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Abstract

We compare the different notions of coherence within the behavioural
theory of imprecise probabilities when all the spaces are finite. We show
that the differences between the notions are due to conditioning on sets
of (lower, and in some cases upper) probability zero. Next, we charac-
terise the range of coherent extensions in the finite case, proving that the
greatest coherent extensions can always be calculated using the notion of
regular extension, and we discuss the extensions of our results to infinite
spaces.

Keywords: Lower previsions, avoiding partial loss, weak and strong
coherence, regular extension, natural extension.
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1 Introduction

This paper is devoted to the study of the different notions of coherence within
the theory of conditional lower previsions. This theory, established mainly in
[17], provides a behavioural interpretation of probability in terms of acceptable
buying and selling prices for gambles. It includes as particular cases most of the
other uncertainty models present in the literature such as probability charges
[1], 2- and n-monotone set functions [2], possibility measures [6, 21], and p-
boxes [9]. They have also been linked to various theories of integration, such as
Choquet integration [16, p. 53] and Lebesgue integration [17, p. 132].

The behavioural consistency of the acceptable buying and selling prices rep-
resented in a lower prevision is modelled in the unconditional case by means
of the notion of coherence. This notion means basically that our supremum
acceptable buying prices for a random variable should not be affected by our
assessments for other variables, and also that a combination of acceptable trans-
actions should never result in a sure loss. Coherent lower previsions can be given
a sensitivity analysis interpretation as lower envelopes of sets or (precise) previ-
sions, and this serves as a connection between imprecise probabilities and robust
Bayesian analysis [15].

When we want to update a coherent lower prevision taking into account the
observation of the values attained by some variables, there is not a unique way of
extending the notion of coherence. In this paper, we consider two alternatives
put forward by Walley in [17]: weak coherence and (strong) coherence. We
are going to compare both of them and to establish sufficient conditions for
their equivalence. This is interesting because weak coherence is much more
manageable than coherence for practical purposes, as it essentially only depends
of local considerations. We are also going to compare these two conditions with
the notion of avoiding partial loss, which is equivalent to coherence in the precise
case.

We shall deduce from the results in this paper that in the precise case there
is often a unique way of updating a prevision that satisfies the property of
coherence. This is not the case when we deal with lower and upper previsions.
In this paper, we are going to study the set of conditional lower previsions
that we can derive from some unconditional model which satisfy the properties
of weak or strong coherence. We shall establish the smallest and the greatest
models with this property.

In this paper we restrict ourselves to the case where all the referential spaces
are finite. As we shall see, this assumption has a number of technical advan-
tages. One of the most important is that in that case we still can give our
updated models a sensitivity analysis interpretation, so a number of weakly
coherent (resp., coherent) conditional lower previsions can be seen as a model
for the imprecise knowledge of a number of weakly coherent (resp., coherent)
conditional linear previsions. Such an interpretation does not hold in general
when we deal with infinite spaces, as we will also show.

In addition to these advantages, the finite case is also the one used in a
number of applications, for instance with credal (or Bayesian) networks [3, 4].
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On the other hand, to make our treatment as complete as possible, we shall also
discuss in detail in Section 5 to which extent our results can be extended to the
case where some of the referential spaces are infinite. We shall see that most of
them do not hold in that case.

The paper is organised as follows: in Section 2, we give a brief introduction to
the behavioural theory of conditional lower previsions; in section 3, we compare
the notions of weak and strong coherence, and avoiding partial loss; in section
4 we provide the smallest and the greatest conditional lower previsions with are
coherent with some joint; in section 5 we discuss the extension of our results
towards infinite spaces; and in section 6 we give some further comments on the
subject. We have gathered all the proofs in an appendix.

2 Coherence notions on finite spaces

Let us give a short introduction to the concepts and results from the behavioural
theory of imprecise probabilities that we shall use in the rest of the paper. We
refer to [17] for an in-depth study of these and other properties, and to [14] for
a brief survey.

Given a possibility space Ω, a gamble is a bounded real-valued function on Ω.
This function represents a random reward f(ω), which depends on the a priori
unknown value ω of Ω. We shall denote by L(Ω) the set of all gambles on Ω. A
lower prevision P is a real functional defined on some set of gambles K ⊆ L(Ω).
It is used to represent a subject’s supremum acceptable buying prices for these
gambles, in the sense that for any ε > 0 and any f in K the subject is disposed
to accept the uncertain reward f − P (f) + ε.

We can also consider the supremum buying prices for a gamble, conditional
on a subset of Ω. Given such a set B and a gamble f on Ω, the lower previ-
sion P (f |B) represents the subject’s supremum acceptable buying price for the
gamble f , updated after coming to know that the unknown value ω belongs to
B, and nothing else. If we consider a partition B of Ω (for instance a set of
categories), then we shall represent by P (f |B) the gamble on Ω that takes the
value P (f |B) if and only if ω ∈ B. The functional P (·|B) that maps any gamble
f on its domain into the gamble P (f |B) is called a conditional lower prevision.

Let us now re-formulate the above concepts in terms of random variables,
which are the focus of our attention in this paper. Consider random variables
X1, . . . , Xn, taking values in respective finite sets X1, . . . ,Xn. For any subset
J ⊆ {1, . . . , n} we shall denote by XJ the (new) random variable

XJ := (Xj)j∈J ,

which takes values in the product space

XJ := ×j∈JXj .

We shall also use the notation Xn for X{1,...,n}. In the current formulation made
by random variables, Xn is just the definition of the possibility space Ω.
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Definition 1. Let J be a subset of {1, . . . , n}, and let πJ : Xn → XJ be the so-
called projection operator, i.e., the operator that drops the elements of a vector
in Xn that do not correspond to indexes in J . A gamble f on Xn is called XJ -
measurable when for any x, y ∈ Xn, πJ(x) = πJ(y) implies that f(x) = f(y).

There is a one-to-one correspondence between the gambles on Xn that are
XJ -measurable and the gambles on XJ . We shall denote by KJ the set of XJ -
measurable gambles.

Consider two disjoint subsets O, I of {1, . . . , n}. P (XO|XI) represents a
subject’s behavioural dispositions about the gambles that depend on the out-
come of the variables {Xk, k ∈ O}, after coming to know the outcome of the
variables {Xk, k ∈ I}. As such, it is defined on the set of gambles that depend
on the values of the variables in O ∪ I only, i.e., on the set KO∪I of the XO∪I -
measurable gambles on Xn. Given such a gamble f and x ∈ XI , P (f |XI = x)
represents a subject’s supremum acceptable buying price for the gamble f , if he
came to know that the variable XI took the value x (and nothing else). Under
the notation we gave above for lower previsions conditional on events and par-
titions, this would be P (f |B), where B := π−1

I (x). When there is no possible
confusion about the variables involved in the lower prevision, we shall use the
notation P (f |x) for P (f |XI = x). The sets {π−1

I (x) : x ∈ XI} form a partition
of Xn. Hence, we can define the gamble P (f |XI), which takes the value P (f |x)
on x ∈ XI . This is a conditional lower prevision.

These assessments can be made for any disjoint subsets O, I of {1, . . . , n},
and therefore it is not uncommon to model a subject’s beliefs using a finite
number of different conditional previsions. We should verify then that all the
assessments modelled by these conditional previsions are coherent with each
other. The first requirement we make is that for any disjoint O, I ⊆ {1, . . . , n},
the conditional lower prevision P (XO|XI) defined on KO∪I should be separately
coherent. In this case, where the domain is a linear set of gambles, separate
coherence holds if and only if the following conditions are satisfied for any x ∈
XI , f, g ∈ KO∪I , and λ > 0:

P (f |x) ≥ min
ω∈π−1

I (x)
f(ω). (SC1)

P (λf |x) = λP (f |x). (SC2)
P (f + g|x) ≥ P (f |x) + P (g|x). (SC3)

It is also be useful for this paper to consider the particular case where I = ∅,
that is, when we have (unconditional) information about the variables XO. We
have then an (unconditional) lower prevision P (XO) on the set KO of XO-
measurable gambles. Separate coherence is called then simply coherence, and it
holds if and only if the following three conditions hold for any f, g ∈ KO, and
λ > 0:

P (f) ≥ min f. (C1)
P (λf) = λP (f). (C2)
P (f + g) ≥ P (f) + P (g). (C3)
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In general, separate coherence is not enough to guarantee the consistency
of the lower previsions: conditional lower previsions can be conditional on the
values of many different variables, and still we should verify that the assess-
ments they provide are consistent not only separately, but also with each other.
Formally, we are going to consider what we shall call collections of conditional
lower previsions.

Definition 2. Let {P 1(XO1 |XI1), . . . , Pm(XOm |XIm)} be conditional previsions
with respective domains K1, . . . ,Km ⊆ L(Xn), where Kj is the set of XOj∪Ij -
measurable gambles,1 for j = 1, . . . ,m. This is called a collection on Xn when
for each j1 6= j2 in {1, . . . ,m}, either Oj1 6= Oj2 or Ij1 6= Ij2 .

This means that we do not have two different conditional lower previsions
giving information about the same set of variables XO, conditional on the same
set of variables XI . Given a collection P 1(XO1 |XI1), . . . , Pm(XOm |XIm) of con-
ditional lower previsions, there are different ways in which we can guarantee their
consistency2. The first one is called avoiding partial loss.

The XI -support S(f) of a gamble f in KO∪I is given by

S(f) := {π−1
I (x) : x ∈ XI , fIπ−1

I (x) 6= 0}, (1)

i.e., it is the set of conditioning events for which the restriction of f is not
identically zero. We shall also use the notations

G(f |x) = Iπ−1
I (x)(f − P (f |x)), G(f |XI) =

∑
x∈XI

G(f |x) = f − P (f |XI)

for any f ∈ KO∪I and any x ∈ XI .
Definition 3. Consider separately coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm).
We say that they avoid partial loss when for any fj ∈ Kj , j = 1, . . . ,m,

max
ω∈Af1,...,fm

 m∑
j=1

Gj(fj |XIj )

 (ω) ≥ 0,

where Af1,...,fm is the set of elements that belong to some B ∈ Si(fi) for some
i = 1, . . . ,m.

The idea behind this notion is that a combination of transactions that are
acceptable for our subject should not make him lose utiles. It is based on the
rationality requirement that a gamble f ≤ 0 such that f < 0 on some set A
should not be desirable.

Definition 4. Consider separately coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm).
We say that they are weakly coherent when for any fj ∈ Kj , j = 1, . . . ,m,

1We use Kj instead of KOj∪Ij in order to alleviate the notation when no confusion is
possible about the variables involved.

2We give the particular definitions of these notions for finite spaces. See [12, 17] for the
general definitions of these notions on infinite spaces and non-linear domains.
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j0 ∈ {1, . . . ,m}, f0 ∈ Kj0 , x0 ∈ XIj0 ,

max
ω∈Xn

 m∑
j=1

Gj(fj |XIj )−Gj0(f0|x0)

 (ω) ≥ 0.

With this condition we require that our subject should not be able to raise
his supremum acceptable buying price P j0(f0|x0) for a gamble f0 contingent
on x0 by taking into account other conditional assessments. However, under
the behavioural interpretation, a number of weakly coherent conditional lower
previsions can still present some forms of inconsistency with each other; see [17,
Example 7.3.5] for an example and [17, Chapter 7] and [19] for some discussion.
On the other hand, weak coherence neither implies or is implied by the notion
of avoiding partial loss. Because of these two facts, we consider another notion
which is stronger than both, and which is called (joint or strong) coherence:3

Definition 5. Consider separately coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm).
We say that they are coherent when for every fj ∈ Kj , j = 1, . . . ,m, j0 ∈
{1, . . . ,m}, f0 ∈ Kj0 , x0 ∈ XIj0 , m∑

j=1

Gj(fj |XIj )−Gj0(f0|x0)

 (ω) ≥ 0 (2)

for some ω ∈ Af0,f1,...,fm , where Af0,f1,...,fm is the set of elements that belong
to π−1

Ij0
(x0) or to some B ∈ Si(fi) for some i = 1, . . . ,m.

Because we are dealing with finite spaces, this notion coincides with the one
given by Williams in [20]. The coherence of a collection of conditional lower
previsions implies their weak coherence; although the converse does not hold in
general, it does in the particular case when we only have a conditional and an
unconditional lower prevision.

It is important at this point to introduce a particular case of conditional
lower previsions that will be of special interest for us: that of conditional linear
previsions. We say that a conditional lower prevision P (XO|XI) on the set
KO∪I is linear if and only if it is separately coherent and moreover P (f +
g|x) = P (f |x) + P (g|x) for any x ∈ XI and f, g ∈ KO∪I . Conditional linear
previsions correspond to the case where a subject’s supremum acceptable buying
price (lower prevision) coincides with his infimum acceptable selling price (or
upper prevision) for any gamble on the domain. When a separately coherent
conditional lower prevision P (XO|XI) is linear we shall denote it by P (XO|XI);
in the unconditional case, we shall use the notation P (XO).

Conditional linear previsions correspond to conditional expectations with
respect to a finitely additive probability. In particular, an unconditional linear
prevision P is the expectation with respect to the finitely additive probability

3The distinction between this and the unconditional notion of coherence mentioned above
will always be clear from the context.
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which is the restriction of P to events. One of the nice features of the notion of
coherence is that it can be given a Bayesian sensitivity analysis interpretation: a
coherent (unconditional) lower prevision P is always the lower envelope of some
set of linear previsions, and as such can be seen as a model for the imprecise
knowledge of some finitely additive probability P . Conversely, the lower enve-
lope of a closed and convex set of linear previsions is always a coherent lower
prevision.

The situation is slightly more complicated for conditional lower previsions.
In [17] Walley proved that in the context of this paper, where we deal with finite
spaces, coherent conditional lower previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
are always the envelope of a set {Pγ(XO1 |XI1), . . . , Pγ(XOm |XIm) : γ ∈ Γ}
of dominating conditional linear previsions. However, this does not extend to
the case where we have infinite spaces involved. We shall prove later on that
a similar property can be established for weak coherence. Because of this,
the results we shall establish could also all be formulated in terms of sets of
conditional linear previsions.

Another interesting particular case is that where we are given only an uncon-
ditional lower prevision P on L(Xn) and a conditional lower prevision P (XO|XI)
on KO∪I . Then weak and strong coherence are equivalent, and they both hold
if and only if, for any XO∪I -measurable f and any x ∈ XI ,

P (G(f |x)) = 0. (GBR)

This is called the Generalised Bayes’ Rule (GBR). When P (x) > 0, GBR can
be used to determine the value P (f |x): it is then the unique value for which
P (G(f |x)) = P (Iπ−1

I (x)(f − P (f |x))) = 0 holds.
If P and P (XO|XI) are linear previsions, they are coherent if and only if for

any XO∪I -measurable f , P (f) = P (P (f |XI)). This is equivalent to requiring

that P (f |x) =
P (fI

π
−1
I

(x)
)

P (x) for all f ∈ KO∪I and all x ∈ XI with P (x) > 0.

3 Relationships between weak and strong coher-
ence

Let us study in more detail the notions of avoiding sure loss, weak coherence
and strong coherence. We start by recalling a recent characterisation of weak
coherence:

Theorem 1. [13, Theorem 1] P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly co-
herent if and only if there is a lower prevision P on L(Xn) that is pairwise co-
herent with each conditional lower prevision P j(XOj |XIj ). In particular, given
linear conditional previsions Pj(XOj |XIj ) for j = 1, . . . ,m, they are weakly co-
herent if and only if there is linear prevision P which is coherent with each
Pj(XOj |XIj ).

This theorem shows one of the differences between weak and strong coher-
ence: weak coherence is equivalent to the existence of a joint which is coherent
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with each of the assessments; coherence on the other hand is equivalent to the
existence of a joint which is coherent with all the assessments, taken together.

Weakly coherent conditional previsions can be given the following sensitivity
analysis interpretation; a similar result for coherent ones has been established
in [17, Theorem 8.1.9].

Theorem 2. Any weakly coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the
lower envelope of a family of weakly coherent conditional linear previsions.

We see from Theorem 1 that a number of weakly coherent conditional lower
previsions always have a compatible joint P , meaning that P is a coherent
lower prevision on all gambles which is coherent with each of the conditional
previsions. Our following result establishes the smallest such joint:

Theorem 3. Consider weakly coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm), and
let E be given on L(Xn) by

E(f) := sup{α : ∃fj ∈ Kj , j = 1, . . . ,m, max
ω∈Xn

[
m∑
j=1

G(fj |XIj )− (f −α)](ω) < 0}.

(3)
E is the smallest coherent lower prevision which is coherent with P j(XOj |XIj )
for j = 1, . . . ,m.

Using this result and Theorem 2, we can also give a sensitivity analysis
interpretation to E in the precise case.

Corollary 1. Let P1(XO1 |XI1), . . . , Pm(XOm |XIm) be weakly coherent. Then,
the functional E defined in (3) is the lower envelope of the set M of linear
previsions which are coherent with each Pj(XOj |XIj ), j = 1, . . . ,m.

Let us focus now on the relationship between weak and strong coherence and
avoiding partial loss. We start by considering this problem in the precise case.
Let us consider separately coherent P1(XO1 |XI1), . . . , Pm(XOm |XIm), with re-
spective domains K1, . . . ,Km. It follows that in this case coherence is equivalent
to avoiding partial loss, and is in general greater than weak coherence; see [17,
Example 7.3.5] for an example of weakly coherent conditional previsions that
incur a sure loss. We are going to show next that when a number of conditional
previsions are weakly coherent but not coherent, this is due to the definition of
the conditional previsions on some sets of probability zero.

Theorem 4. Let P1(XO1 |XI1), . . . , Pm(XOm |XIm) be weakly coherent condi-
tional linear previsions, and let E be the conjugate of the functional E defined
in (3). They are coherent if and only if for all gambles fi ∈ Ki, i = 1, . . . ,m
with E(Af1,...,fm) = 0, maxω∈Af1,...,fm

∑m
i=1[fi − P (XOi |XIi)](ω) ≥ 0.

Taking into account this theorem and the envelope result established in
Theorem 2, we can characterise the difference between weak coherence and
avoiding partial loss for conditional lower previsions:
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Corollary 2. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be weakly coherent lower
previsions. They avoid partial loss if and only if for all fj ∈ Kj, j = 1, . . . ,m
with E(Af1,...,fm) = 0, maxω∈Af1,...,fm

∑m
j=1[fj − P j(XOj |XIj )](ω) ≥ 0, where

E is the conjugate of the functional defined in (3).

Hence, if a number of weakly coherent lower previsions incur sure loss, this
incoherent behaviour is due to the definition of the conditional previsions on
some sets of zero upper probability. It may be argued, specially since we are
dealing with finite spaces, that we may modify the definition of these conditional
lower previsions on these sets in order to avoid partial loss without further
consequences, in the sense that this will not affect their weak coherence: they
will still be weakly coherent with the same unconditional lower previsions.

So let us consider a number of weakly coherent conditional lower previsions
that avoid partial loss. Our next example shows that, unlike for the precise
case, this is not sufficient for coherence. Hence, Theorem 4 does not extend
to the imprecise case. This is because the characterisation of avoiding partial
loss in Corollary 2 does not hold for coherence, in the sense that the union of
the supports of a number of gambles producing incoherence may have positive
upper probability:

Example 1. Consider two random variables X1, X2 taking values in the finite
space X := {1, 2, 3}, and let us define conditional lower previsions P (X2|X1)
and P (X1|X2) by

P (f |X1 = 1) = f(1, 1)
P (f |X1 = 2) = f(2, 3)
P (f |X1 = 3) = min{f(3, 2), f(3, 3)}
P (f |X2 = 1) = f(2, 1)
P (f |X2 = 2) = min{f(1, 2), f(2, 2), f(3, 2)}
P (f |X2 = 3) = min{f(1, 3), f(2, 3), f(3, 3)},

for any gamble f in L(X 2).
Let us consider the unconditional lower prevision P on L(X 2) given by

P (f) = min{f(3, 2), f(3, 3)}. Using Theorem 1, we can see that P , P (X1|X2)
and P (X2|X1) are weakly coherent.

To see that P (X1|X2) and P (X2|X1) avoid partial loss, we apply Corollary 2
and consider any f1, f2 ∈ L(X 2) such that P (Af1,f2) = 0. Let us prove that

max
ω∈Af1,f2

[G(f1|X2) +G(f2|X1)](ω) ≥ 0. (4)

Assume f1 6= 0 6= f2; the other cases are similar (and easier). Since P (Af1,f2) =
0 for any coherent lower prevision that is weakly coherent with P (X1|X2) and
P (X2|X1), we deduce that neither (3, 2) nor (3, 3) belong to Af1,f2 , and con-
sequently f1(x, 2) = f1(x, 3) = 0 for x = 1, 2, 3. If (X1 = 2) ∈ S1(f2), then
[G(f1|X2) + G(f2|X1)](2, 3) = 0 + 0 = 0, and therefore Equation (4) holds. If
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(X1 = 2) /∈ S1(f2), then [G(f1|X2) + G(f2|X1)](2, 1) = 0 + 0 = 0 (note that
(X2 = 1) belongs to Af1,f2 or it would be f1 = 0).

Let us prove finally that P (X1|X2), P (X2|X1) are not coherent. Let f1 =
−I{(1,1),(3,1)}, f2 = −I{(1,2),(1,3),(2,1),(2,2)} and f3 = I{(2,3),(3,3)}, and let us show
that

[G(f1|X2) +G(f2|X1)−G(f3|X2 = 3)](ω) < 0

for all ω ∈ Af1,f2,f3 . S2(f1) = {X2 = 1} and S1(f2) = {X1 = 1, X1 = 2},
whence Af3,f1,f2 := S2(f1) ∪ S1(f2) ∪ {X2 = 3} = X 2 \ {(3, 2)}. On the other
hand, we have that

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
G(f1|X2) -1 0 0 0 0 0 -1 0 0
G(f2|X1) 0 -1 -1 -1 -1 0 0 0 0

−G(f3|X2 = 3) 0 0 0 0 0 -1 0 0 -1

and therefore the gamble g := G(f1|X2) + G(f2|X1) − G(f3|X2 = 3) satisfies
g(ω) = −1 for all ω ∈ Af3,f1,f2 . This shows that P (X1|X2), P (X2|X1) are not
coherent. However, E(Af3,f1,f2) = 1 because (3, 3) ∈ Af3,f1,f2 . �

Hence, when a number of conditional lower previsions are weakly coherent
but not coherent, the behaviour causing a contradiction can be caused by con-
ditioning on sets of positive upper probability. It is interesting then to look
for conditions under which it suffices to check the weak coherence of a number
of previsions to be able to deduce their coherence. One such condition was
established, in a different context, in [13].

In the case of conditional linear previsions, Theorem 4 allows us to derive
immediately the following result:

Lemma 1. Consider weakly coherent P1(XO1 |XI1), . . . , Pm(XOm |XIm), and
let P be a coherent prevision such that P, Pj(XOj |XIj ) are coherent for j =
1, . . . ,m. If P (x) > 0 for any x ∈ XIj , j = 1, . . . ,m, then the conditional
previsions P1(XO1 |XI1), . . . , Pm(XOm |XIm) are coherent.

From this result, we can easily derive a similar condition for conditional
lower previsions.

Theorem 5. Consider weakly coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm), and
let P be a coherent prevision such that P , P j(XOj |XIj ) are coherent for j =
1, . . . ,m. If P (x) > 0 for all x ∈ XIj and all j = 1, . . . ,m, then the conditional
lower previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are coherent.

We can deduce from the proof of this theorem that if a number of weakly
coherent conditional lower previsions avoid partial loss but are not coherent,
for any gambles f0, . . . , fm violating Definition 5 it must be E(Af0,f1,...,fm) = 0
(although, as Example 1 shows, it can be E(Af0,f1,...,fm) > 0).

Note that when the conditioning events have all positive lower probability,
the conditional lower previsions are uniquely determined by the joint P and
by (GBR). Hence, in that case P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the only
conditional previsions which are coherent with P .
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4 Coherent updating

Although our last result is interesting, it is fairly common in situations of im-
precise information to be conditioning on some sets of lower probability zero
and positive upper probability. In that case, there is an infinite number of
conditional lower previsions which are coherent with the unconditional P . In
this section, we characterise them by determining the smallest and the greatest
coherent extensions.

4.1 Updating with the regular extension

The first updating rule we are going to consider is called the regular extension.
Consider an unconditional lower prevision P and disjoint O, I in {1, . . . , n}. The
conditional lower prevision R(XO|XI) defined by regular extension is given, for
any f ∈ KO∪I and any x ∈ XI by

R(f |x) := inf

{
P (fIπ−1

I (x))

P (x)
: P ≥ P , P (x) > 0

}
.

For this definition to be applicable, we need that P (x) > 0 for any x ∈ XI . The
regular extension is the lower envelope of the updated linear previsions using
Bayes’s rule. It has been used as an updating rule in a number of works in the
literature [5, 7, 8, 10, 11, 18].

The conditional lower prevision defined using regular extension is not in
general coherent with the unconditional lower prevision it is defined from, as
it is discussed in Section 5 further on and in [17, Appendix J]. The following
lemma shows that it is coherent in the context considered in this paper:

Lemma 2. Let P , P (XO|XI) be coherent unconditional and conditional pre-
visions, with XI finite. Assume that P (x) > 0 for all x ∈ XI , and define
R(XO|XI) from P using regular extension. Then:

1. P ,R(XO|XI) are coherent.

2. R(XO|XI) ≥ P (XO|XI).

3. For any P ≥ P , there exists some P (XO|XI) which is coherent with P
and dominates P (XO|XI).

From this lemma, we deduce that if we use regular extension to define condi-
tional lower previsions R1(XO1 |XI1), . . . , Rm(XOm |XIm) from an unconditional
P , then P ,R1(XO1 |XI1), . . . , Rm(XOm |XIm) are weakly coherent. Moreover,
if we consider any other weakly coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm), it
must hold that Rj(XOj |XIj ) ≥ P j(XOj |XIj ) for j = 1, . . . ,m. Hence, the pro-
cedure of regular extension provides the greatest, or more informative, updated
lower previsions that are weakly coherent with P . In the following theorem we
prove that they are also coherent.
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Theorem 6. Let P be a coherent lower prevision on L(Xn), and consider
disjoint Oj , Ij for j = 1, . . . ,m. Assume that P (x) > 0 for all x ∈ XIj , and
let us define Rj(XOj |XIj ) using regular extension for j = 1, . . . ,m. Then the
lower previsions P ,R1(XO1 |XI1), . . . , Rm(XOm |XIm) are coherent.

When P (x) = 0 for some x ∈ XIj , j = 1, . . . ,m, we cannot apply the
procedure of regular extension to define Rj(XOj |x). It can be checked that we
could use any separately coherent conditional lower prevision and still we would
have weak coherence with P . However, in that case we cannot guarantee the
strong coherence, as we show in the following example:

Example 2. Let us consider X1 = X2 = {1, 2, 3}, and P (X1), P (X2|X1) given
by P (X1 = 3) = 1, and P (X2 = x|X1 = x) = 1 for x = 1, 2, 3. It follows from
the marginal extension theorem that P (X1), P (X2|X1) are coherent. However,
if we define arbitrarily P (X1|X2 = x) when P (X2 = x) = 0 (that is, for x =
1, 2), then P (X1|X2) and P (X2|X1) may not be coherent: make it for instance
P (X1 = 1|X2 = 2) = 1 = P (X1 = 2|X2 = 1) = P (X1 = 3|X2 = 3). Then it
has been shown in [17, Example 7.3.5] that P (X1|X2) and P (X2|X1) are not
coherent. �

From now on, we shall assume that the unconditional lower prevision P
satisfies P (x) > 0 for any conditioning event x, and that as a consequence
we can use the procedure of regular extension to provide the most informative
coherent extensions.

4.2 Updating with the natural extension

Next, we introduce the notion of natural extension. Let us consider conditional
lower previsions P 1(XO1 |XI1), . . . , Pm(XOm |XOm) defined on respective linear
spaces H1, . . . ,Hm and avoiding partial loss. Given j0 ∈ {1, . . . ,m}, a gamble
f on Xn and an element x0 of XIj0 , the natural extension Ej0(f |x0) is defined
as the supremum α for which there are fj ∈ Hj , j = 1, . . . ,m such that m∑

j=1

G(fj |XIj )− Iπ−1
Ij0

(x0)
(f − α)

 (ω) < 0

for all ω ∈ Af0,...,fm . It is proven in [17, Theorem 8.1.9] that the lower previsions
E1(XO1 |XI1), . . . , Em(XOm |XIm) obtained in this way are the smallest coherent
conditional previsions that dominate P 1(XO1 |XI1), . . . , Pm(XOm |XIm) on their
domains.

Given disjoint subsets Oj , Ij of {1, . . . , n} for j = 1, . . . ,m, we can define sep-
arately coherent P j(XOj |XIj ) on the set of constant gambles by P j(µ|x) = µ for
all x ∈ Xj , j = 1, . . . ,m. Then, given any coherent lower prevision P on L(Xn)
the lower previsions P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid partial loss. We
can thus consider their natural extensions P ,E1(XO1 |XI1), . . . , Em(XOm |XIm)
using the above definition. We deduce the following:
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Theorem 7. Let P be a coherent lower prevision on L(Xn). Consider disjoint
Oj , Ij for j = 1, . . . ,m, and let us define Ej(XOj |Xj), j = 1, . . . ,m using
natural extension. Then P ,E1(XO1 |XI1), . . . , Em(XOm |XIm) are coherent.

Hence, the procedure of natural extension provides the smallest conditional
lower previsions which are coherent together with P . For any j = 1, . . . ,m,
Ej(XOj |XIj ) is uniquely determined by the (GBR) when P (x) > 0 and are
vacuous when P (x) = 0, being then defined by Ej(f |x) = minω∈π−1

Ij
(x) f(ω).

Hence, in that respect the natural extensions can be calculated more easily
than the regular extensions.

We showed before that the conditional previsions defined by regular exten-
sion were also the greatest conditional lower previsions that are weakly coherent
with the unconditional lower prevision P . Using Theorem 1 and the results in
[17, Chapter 6], it is not difficult to show that the natural extensions are the
smallest weakly coherent extensions:

Theorem 8. Let P be coherent on L(Xn), and define conditional lower pre-
visions E1(XO1 |XI1), . . . , Em(XOm |XIm) using natural extension in the man-
ner described above. Then P ,E1(XO1 |XI1), . . . , Em(XOm |XIm) are weakly co-
herent and any other conditional previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
which are weakly coherent with P satisfy that P j(XOj |XIj ) ≥ Ej(XOj |XIj ) for
j = 1, . . . ,m.

4.3 On the range of coherent extensions

We see then that given an unconditional lower prevision P on Xn, the smallest
conditional lower previsions that are coherent with it are given by the natural
extensions, and the greatest conditional lower previsions that are coherent with
it are given by the regular extensions. They are also the smallest and greatest
weakly coherent updated previsions. In general, these are not the only possibil-
ities to update in a coherent way, so it is interesting to study the set of possible
updated previsions.

In the following theorem, we prove that any conditional lower previsions that
lie between the natural and the regular extensions are weakly coherent with P
and avoid partial loss:

Theorem 9. Let P be a coherent lower prevision on L(Xn). Consider disjoint
Oj , Ij for j = 1, . . . ,m, and let us consider separately coherent P j(XOj |XIj )
such that Ej(XOj |XIj ) ≤ P j(XOj |XIj ) ≤ Rj(XOj |XIj ). Then the lower previ-
sions P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent and avoid partial
loss.

This theorem can be used as a test to verify the weak coherence of a number
of conditional lower previsions with some unconditional P : it suffices to check
whether they lie between the natural and the regular extensions that can derive
from P .

On the other hand, since there can be conditional lower previsions that
avoid partial loss but are not coherent, we deduce that not all of them are
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bounded between the natural and the regular extensions. To see one example,
define P j(XOj |XIj ) as P j(f |x) = minω∈π−1

Ij

(x) for all f ∈ Kj , x ∈ XIj . Then,

P j(XOj |XIj ) are separately coherent and moreover Gj(f |XIj ) ≥ 0 for all f ∈ Kj
for all j. From this we deduce that P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid
partial loss.

However, not any choice of conditional lower previsions between the natural
and the regular extensions are coherent, as we show in the following example:

Example 3. Consider X1 = X2 = {1, 2, 3}, and let M be the set of probability
mass functions on X1 ×X2 satisfying P (1, 2) = P (2, 2) = P (3, 1) = 0, P (1, 1) =
P (2, 1), P (1, 1) ≥ P (1, 3), P (2, 1) ≤ P (2, 3), where the first index denotes the
value of X1 and the second the value of X2. Let P be the lower envelope of the
set M. It is a coherent lower prevision, and satisfies moreover P (X1 = x) > 0
for any x ∈ X1, P (X2 = x) > 0 for any x ∈ X2. Consider P (X2|X1) be defined
from P using regular extension, and let P (X1|X2 = x) be defined from P by
natural extension if x = 3 and by regular extension otherwise. It follows from
Theorem 9 that P (X2|X1), P (X1|X2) are weakly coherent and avoid partial
loss. Let us show that they are not coherent.

Consider the gambles f1, f2, f3 on X1 ×X2 given by the following table:

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
f1 1 0 0 0 0 3 0 0 0
f2 0 0 0 2 0 0 0 0 0
f3 0 0 0 0 0 2 0 0 2

Then G(f1|X1), G(f2|X2) and −G(f3|X2 = 3) are given by

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
G(f1|X1) 0.5 -0.5 -0.5 -1.5 -1.5 1.5 0 0 0
G(f2|X2) -1 0 0 1 0 0 -1 0 0

−G(f3|X2 = 3) 0 0 0 0 0 -2 0 0 -2

As a consequence, [G(f1|X1) + G(f2|X2) − G(f3|X2 = 3)](x) < 0 for any
x ∈ Af3,f1,f2 = (X1 ×X2) \ (3, 2). �

It also follows from Theorem 9 that since a number of conditional lower pre-
visions are weakly coherent with an unconditional lower prevision P if and only
if they lie between the natural and the regular extensions, a convex combination
of weakly coherent conditional lower previsions is again weakly coherent with P .
It is not very difficult to show that this property does not hold for the stronger
notion of coherence.

On the other hand, we can prove that, even if not all the conditional lower
previsions bounded between the natural and the regular extensions are coherent,
these can be used to determine the set of updated previsions for any particular
gamble. This is detailed in the following result:
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Theorem 10. Let P be a coherent lower prevision on L(Xn), and consider dis-
joint Oj , Ij for j = 1, . . . ,m. For any j ∈ {1, . . . ,m}, f ∈ Kj , x ∈ XIj and any
a ∈ [Ej(f |x), Rj(f |x)], there are coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
such that P j(f |x) = a.

We conclude this section by remarking that, in the case where we only have a
conditional and an unconditional lower prevision, weak and strong coherence are
equivalent, and therefore they will be coherent if and only if the conditional lower
prevision is bounded between the natural and the regular extensions determined
by the unconditional lower prevision.

5 Going from finite to infinite spaces

The results in the previous sections provide us with tools for updating a lower
prevision in a coherent way. In this section, we are going to discuss which of
the properties we have established hold when some of the spaces X1, . . . ,Xn are
infinite.

The first thing we have to remark is that the definitions of avoiding partial
loss and coherence and strong coherence are slightly different: we say that a
number of conditional lower previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid
partial loss when for any fj ∈ Kj , j = 1, . . . ,m, there is some B ∈ ∪mj=1Sj(fj)
such that

sup
ω∈B

 m∑
j=1

Gj(fj |XIj )

 (ω) ≥ 0, (5)

and we say that they are coherent when for every fj ∈ Kj , j = 1, . . . ,m,
j0 ∈ {1, . . . ,m}, f0 ∈ Kj0 , x0 ∈ XIj0 there is some B ∈ π−1

Ij0
(x0) ∪ ∪mj=1Sj(fj)

such that

sup
ω∈B

 m∑
j=1

Gj(fj |XIj )−Gj0(f0|x0)

 (ω) ≥ 0.

It is easy to see that when X1, . . . ,Xn are all finite these conditions agree
with the ones given in Definitions 3 and 5, respectively. If in particular we have
an unconditional lower prevision P on Xn and a conditional lower prevision
P (XO|XI) on KO∪I , the Generalised Bayes’ Rule (GBR) is only necessary for
coherence, and we need to require moreover that P (G(f |XI)) ≥ 0 for any f ∈
KO∪I .

Let us see whether the relationships established in this paper also hold in
the case of infinite spaces. The characterisation of weak coherence given in
Theorem 1 holds irrespective of the cardinality of the spaces, as it is established
in [13]. On the other hand, in general weakly coherent conditional lower pre-
visions are not necessarily the envelopes of a family of weakly coherent linear
previsions: this follows because in the case of a conditional and an uncondi-
tional lower prevision weak and strong coherence are equivalent, and Walley
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gives in [17, Example 6.6.10] and example of coherent P , P (X|B) which are not
dominated by any coherent linear P, P (X|B).

It is easy to see that the proof of Theorem 3, given in Section A.3 of the
Appendix, also holds in the case of infinite spaces. As a consequence, given a
number of weakly coherent conditional lower previsions there is always a smallest
coherent lower prevision which is coherent with each of them, and it is given by
Equation (3).

Let us comment next on the relationships between weak coherence and avoid-
ing partial loss. Let P 1(XO1 |XI1), . . . , Pm(XOm |XIm) be weakly coherent con-
ditional lower previsions. If they incur partial loss, there are gambles f1, . . . , fm
for which Equation (5) does not hold. Using a proof similar to that of Corol-
lary 2 (see Section A.6 in the Appendix), it can be checked that E(B) = 0 for
all B ∈ Si(fi) and all i = 1, . . . ,m. In the finite case, this and the subadditivity
of E imply that E(Af1,...,fm) = 0. However, this is not the case when the spaces
are infinite; see [17, Example 7.4.4] for a counterexample.

With respect to the sufficient conditions for weak coherence to guarantee
coherence, note that Theorem 5 also holds in the infinite case. This is established
is the following theorem, which also provides an alternative proof for Theorem 5:

Theorem 11. Consider weakly coherent P 1(XO1 |XI1), . . . , Pm(XOm |XIm), and
let P be a coherent prevision such that P , P j(XOj |XIj ) are coherent for j =
1, . . . ,m. If P (x) > 0 for all x ∈ XIj and all j = 1, . . . ,m, then the conditional
lower previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are coherent.

Note however that the interest of this theorem is limited because there can
only be an countable number of x for which P (x) > 0, so in order to apply this
result all the conditioning spaces must be countable.

Let us turn now to the range of coherent extensions. First of all, in the case of
infinite spaces, the conditional lower previsions defined by regular extension are
not necessarily coherent with the unconditional lower prevision P ; in fact, this
may happen even if there are conditional lower previsions which are coherent
with P . This follows from the discussion in [17, Appendix J]. Because of this, it
follows that Theorem 6 does not extend to the infinite case and as a consequence
the regular extensions are not the greatest coherent extensions. We can prove
nonetheless that they are a bound of any coherent extensions:

Theorem 12. Let P be a coherent lower prevision on L(Xn). Consider disjoint
Oj , Ij for j = 1, . . . ,m, and separately coherent lower previsions P j(XOj |XIj )
such that P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent. Then for
all j = 1, . . . ,m P j(XOj |XIj ) ≤ Rj(XOj |XIj ).

Similarly, if follows from [17, Section 8.1] that the conditional lower previ-
sions defined by natural extension are not necessarily coherent, and that they
are only a lower bound of any coherent extensions. Again, we can easily see
that they provide a lower bound of any weakly coherent extensions:

Theorem 13. Let P be a coherent lower prevision on L(Xn). Consider disjoint
Oj , Ij for j = 1, . . . ,m, and separately coherent lower previsions P j(XOj |XIj )
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such that P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent. Then for
all j = 1, . . . ,m P j(XOj |XIj ) ≥ Ej(XOj |XIj ).

Note that this applies even in the case where we only consider a conditional
and an unconditional lower prevision, and from this we can deduce that neither
the regular nor the natural extensions may be weakly coherent with the joint P .
In this respect, it is also worth noting that in the infinite case a lower prevision
P may not have conditional lower previsions which are coherent with it. For the
existence of these conditional lower prevision, P needs to satisfy the condition
of conglomerability, which is discussed in detail in [17, Section 6.8] and which is
trivial in the finite case.

6 Conclusions

In this paper we have studied the difference between weak and strong coherence
in the case of finite spaces, and established the smallest and greatest updated
previsions. Although weak and strong coherence are not equivalent, it follows
from our results that the smallest and greatest weakly coherent updated previ-
sions coincide with the smallest and greatest coherent updated previsions, and
are given by the natural and regular extensions, respectively.

The results we have established are valid for (unconditional) coherent lower
previsions, and in particular may be applicable to the precise case, when we
want to update a finitely additive probability. Let us discuss this in more
detail. Consider an unconditional prevision (a finitely additive probability)
on L(Xn), and assume that we want to define conditional linear previsions
P1(XO1 |XI1), . . . , Pm(XOm |XIm). If P (z) > 0 for any z ∈ XIj and for all
j = 1, . . . ,m, then the conditional linear previsions are uniquely determined
from P by Bayes’s Rule. They are the only conditional (lower, and therefore
linear) previsions to be weakly coherent with P , and it follows from the re-
sults in Section 4.3 that they are also coherent. Hence, in that case there is
a unique updating rule, and both natural and regular extensions coincide with
the conditional previsions that we can define using Bayes’s rule.

When P (z) = 0 for some z ∈ XIj and some j = 1, . . . ,m, then we cannot
apply Bayes’ rule and any separately coherent conditional prevision Pj(XOj |z)
will be coherent with P . Note nevertheless that if we use this procedure to de-
fine P1(XO1 |XI1), . . . , Pm(XOm |XIm), i.e., considering arbitrarily defined condi-
tional previsions when the conditioning event has probability zero, the previsions
we end up with may not satisfy the property of coherence, as we can see from
Theorem 4.

On the other hand, using the results in this paper we can provide weak
coherent lower previsions with a sensitivity analysis interpretation: given an
unconditional lower prevision P modelling our imprecise knowledge about some
linear prevision P , it is equivalent to update it to a number of conditional lower
previsions or to take the lower envelopes of a family of updated conditional
linear previsions. This is the case both if we work with weak coherence or with
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coherence. Note moreover that such a property does not extend to the case of
infinite spaces.

Finally, we would like to remark that one important assumption we have
made throughout is that the domain of the conditional prevision P j(XOj |XIj )
is the set Kj of the gambles that depend on the values that the variables in
Oj ∪ Ij take, i.e., the set of XOj∪Ij -measurable gambles. An open problem
would be to study the same problem when we want to define coherent conditional
lower previsions on some smaller domains. Another open problem would be to
establish some sufficient conditions for the properties discussed in Section 5 to
hold on infinite spaces.
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A Proofs of Theorems

A.1 Proof of Lemma 2

Because we are dealing with finite spaces, the coherence of P ,R(XO|XI) is
equivalent to P (Iπ−1

I (x)(f − R(f |x))) = 0 for any x ∈ XI , and this condition
holds because of [17, Appendix (J3)].

For the second statement, consider some x in XI and f ∈ KO∪I . Assume
ex-absurdo that R(f |x) < P (f |x). It follows from the definition of the regular
extension that there is some P ≥ P such that P (x) > 0 and P (f |x) < P (f |x).
Since P (x) > 0, it follows from the Generalised Bayes Rule that P (f |x) is the
unique value satisfying 0 = P (Iπ−1

I (x)(f − P (f |x))). As a consequence, given
P (f |x) > P (f |x), we have that Iπ−1

I (x)(f − P (f |x)) ≥ Iπ−1
I (x)(f − P (f |x)),

whence

0 = P (Iπ−1
I (x)(f − P (f |x))) ≥ P (Iπ−1

I (x)(f − P (f |x)))

≥ P (Iπ−1
I (x)(f − P (f |x)) = 0,

using the coherence of P , P (XO|XI). But this implies that P (Iπ−1
I (x)(f −

P (f |x))) = P (Iπ−1
I (x)(f − P (f |x))) = 0, and then there are two different values

of µ for which P (Iπ−1
I (x)(f − µ)) = 0. This is a contradiction.

Let us finally establish the third statement. Consider P ≥ P , and x ∈ XI .
If P (x) > 0, then for any f ∈ KO∪I P (f |x) is uniquely determined by the
Generalised Bayes Rule and dominates the regular extension R(f |x). Hence,
P (f |x) ≥ R(f |x) ≥ P (f |x), where the last inequality follows from the second
statement. Finally, if P (x) = 0, taking any element P (XO|x) of M(P (XO|x))
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we have that P (Iπ−1
I (x)(f −P (f |x))) = 0 for any f ∈ KO∪I . This completes the

proof.

A.2 Proof of Theorem 2

From Theorem 1, there exists a coherent lower prevision P on Xn which is co-
herent with P j(XOj |XIj ) for j = 1, . . . ,m. Consider j ∈ {1, . . . ,m}, x ∈ XIj
and f ∈ Kj . If P (z) > 0, then P j(f |x) is uniquely determined by the Gen-
eralised Bayes Rule, and from [17, Section 6.4.2], it coincides with the regular
extension. Hence, for any ε > 0 there exists some P ≥ P such that P (x) > 0
and P (f |x)− P j(f |x) < ε. Given this P , we can apply Lemma 2 to define con-
ditional previsions Pi(XOi |x′) for i 6= j, x′ ∈ XIi and for i = j, x′ ∈ XIi , x′ 6= x
such that P and Pi(XOi |XIi) are coherent for i = 1, . . . ,m.

If P (x) = 0, we consider some P ≥ P such that P (x) = 0, and take
P (XOj |x) ∈ M(XOj |x) such that P (f |x) = P (f |x). For any x′ ∈ XIi , x′ 6= x
and any x′ ∈ XIj , j 6= i for which P (x′) = 0, we consider an arbitrary P (XOj |x′)
in the credal setM(P (XOj |x′)). Finally, for any other x′ we can apply Lemma 2
to define conditional previsions Pi(XOi |x′) for i 6= j, x′ ∈ XIi and for i = j,
x′ ∈ XIi , x′ 6= x such that P and Pi(XOi |XIi) are coherent for i = 1, . . . ,m.

In any of the two cases, we end up with a family of conditional previsions
P1(XO1 |XI1), . . . , Pm(XOm |XIm) which are weakly coherent (P is a compatible
joint), dominate P 1(XO1 |XI1), . . . , Pm(XOm |XIm) and s.t. Pj(f |x)−P j(f |x) <
ε. This shows that P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are the lower envelope of
a family of weakly coherent conditional previsions.

A.3 Proof of Theorem 3

We prove in [13, Theorem 1] that E is the a coherent lower prevision that is
also coherent with P j(XOj |XIj ) for j = 1, . . . ,m. Let P 1 be another coherent
lower prevision with this property. Assume that there is some gamble f such
that P 1(f) = E(f)− δ for some δ > 0. It follows from the definition of E that
there exist fj ∈ Kj for j = 1, . . . ,m such that

sup
x∈Xn

 m∑
j=1

G(fj |XIj )− (f − (P 1(f) +
δ

2
))

 (x) < 0,

whence

sup
x∈Xn

 m∑
j=1

G(fj |XIj )− (f − P 1(f))

 (x) < −δ
2
,

contradicting the weak coherence of P 1, P j(XOj |XIj ), j = 1, . . . ,m. Hence, E is
the smallest coherent lower prevision s.t. E,P 1(XO1 |XI1), . . . , Pm(XOm |XIm)
are coherent.
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A.4 Proof of Corollary 1

From Theorem 3, we see that E is the smallest coherent lower prevision such
that E,P1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent. From Theorem 2,
the previsions E,P1(XO1 |XI1), . . . , Pm(XOm |XIm) are the lower envelope of a
class of dominating weakly coherent linear previsions. But since our conditional
previsions are all linear, this means that E is the lower envelope of a classM of
linear previsions P which are weakly coherent with the conditional previsions
P1(XO1 |XI1), . . . , Pm(XOm |XIm).

Assume the existence of a linear prevision P which is weakly coherent with
P1(XO1 |XI1), . . . , Pm(XOm |XIm) and such that P (f) < E(f) for some gamble
f ′. If we define the coherent lower prevision P 1 := min{P,E}, we would de-
duce that P 1, P1(XO1 |XI1), . . . , Pm(XOm |XIm) are also weakly coherent, thus
contradicting that E is the smallest coherent lower prevision which is weakly
coherent with P1(XO1 |XI1), . . . , Pm(XOm |XIm). Therefore, E is the lower en-
velope of the set of linear previsions which are coherent with Pj(XOj |XIj ) for
j = 1, . . . ,m.

A.5 Proof of Theorem 4

Because we are dealing with conditional linear previsions, coherence is equivalent
to avoiding partial loss. Hence, we must verify whether for any fj ∈ Kj , j =
1, . . . ,m,

max
ω∈Af1,...,fm

m∑
j=1

[fj − P (fj |XIj )](ω) ≥ 0, (6)

where Af1,...,fm := ∪{B : B ∈ ∪mj=1Sj(fj)}.
It is clear that if Equation (6) holds for any fj ∈ Kj , j = 1, . . . ,m, it

also holds for any gambles f1, . . . , fm satisfying E(Af1,...,fm) = 0. Conversely,
assume that this condition holds. If P1(XO1 |XI1), . . . , Pm(XOm |XIm) are not
coherent, there must be fj ∈ Kj , j = 1, . . . ,m, such that E(Af1,...,fm) > 0 and

max
ω∈Af1,...,fm

m∑
j=1

[fj − P (fj |XIj )](ω) ≤ −δ < 0

for some δ > 0. Applying Corollary 1, there is some linear prevision P which is
coherent with Pj(XOj |XIj ) for j = 1, . . . ,m and such that P (Af1,...,fm) > 0.

Let us define g :=
∑m
j=1[fj − P (fj |XIj )]. The coherence of P, Pj(XOj |XIj )

for j = 1, . . . ,m implies that P (fj) = P (Pj(fj |XIj )) for j = 1, . . . ,m, and the
linearity of P implies then that

P (g) =
m∑
j=1

Pj(fj − P (fj |XIj )) = 0.

But on the other hand we have that

P (g) = P (gIAf1,...,fm ) ≤ P (−δIAf1,...,fm ) = −δP (Af1,...,fm) < 0.
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This is a contradiction. Therefore, it suffices to verify the coherence condition
on those gambles whose union of supports have upper probability zero.

A.6 Proof of Corollary 2

P 1(XO1 |XI1), . . . , Pm(XOm |XIm) avoid partial loss if and only if for any fj ∈
Kj , j = 1, . . . ,m,

max
ω∈Af1,...,fm

m∑
j=1

[fj − P j(fj |XIj )](ω) ≥ 0.

It is clear that if this condition holds it also holds in particular for gambles
f1, . . . , fm with P (Af1,...,fm) = 0. Conversely, assume that this holds but that
there are f1, . . . , fm such that P (Af1,...,fm) > 0 and

max
ω∈Af1,...,fm

m∑
j=1

[fj − P j(fj |XIj )](ω) ≤ −δ < 0.

Let us define g :=
∑m
j=1[fj − P j(fj |XIj )]. Since E and P j(XOj |XIj ) are

coherent for j = 1, . . . ,m, we deduce that E(fj − P j(fj |XIj )) ≥ 0 for j =
1, . . . ,m. The super-additivity of the coherent lower prevision E implies then
that

E(g) = E(
m∑
j=1

[fj − P j(fj |XOj )]) ≥
m∑
j=1

E(fj − P j(fj |XOj )) ≥ 0.

But on the other hand, we have that

E(g) = E(gIAf1,...,fm ) ≤ E(−δIAf1,...,fm ) = −δE(Af1,...,fm) < 0.

This is a contradiction. Therefore, it suffices to verify the avoiding partial loss
condition on those gambles whose union of supports has upper probability zero.

A.7 Proof of Lemma 1

Since all the conditional previsions are linear, coherence is equivalent to avoiding
partial loss. Consider then fj ∈ Kj for j = 1, . . . ,m, and let us prove the
existence of some x∗ ∈ Af1,...,fm such that

m∑
j=1

Gj(fj |XOj )(x
∗) ≥ 0.

Since P (x) > 0 for any x ∈ XIj and j = 1, . . . ,m, it follows that P (Af1,...,fm) >
0. From the coherence of P and Pj(XOj |XIj ) we deduce that P (Gj(fj |XOj )) =
0 for j = 1, . . . ,m, and consequently given g :=

∑m
j=1Gj(fj |XOj ), we have

P (g) = 0.
If there was some δ > 0 such that g(x) < −δ for all x ∈ Af1,...,fm , then

P (g) = P (gIAf1,...,fm ) ≤ −δP (Af1,...,fm) < 0, a contradiction. Since Af1,...,fm
is finite, this implies the existence of some x∗ ∈ Af1,...,fm such that g(x∗) ≥ 0.
This completes the proof.
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A.8 Proof of Theorem 6

The conditional previsions defined by regular extension are all coherent with P
from Lemma 2, and therefore the assumption of the theorem is compatible with
weak coherence. Consider fj ∈ Kj for j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, x0 ∈ XIj0 ,
f0 ∈ Kj0 . Then, for any ε > 0 there is some P ≥ P such that P (x0) > 0
and Pj0(f0|x0) − P j0(f0|x0) < ε. From Lemma 2, we can consider conditional
linear previsions P1(XO1 |XI1), . . . , Pm(XOm |XIm) such that Pj(XOj |XIj ) dom-
inates P j(XOj |XIj ) and is coherent with P for all j, and such that moreover
Pj0(f |x0)− P j0(f |x0) < ε. As a consequence,

m∑
j=1

(fj − P j(fj |XOj ))−Gj0(f0|x0) ≥
m∑
j=1

(fj − Pj(fj |XOj ))−Gj0(f0|x0)− ε,

and if we let g :=
∑m
j=1(fj − Pj(fj |XOj ))−Gj0(f0|x0) then it follows from the

coherence of P and Pj(XOj |XIj ) for all j that P (g) = 0.
Assume that there is some δ > 0 such that for all x ∈ Af0,f1,...,fm

[
m∑
j=1

(fj − P j(fj |XOj ))−Gj0(f0|x0)](x) < −δ.

We deduce that g(x) < −δ for all x ∈ Af0,f1,...,fm . The definition of the sup-
ports implies moreover that g(x) = 0 for any x /∈ Af0,f1,...,fm . Hence, P (g) =
P (gIAf0,f1,...,fm ) < −εP (Af0,f1,...,fm) < 0, because P (Af0,f1,...,fm) ≥ P (x0) > 0.
This is a contradiction. As a consequence, there is some x∗ ∈ Af0,f1,...,fm such
that

[
m∑
j=1

(fj − P j(fj |XOj ))−Gj0(f0|x0)](x) ≥ −δ,

and since we can do this for any δ > 0 this implies that the conditional lower
previsions P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are coherent.

A.9 Proof of Theorem 8

Since P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are coherent because of Theorem 7,
they are also weakly coherent. Consider j ∈ {1, . . . ,m} and P j(XOj |XIj )
which is coherent with P . For any x ∈ XIj , there are two possibilities: ei-
ther P (x) > 0, and then P j(XOj |x) is uniquely determined by (GBR), whence
P j(XOj |x) = Ej(XOj |x); or P (x) = 0, and the separate coherence of P j(XOj |x)
implies that P j(f |x) ≥ maxω∈π−1

Ij
(x) f(ω) = Ej(f |x) for any f ∈ Kj .

Hence, for all j = 1, . . . ,m, any conditional lower prevision P j(XOj |XIj )
which is coherent with P dominates the natural extension Ej(XOj |XIj ). Ap-
plying Theorem 1, we deduce that E1(XO1 |XI1), . . . , Em(XOm |XIm) are the
smallest weakly coherent extensions.
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A.10 Proof of Theorem 9

Let us prove first of all that P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly
coherent. From Theorem 1, it suffices to show that P , P j(XOj |XIj ) are coherent
for j = 1, . . . ,m, which in turn is equivalent to verifying that P (Iπ−1

I (x)(f −
P j(f |x))) = 0 for all j = 1, . . . ,m, x ∈ Ij , and f ∈ Kj .

Since Ej(f |x) ≤ P j(f |x) ≤ Rj(f |x), it follows that Iπ−1
I (x)(f − Ej(f |x)) ≥

Iπ−1
I (x)(f − P j(f |x)) ≥ Iπ−1

I (x)(f −Rj(f |x)), and consequently

0 = P (Iπ−1
I (x)(f − Ej(f |x))) ≥ P (Iπ−1

I (x)(f − P j(f |x)))

≥ P (Iπ−1
I (x)(f −Rj(f |x))) = 0.

Hence, P , P j(XOj |XIj ) are coherent for j = 1, . . . ,m and consequently the
previsions P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are weakly coherent.

Let us show now that they also avoid partial loss. Consider f ∈ L(Xn), fj ∈
Kj for j = 1, . . . ,m, and let us prove thatG(f) +

m∑
j=1

Gj(fj |XOj )

 (x) ≥ 0 (7)

for some x ∈ Af,f1,...,fm . If f 6= 0, Af,f1,...,fm = Xn, and Equation (7) fol-
lows from weak coherence. Assume then that f = 0. Since P j(XOj |XIj ) ≤
Rj(XOj |XIj ) for j = 1, . . . ,m, we see that

[
m∑
j=1

fj − P j(fj |XIj )](x) ≥ [
m∑
j=1

fj −Rj(XOj |XIj )](x)

for all x ∈ Af1,...,fm . Since R1(XO1 |XI1), . . . , Rm(XOm |XIm) avoid partial loss
because they are coherent, we deduce that there is some x∗ ∈ Af1,...,fm such
that [

∑m
j=1 fj −Rj(XOj |XIj )](x

∗) ≥ 0, and consequently Equation (7) holds.

A.11 Proof of Theorem 10

Given such f, x and a, there exists some α ∈ [0, 1] such that a = αEj(f |x) +
(1 − α)Rj(f |x). Let us define the conditional lower prevision P j(XOj |XIj ) on
Kj as P j(XOj |XIj ) = αEj(XOj |XIj ) + (1− α)Rj(XOj |XIj ), and for any i 6= j,
let P i(XOi |XIi) be given on the class H of constant gambles by P i(µ|x) = µ
for all x ∈ XIi . It follows from Theorem 9 that P , P j(XOj |XIj ) are coher-
ent and consequently so are P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm). If we con-
sider then their natural extensions P , P ′1(XO1 |XI1), . . . , P ′m(XOm |XIm), where
P ′i(XOi |XIi) is defined on Ki, it follows from [17, Theorem 8.1.2] that the pre-
visions P , P ′1(XO1 |XI1), . . . , P ′m(XOm |XIm), are coherent. Since moreover we
have P ′j(XOj |XIj ) = P j(XOj |XIj ), we deduce that P ′j(f |x) = a.
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A.12 Proof of Theorem 11

We prove the result for the case where some of the spaces may be infinite; the
case where X1, . . . ,Xn are finite (Theorem 5) follows as a corollary. Let fi ∈ Ki
for i = 1, . . . ,m, j0 ∈ {1, . . . ,m}, z0 ∈ Xj0 and f0 ∈ Kj0 , and let us prove that
for the mapping f given by

f(x) :=
m∑
j=1

[G(fj |Xj)−Gj0(f0|z0)](x)

for all x ∈ Xn, supx∈π−1
Ij0

(z0)
f(x) ≥ 0.

It follows from [17, Theorem 6.4.2] that there is some P ≥ P s.t. Pj0(f0|z0) =
P j0(f0|z0). Let P1(XO1 |XI1), . . . , Pm(XOm |XIm) be conditional linear previ-
sions defined from P by Bayes’ rule. Then P, P1(XO1 |XI1), . . . , Pm(XOm |XIm)
are weakly coherent and moreover P (z0) > 0.

Assume ex-absurdo that f(x) < −δ < 0 for all x ∈ π−1
Ij0

(z0). Since for all
j = 1, . . . ,m Pj(XOj |XIj ) ≥ P j(XOj |XIj ), it follows that

m∑
j=1

[fj − Pj(fj |Xj)−Gj0(f0|z0)](x) ≤
m∑
j=1

[fj − P j(fj |Xj)−Gj0(f0|z0)](x)

for all x. If we denote g :=
∑m
j=1[fj − Pj(fj |Xj) − Gj0(f0|z0)], it follows from

the linearity of P and the weak coherence of P, P1(XO1 |XI1), . . . , Pm(XOm |XIm)
that P (g) = 0. But on the other hand we have that P (g) ≤ P (gIπ−1

Ij0
(z0)

) ≤

P (−δz0) = −δP (z0) < 0. This is a contradiction. Hence, supx∈π−1
Ij0

(z0)
f(x) ≥ 0,

and therefore P 1(XO1 |XI1), . . . , Pm(XOm |XIm) are coherent.

A.13 Proof of Theorem 12

Consider some x in XI , and f ∈ KO∪I . Assume ex-absurdo that R(f |x) <
P (f |x). It follows from the definition of the regular extension that there is some
P ≥ P such that P (x) > 0 and P (f |x) < P (f |x). Since P (x) > 0, it follows from
(GBR) that P (f |x) is the unique value satisfying 0 = P (Iπ−1

I (x)(f − P (f |x))).
As a consequence, given P (f |x) > P (f |x), we have that Iπ−1

I (x)(f − P (f |x)) ≥
Iπ−1
I (x)(f − P (f |x), whence

0 = P (Iπ−1
I (x)(f − P (f |x))) ≥ P (Iπ−1

I (x)(f − P (f |x)))

≥ P (Iπ−1
I (x)(f − P (f |x)) = 0,

using the coherence of P , P (XO|XI). But this implies that P (Iπ−1
I (x)(f −

P (f |x))) = P (Iπ−1
I (x)(f − P (f |x))) = 0, and then there are two different values

of µ for which P (Iπ−1
I (x)(f − µ)) = 0. This is a contradiction.
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A.14 Proof of Theorem 13

The result follows once we remark that the weak coherence of the lower previ-
sions P , P 1(XO1 |XI1), . . . , Pm(XOm |XIm) implies that P , P j(XOj |XIj ) are co-
herent for all j = 1, . . . ,m. Applying [17, Theorem 8.1.2], P j(XOj |XIj ) ≥
Ej(XOj |XIj ) for all j = 1, . . . ,m.
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