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1 Introduction

Since their first introduction, fuzzy random variables have been given a num-
ber of different definitions. In [10], Krätschmer gives an unified approach of
all of them. All of these authors try to model situations where both random-
ness and imprecision are present, and they define a fuzzy random variable
as a map assigning to any element of the initial space a fuzzy subset of the
final space; however, they differ in the measurability condition imposed on
this map and in the characteristics of the final space. On the other hand, the
study of statistical parameters, such as expectation and variance, of a fuzzy
random variable has followed two different approaches: some authors define
them as fuzzy sets ([1, 11, 14, 17]); others as (crisp) numerical values, as in
[9, 12, 13]. One of the reasons for the existence of these different approaches
is that a fuzzy set can be given many different interpretations, as the sur-
vey conducted in [7] testifies; and any of these interpretations can be carried
over to fuzzy random variables and their parameters. In the present paper,
we intend to give fuzzy random variables a possibilistic interpretation. The
value of a fuzzy set in a point will represent a degree of possibility, which
is a specific type of upper probability. We shall see that this interpretation
fits nicely into the framework of the theory of imprecise probabilities ([18]),
and we shall be able to associate with any statistical parameter of interest an
interval of possible values. This is a compromise between the two approaches
considered above (precise numerical values and fuzzy sets): as sets of possible
values these intervals have a straightforward interpretation in the context of
the theory of imprecise probabilities, and the fact that these intervals do not
generally reduce to a precise single value allows us to take into account the
imprecision that a fuzzy random variable represents.
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We shall focus here on the expectation of a fuzzy random variable, for
which our approach yields an interval of possible values that is, in general,
sharper than the support of the fuzzy expectation defined by Puri and Ralescu
in [17]. Indeed, we shall prove that it coincides with the mean value ([6]) of
this fuzzy expectation. We also present some additional discussion and give a
number of interesting additional properties for our expectation.

2 Preliminary concepts

Let us first introduce some notation we will use along the paper. We denote
the power set of Ω by ℘(Ω). The notations β[0,1] and βIR respectively stand
for the (usual) Borel σ-algebras on the unit interval and on the space of real
numbers. We will denote by λ[0,1] the uniform distribution on the unit interval.
(C)

∫
A

Y dµ is defined to be the asymmetric Choquet integral of Y with respect
to µ on the set A. id will denote the identity function.

As we stated in the introduction, a fuzzy random variable is a map that
assigns to any element of the initial space a fuzzy subset of the final space. The
definitions proposed in the literature differ with respect to the assumptions
made about the final space, as well as to the measurability condition imposed
on this map. We shall work with the definition given by Puri and Ralescu in
[17]: a fuzzy random variable assumes values in the class F0(IRn) of fuzzy sets
u : IRn → [0, 1] satisfying:

(a) uα = {x ∈ IRn : u(x) ≥ α} (the weak α-cut of u) is compact for all
α ∈ (0, 1].

(b) {x ∈ IRn : u(x) = 1} 6= ∅.
The measurability condition is based upon the notion of strong measurability
of a multi-valued map.

Definition 1 ([16]). Let (Ω,A) and (Ω′,A′) be two measurable spaces. A
multi-valued map Γ : Ω → ℘(Ω′) is called strongly measurable when

Γ ∗(A) = {ω ∈ Ω : Γ (ω) ∩A 6= ∅} ∈ A, ∀A ∈ A′.

We refer to [8] for a thorough study of this condition. We now come to the
notion of a fuzzy random variable.

Definition 2. Let (Ω,A, P ) be a probability space. A map X̃ : Ω → F0(IRn)
is a fuzzy random variable if, for any α ∈ (0, 1], the multi-valued map
X̃α : Ω → ℘(IRn), defined by X̃α(ω) =

{
x ∈ IRn : X̃(ω)(x) ≥ α

}
is strongly

measurable with respect to A and βIRn .

We shall consider the possibilistic interpretation of fuzzy sets. On this
interpretation, the image X̃(ω) of any ω ∈ Ω, is a map from IRn to [0, 1] that
represents a possibility distribution on IRn. More specifically, we assume that
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we have two experiments: one taking values on a set Ω, which is determined
by a probability measure P defined on a σ-field of sets A ⊆ ℘(Ω); and one
taking values on IRn for which we have imprecise information. The relationship
between the two experiments is given by the fuzzy random variable X̃: if the
outcome of the first experiment is ω ∈ Ω, then our information about the
outcome of the second experiment is given by the fuzzy set X̃(ω), which
determines a (conditional) possibility measure on IRn that we shall denote by
Π(·|ω). In other words, Π(A|ω) represents the degree of possibility (or the
upper probability) that the outcome of the second experiment belongs to A,
if we know that the outcome of the first has been ω. This representation of
our knowledge is related to the work developed in [15].

We shall also assume that there is a (precise but unknown) probability
defining the relationship between the two experiments, i.e., for any ω in the
initial space we assume the existence of a probability measure on the final
space that represents the law governing the second experiment when the out-
come of the first is ω. Therefore, the relationship between the two experiments
is given by a transition probability Q(·|·) on βIRn ×Ω, i.e., a function such
that:

(a) Q(·|ω) is a probability measure for all ω ∈ Ω.
(b) Q(A|·) is A− β[0,1]-measurable for all A ∈ βIRn ,

and the available knowledge about this transition probability is modelled by
the conditional possibility measures {Π(·|ω)}ω∈Ω , in the sense that Q(·|ω) ≤
Π(·|ω) for all ω ∈ Ω.

This model is related to the interpretation considered by Kruse and Meyer
in [11], but it is nevertheless more general: these authors assume that the fuzzy
random variable is a model for the imprecise observation of a random vari-
able. Hence, for any ω of the initial space X̃(ω)(x) is the possibility that we
give to x being the ‘true’ image of ω, and therefore, following the previous
notation, they would only consider degenerate probability measures Q(·|ω).
Nevertheless, the reasoning made in [11] leads naturally to a second-order
possibility distribution (such as those considered in [3, 5]), that is, to a possi-
bility measure defined on the class of probability measures; we shall see that
the combination of the information present in our model provides us with a
first-order model.

In order to make the results of this paper clearer to the reader, let us recall
some ideas from (Classical) Probability Theory. Let us consider a probability
measure, P , on (Ω,A), and a transition probability, Q(·|·), between Ω and
IRn, as described above. We can combine them to construct a probability
measure on the product space (Ω × IRn,A ⊗ βIRn). Its marginal on βIRn is
given by the formula:

Q2(A) =
∫

Ω

Q(A | ω) dP (ω), ∀A ∈ βIRn . (1)



4 Inés Couso, Enrique Miranda, and Gert de Cooman

On the other hand, the expected value of an integrable random variable,
Y : IRn → IR with respect to Q2 will be given by the formula:

∫

Ω

Y dQ2 =
∫

Ω

(∫

IRn

Y dQ(· | ω)
)

dP (ω).

Let us now suppose that each probability measure Q(· | ω) is degenerate
on some X(ω) ∈ IR. It is easy to prove that the mapping X : Ω → IR is
measurable and its induced probability measure coincides with Q2. On the
other hand, its expectation with respect to P can be calculated as follows:

∫

Ω

X dP =
∫

IR

id dPX =
∫

IR

id dQ2 =
∫

Ω

(∫

IR

id dQ(· | ω)
)

dP (ω).

3 Fuzzy random variables as conditional possibility
distributions

As we pointed out in the preceding section, our model considers either the
probability measure P over A, that governs the first sub-experiment, and the
family of conditional possibility measures {Π(·|ω)}ω∈Ω defined as follows:

Π(A|ω) = sup
x∈A

X̃(ω)(x),

for all A ∈ βIRn and ω ∈ Ω. In words, the value Π(A|ω) is the upper bound
of the probability of the final result being in A, provided that the outcome of
the initial experiment is ω.

Since we have assumed that X̃(ω) is in the class F0(IRn), the possibil-
ity measure Π(·|ω) is normal for every ω. Therefore, recalling the results in
[2], we know that Π(·|ω) is the upper envelope of the family of (σ-additive)
probability measures dominated by it. If we combine every transition prob-
ability measure compatible with Π(·|·) with the probability measure P , as
described in Eq. (1), we get a marginal probability measure over βIRn . Indeed,
the supremum of all of these probability measures is the upper probability
describing the available information about the second sub-experiment. On
the other hand, the supremum of the expectations of the identity function
with respect to such probability measures (when defined over βIR) will repre-
sent an upper bound of the expectation of the imprecisely known probability
distribution.

The expressions for both suprema, as a function of the probability measure
P and the family of (conditional) possibility measures {Π(·|ω)}ω∈Ω , will be
developed near the end of this section. We begin here with a general result
that allows us to express them as particular cases.

Theorem 1. Consider a probability space (Ω,A, P ) and a fuzzy random vari-
able X̃ : Ω → F0(IRn), and denote its induced family of possibility measures
by {Π(·|ω)}ω∈Ω. Let us define
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H = {Q(·|·) transition prob. : Q(A|ω) ≤ Π(A|ω), ∀ω ∈ Ω, ∀A ∈ βIRn} .

Given a random variable Y : IRn → IR that is bounded below, the following
equality holds:

∫

Ω

(
(C)

∫

IRn

Y dΠ(·|ω)
)

dP (ω) = sup
Q(·|·)∈H

∫

Ω

(∫

IRn

Y dQ(·|ω)
)

dP (ω).

(2)

Although in this theorem we have focused on the upper bound, it is pos-
sible to establish a similar result with respect to the lower bound. That
is, if we consider the family of necessity measures {N(·|ω)}ω∈Ω that can
be derived from {Π(·|ω)}ω∈Ω using conjugacy, it is easily checked that∫

Ω
((C)

∫
IRn Y dN(·|ω)) dP (ω) coincides with the infimum of the set of val-

ues considered on the right hand side of Eq. (2).
The result has two other interesting consequences. Since in particular

Π(A|ω) = (C)
∫

IRn IA dΠ(·|ω), we find for Y = IA that
∫

Ω

Π(A|ω) dP (ω) = sup
{∫

Ω

Q(A|ω) dP (ω) : Q(·|·) ∈ H
}

for any A ∈ βIRn . This means that
∫

Ω
Π(A|ω) dP (ω) is the smallest upper

bound that we can give to the probability of A, taking into account the in-
formation provided by P and X̃. We shall call this number the upper prob-
ability P X̃(A) that X̃ assumes a value in the set A (and similarly for the
lower probability P X̃(A)).

Secondly, if n = 1 and the support of X̃(ω) is a compact set for each
ω ∈ Ω, recalling the results in [4] it is easily checked that

∫

Ω

(
(C)

∫

IR

id dΠ(·|ω)
)

dP (ω) = sup
Q(·|·)∈H

{∫

Ω

(∫

IR

id dQ(·|ω)
)

dP (ω)
}

.

Thus, the first term of the equality is then the smallest upper bound we
can give to the expectation of a random variable whose imprecise observa-
tion is modelled by the fuzzy random variable X̃. We shall call this number
the upper expectation E(X̃) of the fuzzy random variable X̃. A similar
comment can be made with respect to the greatest lower bound, called the
lower expectation E(X̃). In the next section, we shall concentrate on the
study of these lower and upper expectations, and relate them to some existing
definitions for the expectation of a fuzzy random variable in the literature.

To conclude our discussion of Theorem 1, let us comment on how this result
relates to Walley’s theory of imprecise probabilities ([18]). It turns out that
the left hand side of Eq. (2) is an expression for what Walley would call the
marginal extension of the marginal precise probability P and the conditional
upper probability Π(·|·) (see [18, Section 6.7]). The fact that this marginal
extension is equal to the expression on the right hand side, namely an up-
per envelope of the marginal extensions of P and the (σ-additive) conditional
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probabilities compatible with Π(·|·), reminds us of his Lower Envelope Theo-
rem 6.7.4 in [18], where he proves a similar result but for envelopes involving
finitely additive conditional probabilities.

4 The expectation of a fuzzy random variable

Let us next introduce the concept of expectation established by Puri and
Ralescu in [17]. (We refer the reader to this paper for a further explanation.)
It is based on the notion of an Aumann integral of a random set. Consider
a probability space (Ω,A, P ) and a multi-valued map Γ : Ω → ℘(IRn). Γ is
said to be integrably bounded if there is an integrable map h : Ω → IR such
that ||x|| ≤ h(ω) for all x ∈ Γ (ω) and all ω ∈ Ω. The Aumann integral of
an integrably bounded multi-valued map Γ is defined as the set

(A)
∫

Ω

Γ dP :=
{∫

Ω

f dP : f(ω) ∈ Γ (ω), ∀ω ∈ Ω, f measurable
}

.

Now, a fuzzy random variable X̃ : Ω → F0(IRn) is called integrably bounded
if X̃α is integrably bounded for any α ∈ (0, 1], and the expectation [17] of
an integrably bounded fuzzy random variable X̃ : Ω → F0(IRn) is the unique
fuzzy set whose α-cuts are given by

[E(X̃)]α := (A)
∫

Ω

X̃α dP, ∀α ∈ (0, 1].

This concept of expectation is compatible with a second order possibility
model, as that proposed in [3]: if we assume the existence of some unknown
random variable modelling the relationship between the two experiments, this
fuzzy expectation could be considered as a possibility distribution on the set
of possible values for the ‘true’ expectation.

On the other hand, given a fuzzy number u : IR → [0, 1], Dubois and Prade
([6]) define its mean value as

M(u) :=
{∫

IR

id dP : P : βIR → [0, 1] probability, P ≤ U

}
.

This is the set of possible values for the expectation of a random experiment
whose probability distribution is dominated by the possibility measure U in-
duced by u. We now relate the mean value of the expectation of Puri and
Ralescu to the lower and upper expectations of X̃.

Theorem 2. Consider a probability space (Ω,A, P ) and an integrably bounded
fuzzy random variable X̃ : Ω → F0(IR), and let {Π(·|ω)}ω∈Ω denote the in-
duced family of possibility measures. Then

∫

Ω

(
(C)

∫

IR

id dΠ(·|ω)
)

dP (ω) = sup M(E(X̃)).
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It is clear that we may derive an analogous result with respect to the infimum
value of M(E(X̃)) and the integral with respect to the necessity measures
N(·|ω) conjugate to the Π(·|ω), i.e., the lower expectation of X̃. Therefore,
under the possibilistic interpretation, the mean value of the fuzzy expectation
of a fuzzy random variable (with compact support and integrably bounded)
is the set of possible values for the expectation associated with the original
probability distribution, taking into account the available information.

Let us show next that this value generally speaking gives us more infor-
mation than the expectation of Puri and Ralescu, in the sense that not all
the values in the support of that expectation are a possible value for the
expectation with respect to the ‘true’ probability distribution.

Example 1. Consider the probability space ([0, 1], β[0,1], λ[0,1]) and the fuzzy
random variable X̃ : [0, 1] → F0(IR) given, for all ω ∈ [0, 1], by

X̃(ω)(x) =





2 (x− ω) if ω ≤ x ≤ ω + 1/2
2 (ω + 1− x) if ω + 1/2 < x ≤ ω + 1
0 otherwise

The support of Puri and Ralescu’s expectation is supp(E(X̃)) = [1/2, 3/2].
Its mean value, M(E(X̃)) = [3/4, 5/4], is strictly included in the support. ¨

5 Conclusions and open problems

The model proposed in this paper for the representation of the information
provided by a fuzzy random variable is a compromise between the fuzzy mod-
els proposed in [3, 11, 14] and the precise models considered in [9, 12, 13]:
ours is a first order model, and associates to any parameter of the (unknown)
probability distribution an upper and a lower bound. We have shown that, in
the case of the expectation with respect to this unknown distribution, these
bounds are the most precise ones we can consider, taking into account the
available information. Moreover, the interval they determine coincides with
the mean value of the expectation defined by Puri and Ralescu.

In the future, we intend to compare our model with the second order model
considered in [3]. In [19], Walley proposes a method to reduce second-order
models into first-order ones, using techniques of natural extension. It would
be interesting to see whether the reduction of the model considered in [3] leads
to the model we propose in this paper, and, more generally, whether Walley’s
reduction method is equivalent to calculating the mean value of the possibility
distributions involved in the second-order model. This would be essential if
we want to develop a unified theory.
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