CARDIOLOGY
INTERVAL-VALUED DATASET
Data have been supplied in 1997 by the Nephrology Unit
of the Hospital Valle del Nalón in Langreo (Asturias, Spain). The collected
data correspond to the "range of the cardiac frequency over a day'', the
“range of systolic blood pressure over the same day”, and the “range of
diastolic blood pressure over the same day”, and the observed over a sample
of 59 patients (suffering different types of illness) from a population
of patients who are hospitalized per year in a given area.
Download
Dataset
<
This dataset have appear in the following references:
- Lubiano, M.A. (1999)
Medidas de Variación de Elementos Aleatorios Imprecisos. PhD Thesis.
University of Oviedo.
- Gil, M.A.; Lubiano, M.A.; Montenegro, M.; López, M.T.
(2002). Least
squares fitting of an affine function and strength of association for
interval-valued data. Metrika, Vol. 56, nº 2, pp. 97-111.
(doi:10.1007/s001840100160)
- Montenegro, M. (2003)
[13:59:57] Maria Angeles Gil - Despacho: Estadística con Datos Imprecisos
Basada en una Métrica Generalizada. PhD Thesis. University of Oviedo.
- Montenegro, M.; González-Rodríguez, G.; Colubi, A.;
Gil, M.A. (2004). Bootstrap
approach to test the linear independence between interval-valued random
sets. In Soft Methodology and Random Information Systems
(López-Díaz, M., Gil, M.A., Grzegorzewski, P., Hryniewicz, O., Lawry,
J., Eds.). Advances in Soft Computing, Vol. 26, Springer-Verlag, pp. 431-438.
- Gil, M.A.; González-Rodríguez, G.; Colubi, A.; Montenegro,
M. (2007). Testing
linear independence in linear models with interval-valued data. Computational
Statistics and Data Analysis. Vol. 51, nº 6, pp. 3002-3015. (doi:10.1016/j.csda.2006.01.015)
- González-Rodríguez, G.; Blanco, A.; Corral, N.; Colubi,
A. (2007). Least
squares estimation of linear regression models for convex compact random
sets. Advances in Data Analysis and Classification. Vol.
1, nº 1, pp. 67-81. (doi:10.1007/s11634-006-0003-7)
- Blanco, A.; Corral, N.; González-Rodríguez, G.; Lubiano,
M.A. (2008). Some
properties of the dK-variance for interval-valued
random sets. In Soft Methods for Handling Variability and Imprecision
(Dubois, D., Lubiano, M.A., Prade, H., Gil, M.A.; Grzegorzewski,
P., Hryniewicz, O., Eds.). Advances in Soft Computing, Vol. 48, Springer
Berlin/Heidelberg, pp. 331-337. (doi:10.1007/978-3-540-85027-4_40)
- Fagundes, R.A.A.; de Souza, R.M.C.R.; Cysneiros, F.J.A.
(2009). A
Robust Prediction Method for Interval Symbolic Data. In Proceedings
of the 9th International Conference on Intelligent Systems Design and
Applications (ISDA'09, Pisa, Italy), pp. 1019-1024. (doi:10.1109/ISDA.2009.36)
- Blanco-Fernández, A., Corral, N., González-Rodríguez,
G. (2011).
Estimation of a flexible simple linear model for interval data based on
set arithmetic. Computational Statistics and Data Analysis.
Vol. 55(9), pp. 2568–2578. (doi:10.1016/j.csda.2011.03.005)
- Blanco-Fernández, A.; Colubi, A.; González-Rodríguez,
G. (2011). Simultaneous
confidence regions in a flexible linear regression for random intervals:
a bootstrap approach. In Abstracts
of the 58th Session of the International Statistical Institute (ISI
2011, Dublin, Ireland), CPS065-01.
- Sinova, B.; Colubi, A.; Gil, M.A.; González-Rodríguez,
G. (2012).
Interval arithmetic-based linear regression between interval data: Discussion
and sensitivity analysis on the choice of the metric. Information
Sciences. Vol. 199, pp. 109-124. (doi:10.1016/j.ins.2012.02.040)
- Su, S.-F.; Chuang, C.-C.; Tao, C. W.; Jeng, J.-T.; Hsiao,
C.-C. (2012).
adial Basis Function Networks With Linear Interval Regression Weights
for Symbolic Interval Data. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics. Vol. 42(1), pp. 69-80. (doi:10.1109/TSMCB.2011.2161468)
Back
to top