0)−κ(m,m−1)= Nm[φ(m+1,0)−φ(m,m−1)]+Nφ(m+1,0)− (m−1)

= Nm+Nφ(m+1,0)− (m−1)≥ Nm≥ N,

taking into account thatφ(m+1,0)≥ m−1 by definition ofφ .
Consider the setC = κ(A)c. ThenEres(C) = limm→∞

1
m ∑m−1

r=0 infk∈N IC(km+ r). Since
for everym∈ N andr ∈ Bm the valueκ(m, r) = Nmφ(m, r)+ r does not belong toC, we
deduce that1m ∑m−1

r=0 infk∈N IC(km+ r) = 0 for all m, and consequentlyEres(C) = 0.
On the other hand,Eθ (C) = limn→∞ infk≥0

1
n ∑k+n−1

ℓ=k IC(ℓ). Since by construction any
two elements inκ(A) differ in at leastN elements, we deduce that infk≥0

1
n ∑k+n−1

ℓ=k IC(ℓ) ≥

1− 2
N+1 , and this for alln ∈ N. This implies thatEθ (C) ≥ 1− 2

N+1 > 0. Hence,Eres is

53See De Cooman et al. [2006] for a proof.
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strictly smaller than the smallest strongly shift-invariant natural extensionEθ , and there-
fore not strongly shift-invariant.�

8.2. Strong T-invariance. Now consider an arbitrary non-empty setX . Also consider a
transformationT of X and the Abelian monoidTT = {Tn : n≥ 0} generated byT. We
shall characterise the stronglyT-invariant coherent lower previsions onL (X ) using the
Banach limits onL (N).

First of all, consider any coherent lower previsionP on L (X ), and any gamblef on
X . Define the gamblefP onN as

fP(n) := P((Tt)n f ) = P( f ◦Tn). (16)

[This is indeed a gamble, as for alln we deduce from the coherence ofP that fP(n) =
P( f ◦Tn)≤ sup[ f ◦Tn]≤ supf and similarly fP(n)≥ inf f .] On the one hand(Tt f )P(n) =

P(Tt f ◦Tn)) = P(Tt( f ◦Tn)) = fT P(n) and on the other hand(Tt f )P(n) = P( f ◦Tn+1) =
fP(n+1) = fP(θn), so

(Tt f )P = fT P = θ t fP, (17)

and this observation allows us to establish a link between the transformationT onX and
the shift transformationθ on N. This makes us think of the following trick, inspired by
what Bhaskara Rao and Bhaskara Rao [1983, Section 2.1.3(9)]do for probability charges,
rather than coherent lower previsions. LetL be any shift-invariant coherent prevision on
L (N), or in other words, a Banach limit onL (N). Define the real-valued functionalPL
onL (X ) by PL( f ) := L( fP). We show that this functional has very special properties.

Proposition 21. Let L be a shift-invariant coherent prevision onL (N), let Pbe a coherent
lower prevision onL (X ), and let T be a transformation ofX . Then the following
statements hold.

1. PL is a weakly T -invariant coherent lower prevision onL (X ) (with equality).
2. If P dominates a weakly T -invariant coherent lower prevision Qon L (X ), then PL

dominates Q.
3. If P= P is a coherent prevision, then PL is a (strongly) T -invariant coherent prevision

onL (X ).
4. If Q is a weakly T-invariant coherent lower prevision onL (X ), then the (strongly)

T -invariant coherent prevision PL dominates Qfor any P inM (Q).
5. If P= P is a T-invariant coherent prevision, then PL = P.

Proof. We first prove the first statement. Consider gamblesf andg on X . Since inff ≤
fP, it follows from the coherence ofL that inf f ≤ L( fP) = PL( f ). Moreover, we have for
anyn in N that

( f +g)P(n)= P(( f +g)◦Tn)= P( f ◦Tn+g◦Tn)≥P( f ◦Tn)+P(g◦Tn)= fP(n)+gP(n),

where the inequality follows from the coherence [super-additivity] of P. SinceL is coher-
ent, we see thatPL( f + g) ≥ L( fP)+ L(gP) = PL( f )+ PL(g). Finally, for anyλ ≥ 0, we
have that(λ f )P(n) = P((λ f ) ◦Tn) = P(λ ( f ◦Tn)) = λP( f ◦Tn) = λ fP(n), sinceP is
coherent. ConsequentlyPL(λ f ) = L(λ fP) = λL( fP) = λPL( f ), sinceL is coherent. This
proves thatPL is a coherent lower prevision onL (X ) [because (P1)–(P3) are satisfied].
To show that it is weaklyT-invariant, recall that(Tt f )P = θ t fP, whence

PL(T
t f ) = L((T t f )P) = L(θ t fP) = L( fP) = PL( f ),

sinceL is shift-invariant.
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To prove the second statement, assume thatP dominates the weaklyT-invariant coher-
ent lower previsionQ onL (X ). Then for any gamblef onX , we see that

fP(n) = P( f ◦Tn) ≥ Q( f ◦Tn) ≥ Q( f ),

where the last inequality follows from the weakT-invariance ofQ. Consequently, sinceL
is coherent, we getPL( f ) = L( fP) ≥ Q( f ).

The third statement follows immediately from the first and the fact thatPL is a self-
conjugate coherent lower prevision (and therefore a coherent prevision) becauseP andL
are.

The fourth statement follows at once from the second and the third. The fifth is an
immediate consequence of the definition ofPL. �

We can use the results in this proposition to characterise all stronglyT-invariant coher-
ent lower previsions using Banach limits onL (N).

Theorem 22. Let P be a weakly T-invariant coherent lower prevision defined on some
T-invariant domainK , that avoids sure loss. Then the set of all T -invariant coherent
previsions onL (X ) that dominate PonK is given by

{PL : P∈ M (P) and L∈ Pθ (N)} ,

so the smallest strongly T -invariant coherent lower prevision EP,T on L (X ) that domi-
nates P, i.e., the strongly T -invariant natural extension of P, is the lower envelope of this
set, and also given by

EP,T( f ) = inf
P∈M (P)

Eθ ( fP) = inf
P∈M (P)

sup
n≥1

inf
k≥0

[

1
n

k+n−1

∑
ℓ=k

P((Tℓ)t f )

]

for any gamble f onX . As a consequence, the setPT(X ) of all T -invariant coherent
previsions onL (X ) is given by

PT(X ) = {PL : P∈ P and L∈ Pθ (N)} .

This tells us that all T -invariant coherent previsions can be constructed using Banach
limits onL (N). The smallest strongly T -invariant coherent lower prevision ET onL (X )
is the lower envelope of this set, and also given by

ET( f ) = inf
P∈P(X )

Eθ ( fP) = inf
P∈P(X )

sup
n≥1

inf
k≥0

[

1
n

k+n−1

∑
ℓ=k

P((Tℓ)t f )

]

for any gamble f onX .

Proof. First of all, a coherent previsionP on L (X ) belongs toM (P), i.e., dominates
P on its domainK , if and only if P dominates the natural extensionEP on all gambles.
Moreover,EP is weaklyT-invariant by Theorem 8. Now consider anyP ∈ M (P). Use
the above observations together with Proposition 21 [statements 3 and 4] to show that for
any Banach limitL on L (N), PL is a T-invariant coherent prevision that dominatesP.
Conversely, ifP is a T-invariant coherent prevision onL (X ) that dominatesP on K ,
then by Proposition 21 [statement 5],P= PL for any Banach limitL onL (N). This shows
that{PL : P∈ M (P),L ∈ Pθ (N)} is indeed the set ofT-invariant coherent previsions on
L (X ) that dominateP on K . Consequently,EP,T is the lower envelope of this set,
whence for any gamblef onX

EP,T( f ) = inf
P∈M (P)

inf
L∈Pθ (N)

PL( f ) = inf
P∈M (P)

inf
L∈Pθ (N)

L( fP)
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and sinceEθ is the lower envelope ofPθ (N),

= inf
P∈M (P)

Eθ ( fP)

and using Eqs. (15) and (16),

= inf
P∈M (P)

sup
n≥1

inf
k≥0

[

1
n

k+n−1

∑
ℓ=k

P((Tℓ)t f )

]

.

The rest of the proof is now immediate. �

8.3. Generalised Banach limits.The above results on monoidsTT generated by a single
transformationT can be generalised towards more general monoidsT of transformations
of X , such that the setT ∗ of convex mixtures of the lifted linear transformations inT t

is directed by the successor relation> on T ∗. The following discussion establishes an
interesting connection between strong invariance and the notion of a generalised Banach
limit.

We can considerT ∗ as a monoid of transformations of itself, as follows: with any
elementT∗ we associate a transformation ofT ∗, also denoted byT∗, such thatT∗(S∗) :=
S∗T∗ ∈ T ∗, for anyS∗ in T ∗.54 We can, in the usual fashion, liftT∗ to a transformation
(T∗)t onL (T ∗) by letting(T∗)tg = g◦T∗, or in other words

(T∗)tg(S∗) = g(T∗(S∗)) = g(S∗T∗), (18)

for anyS∗ in T ∗ and any gambleg onT ∗, i.e.,g∈ L (T ∗).
Now ageneralised Banach limit[Schechter, 1997, Sections 12.33–12.38] onL (T ∗) is

defined as any linear functional onL (T ∗) that dominates the limit inferior operator with
respect to the directed setT ∗. Let us take a closer look at this limit inferior operator. Itis
defined by

liminf
T ∗

g = lim inf
T∗∈T ∗

g(T∗) := sup
S∗∈T ∗

inf
T∗>S∗

g(T∗),

for any gambleg on T ∗. Now recall thatT∗ > S∗ if and only if there is someR∗ in T ∗

such thatT∗ = R∗S∗, so we get, using Eq. (18), that

liminf
T∗∈T ∗

g(T∗) = sup
S∗∈T ∗

inf
R∗∈T ∗

g(R∗S∗) = sup
S∗∈T ∗

inf
R∗∈T ∗

(S∗)tg(R∗) = lim
S∗∈T ∗

PT ∗((S∗)tg),

wherePT ∗ is the vacuous lower prevision onL (T ∗). If we look at Corollary 14 for
the special caseX = T ∗ and the monoid of transformationsT ∗, recall that we need
to lift transformations inT ∗ before we can apply them to gambles, and that the lifted
transformations ofT ∗ already constitute a convex set55, we easily get to the following
conclusion.

Proposition 23. The limit inferior operator onL (T ∗) is actually the point-wise smallest
stronglyT ∗-invariant coherent lower prevision onL (T ∗), and the generalised Banach
limits onL (T ∗) are theT ∗-invariant coherent previsions onL (T ∗).

54Usually,T∗(S∗) is defined asT∗S∗, see for instance Walley [1991, Note 1 of Section 3.5.1]. Butwe have to
take a different route here because the elements ofT ∗ are convex mixtures oflifted transformations, and as we
have seen, lifting reverses the order of application of transformations.

55In general, even ifT t is directed by the successor relation>, the limit inferior operator onL (T t) will not
be strongly invariant. But convexification, or going fromT t to T ∗, makes the limit inferior strongly invariant.
Observe in this respect that the limit inferior operator onL (N) is not strongly shift-invariant, but its ‘convexified’
counterpartEθ is.
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We can now apply arguments similar to the ones in the previoussection, for general
monoidsT of transformations ofX such thatT ∗ is directed. Consider any coherent
lower previsionP on L (X ) and any gamblef , and define the following gamblefP on
T ∗:

fP(S∗) := P(S∗ f )

for anyS∗ in T ∗, which generalises Eq. (16). Observe that, using Eq. (18),

(T∗ f )P(S∗) = P(S∗T∗ f ) = fP(S∗T∗) = (T∗)t fP(S∗),

so

(T∗ f )P = (T∗)t fP,

which generalises Eq. (17). If we consider anyT ∗-invariant coherent previsionL on
L (T ∗), or in other words a generalised Banach limit onL (T ∗), we can now define
a new lower previsionPL on L (X ) by PL( f ) := L( fP), and Proposition 21, as well as
Theorem 22, can now easily be generalised from monoids of transformations with a single
generator to arbitrary directed monoids. In particular, wefind that

EP,T ( f ) = inf
P∈M (P)

lim inf
T∗∈T ∗

P(T∗ f ) andET ( f ) = inf
P∈P(X )

lim inf
T∗∈T ∗

P(T∗ f )

for any gamblef on X , whereP is any weaklyT -invariant lower prevision that avoids
sure loss.

9. PERMUTATION INVARIANCE ON FINITE SPACES

Assume now thatT is a finite groupP of permutations ofX . Then we have the
following characterisation result for the weaklyP-invariant coherent lower previsions.

Theorem 24. Let P be a finite group of permutations ofX . All weaklyP-invariant
coherent lower previsions QonL (X ) have the form

Q =
1

|P| ∑
π∈P

πP, (19)

where|P| is the number of permutations inP, and Pis any coherent lower prevision on
L (X ).

Proof. Consider a coherent lower previsionP on L (X ), and letQ be the corresponding
lower prevision, given by Eq. (19). ThenQ is coherent, as a convex mixture of coherent
lower previsionsπP. Moreover, letϖ be any element ofP, then

ϖQ =
1

|P| ∑
π∈P

(ϖπ)P,=
1

|P| ∑
π∈ϖP

πP,

whereϖP = {ϖπ : π ∈ P} = P, becauseP is a group of permutations. Consequently
ϖQ = Q, soQ is weaklyP-invariant.

Conversely, letQ be any weaklyP-invariant coherent lower prevision, then we recover
Q on the left-hand side if we insertQ in the right-hand side of Eq. (19). So any weakly
P-invariant coherent lower prevision is indeed of the form (19). �
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Next, we give an interesting representation result for the stronglyP-invariant coherent
lower previsions, when in addition,X is a finite set.56 As we shall see further on, this es-
sentially simple result has many interesting consequences, amongst which a generalisation
to coherent lower previsions of de Finetti’s [1937] representation result for finite sequences
of exchangeable random variables (see Section 9.2). RecallthatAP is the set of allP-
invariant atoms ofX . For eachA in AP , definePu(·|A) as the coherent prevision on
L (X ) all of whose probability mass is uniformly distributed overA, i.e., for all gambles
f onX :

Pu( f |A) =
1
|A| ∑

x∈A

f (x).

Finally, letPu( f |AP ) denote the gamble onAP that assumes the valuePu( f |AP )(A) :=
Pu( f |A) in any elementA of AP .

Theorem 25. Let P be a group of permutations of the finite setX . A coherent lower
prevision onL (X ) is stronglyP-invariant if and only if P( f ) = P0(P

u( f |AP )) for all
f in L (X ), where P0 is an arbitrary coherent lower prevision onL (AP).

Proof. We begin with the ‘if’ part. LetP0 be an arbitrary coherent lower prevision on
L (AP), and suppose thatP = P0(P

u(·|AP)). Then it is easy to see thatP is coherent.
We show thatP is stronglyP-invariant. Consider any gamblef on X and anyπ ∈ P.
Then for anyA in AP and any gamblef onX ,

Pu( f −π t f |A) =
1
|A| ∑

x∈A

[ f (x)− f (πx)] = 0,

becausex ∈ A is equivalent toπx∈ A. So we see thatP( f −π t f ) = P0(0) = 0, sinceP0
is coherent. In a similar way, we can prove thatP(π t f − f ) = 0, soP is indeed strongly
P-invariant.

To prove the ‘only if’ part, we first concentrate on the case ofa P-invariant coherent
previsionP onL (X ). Fix any gamblef onX . SinceP is a coherent prevision, we find
that

f = ∑
A∈AP

f IA and P( f ) = ∑
A∈AP

P( f IA) = ∑
A∈AP

P( f |A)P(A),

where we have used Bayes’s rule to defineP( f |A) := P( f IA)/P(A) if P(A) > 0 andP( f |A)
is arbitrary otherwise.

Now assume thatP is P-invariant. Fix anyP-invariant atomA in AP such that
P(A) > 0 and letπ ∈ P. For any gamblef onX , we see thatπ t( f IA) = (π t f )IA, sinceA
is in particularπ-invariant. Consequently

P(π t f |A) = P((π t f )IA)/P(A) = P(π t( f IA))/P(A) = P( f IA)/P(A) = P( f |A),

so P(·|A) is P-invariant as well.57 Now let for any y in the finite setA, p(y|A) :=
P({y}|A) ≥ 0, then on the one hand∑x∈A p(x|A) = P(A|A) = 1. On the other hand, it
follows from theπ-invariance ofP(·|A) that p(x|A) = p(πx|A) for anyx in A. Since we
know from Proposition 1 thatA = {πx: π ∈ P}, we see thatp(·|A) is constant onA,

56We find the ‘permutation symmetry’ between Theorems 24 and 25quite surprising: the former states that
a weaklyP-invariant coherent lower prevision is a uniform prevision(or mixture) of coherent lower previsions,
and the latter that a stronglyP-invariant coherent lower prevision is a coherent lower prevision of uniform
previsions.

57This is an instance of a more general result, namely that coherent conditioning of a coherent lower prevision
on an invariant event preserves both weak and strong invariance. A proof of this statement is not difficult, but
outside the scope of this paper.
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so p(x|A) = 1/|A| for all x in A, and consequentlyP( f |A) = Pu( f |A), whenceP( f ) =

∑A∈AP
Pu( f |A)P(A). So indeed there is a coherent previsionP0 on L (AP), defined by

P0({A}) = P(A) for all A∈ AP , such thatP = P0(Pu(·|AP)).
Finally, letP be any stronglyP-invariant coherent lower prevision, so anyP∈ M (P)

is P-invariant and can therefore be written asP = P0(Pu(·|AP)). If we let P0 be the
(coherent) lower envelope of the set{P0 : P∈ M (P)}, then sinceP is the lower envelope
of M (P), we get immediately thatP = P0(P

u(·|AP )). �

As an immediate corollary, we see that that the uniform coherent previsionPu on
L (X ) is the only stronglyP-invariant coherent lower prevision onL (X ) if and only
if X is the onlyP-invariant atom, i.e., ifAP = {X }. This is for instance the case ifP

is the group of all permutations ofX , or more generally ifP includes the cyclic group
of permutations ofX . It should therefore come as no surprise that, since symmetry of
beliefs is so often confused with beliefs of symmetry, the uniform distribution is so often
(but wrongly so) considered to be a good model for complete ignorance.

Another immediate corollary of this result is that the smallest stronglyP-invariant
coherent lower prevision onL (X ) is given byP( f ) = infA∈AP

1
|A| ∑x∈A f (x), which of

course agrees with the uniform distribution when we letP be the group of all permuta-
tions.

These results do not extend to the case where we have transformations ofX that are
not permutations; as we have said before, as soon as we have two different constant trans-
formations in the monoidT , there are no strongly invariant belief models.

9.1. A few simple examples.We now apply the theorems above in a number of interesting
and simple examples.

Example5. Let X = X2 := {1,2}, then all coherent lower previsions onL (X2) are so-
calledlinear-vacuous mixtures, i.e., convex combinations of a coherent (linear) prevision
and the vacuous lower prevision, and therefore given by

P( f ) = ε [α f (1)+ (1−α) f (2)]+ (1− ε)min{ f (1), f (2)},

where 0≤ α ≤ 1 and 0≤ ε ≤ 1. LetP2 be the set of all permutations ofX2. Then the
only stronglyP2-invariant coherent lower prevision is the uniform coherent prevision

P1
2
( f ) =

1
2
[ f (1)+ f (2)],

corresponding toα = 1
2 andε = 1. The weaklyP2-invariant coherent lower previsions

are given by

P( f ) = εP1
2
( f )+ (1− ε)min{ f (1), f (2)},

where 0≤ ε ≤ 1, so they are all the convex mixtures of the uniform coherentprevision and
the vacuous lower prevision.�
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Example6. Let X = X3 := {1,2,3}, then all 2-monotone coherent lower previsions on
L (X3) are given by58

P( f ) = m1 f (1)+m2 f (2)+m3 f (3)

+m4min{ f (1), f (2)}+m5min{ f (2), f (3)}+m6min{ f (3), f (1)}

+m7min

{
f (1)+ f (2)

2
,

f (2)+ f (3)

2
,

f (3)+ f (1)

2

}

+m8min{ f (1), f (2), f (3)}.

where 0≤ mk ≤ 1 and∑8
k=1mk = 1. LetP3 be the set of all permutations ofX3. Then the

only stronglyP3-invariant coherent lower prevision is the uniform coherent prevision

P( f ) =
1
3
[ f (1)+ f (2)+ f (3)],

corresponding tom1 = m2 = m3 = 1
3 andm4 = m5 = m6 = m7 = m8 = 0 [Observe that

a coherent prevision is always 2-monotone.]. WeakP3- invariance, on the other hand,
requires only thatm1 = m2 = m3 andm4 = m5 = m6, so all the weaklyP3-invariant and
2-monotone coherent lower previsions are given by

P( f ) =
M1

3
[ f (1)+ f (2)+ f (3)]

+
M2

3
[min{ f (1), f (2)}+min{ f (2), f (3)}+min{ f (3), f (1)}]

+M3min

{
f (1)+ f (2)

2
,

f (2)+ f (3)

2
,

f (3)+ f (1)

2

}

+M4min{ f (1), f (2), f (3)}.

where 0≤ Mk ≤ 1 andM1 +M2+M3+M4 = 1. The weaklyP3-invariant and completely
monotone coherent lower previsions (natural extensions ofbelief functions) correspond to
the choiceM3 = 0. �

Example7. Consider rolling a die for which there is evidence of symmetry between
all even numbers, on the one hand, and between all odd numberson the other. Let
X = X6 := {1, . . . ,6} and letPeo be the set of all permutations ofX6 that map even
numbers to even numbers and odd numbers to odd numbers. ThePeo-invariant atoms are
{1,3,5} and{2,4,6}. By Theorem 25, the stronglyPeo-invariant coherent previsions on
L (X6), which are the precise belief models that are compatible with the subject’s beliefs
of symmetry, are given by

P( f ) =
α
3

[ f (1)+ f (3)+ f (5)]+
1−α

3
[ f (2)+ f (4)+ f (6)],

58An explicit proof of this statement is beyond the scope of this paper, but it runs along the following lines:
(i) any coherent lower probability on the set of all events ofa three-element space is 2-monotone [Walley, 1981,
p. 58]; (ii) all 2-monotone coherent lower probabilities make up a convex set, and are convex mixtures of the
extreme points of this set [Maaß, 2003, Chapter 2] (By the way, an argument similar to that in Maaß [2003,
Chapter 2] shows that all stronglyT -invariant coherent lower previsions are (infinite) convexmixtures of the
extreme stronglyT -invariant coherent lower previsions.); (iii) the 2-monotone coherent lower previsions on
all gambles are natural extensions of the 2-monotone coherent lower previsions on all events [Walley, 1981,
De Cooman et al., 2006, 2005b,a]; and (iv) natural extensionto gambles of 2-monotone lower probabilities pre-
serves convex mixtures.



SYMMETRY OF MODELS VERSUS MODELS OF SYMMETRY 53

where 0≤α ≤ 1, and more generally, the stronglyPeo-invariant coherent lower previsions
onL (X6) are [apply Theorem 25 and use the results in Example 5]

P( f ) = ε
[

α
3

[ f (1)+ f (3)+ f (5)]+
1−α

3
[ f (2)+ f (4)+ f (6)]

]

+(1− ε)min

{
f (1)+ f (3)+ f (5)

3
,

f (2)+ f (4)+ f (6)

3

}

for 0≤ ε ≤ 1 and 0≤ α ≤ 1. �

Example8. Let us show that the point-wise smallest strongly invariantcoherent lower
prevision extension is not necessarily 2-monotone. Consider X4 := {1,2,3,4}, and letπ
be the permutation ofX4 defined byπ(1) = 2, π(2) = 1, π(3) = 4 andπ(4) = 3. Observe
thatπ is its own inverse, soTπ = {idX4,π} is a group. From Theorem 25 we infer that the
point-wise smallest stronglyπ-invariant coherent lower prevision on all gambles is given
by

Eπ( f ) = min

{
f (1)+ f (2)

2
,

f (3)+ f (4)

2

}

.

Let us now consider the gamblesf1 and f2 onX4, given by f1(1) = 0, f1(2) =−1, f1(3) =
1, f1(4) = −1 and f2(1) = −1, f2(2) = −0.25, f2(3) = −1.5, f2(4) = 0. Check that

Eπ( f1∧ f2)+Eπ( f1∨ f2) = −1.25−0.125= −1.375< −0.5−0.75= Eπ( f1)+Eπ( f2).

Hence,Eπ is not 2-monotone.�

The following example shows that possibility measures are not very useful for mod-
elling permutation invariance.

Example9. Consider a possibility measureΠ defined on all events of a finite spaceX .
Then there is a mapλ : X → R+, called thepossibility distributionof Π, such that
λ (x) := Π({x}) and moreoverΠ(A) = maxx∈A λ (x) for all non-empty eventsA ⊆ X .
We have mentioned before thatΠ is a coherent upper probability if and only ifΠ(X ) =
maxx∈X λ (x) = 1. We shall assume this is the case. Now consider any groupP of per-
mutations ofX . Then clearlyΠ is weaklyP-invariant if and only ifλ is constant on the
P-invariant atoms ofX . In particular,Π is weakly invariant with respect to all permuta-
tions if and only isλ is everywhere equal to one, soΠ is the vacuous upper probability.

For strongP-invariance, letP be any stronglyP-invariant coherent lower prevision
whose domain contains at least all events. Letx be any element ofX , and let[x]

P
be

the P-invariant atom that containsx. Then it follows from Theorem 25 thatP({x}) ≤
1/|[x]P |. So forP to extend a possibility measure, it is necessary (but not sufficient) that
there is at least one elementz of X such thatP({z}) = 1, implying thatz should be left
invariant by all the permutations inP, or equivalently,[z]

P
= {z}. �

9.2. Exchangeable lower previsions.As another example, we now discuss the case of
so-called exchangeable coherent lower previsions. Consider a non-empty finite setXκ :=
{1, . . . ,κ} of categories, andN random variablesX1, . . . , XN taking values in the same set
Xκ , whereκ andN are natural numbers withκ ≥ 2 andN ≥ 1. The joint random variable
X := (X1, . . . ,XN) assumes values in the setX := X N

κ .59 We want to model a subject’s
beliefs about the value thatX assumes inX N

κ , and generally, we use a coherent lower
previsionP onL (X N

κ ) to represent such beliefs.

59This means that we assume theseN random variables to belogically independent.
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Now assume that our subject believes that all random variablesXk are generated by the
same process at different timesk, and that the properties of this process do not depend
on the timek. So, the subject assesses that there is permutation symmetry between the
different timesk. How can suchbeliefs of symmetrybe modelled?

With a permutationπ of {1, . . . ,N}, we can associate (by the usual procedure of lifting)
a permutation ofX = X N

κ , also denoted byπ , that maps anyx = (x1, . . . ,xN) in X N
κ to

πx := (xπ(1), . . . ,xπ(N)). The belief models that are compatible with the subject’s beliefs
of symmetry, are therefore the coherent lower previsions on(subsets of)L (X N

κ ) that are
stronglyPN

κ -invariant, wherePN
κ is the group of liftings toX N

κ of all permutations of
{1, . . . ,N}. Walley [1991, Chapter 9] calls such lower previsionsexchangeable, as they
generalise de Finetti’s [1937] notion of exchangeable coherent previsions. We intend to
characterise the exchangeable lower previsions using Theorem 25. This will lead us to a
generalisation (Eq. (20)) of de Finetti’s [1937] representation result for finite numbers of
exchangeable random variables.

It should be mentioned here that we should, as always, clearly distinguish between
‘beliefs of symmetry’ and ‘symmetry of beliefs’. The latterimposes much weaker require-
ments on coherent lower previsions, namely those of weakPN

κ -invariance, which is called
permutabilityby Walley [1991, Chapter 9].60 In particular, the permutation symmetry that
goes along with ignorance can only be invoked to justify permutability, but not, of course,
exchangeability. Observe in this respect that the vacuous lower prevision onL (X N

κ ) is
permutable, but not exchangeable. It is well-known (see forinstance Zabell [1989a, 1992]),
that Laplace’s Rule of Succession can be obtained by updating a particular exchangeable
coherent prevision, but it should be clear from the discussion in this paper that ignorance
alone (the Principle of Insufficient Reason) cannot be invoked to justify using such an ex-
changeable prevision, as (with considerable hindsight) Laplace implicitly seems to have
done (see for instance Howie [2002], Zabell [1989a, 1992]).

For anyx = (x1, . . . ,xN) in X N
κ , thePN

κ -invariant atom[x]
PN

κ
is the set of all permuta-

tions of (the components of)x. If we define the set of possiblecount vectors

N
N

κ =

{

(m1, . . . ,mκ) : mk ∈ N+ and
κ

∑
k=1

mk = N

}

and thecounting mapT : X N
κ → N N

κ such thatT(x1, . . . ,xN) is theκ-tuple, whosek-th
component is given by

Tk(x1, . . . ,xN) = |{ℓ ∈ Xκ : xℓ = k}|,

i.e., the number of components ofx whose value isk, then the number of elements of the
invariant atom[x]

PN
κ

is precisely

ν(T(x)) :=

(
N

T1(x) . . .Tκ(x)

)

=
N!

T1(x)! . . .Tκ(x)!

andT is a bijection (one-to-one and onto) betweenA
PN

κ
andN N

κ . An invariant atom is
therefore completely identified by the count vectorT(x) of any of its elementsx, and we
shall henceforth denote the invariant atoms ofX N

κ by [m], wherem = (m1, . . . ,mκ)∈N N
κ ,

andx ∈ [m] if and only if T(x) = m.

60See Walley [1991, Chapter 9] for a much more detailed discussion of the difference between permutability
and exchangeability.
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The coherent previsionPu(·|m) on L (X N
κ ) whose probability mass is uniformly dis-

tributed over the invariant atom[m] is given by

Pu( f |m) =
1

ν(m) ∑
x∈[m]

f (x).

Interestingly, this is the precise prevision that is associated with takingN a-select drawings
without replacement from an urn withN balls, m1 of which are of type 1, . . . , andmκ
of which are of typeκ . Theorem 25 now tells us that any exchangeable coherent lower
previsionP onL (X N

κ ) can be written as

P( f ) = PN
κ (Pu( f |N N

κ )), (20)

wherePN
κ is some coherent lower prevision onL (N N

κ ). This means that suchan ex-
changeable lower prevision can be associated with N a-select drawings from an urn with
N balls of types1, . . . , κ , whose compositionm is unknown, but for which the available
information about the unknown composition is modelled by a coherent lower prevision PNκ .

That exchangeable coherent previsions can be interpreted in terms of sampling without
replacement from an urn with unknown composition, is actually well-known, and essen-
tially goes back to de Finetti [1937]. Heath and Sudderth [1976] give a simple proof for
random variables that may assume two values. But we believe our proof61 for the more
general case of exchangeable coherentlower previsions and random variables that may
assumemore than two values, is conceptually even simpler than Heath and Sudderth’s
proof, even though it is a special case of a much more general representation result (The-
orem 25). The essence of the present proof in the special caseof coherent previsionsP
is captured wonderfully well by Zabell’s [1992, Section 3.1] succinct statement: “ThusP
is exchangeable if and only if two sequences having the same frequency vector have the
same probability.”

Our subject’s beliefs could, in addition, be symmetrical inthe categories inXκ =
{1, . . . ,κ}, for instance as a result of her ignorance about the process that generates the
outcomesXk at each timek. As we have seen, this will be typically represented by using
a type ofweaklyinvariant belief models, in this case with respect to permutations of the
categories, rather than the times. Any permutationϖ of Xκ induces a permutation ofX N

κ ,
also denoted byϖ , through

ϖx = ϖ(x1, . . . ,xN) := (ϖ(x1), . . . ,ϖ(xN)).

What happens if we require thatP, in addition to being exchangeable, should also be
weaklyinvariant under all such permutations? It is not difficult toprove that

Pu(ϖ−1 f |m) = Pu( f |ϖm),

where we letϖm = ϖ(m1, . . . ,mκ) := (mϖ(1), . . . ,mϖ(κ)) in the usual fashion. This im-
plies that there is such weak invariance if and only if the coherent lower previsionPN

κ on
L (N N

κ ) is weaklyinvariant with respect to all category permutations! In particular, this
weak invariance is satisfied for the vacuous lower previsionon L (N N

κ ). Another type
of lower coherent prevision that exhibits such a combination of strong invariance for time
permutations and weak invariance for category permutations, and which also has other
very special and interesting properties, is constructed bytaking lower envelopes of specific
sets of Dirichlet-Multinomial distributions, leading to the so-called Imprecise Dirichlet-
Multinomial Model (IDMM, see Walley and Bernard [1999]).

61Walley [1991, Chapter 9] also mentions this result for exchangeable coherent lower previsions. The essence
of his argument is similar to what we do in the last paragraph of the proof of Theorem 25.
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In the literature, however, it is sometimes required that a coherent precise prevision
should be invariant with respect to the combined action of the permutations of times and
categories. These are the so-calledpartition exchangeableprevisions (see Zabell [1992]
for an interesting discussion and historical overview). Ofcourse, the generalisation of
this notion to coherent lower previsions should be stronglyinvariant with respect to such
combined permutations, and therefore be a lower envelope ofpartition exchangeable pre-
visions. For suchpartition exchangeablelower previsions, Theorem 25 can be invoked to
prove a representation result that is similar to that for coherent lower previsions that are
only exchangeable. It should be clear that they correspond to exchangeable lower previ-
sions for which the corresponding coherent lower previsionPN

κ on L (N N
κ ) is strongly

rather than just weakly invariant with respect to all category permutations. Of course, any
justification for such models should be based on beliefs thatthere is permutation symmetry
in the categories behind the process that generates the outcomesXk at different timesk, and
cannot be justified by mere ignorance about this process.

9.3. Updating exchangeable lower previsions: predictive inference. Finally, let us dis-
cuss possible applications of the discussion in this paper to predictive inference. As-
sume that we haven∗ random variablesX1, . . .Xn∗ , that may assume values in the set
Xκ = {1, . . . ,κ}. We assume that these random variables are assessed to be exchange-
able, in the sense that any coherent lower prevision that describes the available information
about the values that the joint random variableX∗ = (X1, . . . ,Xn∗) assumes inX n∗

κ should
be exchangeable, i.e., stronglyPn∗

κ -invariant. This requirement could be calledpre-data
exchangeability. So we know from the previous section that such a coherent lower previ-
sion must be of the formP= Pn∗

κ (Pu(·|N n∗
κ )), wherePn∗

κ is some coherent lower prevision
onL (N n∗

κ ). We shall assume thatPn∗
κ is a lower envelope of a set of coherent previsions

M n∗
κ onL (N n∗

κ ).
Suppose we now observe the valuesx = (x1, . . . ,xn) of the first n random variables

X = (X1, . . . ,Xn), where 1≤ n < n∗. We ask ourselves how we should coherently update
the belief modelP to a new modelP(·|x) which describes our beliefs about the values
of the remaining random variablesX′ = (Xn+1, . . . ,Xn∗). This is, generally speaking, the
problem ofpredictive inference. In order to make things as easy as possible, we shall
assume thatP({x}) > 0, so our subject has some reason, prior to observingx, to believe
that this observation will actually occur, because she is willing to bet on its occurrence at
non-trivial odds.

Let us denote byn′ = n∗−n the number of remaining random variables, then we know
thatX′ assumes values inX n′

κ , andP(·|x) will be a lower prevision onL (X n′
κ ).

We shall first look at the problem of updating the coherent previsionP= Q(Pu(·|N n∗
κ ))

for any coherent previsionQ in M n∗
κ . So consider any gambleg on X n′

κ . It follows from
coherence requirements (Bayes’s rule) that the updated coherent previsionP(·|x) is given
by

P(g|x) =
P(gIx)
P(Ix)

=
Q(Pu(gIx|N n∗

κ ))

Q(Pu(Ix|N n∗
κ ))

, (21)

whereIx(x∗) = 1 if the firstn components of the vectorx∗ ∈X n∗
κ are given by the vectorx,

and zero otherwise. Observe, by the way, that by assumption,P(Ix)≥ P(Ix) = P({x}) > 0.
Now for anym∗ in N n∗

κ we find that, with obvious notations,

Pu(gIx|m∗) =
1

ν(m∗) ∑
T′(x′)+m=m∗

g(x′) =
ν(m∗−m)

ν(m∗)
Pu(g|m∗−m) (22)
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where we letm = T(x),and whereT′ maps samplesx′ in X n′
κ to their corresponding count

vectorsT′(x′) in N n′
κ . Of courseν(m∗−m) is non-zero only ifm∗ ≥ m, or equivalently if

m∗−m∈N n′
κ , or in other words if it is possible to selectn balls of compositionm without

replacement from an urn with compositionm∗. In this expression,Pu(·|m′) stands for the
coherent prevision onL (X n′

κ ) whose probability mass is uniformly distributed over the
Pn′

κ -invariant atom[m′], for anym′ in N n′
κ . Now for g = 1 we find that

Pu(Ix|m∗) =
ν(m∗−m)

ν(m∗)
= p(m|m∗) =: Lm(m∗) (23)

is the probability of observing a sample of sizen with compositionm by sampling without
replacement from an urn with compositionm∗. Lm is the corresponding likelihood function
onN n∗

κ . We may as well considerLm as a likelihood function onN n′
κ , and for anym′ in

N n′
κ we let

Lm(m′) := Lm(m+m′) =
ν(m′)

ν(m+m′)

be the probability that there remainn′ balls of compositionm′ after drawing (without
replacement)n balls of compositionm from an urn withn∗ balls. We may then rewrite
Eq. (21), using Eqs. (22) and (23), as

P(g|x) =
Q(LmPu(g|N n′

κ ))

Q(Lm)
= Q(Pu(g|N n′

κ )|m), (24)

whereQ(Lm)= P(Ix)> 0 by assumption, andQ(·|m) is the coherent prevision onL (N n′
κ )

defined by

Q(h|m) :=
Q(Lmh)

Q(Lm)
, (25)

for any gamblehonN n′
κ , i.e.,Q(·|m) is the coherent prevision obtained after using Bayes’s

rule to updateQ with the likelihood functionLm. This means thatif Q is a belief model
for the unknown composition of an urn with n∗ balls, then Q(·|m) is the corresponding
model for the unknown composition of the remaining n′ balls in the urn, after n balls with
compositionm have been taken from it.

Now if we have a coherent lower previsionPn∗
κ on L (N n∗

κ ) that is a lower envelope
of a setM n∗

κ of coherent previsionsQ, then coherence62 tells us that the updated lower
previsionP(·|x) is precisely the lower envelope of the corresponding updated coherent
previsionsP(·|x), and consequently, using Eqs. (24) and (25), we find that

P(g|x) = Pn∗
κ (Pu(g|N n′

κ )|m), (26)

wherePn∗
κ (·|m) is the coherent lower prevision onL (N n′

κ ) given by

Pn∗
κ (h|m) := inf

{
Q(Lmh)

Q(Lm)
: Q∈ M

n∗
κ

}

= inf
{

Q(h|m) : Q∈ M
n∗
κ

}

, (27)

for any gambleh on N n′
κ . In other words,Pn∗

κ (·|m) is the coherent lower prevision ob-
tained after using coherence (the so-called Generalised Bayes Rule) to updatePn∗

κ with
the likelihood functionLm. This means again thatif Pn∗

κ is a belief model for the unknown
composition of an urn with n∗ balls, then Pn

∗

κ (·|m) is the corresponding belief model for the
unknown composition of the remaining n′ balls in the urn, after n balls with composition
m have been taken from it.

62This follows from Walley’s [1991, Section 6.5] GeneralisedBayes Rule.
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If we compare Eq. (26) with Eq. (20), we see that the updated belief modelP(·|x) is
still stronglyPn′

κ -invariant,63 so there still ispost-data exchangeabilityfor the remaining
random variablesX′ = (Xn+1, . . . ,Xn∗). Moreover, by looking at Eq. (21) and Eqs. (26)
and (27), we see that the updated (lower) previsionsP(·|x) and P(·|x) only depend on
the observed samplex through thelikelihood function LT(x). This tells us that this type
of predictive inference satisfies the so-calledlikelihood principle, and moreover that the
count vectorm = T(x), or more generally the mapT is asufficient statistic.

10. CONCLUSIONS

We have tried to argue that there is a clear distinction between the symmetry of belief
models, and models of beliefs of symmetry, and that both notions can be distinguished
between when indecision is taken seriously, as is the case inWalley’s [1991] behavioural
theory of imprecise probabilities. Our present attempt to distinguish between these no-
tions, and capture the distinction in a formal way, is inspired by Walley’s [1991, Chapter 9]
discussion of the difference between permutable and exchangeable lower previsions, and
Pericchi and Walley’s [1991] discussion of ‘classes of reasonable priors’ versus ‘reason-
able classes of priors’.

Indeed, there seems to be a difference of type between the twonotions. The former
(symmetry of models) is a property that belief models may have, and we may require, as
a principle of rationality, or as a principle of ‘faithful modelling’, that if the available evi-
dence is symmetrical, then our corresponding belief modelsshould be symmetrical too. A
case in point is that of complete ignorance, where the ‘evidence’ is completely symmetri-
cal, and we may therefore require that corresponding beliefmodel should be completely
symmetrical too. This leads to the various principles discussed in Section 5, all of which
seem to single out the vacuous belief model for representingcomplete ignorance, and
which extend Walley’s [1991, Section 5.5] treatment of thismatter.

The latter notion (models of symmetry) is more properly related to a type of structural
assessment: if a subject believes there is symmetry, how should she model that, and how
should assessments of symmetry be combined with other assessments? We have tried
to answer such questions in Sections 7, where we discuss the strongly invariant natural
extension.

It is well-known that if we only use Bayesian, or precise, probability models, requiring
invariance of the probability measures with respect to all types of symmetry in the evi-
dence may be impossible; examples were given by Boole, Bertrand and Fisher (see Zabell
[1989a] for discussion and references). This has led certain researchers to abandon re-
quiring the above-mentioned ‘faithfulness’ of belief models, or to single out certain types
of symmetry which are deemed to be better than others. We havetried to argue that this
is unnecessary: the vacuous belief model has no such problems, and is symmetrical with
respect to any transformation you care to name. And of course, our criticism of the Prin-
ciple of Insufficient Reason is not new. Our ideas were heavily influenced by Walley’s
[1991] book on imprecise probabilities, whose Chapter 5 contains a wonderful overview
of arguments against restricting ourselves to precise probability models. Zabell [1989b]
also gives an excellent discussion of much older criticism,dating back to the middle of
the 19th century. In particular, Ellis’s [1844]ex nihilo nihil— you cannot make decisions
or inferences based on complete ignorance — finds a nice confirmation in the fact that
the vacuous belief model captures complete indecision, andthat updating a vacuous belief
model leads to a vacuous belief model [Walley, 1991, Section6.6.1]. But what we have

63See also footnote 57.
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tried to do here is provide a framework and mathematical apparatus that allows us to better
understand and discuss the problems underlying the Principle of Insufficient Reason, and
more general problems of dealing with any type of symmetry inbelief models.

This study of symmetry in relation to belief models is far from being complete how-
ever, and our notions of weak and strong invariance may have to be refined, and perhaps
even modified, as well as complemented by other notions of symmetry. It might for in-
stance be of interest to study the notion of symmetry that captures theinsufficient reason
to strictly preferthat is briefly touched upon near the end of Section 4.1. Also,we may
seem more certain than we actually are about the appropriateness (in terms of having a
sound behavioural justification and interpretation) of ournotions of weak and (especially)
strong invariance for random variables that may assume an infinite number of values. This
is the point where our intuition deserts us, and where a number of interesting questions
and problems leave us speechless. To name but one such problem, brought to the fore
by the discussion in Section 7: for certain types of monoids,it is completely irrational
to impose strong invariance (because doing so makes us subject to a sure loss). We can
understand why this is the case for the monoid of all transformations, even on a finite set
(Theorem 6). But why, for instance, are there no (strongly) permutation invariant coher-
ent (lower) previsions on the set of natural (anda fortiori real) numbers? Why are we
(consequently) reduced to using (strong) shift or translation invariance of coherent (lower)
previsions when we want to try and capture the idea of a uniform distribution on the set
of natural (or real) numbers? And even then, why, as is hintedat in footnote 50, are there
situations where updating a (strongly) shift-invariant coherent (lower) prevision produces
a sure loss? Are there appropriately weakened versions of our strong invariance condition
that avoid these problems?
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